Gelation of Hole Transport Layer to Improve the Stability of Perovskite Solar Cells
Corresponding Author: Qi Chen
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 175
Abstract
To achieve high power conversion efficiency (PCE) and long-term stability of perovskite solar cells (PSCs), a hole transport layer (HTL) with persistently high conductivity, good moisture/oxygen barrier ability, and adequate passivation capability is important. To achieve enough conductivity and effective hole extraction, spiro-OMeTAD, one of the most frequently used HTL in optoelectronic devices, often needs chemical doping with a lithium compound (LiTFSI). However, the lithium salt dopant induces crystallization and has a negative impact on the performance and lifetime of the device due to its hygroscopic nature. Here, we provide an easy method for creating a gel by mixing a natural small molecule additive (thioctic acid, TA) with spiro-OMeTAD. We discover that gelation effectively improves the compactness of resultant HTL and prevents moisture and oxygen infiltration. Moreover, the gelation of HTL improves not only the conductivity of spiro-OMeTAD, but also the operational robustness of the devices in the atmospheric environment. In addition, TA passivates the perovskite defects and facilitates the charge transfer from the perovskite layer to HTL. As a consequence, the optimized PSCs based on the gelated HTL exhibit an improved PCE (22.52%) with excellent device stability.
Highlights:
1 The gelation of hole transport layer generates a dense and uniform hole transport layer film and significantly inhibits the aggregation of lithium bis(trifluoromethane sulfonyl)imide in spiro-OMeTAD.
2 The gelated hole transport layer confers enhanced charge carrier transport and better humidity and operational stability of perovskite solar cells.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Etgar, P. Gao, Z. Xue, Q. Peng, A.K. Chandiran et al., Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 134(42), 17396–17399 (2012). https://doi.org/10.1021/ja307789s
- A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
- M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107), 643–647 (2012). https://doi.org/10.1126/science.1228604
- S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer et al., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341–344 (2013). https://doi.org/10.1126/science.1243982
- W. Zhang, M. Saliba, D.T. Moore, S.K. Pathak, M.T. Hörantner et al., Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nat. Commun. 6(1), 6142 (2015). https://doi.org/10.1038/ncomms7142
- Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13(7), 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2
- J. Dou, Q. Chen, Zinc stannate nanostructures for energy conversion. Chinese J. Chem. 39(2), 367–380 (2021). https://doi.org/10.1002/cjoc.202000369
- H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee et al., Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598(7881), 444–450 (2021). https://doi.org/10.1038/s41586-021-03964-8
- J. Wei, Q. Wang, J. Huo, F. Gao, Z. Gan et al., Mechanisms and suppression of photoinduced degradation in perovskite solar cells. Adv. Energy Mater. 11(3), 2002326 (2021). https://doi.org/10.1002/aenm.202002326
- J. Burschka, A. Dualeh, F. Kessler, E. Baranoff, N.-L. Cevey-Ha et al., Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells. J. Am. Chem. Soc. 133(45), 18042–18045 (2011). https://doi.org/10.1021/ja207367t
- T. Leijtens, J. Lim, J. Teuscher, T. Park, H.J. Snaith, Charge density dependent mobility of organic hole-transporters and mesoporous TiO2 determined by transient mobility spectroscopy: Implications to dye-sensitized and organic solar cells. Adv. Mater. 25(23), 3227–3233 (2013). https://doi.org/10.1002/adma.201300947
- N.H. Tiep, Z. Ku, H.J. Fan, Recent advances in improving the stability of perovskite solar cells. Adv. Energy Mater. 6(3), 1501420 (2016). https://doi.org/10.1002/aenm.201501420
- G. Ren, W. Han, Q. Zhang, Z. Li, Y. Deng et al., Overcoming perovskite corrosion and de-doping through chemical binding of halogen bonds toward efficient and stable perovskite solar cells. Nano-Micro Lett. 14, 175 (2022). https://doi.org/10.1007/s40820-022-00916-3
- S.N. Habisreutinger, T. Leijtens, G.E. Eperon, S.D. Stranks, R.J. Nicholas et al., Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett. 14(10), 5561–5568 (2014). https://doi.org/10.1021/nl501982b
- G. Ren, W. Han, Y. Deng, W. Wu, Z. Li et al., Strategies of modifying spiro-OMeTAD materials for perovskite solar cells: a review. J. Mater. Chem. A 9(8), 4589–4625 (2021). https://doi.org/10.1039/D0TA11564A
- T.H. Schloemer, J.A. Christians, J.M. Luther, A. Sellinger, Doping strategies for small molecule organic hole-transport materials: impacts on perovskite solar cell performance and stability. Chem. Sci. 10(7), 1904–1935 (2019). https://doi.org/10.1039/C8SC05284K
- Z. Li, C. Xiao, Y. Yang, S.P. Harvey, D.H. Kim et al., Extrinsic ion migration in perovskite solar cells. Energy Environ. Sci. 10(5), 1234–1242 (2017). https://doi.org/10.1039/C7EE00358G
- H. Chen, D. Bryant, J. Troughton, M. Kirkus, M. Neophytou et al., One-step facile synthesis of a simple hole transport material for efficient perovskite solar cells. Chem. Mater. 28(8), 2515–2518 (2016). https://doi.org/10.1021/acs.chemmater.6b00858
- H. Li, C. Chen, H. Hu, Y. Li, Z. Shen et al., Strategies for high-performance perovskite solar cells from materials, film engineering to carrier dynamics and photon management. InfoMat 4(7), e12322 (2022). https://doi.org/10.1002/inf2.12322
- C. Steck, M. Franckevičius, S.M. Zakeeruddin, A. Mishra, P. Bäuerle et al., A-D–A-type S, N-heteropentacene-based hole transport materials for dopant-free perovskite solar cells. J. Mater. Chem. A 3(34), 17738–17746 (2015). https://doi.org/10.1039/C5TA03865K
- E.H. Jung, N.J. Jeon, E.Y. Park, C.S. Moon, T.J. Shin et al., Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 567(7749), 511–515 (2019). https://doi.org/10.1038/s41586-019-1036-3
- J. Luo, J. Xia, H. Yang, L. Chen, Z. Wan et al., Toward high-efficiency, hysteresis-less, stable perovskite solar cells: Unusual doping of a hole-transporting material using a fluorine-containing hydrophobic lewis acid. Energy Environ. Sci. 11(8), 2035–2045 (2018). https://doi.org/10.1039/C8EE00036K
- S. Ye, H. Rao, W. Yan, Y. Li, W. Sun et al., A strategy to simplify the preparation process of perovskite solar cells by co-deposition of a hole-conductor and a perovskite layer. Adv. Mater. 28(43), 9648–9654 (2016). https://doi.org/10.1002/adma.201603850
- W.H. Nguyen, C.D. Bailie, E.L. Unger, M.D. McGehee, Enhancing the hole-conductivity of spiro-OMeTAD without oxygen or lithium salts by using spiro(TFSI)2 in perovskite and dye-sensitized solar cells. J. Am. Chem. Soc. 136(31), 10996–11001 (2014). https://doi.org/10.1021/ja504539w
- B. Tan, S.R. Raga, A.S.R. Chesman, S.O. Fürer, F. Zheng et al., LiTFSI-free spiro-OMeTAD-based perovskite solar cells with power conversion efficiencies exceeding 19%. Adv. Energy Mater. 9(32), 1901519 (2019). https://doi.org/10.1002/aenm.201901519
- Q. Lou, G. Lou, H. Guo, T. Sun, C. Wang et al., Enhanced efficiency and stability of n-i-p perovskite solar cells by incorporation of fluorinated graphene in the spiro-OMeTAD hole transport layer. Adv. Energy Mater. 12(36), 2201344 (2022). https://doi.org/10.1002/aenm.202201344
- C. Geffroy, E. Grana, T. Bessho, S. Almosni, Z. Tang et al., P-doping of a hole transport material via a poly(ionic liquid) for over 20% efficiency and hysteresis-free perovskite solar cells. ACS Appl. Energy Mater. 3(2), 1393–1401 (2020). https://doi.org/10.1021/acsaem.9b01819
- J.-Y. Seo, S. Akin, M. Zalibera, M.A.R. Preciado, H.-S. Kim et al., Dopant engineering for spiro-OMeTAD hole-transporting materials towards efficient perovskite solar cells. Adv. Funct. Mater. 31(45), 2102124 (2021). https://doi.org/10.1002/adfm.202102124
- J.-Y. Seo, H.-S. Kim, S. Akin, M. Stojanovic, E. Simon et al., Novel p-dopant toward highly efficient and stable perovskite solar cells. Energy Environ. Sci. 11(10), 2985–2992 (2018). https://doi.org/10.1039/C8EE01500G
- N. Sakai, R. Warren, F. Zhang, S. Nayak, J. Liu et al., Adduct-based p-doping of organic semiconductors. Nat. Mater. 20(9), 1248–1254 (2021). https://doi.org/10.1038/s41563-021-00980-x
- T. Wang, Y. Zhang, W. Kong, L. Qiao, B. Peng et al., Transporting holes stably under iodide invasion in efficient perovskite solar cells. Science 377(6611), 1227–1232 (2022). https://doi.org/10.1126/science.abq6235
- J. Kong, Y. Shin, J.A. Röhr, H. Wang, J. Meng et al., CO2 doping of organic interlayers for perovskite solar cells. Nature 594(7861), 51–56 (2021). https://doi.org/10.1038/s41586-021-03518-y
- T. Zhang, F. Wang, H.-B. Kim, I.-W. Choi, C. Wang et al., Ion-modulated radical doping of spiro-OMeTAD for more efficient and stable perovskite solar cells. Science 377(6605), 495–501 (2022). https://doi.org/10.1126/science.abo2757
- Q. Zhang, C.-Y. Shi, D.-H. Qu, Y.-T. Long, B.L. Feringa et al., Exploring a naturally tailored small molecule for stretchable, self-healing, and adhesive supramolecular polymers. Sci. Adv. 4(7), 8192 (2018). https://doi.org/10.1126/sciadv.aat8192
- Q. Zhang, D.-H. Qu, B.L. Feringa, H. Tian, Disulfide-mediated reversible polymerization toward intrinsically dynamic smart materials. J. Am. Chem. Soc. 144(5), 2022–2033 (2022). https://doi.org/10.1021/jacs.1c10359
- J.A. Barltrop, P.M. Hayes, M. Calvin, The chemistry of 1,2-dithiolane (trimethylene disulfide) as a model for the primary quantum conversion act in photosynthesis1a. J. Am. Chem. Soc. 76(17), 4348–4367 (1954). https://doi.org/10.1021/ja01646a029
- Q. Zhang, Y.-X. Deng, H.-X. Luo, C.-Y. Shi, G.M. Geise et al., Assembling a natural small molecule into a supramolecular network with high structural order and dynamic functions. J. Am. Chem. Soc. 141(32), 12804–12814 (2019). https://doi.org/10.1021/jacs.9b05740
- D. Pei, S. Yu, X. Zhang, Y. Chen, M. Li et al., Zwitterionic dynamic elastomer with high ionic conductivity for self-adhesive and transparent electronic skin. Chem. Eng. J. 445, 136741 (2022). https://doi.org/10.1016/j.cej.2022.136741
- Y. Saygili, H.-S. Kim, B. Yang, J. Suo, A.B. Muñoz-Garcia et al., Revealing the mechanism of doping of spiro-OMeTAD via Zn complexation in the absence of oxygen and light. ACS Energy Lett. 5(4), 1271–1277 (2020). https://doi.org/10.1021/acsenergylett.0c00319
- J. Song, H. Noh, H. Lee, J.-N. Lee, D.J. Lee et al., Polysulfide rejection layer from alpha-lipoic acid for high performance lithium-sulfur battery. J. Mater. Chem. A 3(1), 323–330 (2015). https://doi.org/10.1039/C4TA03625E
- Y. Han, G. Zhang, H. Xie, T. Kong, Y. Li et al., Azide additive acting as a powerful locker for Li+ and TBP in spiro-OMeTAD toward highly efficient and stable perovskite solar cells. Nano Energy 96, 107072 (2022). https://doi.org/10.1016/j.nanoen.2022.107072
- H. Hu, W. Yuan, L. Lu, H. Zhao, Z. Jia et al., Low glass transition temperature polymer electrolyte prepared from ionic liquid grafted polyethylene oxide. J. Polym. Sci. A Polym. Chem. 52(15), 2104–2110 (2014). https://doi.org/10.1002/pola.27217
- F. Lin, J. Luo, Y. Zhang, J. Zhu, H.A. Malik et al., Perovskite solar cells: Li-TFSI and t-BP-based chemical dopant engineering in spiro-OMeTAD. J. Mater. Chem. A 11(6), 2544–2567 (2023). https://doi.org/10.1039/d2ta08597f
- Q. Du, Z. Shen, C. Chen, F. Li, M. Jin et al., Spiro-OMeTAD:Sb2S3 hole transport layer with triple functions of overcoming lithium salt aggregation, long-term high conductivity, and defect passivation for perovskite solar cells. Sol. RRL 5(11), 2100622 (2021). https://doi.org/10.1002/solr.202100622
References
L. Etgar, P. Gao, Z. Xue, Q. Peng, A.K. Chandiran et al., Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 134(42), 17396–17399 (2012). https://doi.org/10.1021/ja307789s
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107), 643–647 (2012). https://doi.org/10.1126/science.1228604
S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer et al., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341–344 (2013). https://doi.org/10.1126/science.1243982
W. Zhang, M. Saliba, D.T. Moore, S.K. Pathak, M.T. Hörantner et al., Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nat. Commun. 6(1), 6142 (2015). https://doi.org/10.1038/ncomms7142
Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13(7), 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2
J. Dou, Q. Chen, Zinc stannate nanostructures for energy conversion. Chinese J. Chem. 39(2), 367–380 (2021). https://doi.org/10.1002/cjoc.202000369
H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee et al., Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598(7881), 444–450 (2021). https://doi.org/10.1038/s41586-021-03964-8
J. Wei, Q. Wang, J. Huo, F. Gao, Z. Gan et al., Mechanisms and suppression of photoinduced degradation in perovskite solar cells. Adv. Energy Mater. 11(3), 2002326 (2021). https://doi.org/10.1002/aenm.202002326
J. Burschka, A. Dualeh, F. Kessler, E. Baranoff, N.-L. Cevey-Ha et al., Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells. J. Am. Chem. Soc. 133(45), 18042–18045 (2011). https://doi.org/10.1021/ja207367t
T. Leijtens, J. Lim, J. Teuscher, T. Park, H.J. Snaith, Charge density dependent mobility of organic hole-transporters and mesoporous TiO2 determined by transient mobility spectroscopy: Implications to dye-sensitized and organic solar cells. Adv. Mater. 25(23), 3227–3233 (2013). https://doi.org/10.1002/adma.201300947
N.H. Tiep, Z. Ku, H.J. Fan, Recent advances in improving the stability of perovskite solar cells. Adv. Energy Mater. 6(3), 1501420 (2016). https://doi.org/10.1002/aenm.201501420
G. Ren, W. Han, Q. Zhang, Z. Li, Y. Deng et al., Overcoming perovskite corrosion and de-doping through chemical binding of halogen bonds toward efficient and stable perovskite solar cells. Nano-Micro Lett. 14, 175 (2022). https://doi.org/10.1007/s40820-022-00916-3
S.N. Habisreutinger, T. Leijtens, G.E. Eperon, S.D. Stranks, R.J. Nicholas et al., Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett. 14(10), 5561–5568 (2014). https://doi.org/10.1021/nl501982b
G. Ren, W. Han, Y. Deng, W. Wu, Z. Li et al., Strategies of modifying spiro-OMeTAD materials for perovskite solar cells: a review. J. Mater. Chem. A 9(8), 4589–4625 (2021). https://doi.org/10.1039/D0TA11564A
T.H. Schloemer, J.A. Christians, J.M. Luther, A. Sellinger, Doping strategies for small molecule organic hole-transport materials: impacts on perovskite solar cell performance and stability. Chem. Sci. 10(7), 1904–1935 (2019). https://doi.org/10.1039/C8SC05284K
Z. Li, C. Xiao, Y. Yang, S.P. Harvey, D.H. Kim et al., Extrinsic ion migration in perovskite solar cells. Energy Environ. Sci. 10(5), 1234–1242 (2017). https://doi.org/10.1039/C7EE00358G
H. Chen, D. Bryant, J. Troughton, M. Kirkus, M. Neophytou et al., One-step facile synthesis of a simple hole transport material for efficient perovskite solar cells. Chem. Mater. 28(8), 2515–2518 (2016). https://doi.org/10.1021/acs.chemmater.6b00858
H. Li, C. Chen, H. Hu, Y. Li, Z. Shen et al., Strategies for high-performance perovskite solar cells from materials, film engineering to carrier dynamics and photon management. InfoMat 4(7), e12322 (2022). https://doi.org/10.1002/inf2.12322
C. Steck, M. Franckevičius, S.M. Zakeeruddin, A. Mishra, P. Bäuerle et al., A-D–A-type S, N-heteropentacene-based hole transport materials for dopant-free perovskite solar cells. J. Mater. Chem. A 3(34), 17738–17746 (2015). https://doi.org/10.1039/C5TA03865K
E.H. Jung, N.J. Jeon, E.Y. Park, C.S. Moon, T.J. Shin et al., Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 567(7749), 511–515 (2019). https://doi.org/10.1038/s41586-019-1036-3
J. Luo, J. Xia, H. Yang, L. Chen, Z. Wan et al., Toward high-efficiency, hysteresis-less, stable perovskite solar cells: Unusual doping of a hole-transporting material using a fluorine-containing hydrophobic lewis acid. Energy Environ. Sci. 11(8), 2035–2045 (2018). https://doi.org/10.1039/C8EE00036K
S. Ye, H. Rao, W. Yan, Y. Li, W. Sun et al., A strategy to simplify the preparation process of perovskite solar cells by co-deposition of a hole-conductor and a perovskite layer. Adv. Mater. 28(43), 9648–9654 (2016). https://doi.org/10.1002/adma.201603850
W.H. Nguyen, C.D. Bailie, E.L. Unger, M.D. McGehee, Enhancing the hole-conductivity of spiro-OMeTAD without oxygen or lithium salts by using spiro(TFSI)2 in perovskite and dye-sensitized solar cells. J. Am. Chem. Soc. 136(31), 10996–11001 (2014). https://doi.org/10.1021/ja504539w
B. Tan, S.R. Raga, A.S.R. Chesman, S.O. Fürer, F. Zheng et al., LiTFSI-free spiro-OMeTAD-based perovskite solar cells with power conversion efficiencies exceeding 19%. Adv. Energy Mater. 9(32), 1901519 (2019). https://doi.org/10.1002/aenm.201901519
Q. Lou, G. Lou, H. Guo, T. Sun, C. Wang et al., Enhanced efficiency and stability of n-i-p perovskite solar cells by incorporation of fluorinated graphene in the spiro-OMeTAD hole transport layer. Adv. Energy Mater. 12(36), 2201344 (2022). https://doi.org/10.1002/aenm.202201344
C. Geffroy, E. Grana, T. Bessho, S. Almosni, Z. Tang et al., P-doping of a hole transport material via a poly(ionic liquid) for over 20% efficiency and hysteresis-free perovskite solar cells. ACS Appl. Energy Mater. 3(2), 1393–1401 (2020). https://doi.org/10.1021/acsaem.9b01819
J.-Y. Seo, S. Akin, M. Zalibera, M.A.R. Preciado, H.-S. Kim et al., Dopant engineering for spiro-OMeTAD hole-transporting materials towards efficient perovskite solar cells. Adv. Funct. Mater. 31(45), 2102124 (2021). https://doi.org/10.1002/adfm.202102124
J.-Y. Seo, H.-S. Kim, S. Akin, M. Stojanovic, E. Simon et al., Novel p-dopant toward highly efficient and stable perovskite solar cells. Energy Environ. Sci. 11(10), 2985–2992 (2018). https://doi.org/10.1039/C8EE01500G
N. Sakai, R. Warren, F. Zhang, S. Nayak, J. Liu et al., Adduct-based p-doping of organic semiconductors. Nat. Mater. 20(9), 1248–1254 (2021). https://doi.org/10.1038/s41563-021-00980-x
T. Wang, Y. Zhang, W. Kong, L. Qiao, B. Peng et al., Transporting holes stably under iodide invasion in efficient perovskite solar cells. Science 377(6611), 1227–1232 (2022). https://doi.org/10.1126/science.abq6235
J. Kong, Y. Shin, J.A. Röhr, H. Wang, J. Meng et al., CO2 doping of organic interlayers for perovskite solar cells. Nature 594(7861), 51–56 (2021). https://doi.org/10.1038/s41586-021-03518-y
T. Zhang, F. Wang, H.-B. Kim, I.-W. Choi, C. Wang et al., Ion-modulated radical doping of spiro-OMeTAD for more efficient and stable perovskite solar cells. Science 377(6605), 495–501 (2022). https://doi.org/10.1126/science.abo2757
Q. Zhang, C.-Y. Shi, D.-H. Qu, Y.-T. Long, B.L. Feringa et al., Exploring a naturally tailored small molecule for stretchable, self-healing, and adhesive supramolecular polymers. Sci. Adv. 4(7), 8192 (2018). https://doi.org/10.1126/sciadv.aat8192
Q. Zhang, D.-H. Qu, B.L. Feringa, H. Tian, Disulfide-mediated reversible polymerization toward intrinsically dynamic smart materials. J. Am. Chem. Soc. 144(5), 2022–2033 (2022). https://doi.org/10.1021/jacs.1c10359
J.A. Barltrop, P.M. Hayes, M. Calvin, The chemistry of 1,2-dithiolane (trimethylene disulfide) as a model for the primary quantum conversion act in photosynthesis1a. J. Am. Chem. Soc. 76(17), 4348–4367 (1954). https://doi.org/10.1021/ja01646a029
Q. Zhang, Y.-X. Deng, H.-X. Luo, C.-Y. Shi, G.M. Geise et al., Assembling a natural small molecule into a supramolecular network with high structural order and dynamic functions. J. Am. Chem. Soc. 141(32), 12804–12814 (2019). https://doi.org/10.1021/jacs.9b05740
D. Pei, S. Yu, X. Zhang, Y. Chen, M. Li et al., Zwitterionic dynamic elastomer with high ionic conductivity for self-adhesive and transparent electronic skin. Chem. Eng. J. 445, 136741 (2022). https://doi.org/10.1016/j.cej.2022.136741
Y. Saygili, H.-S. Kim, B. Yang, J. Suo, A.B. Muñoz-Garcia et al., Revealing the mechanism of doping of spiro-OMeTAD via Zn complexation in the absence of oxygen and light. ACS Energy Lett. 5(4), 1271–1277 (2020). https://doi.org/10.1021/acsenergylett.0c00319
J. Song, H. Noh, H. Lee, J.-N. Lee, D.J. Lee et al., Polysulfide rejection layer from alpha-lipoic acid for high performance lithium-sulfur battery. J. Mater. Chem. A 3(1), 323–330 (2015). https://doi.org/10.1039/C4TA03625E
Y. Han, G. Zhang, H. Xie, T. Kong, Y. Li et al., Azide additive acting as a powerful locker for Li+ and TBP in spiro-OMeTAD toward highly efficient and stable perovskite solar cells. Nano Energy 96, 107072 (2022). https://doi.org/10.1016/j.nanoen.2022.107072
H. Hu, W. Yuan, L. Lu, H. Zhao, Z. Jia et al., Low glass transition temperature polymer electrolyte prepared from ionic liquid grafted polyethylene oxide. J. Polym. Sci. A Polym. Chem. 52(15), 2104–2110 (2014). https://doi.org/10.1002/pola.27217
F. Lin, J. Luo, Y. Zhang, J. Zhu, H.A. Malik et al., Perovskite solar cells: Li-TFSI and t-BP-based chemical dopant engineering in spiro-OMeTAD. J. Mater. Chem. A 11(6), 2544–2567 (2023). https://doi.org/10.1039/d2ta08597f
Q. Du, Z. Shen, C. Chen, F. Li, M. Jin et al., Spiro-OMeTAD:Sb2S3 hole transport layer with triple functions of overcoming lithium salt aggregation, long-term high conductivity, and defect passivation for perovskite solar cells. Sol. RRL 5(11), 2100622 (2021). https://doi.org/10.1002/solr.202100622