Highly Thermally Conductive and Structurally Ultra-Stable Graphitic Films with Seamless Heterointerfaces for Extreme Thermal Management
Corresponding Author: Chao Gao
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 58
Abstract
Highly thermally conductive graphitic film (GF) materials have become a competitive solution for the thermal management of high-power electronic devices. However, their catastrophic structural failure under extreme alternating thermal/cold shock poses a significant challenge to reliability and safety. Here, we present the first investigation into the structural failure mechanism of GF during cyclic liquid nitrogen shocks (LNS), which reveals a bubbling process characterized by “permeation-diffusion-deformation” phenomenon. To overcome this long-standing structural weakness, a novel metal-nanoarmor strategy is proposed to construct a Cu-modified graphitic film (GF@Cu) with seamless heterointerface. This well-designed interface ensures superior structural stability for GF@Cu after hundreds of LNS cycles from 77 to 300 K. Moreover, GF@Cu maintains high thermal conductivity up to 1088 W m−1 K−1 with degradation of less than 5% even after 150 LNS cycles, superior to that of pure GF (50% degradation). Our work not only offers an opportunity to improve the robustness of graphitic films by the rational structural design but also facilitates the applications of thermally conductive carbon-based materials for future extreme thermal management in complex aerospace electronics.
Highlights:
1 Presenting the first investigation into the structurally bubbling-failure mechanism of graphitic film during cyclic liquid nitrogen shocks.
2 Proposing an innovative design about seamless heterointerface constructing a Cu-modified structure.
3 Inventing a new ultra-stable species of highly thermally conductive films to inspire new techniques for efficient and extreme thermal management.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Song, J. Liu, B. Liu, J. Wu, H.-M. Cheng et al., Two-dimensional materials for thermal management applications. Joule 2(3), 442–463 (2018). https://doi.org/10.1016/j.joule.2018.01.006
- H.F. Hamann, A. Weger, J.A. Lacey, Z. Hu, P. Bose et al., Hotspot-limited microprocessors: direct temperature and power distribution measurements. IEEE J. Solid-State Circuits 42(1), 56–65 (2007). https://doi.org/10.1109/jssc.2006.885064
- J.L. Smoyer, P.M. Norris, Brief historical perspective in thermal management and the shift toward management at the nanoscale. Heat Transf. Eng. 40(3–4), 269–282 (2018). https://doi.org/10.1080/01457632.2018.1426265
- A.K. Sikder, N. Sikder, A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications. J. Hazard. Mater. 112(1–2), 1–15 (2004). https://doi.org/10.1016/j.jhazmat.2004.04.003
- T. Ghidini, Materials for space exploration and settlement. Nat. Mater. 17(10), 846–850 (2018). https://doi.org/10.1038/s41563-018-0184-4
- C. Conficoni, A. Bartolini, A. Tilli, C. Cavazzoni, L. Benini, Integrated energy-aware management of supercomputer hybrid cooling systems. IEEE Trans. Ind. Inf. 12(4), 1299–1311 (2016). https://doi.org/10.1109/tii.2016.2569399
- K. Wirtz, Thermal diffusion in nuclear reactor fuels. J. Am. Chem. Soc. 90(12), 3098–3099 (2002). https://doi.org/10.1021/ja01014a021
- J. Sayers, J. Walker, Nuclear reactor operation in space. Nature 211(5044), 60 (1966). https://doi.org/10.1038/211060a0
- J.A. Aguiar, A.M. Jokisaari, M. Kerr, R. Allen Roach, Bringing nuclear materials discovery and qualification into the 21(st) century. Nat. Commun. 11(1), 2556 (2020). https://doi.org/10.1038/s41467-020-16406-2
- K.F. Man, A.R. Hoffman, Testing of the mars exploration rovers to survive the extreme thermal environments. J. Microelectron. Electron. Packag. 4(4), 145–154 (2007). https://doi.org/10.4071/1551-4897-4.4.145
- Q.F. Guan, H.B. Yang, Z.M. Han, L.C. Zhou, Y.B. Zhu et al., Lightweight, tough, and sustainable cellulose nanofiber-derived bulk structural materials with low thermal expansion coefficient. Sci. Adv. 6(18), eaaz1114 (2020). https://doi.org/10.1126/sciadv.aaz1114
- W.B. Sun, Z.M. Han, X. Yue, H.Y. Zhang, K.P. Yang et al., Nacre-inspired bacterial cellulose/mica nanopaper with excellent mechanical and electrical insulating properties by biosynthesis. Adv. Mater. 35, e2300241 (2023). https://doi.org/10.1002/adma.202300241
- L. Lee, X.C. Cheng, L. Zhang, A high efficiency and low vibration liquid nitrogen cooling system for silicon crystal based x-ray optics. Rev. Sci. Instrum. 91(10), 103105 (2020). https://doi.org/10.1063/5.0016119
- H.X. Xiong, S.H. Yi, H.L. Ding, L. Jin, J.J. Huo, Research on head cooling of high-speed aircraft by liquid nitrogen. Aeronaut. J. 125(1284), 389–409 (2020). https://doi.org/10.1017/aer.2020.86
- K.W. Nam, S.H. Ahn, Crack opening behavior of penetrated crack under fatigue load. KSME Int. J. 16(1), 24–31 (2002). https://doi.org/10.1007/bf03185152
- A.M. Khounsary, R.A. Riddle, A.F. Bernhardt, Microchannel heatsink with liquid-nitrogen cooling. High Heat Flux Eng. 1739, 51–59 (1993). https://doi.org/10.1117/12.140527
- V. Drach, J. Fricke, Transient heat transfer from smooth surfaces into liquid nitrogen. Cryogenics 36(4), 263–269 (1996). https://doi.org/10.1016/0011-2275(96)88785-6
- A.D. Misener, F.T. Hedgcock, Tensile strength of liquid nitrogen. Nature 171(4358), 835–836 (1953). https://doi.org/10.1038/171835b0
- X. Zhong, K. Ruan, J. Gu, Enhanced thermal conductivities of liquid crystal polyesters from controlled structure of molecular chains by introducing different dicarboxylic acid monomers. Research 2022, 9805686 (2022). https://doi.org/10.34133/2022/9805686
- Y. Zhang, C. Lei, K. Wu, Q. Fu, Fully organic bulk polymer with metallic thermal conductivity and tunable thermal pathways. Adv. Sci. 8(14), e2004821 (2021). https://doi.org/10.1002/advs.202004821
- X. Chen, K. Wu, Y. Zhang, D. Liu, R. Li et al., Tropocollagen-inspired hierarchical spiral structure of organic fibers in epoxy bulk for 3D high thermal conductivity. Adv. Mater. 34(40), e2206088 (2022). https://doi.org/10.1002/adma.202206088
- S. Chen, W. Li, X. Li, W. Yang, One-dimensional sic nanostructures: Designed growth, properties, and applications. Prog. Mater. Sci. 104, 138–214 (2019). https://doi.org/10.1016/j.pmatsci.2019.04.004
- V. Guerra, C. Wan, T. McNally, Thermal conductivity of 2d nano-structured boron nitride (bn) and its composites with polymers. Prog. Mater. Sci. 100, 170–186 (2019). https://doi.org/10.1016/j.pmatsci.2018.10.002
- Y. Yang, X. Huang, Z. Cao, G. Chen, Thermally conductive separator with hierarchical nano/microstructures for improving thermal management of batteries. Nano Energy 22, 301–309 (2016). https://doi.org/10.1016/j.nanoen.2016.01.026
- M.S.B. Hoque, Y.R. Koh, J.L. Braun, A. Mamun, Z. Liu et al., High in-plane thermal conductivity of aluminum nitride thin films. ACS Nano 15(6), 9588–9599 (2021). https://doi.org/10.1021/acsnano.0c09915
- J. Wang, D. Liu, Q. Li, C. Chen, Z. Chen et al., Lightweight, superelastic yet thermoconductive boron nitride nanocomposite aerogel for thermal energy regulation. ACS Nano 13(7), 7860–7870 (2019). https://doi.org/10.1021/acsnano.9b02182
- J. Wang, Y. Wu, Y. Xue, D. Liu, X. Wang et al., Super-compatible functional boron nitride nanosheets/polymer films with excellent mechanical properties and ultra-high thermal conductivity for thermal management. J. Mater. Chem. C 6(6), 1363–1369 (2018). https://doi.org/10.1039/c7tc04860b
- J. Wang, T. Yang, Z. Wang, X. Sun, M. An et al., A thermochromic, viscoelastic nacre-like nanocomposite for the smart thermal management of planar electronics. Nano-Micro Lett. 15(1), 170 (2023). https://doi.org/10.1007/s40820-023-01149-8
- J. Wang, Q. Li, D. Liu, C. Chen, Z. Chen et al., High temperature thermally conductive nanocomposite textile by “green” electrospinning. Nanoscale 10(35), 16868–16872 (2018). https://doi.org/10.1039/c8nr05167d
- A.L. Woodcraft, Recommended values for the thermal conductivity of aluminum of different purities in the cryogenic to room temperature range, and a comparison with copper. Cryogenics 45(9), 626–636 (2005). https://doi.org/10.1016/j.cryogenics.2005.06.008
- Q. Shen, M. Jiang, R. Wang, K. Song, M.H. Vong et al., Liquid metal-based soft, hermetic, and wireless-communicable seals for stretchable systems. Science 379(6631), 488–493 (2023). https://doi.org/10.1126/science.ade7341
- M.H. Malakooti, N. Kazem, J. Yan, C. Pan, E.J. Markvicka et al., Liquid metal supercooling for low-temperature thermoelectric wearables. Adv. Funct. Mater. 29(45), 1906098 (2019). https://doi.org/10.1002/adfm.201906098
- G. Xin, T. Yao, H. Sun, S.M. Scott, D. Shao et al., Highly thermally conductive and mechanically strong graphene fibers. Science 349(6252), 1083–1087 (2015). https://doi.org/10.1126/science.aaa6502
- J. Zhong, W. Sun, Q. Wei, X. Qian, H.M. Cheng et al., Efficient and scalable synthesis of highly aligned and compact two-dimensional nanosheet films with record performances. Nat. Commun. 9(1), 3484 (2018). https://doi.org/10.1038/s41467-018-05723-2
- X. Ming, A. Wei, Y. Liu, L. Peng, P. Li et al., 2D-topology-seeded graphitization for highly thermally conductive carbon fibers. Adv. Mater. 34(28), e2201867 (2022). https://doi.org/10.1002/adma.202201867
- F. Wang, W. Fang, X. Ming, Y. Liu, Z. Xu et al., A review on graphene oxide: 2d colloidal molecule, fluid physics, and macroscopic materials. Appl. Phys. Rev. 10(1), 0128899 (2023). https://doi.org/10.1063/5.0128899
- W. Dai, T. Ma, Q. Yan, J. Gao, X. Tan et al., Metal-level thermally conductive yet soft graphene thermal interface materials. ACS Nano 13(10), 11561–11571 (2019). https://doi.org/10.1021/acsnano.9b05163
- L. Peng, Z. Xu, Z. Liu, Y. Guo, P. Li et al., Ultrahigh thermal conductive yet superflexible graphene films. Adv. Mater. 29(27), 1700589 (2017). https://doi.org/10.1002/adma.201700589
- H. Huang, X. Ming, Y. Wang, F. Guo, Y. Liu et al., Polyacrylonitrile-derived thermally conductive graphite film via graphene template effect. Carbon 180, 197–203 (2021). https://doi.org/10.1016/j.carbon.2021.04.090
- Z. Han, J. Wang, S. Liu, Q. Zhang, Y. Liu et al., Electrospinning of neat graphene nanofibers. Adv. Fiber. Mater. 4(2), 268–279 (2021). https://doi.org/10.1007/s42765-021-00105-8
- S. Luo, L. Peng, Y. Xie, X. Cao, X. Wang et al., Flexible large-area graphene films of 50–600 nm thickness with high carrier mobility. Nano-Micro Lett. 15(1), 61 (2023). https://doi.org/10.1007/s40820-023-01032-6
- M. Cao, S. Liu, Q. Zhu, Y. Wang, J. Ma et al., Monodomain liquid crystals of two-dimensional sheets by boundary-free sheargraphy. Nano-Micro Lett. 14(1), 192 (2022). https://doi.org/10.1007/s40820-022-00925-2
- P. Liu, X. Li, P. Min, X. Chang, C. Shu et al., 3d lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano-Micro Lett. 13(1), 22 (2020). https://doi.org/10.1007/s40820-020-00548-5
- W. Dai, X.J. Ren, Q. Yan, S. Wang, M. Yang et al., Ultralow interfacial thermal resistance of graphene thermal interface materials with surface metal liquefaction. Nano-Micro Lett. 15(1), 9 (2022). https://doi.org/10.1007/s40820-022-00979-2
- C.P. Feng, F. Wei, K.Y. Sun, Y. Wang, H.B. Lan et al., Emerging flexible thermally conductive films: Mechanism, fabrication, application. Nano-Micro Lett. 14(1), 127 (2022). https://doi.org/10.1007/s40820-022-00868-8
- I. Gouzman, E. Grossman, R. Verker, N. Atar, A. Bolker et al., Advances in polyimide-based materials for space applications. Adv. Mater. 31(18), e1807738 (2019). https://doi.org/10.1002/adma.201807738
- A. Norman, S. Das, T. Rohr, T. Ghidini, Advanced manufacturing for space applications. CEAS Space J. 15(1), 1–6 (2022). https://doi.org/10.1007/s12567-022-00477-6
- H.A. Atwater, A.R. Davoyan, O. Ilic, D. Jariwala, M.C. Sherrott et al., Materials challenges for the starshot lightsail. Nat. Mater. 17(10), 861–867 (2018). https://doi.org/10.1038/s41563-018-0075-8
- S. Wan, X. Li, Y. Chen, N. Liu, Y. Du et al., High-strength scalable mxene films through bridging-induced densification. Science 374(6563), 96–99 (2021). https://doi.org/10.1126/science.abg2026
- S. Wan, Y. Chen, S. Fang, S. Wang, Z. Xu et al., High-strength scalable graphene sheets by freezing stretch-induced alignment. Nat. Mater. 20(5), 624–631 (2021). https://doi.org/10.1038/s41563-020-00892-2
- K. Shen, P. Li, J. Lin, Z. Wang, G. Cai et al., Intercalated oligomer doubles plasticity for strong and conductive graphene papers and composites. Carbon 208, 160–169 (2023). https://doi.org/10.1016/j.carbon.2023.03.036
- P. Li, M. Yang, Y. Liu, H. Qin, J. Liu et al., Continuous crystalline graphene papers with gigapascal strength by intercalation modulated plasticization. Nat. Commun. 11, 2645 (2020). https://doi.org/10.1038/s41467-020-16494-0
- P.A. Misra, I. Manousakis, E. Choukse, M. Jalili, I. Goiri et al., Overclocking in immersion-cooled datacenters. IEEE Micro 42(4), 10–17 (2022). https://doi.org/10.1109/mm.2022.3163107
- K. Pang, X. Song, Z. Xu, X. Liu, Y. Liu et al., Hydroplastic foaming of graphene aerogels and artificially intelligent tactile sensors. Sci. Adv. 6(46), eabd4045 (2020). https://doi.org/10.1126/sciadv.abd4045
- J. Wang, A.V. Nguyen, S. Farrokhpay, A critical review of the growth, drainage and collapse of foams. Adv. Colloid Interface Sci. 228, 55–70 (2016). https://doi.org/10.1016/j.cis.2015.11.009
- L. Li, J. Xu, G. Li, X. Jia, Y. Li et al., Preparation of graphene nanosheets by shear-assisted supercritical CO2 exfoliation. Chem. Eng. J. 284, 78–84 (2016). https://doi.org/10.1016/j.cej.2015.08.077
- Z. Sun, Q. Fan, M. Zhang, S. Liu, H. Tao et al., Supercritical fluid-facilitated exfoliation and processing of 2d materials. Adv. Sci. 6(18), 1901084 (2019). https://doi.org/10.1002/advs.201901084
- D.-J. Liaw, K.-L. Wang, Y.-C. Huang, K.-R. Lee, J.-Y. Lai et al., Advanced polyimide materials: syntheses, physical properties and applications. Prog. Polym. Sci. 37(7), 907–974 (2012). https://doi.org/10.1016/j.progpolymsci.2012.02.005
- K. Yang, Z. Zhang, H. Zhao, B. Yang, B. Zhong et al., Orientation independent heat transport characteristics of diamond/copper interface with ion beam bombardment. Acta Mater. 220, 117283 (2021). https://doi.org/10.1016/j.actamat.2021.117283
- Z. Wei, W. Ju, K. Bi, J. Yang, Y. Chen, Significant enhancement of thermal boundary conductance in graphite/al interface by ion intercalation. Int. J. Heat Mass Transf. 157, 119946 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.119946
- K.M. Yang, Y.C. Ma, Z.Y. Zhang, J. Zhu, Z.B. Sun et al., Anisotropic thermal conductivity and associated heat transport mechanism in roll-to-roll graphene reinforced copper matrix composites. Acta Mater. 197, 342–354 (2020). https://doi.org/10.1016/j.actamat.2020.07.021
- M. Blank, L. Weber, Influence of interfacial structural disorder and/or chemical interdiffusion on thermal boundary conductance for ti/si and au/si couples. J. Appl. Phys. 126(15), 155302 (2019). https://doi.org/10.1063/1.5114671
- C.-J. Twu, J.-R. Ho, Molecular-dynamics study of energy flow and the kapitza conductance across an interface with imperfection formed by two dielectric thin films. Phys. Rev. B 67(20), 205422 (2003). https://doi.org/10.1103/PhysRevB.67.205422
- J. Wang, Z. Wang, K. Yang, N. Chen, J. Ni et al., Enhanced heat transport capability across boron nitride/copper interface through inelastic phonon scattering. Adv. Funct. Mater. 32(40), 2206545 (2022). https://doi.org/10.1002/adfm.202206545
- X.D. Zhang, G. Yang, B.Y. Cao, Bonding-enhanced interfacial thermal transport: Mechanisms, materials, and applications. Adv. Mater. Interfaces 9(27), 2200078 (2022). https://doi.org/10.1002/admi.202200078
- Y. Liu, J. Guo, E. Zhu, L. Liao, S.J. Lee et al., Approaching the schottky-mott limit in van der waals metal-semiconductor junctions. Nature 557(7707), 696–700 (2018). https://doi.org/10.1038/s41586-018-0129-8
- M. Cao, D.B. Xiong, L. Yang, S. Li, Y. Xie et al., Ultrahigh electrical conductivity of graphene embedded in metals. Adv. Funct. Mater. 29(17), 1806792 (2019). https://doi.org/10.1002/adfm.201806792
- H. Peng, X. Ming, K. Pang, Y. Chen, J. Zhou et al., Highly electrically conductive graphene papers via catalytic graphitization. Nano Res. 15(6), 4902–4908 (2022). https://doi.org/10.1007/s12274-022-4130-z
- S. Zhang, X. Liu, C. Jia, Z. Sun, H. Jiang et al., Integration of multiple heterointerfaces in a hierarchical 0D@2D@1D structure for lightweight, flexible, and hydrophobic multifunctional electromagnetic protective fabrics. Nano-Micro Lett. 15, 204 (2023). https://doi.org/10.1007/s40820-023-01179-2
- Z. Nan, W. Wei, Z. Lin, J. Chang, Y. Hao, Flexible nanocomposite conductors for electromagnetic interference shielding. Nano-Micro Lett. 15, 172 (2023). https://doi.org/10.1007/s40820-023-01122-5
References
H. Song, J. Liu, B. Liu, J. Wu, H.-M. Cheng et al., Two-dimensional materials for thermal management applications. Joule 2(3), 442–463 (2018). https://doi.org/10.1016/j.joule.2018.01.006
H.F. Hamann, A. Weger, J.A. Lacey, Z. Hu, P. Bose et al., Hotspot-limited microprocessors: direct temperature and power distribution measurements. IEEE J. Solid-State Circuits 42(1), 56–65 (2007). https://doi.org/10.1109/jssc.2006.885064
J.L. Smoyer, P.M. Norris, Brief historical perspective in thermal management and the shift toward management at the nanoscale. Heat Transf. Eng. 40(3–4), 269–282 (2018). https://doi.org/10.1080/01457632.2018.1426265
A.K. Sikder, N. Sikder, A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications. J. Hazard. Mater. 112(1–2), 1–15 (2004). https://doi.org/10.1016/j.jhazmat.2004.04.003
T. Ghidini, Materials for space exploration and settlement. Nat. Mater. 17(10), 846–850 (2018). https://doi.org/10.1038/s41563-018-0184-4
C. Conficoni, A. Bartolini, A. Tilli, C. Cavazzoni, L. Benini, Integrated energy-aware management of supercomputer hybrid cooling systems. IEEE Trans. Ind. Inf. 12(4), 1299–1311 (2016). https://doi.org/10.1109/tii.2016.2569399
K. Wirtz, Thermal diffusion in nuclear reactor fuels. J. Am. Chem. Soc. 90(12), 3098–3099 (2002). https://doi.org/10.1021/ja01014a021
J. Sayers, J. Walker, Nuclear reactor operation in space. Nature 211(5044), 60 (1966). https://doi.org/10.1038/211060a0
J.A. Aguiar, A.M. Jokisaari, M. Kerr, R. Allen Roach, Bringing nuclear materials discovery and qualification into the 21(st) century. Nat. Commun. 11(1), 2556 (2020). https://doi.org/10.1038/s41467-020-16406-2
K.F. Man, A.R. Hoffman, Testing of the mars exploration rovers to survive the extreme thermal environments. J. Microelectron. Electron. Packag. 4(4), 145–154 (2007). https://doi.org/10.4071/1551-4897-4.4.145
Q.F. Guan, H.B. Yang, Z.M. Han, L.C. Zhou, Y.B. Zhu et al., Lightweight, tough, and sustainable cellulose nanofiber-derived bulk structural materials with low thermal expansion coefficient. Sci. Adv. 6(18), eaaz1114 (2020). https://doi.org/10.1126/sciadv.aaz1114
W.B. Sun, Z.M. Han, X. Yue, H.Y. Zhang, K.P. Yang et al., Nacre-inspired bacterial cellulose/mica nanopaper with excellent mechanical and electrical insulating properties by biosynthesis. Adv. Mater. 35, e2300241 (2023). https://doi.org/10.1002/adma.202300241
L. Lee, X.C. Cheng, L. Zhang, A high efficiency and low vibration liquid nitrogen cooling system for silicon crystal based x-ray optics. Rev. Sci. Instrum. 91(10), 103105 (2020). https://doi.org/10.1063/5.0016119
H.X. Xiong, S.H. Yi, H.L. Ding, L. Jin, J.J. Huo, Research on head cooling of high-speed aircraft by liquid nitrogen. Aeronaut. J. 125(1284), 389–409 (2020). https://doi.org/10.1017/aer.2020.86
K.W. Nam, S.H. Ahn, Crack opening behavior of penetrated crack under fatigue load. KSME Int. J. 16(1), 24–31 (2002). https://doi.org/10.1007/bf03185152
A.M. Khounsary, R.A. Riddle, A.F. Bernhardt, Microchannel heatsink with liquid-nitrogen cooling. High Heat Flux Eng. 1739, 51–59 (1993). https://doi.org/10.1117/12.140527
V. Drach, J. Fricke, Transient heat transfer from smooth surfaces into liquid nitrogen. Cryogenics 36(4), 263–269 (1996). https://doi.org/10.1016/0011-2275(96)88785-6
A.D. Misener, F.T. Hedgcock, Tensile strength of liquid nitrogen. Nature 171(4358), 835–836 (1953). https://doi.org/10.1038/171835b0
X. Zhong, K. Ruan, J. Gu, Enhanced thermal conductivities of liquid crystal polyesters from controlled structure of molecular chains by introducing different dicarboxylic acid monomers. Research 2022, 9805686 (2022). https://doi.org/10.34133/2022/9805686
Y. Zhang, C. Lei, K. Wu, Q. Fu, Fully organic bulk polymer with metallic thermal conductivity and tunable thermal pathways. Adv. Sci. 8(14), e2004821 (2021). https://doi.org/10.1002/advs.202004821
X. Chen, K. Wu, Y. Zhang, D. Liu, R. Li et al., Tropocollagen-inspired hierarchical spiral structure of organic fibers in epoxy bulk for 3D high thermal conductivity. Adv. Mater. 34(40), e2206088 (2022). https://doi.org/10.1002/adma.202206088
S. Chen, W. Li, X. Li, W. Yang, One-dimensional sic nanostructures: Designed growth, properties, and applications. Prog. Mater. Sci. 104, 138–214 (2019). https://doi.org/10.1016/j.pmatsci.2019.04.004
V. Guerra, C. Wan, T. McNally, Thermal conductivity of 2d nano-structured boron nitride (bn) and its composites with polymers. Prog. Mater. Sci. 100, 170–186 (2019). https://doi.org/10.1016/j.pmatsci.2018.10.002
Y. Yang, X. Huang, Z. Cao, G. Chen, Thermally conductive separator with hierarchical nano/microstructures for improving thermal management of batteries. Nano Energy 22, 301–309 (2016). https://doi.org/10.1016/j.nanoen.2016.01.026
M.S.B. Hoque, Y.R. Koh, J.L. Braun, A. Mamun, Z. Liu et al., High in-plane thermal conductivity of aluminum nitride thin films. ACS Nano 15(6), 9588–9599 (2021). https://doi.org/10.1021/acsnano.0c09915
J. Wang, D. Liu, Q. Li, C. Chen, Z. Chen et al., Lightweight, superelastic yet thermoconductive boron nitride nanocomposite aerogel for thermal energy regulation. ACS Nano 13(7), 7860–7870 (2019). https://doi.org/10.1021/acsnano.9b02182
J. Wang, Y. Wu, Y. Xue, D. Liu, X. Wang et al., Super-compatible functional boron nitride nanosheets/polymer films with excellent mechanical properties and ultra-high thermal conductivity for thermal management. J. Mater. Chem. C 6(6), 1363–1369 (2018). https://doi.org/10.1039/c7tc04860b
J. Wang, T. Yang, Z. Wang, X. Sun, M. An et al., A thermochromic, viscoelastic nacre-like nanocomposite for the smart thermal management of planar electronics. Nano-Micro Lett. 15(1), 170 (2023). https://doi.org/10.1007/s40820-023-01149-8
J. Wang, Q. Li, D. Liu, C. Chen, Z. Chen et al., High temperature thermally conductive nanocomposite textile by “green” electrospinning. Nanoscale 10(35), 16868–16872 (2018). https://doi.org/10.1039/c8nr05167d
A.L. Woodcraft, Recommended values for the thermal conductivity of aluminum of different purities in the cryogenic to room temperature range, and a comparison with copper. Cryogenics 45(9), 626–636 (2005). https://doi.org/10.1016/j.cryogenics.2005.06.008
Q. Shen, M. Jiang, R. Wang, K. Song, M.H. Vong et al., Liquid metal-based soft, hermetic, and wireless-communicable seals for stretchable systems. Science 379(6631), 488–493 (2023). https://doi.org/10.1126/science.ade7341
M.H. Malakooti, N. Kazem, J. Yan, C. Pan, E.J. Markvicka et al., Liquid metal supercooling for low-temperature thermoelectric wearables. Adv. Funct. Mater. 29(45), 1906098 (2019). https://doi.org/10.1002/adfm.201906098
G. Xin, T. Yao, H. Sun, S.M. Scott, D. Shao et al., Highly thermally conductive and mechanically strong graphene fibers. Science 349(6252), 1083–1087 (2015). https://doi.org/10.1126/science.aaa6502
J. Zhong, W. Sun, Q. Wei, X. Qian, H.M. Cheng et al., Efficient and scalable synthesis of highly aligned and compact two-dimensional nanosheet films with record performances. Nat. Commun. 9(1), 3484 (2018). https://doi.org/10.1038/s41467-018-05723-2
X. Ming, A. Wei, Y. Liu, L. Peng, P. Li et al., 2D-topology-seeded graphitization for highly thermally conductive carbon fibers. Adv. Mater. 34(28), e2201867 (2022). https://doi.org/10.1002/adma.202201867
F. Wang, W. Fang, X. Ming, Y. Liu, Z. Xu et al., A review on graphene oxide: 2d colloidal molecule, fluid physics, and macroscopic materials. Appl. Phys. Rev. 10(1), 0128899 (2023). https://doi.org/10.1063/5.0128899
W. Dai, T. Ma, Q. Yan, J. Gao, X. Tan et al., Metal-level thermally conductive yet soft graphene thermal interface materials. ACS Nano 13(10), 11561–11571 (2019). https://doi.org/10.1021/acsnano.9b05163
L. Peng, Z. Xu, Z. Liu, Y. Guo, P. Li et al., Ultrahigh thermal conductive yet superflexible graphene films. Adv. Mater. 29(27), 1700589 (2017). https://doi.org/10.1002/adma.201700589
H. Huang, X. Ming, Y. Wang, F. Guo, Y. Liu et al., Polyacrylonitrile-derived thermally conductive graphite film via graphene template effect. Carbon 180, 197–203 (2021). https://doi.org/10.1016/j.carbon.2021.04.090
Z. Han, J. Wang, S. Liu, Q. Zhang, Y. Liu et al., Electrospinning of neat graphene nanofibers. Adv. Fiber. Mater. 4(2), 268–279 (2021). https://doi.org/10.1007/s42765-021-00105-8
S. Luo, L. Peng, Y. Xie, X. Cao, X. Wang et al., Flexible large-area graphene films of 50–600 nm thickness with high carrier mobility. Nano-Micro Lett. 15(1), 61 (2023). https://doi.org/10.1007/s40820-023-01032-6
M. Cao, S. Liu, Q. Zhu, Y. Wang, J. Ma et al., Monodomain liquid crystals of two-dimensional sheets by boundary-free sheargraphy. Nano-Micro Lett. 14(1), 192 (2022). https://doi.org/10.1007/s40820-022-00925-2
P. Liu, X. Li, P. Min, X. Chang, C. Shu et al., 3d lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano-Micro Lett. 13(1), 22 (2020). https://doi.org/10.1007/s40820-020-00548-5
W. Dai, X.J. Ren, Q. Yan, S. Wang, M. Yang et al., Ultralow interfacial thermal resistance of graphene thermal interface materials with surface metal liquefaction. Nano-Micro Lett. 15(1), 9 (2022). https://doi.org/10.1007/s40820-022-00979-2
C.P. Feng, F. Wei, K.Y. Sun, Y. Wang, H.B. Lan et al., Emerging flexible thermally conductive films: Mechanism, fabrication, application. Nano-Micro Lett. 14(1), 127 (2022). https://doi.org/10.1007/s40820-022-00868-8
I. Gouzman, E. Grossman, R. Verker, N. Atar, A. Bolker et al., Advances in polyimide-based materials for space applications. Adv. Mater. 31(18), e1807738 (2019). https://doi.org/10.1002/adma.201807738
A. Norman, S. Das, T. Rohr, T. Ghidini, Advanced manufacturing for space applications. CEAS Space J. 15(1), 1–6 (2022). https://doi.org/10.1007/s12567-022-00477-6
H.A. Atwater, A.R. Davoyan, O. Ilic, D. Jariwala, M.C. Sherrott et al., Materials challenges for the starshot lightsail. Nat. Mater. 17(10), 861–867 (2018). https://doi.org/10.1038/s41563-018-0075-8
S. Wan, X. Li, Y. Chen, N. Liu, Y. Du et al., High-strength scalable mxene films through bridging-induced densification. Science 374(6563), 96–99 (2021). https://doi.org/10.1126/science.abg2026
S. Wan, Y. Chen, S. Fang, S. Wang, Z. Xu et al., High-strength scalable graphene sheets by freezing stretch-induced alignment. Nat. Mater. 20(5), 624–631 (2021). https://doi.org/10.1038/s41563-020-00892-2
K. Shen, P. Li, J. Lin, Z. Wang, G. Cai et al., Intercalated oligomer doubles plasticity for strong and conductive graphene papers and composites. Carbon 208, 160–169 (2023). https://doi.org/10.1016/j.carbon.2023.03.036
P. Li, M. Yang, Y. Liu, H. Qin, J. Liu et al., Continuous crystalline graphene papers with gigapascal strength by intercalation modulated plasticization. Nat. Commun. 11, 2645 (2020). https://doi.org/10.1038/s41467-020-16494-0
P.A. Misra, I. Manousakis, E. Choukse, M. Jalili, I. Goiri et al., Overclocking in immersion-cooled datacenters. IEEE Micro 42(4), 10–17 (2022). https://doi.org/10.1109/mm.2022.3163107
K. Pang, X. Song, Z. Xu, X. Liu, Y. Liu et al., Hydroplastic foaming of graphene aerogels and artificially intelligent tactile sensors. Sci. Adv. 6(46), eabd4045 (2020). https://doi.org/10.1126/sciadv.abd4045
J. Wang, A.V. Nguyen, S. Farrokhpay, A critical review of the growth, drainage and collapse of foams. Adv. Colloid Interface Sci. 228, 55–70 (2016). https://doi.org/10.1016/j.cis.2015.11.009
L. Li, J. Xu, G. Li, X. Jia, Y. Li et al., Preparation of graphene nanosheets by shear-assisted supercritical CO2 exfoliation. Chem. Eng. J. 284, 78–84 (2016). https://doi.org/10.1016/j.cej.2015.08.077
Z. Sun, Q. Fan, M. Zhang, S. Liu, H. Tao et al., Supercritical fluid-facilitated exfoliation and processing of 2d materials. Adv. Sci. 6(18), 1901084 (2019). https://doi.org/10.1002/advs.201901084
D.-J. Liaw, K.-L. Wang, Y.-C. Huang, K.-R. Lee, J.-Y. Lai et al., Advanced polyimide materials: syntheses, physical properties and applications. Prog. Polym. Sci. 37(7), 907–974 (2012). https://doi.org/10.1016/j.progpolymsci.2012.02.005
K. Yang, Z. Zhang, H. Zhao, B. Yang, B. Zhong et al., Orientation independent heat transport characteristics of diamond/copper interface with ion beam bombardment. Acta Mater. 220, 117283 (2021). https://doi.org/10.1016/j.actamat.2021.117283
Z. Wei, W. Ju, K. Bi, J. Yang, Y. Chen, Significant enhancement of thermal boundary conductance in graphite/al interface by ion intercalation. Int. J. Heat Mass Transf. 157, 119946 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.119946
K.M. Yang, Y.C. Ma, Z.Y. Zhang, J. Zhu, Z.B. Sun et al., Anisotropic thermal conductivity and associated heat transport mechanism in roll-to-roll graphene reinforced copper matrix composites. Acta Mater. 197, 342–354 (2020). https://doi.org/10.1016/j.actamat.2020.07.021
M. Blank, L. Weber, Influence of interfacial structural disorder and/or chemical interdiffusion on thermal boundary conductance for ti/si and au/si couples. J. Appl. Phys. 126(15), 155302 (2019). https://doi.org/10.1063/1.5114671
C.-J. Twu, J.-R. Ho, Molecular-dynamics study of energy flow and the kapitza conductance across an interface with imperfection formed by two dielectric thin films. Phys. Rev. B 67(20), 205422 (2003). https://doi.org/10.1103/PhysRevB.67.205422
J. Wang, Z. Wang, K. Yang, N. Chen, J. Ni et al., Enhanced heat transport capability across boron nitride/copper interface through inelastic phonon scattering. Adv. Funct. Mater. 32(40), 2206545 (2022). https://doi.org/10.1002/adfm.202206545
X.D. Zhang, G. Yang, B.Y. Cao, Bonding-enhanced interfacial thermal transport: Mechanisms, materials, and applications. Adv. Mater. Interfaces 9(27), 2200078 (2022). https://doi.org/10.1002/admi.202200078
Y. Liu, J. Guo, E. Zhu, L. Liao, S.J. Lee et al., Approaching the schottky-mott limit in van der waals metal-semiconductor junctions. Nature 557(7707), 696–700 (2018). https://doi.org/10.1038/s41586-018-0129-8
M. Cao, D.B. Xiong, L. Yang, S. Li, Y. Xie et al., Ultrahigh electrical conductivity of graphene embedded in metals. Adv. Funct. Mater. 29(17), 1806792 (2019). https://doi.org/10.1002/adfm.201806792
H. Peng, X. Ming, K. Pang, Y. Chen, J. Zhou et al., Highly electrically conductive graphene papers via catalytic graphitization. Nano Res. 15(6), 4902–4908 (2022). https://doi.org/10.1007/s12274-022-4130-z
S. Zhang, X. Liu, C. Jia, Z. Sun, H. Jiang et al., Integration of multiple heterointerfaces in a hierarchical 0D@2D@1D structure for lightweight, flexible, and hydrophobic multifunctional electromagnetic protective fabrics. Nano-Micro Lett. 15, 204 (2023). https://doi.org/10.1007/s40820-023-01179-2
Z. Nan, W. Wei, Z. Lin, J. Chang, Y. Hao, Flexible nanocomposite conductors for electromagnetic interference shielding. Nano-Micro Lett. 15, 172 (2023). https://doi.org/10.1007/s40820-023-01122-5