Precise Thermoplastic Processing of Graphene Oxide Layered Solid by Polymer Intercalation
Corresponding Author: Chao Gao
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 12
Abstract
The processing capability is vital for the wide applications of materials to forge structures as-demand. Graphene-based macroscopic materials have shown excellent mechanical and functional properties. However, different from usual polymers and metals, graphene solids exhibit limited deformability and processibility for precise forming. Here, we present a precise thermoplastic forming of graphene materials by polymer intercalation from graphene oxide (GO) precursor. The intercalated polymer enables the thermoplasticity of GO solids by thermally activated motion of polymer chains. We detect a critical minimum containing of intercalated polymer that can expand the interlayer spacing exceeding 1.4 nm to activate thermoplasticity, which becomes the criteria for thermal plastic forming of GO solids. By thermoplastic forming, the flat GO-composite films are forged to Gaussian curved shapes and imprinted to have surface relief patterns with size precision down to 360 nm. The plastic-formed structures maintain the structural integration with outstanding electrical (3.07 × 105 S m−1) and thermal conductivity (745.65 W m−1 K−1) after removal of polymers. The thermoplastic strategy greatly extends the forming capability of GO materials and other layered materials and promises versatile structural designs for more broad applications.
Highlights:
1 A solvent-free thermoplastic forming processing of graphene materials is invented by polymer intercalation from graphene oxide precursor.
2 The correlation between interlayer spacing and thermoplastic forming capability of polymer-intercalated graphene oxide solid is uncovered.
3 The multi-scale forming of graphene materials from Gaussian curved shapes to surface relief patterns with size precision down to 360 nm is realized.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Dai, T. Ma, Q. Yan, J. Gao, X. Tan et al., Metal-level thermally conductive yet soft graphene thermal interface materials. ACS Nano 13(10), 11561–11571 (2019). https://doi.org/10.1021/acsnano.9b05163
- J. Shen, G.P. Liu, K. Huang, Z.Y. Chu, W.Q. Jin et al., Subnanometer two-dimensional graphene oxide channels for ultrafast gas sieving. ACS Nano 10(3), 3398–3409 (2016). https://doi.org/10.1021/acsnano.5b07304
- S.Y. Liu, M. Cerruti, F. Barthelat, Plastic forming of graphene oxide membranes into 3D structures. ACS Nano 14(11), 15936–15943 (2020). https://doi.org/10.1021/acsnano.0c07344
- B. Shen, W.T. Zhai, W.G. Zheng, Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding. Adv. Funct. Mater. 24(28), 4542–4548 (2014). https://doi.org/10.1002/adfm.201400079
- L. Huang, C. Li, W.J. Yuan, G.Q. Shi, Strong composite films with layered structures prepared by casting silk fibroin-graphene oxide hydrogels. Nanoscale 5(9), 3780–3786 (2013). https://doi.org/10.1039/C3NR00196B
- G.I. Titelman, V. Gelman, S. Bron, R.L. Khalfin, Y. Cohe et al., Characteristics and microstructure of aqueous colloidal dispersions of graphite oxide. Carbon 43(3), 641–649 (2005). https://doi.org/10.1016/j.carbon.2004.10.035
- Y.H. Xiao, Z. Xu, Y.J. Liu, L. Peng, J.B. Xi et al., Sheet collapsing approach for rubber-like graphene papers. ACS Nano 11(8), 8092–8102 (2017). https://doi.org/10.1021/acsnano.7b02915
- Z. An, O.C. Compton, K.W. Putz, L.C. Brinson, S.T. Nguyen, Bio-inspired borate cross-linking in ultra-stiff graphene oxide thin films. Adv. Mater. 23(33), 3842–3846 (2011). https://doi.org/10.1002/adma.201101544
- D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett et al., Preparation and characterization of graphene oxide paper. Nature 448(7152), 457–460 (2007). https://doi.org/10.1038/nature06016
- G.Q. Xin, H.T. Sun, T. Hu, H.R. Fard, X. Sun et al., Large-area freestanding graphene paper for superior thermal management. Adv. Mater. 26(26), 4521–4526 (2014). https://doi.org/10.1002/adma.201400951
- J. Zhong, W. Sun, Q.W. Wei, X.T. Qian, H.M. Cheng et al., Efficient and scalable synthesis of highly aligned and compact two-dimensional nanosheet films with record performances. Nat. Commun. 9(1), 3484 (2018). https://doi.org/10.1038/s41467-018-05723-2
- Z. Xu, C. Gao, Graphene chiral liquid crystals and macroscopic assembled fibres. Nat. Commun. 2, 571 (2011). https://doi.org/10.1038/ncomms1583
- Z. Liu, Z. Li, Z. Xu, Z.X. Xia, X.Z. Hu et al., Wet-spun continuous graphene films. Chem. Mater. 26(23), 6786–6795 (2014). https://doi.org/10.1021/cm5033089
- Z. Li, Z. Xu, Y.J. Liu, R. Wang, C. Gao, Multifunctional non-woven fabrics of interfused graphene fibres. Nat. Commun. 7, 13684 (2016). https://doi.org/10.1038/ncomms13684
- P. Li, M.C. Yang, Y.J. Liu, H.S. Qin, J.R. Liu et al., Continuous crystalline graphene papers with gigapascal strength by intercalation modulated plasticization. Nat. Commun. 11(1), 2645 (2020). https://doi.org/10.1038/s41467-020-16494-0
- K. Pang, X. Song, Z. Xu, X.T. Liu, Y.J. Liu et al., Hydroplastic foaming of graphene aerogels and artificially intelligent tactile sensors. Sci. Adv. 6, eabd4045 (2020). https://doi.org/10.1126/sciadv.abd4045
- F. Guo, Y. Wang, Y.Q. Jiang, Z.S. Li, Z. Xu et al., Hydroplastic micromolding of 2D sheets. Adv. Mater. 33(25), 2008116 (2021). https://doi.org/10.1002/adma.202008116
- A. Pucci, Smart and modern thermoplastic polymer materials. Polymers 10(11), 1211 (2018). https://doi.org/10.3390/polym10111211
- G.M. Scheutz, J.J. Lessard, M.B. Sims, B.S. Sumerlin, Adaptable crosslinks in polymeric materials: resolving the intersection of thermoplastics and thermosets. J. Am. Chem. Soc. 141(41), 16181–16196 (2019). https://doi.org/10.1021/jacs.9b07922
- J.M. Garcia, M.L. Robertson, The future of plastics recycling. Science 358(6365), 870 (2017). https://doi.org/10.1126/science.aaq0324
- S.Y. Chou, P.R. Krauss, P.J. Renstrom, Nanoimprint lithography. J. Vac. Sci. Technol. B 14(6), 4129 (1996). https://doi.org/10.1116/1.588605
- C.Q. Zhao, P.C. Zhang, J.J. Zhou, S.H. Qi, Y. Yamauchi et al., Layered nanocomposites by shear-flow-induced alignment of nanosheets. Nature 580(7802), 210–215 (2020). https://doi.org/10.1038/s41586-020-2161-8
- C.J. Huang, J.S. Peng, Y.R. Cheng, Q. Zhao, Y. Du et al., Ultratough nacre-inspired epoxy–graphene composites with shape memory properties. J. Mater. Chem. A 7(6), 2787–2794 (2019). https://doi.org/10.1039/C8TA10725D
- H. Jeon, Y. Kim, W.R. Yu, J.U. Lee, Exfoliated graphene/thermoplastic elastomer nanocomposites with improved wear properties for 3D printing. Compos. B Eng. 189, 107912 (2020). https://doi.org/10.1016/j.compositesb.2020.107912
- K. Kalaitzidou, H. Fukushima, L.T. Drzal, Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets. Carbon 45(7), 1446–1452 (2007). https://doi.org/10.1016/j.carbon.2007.03.029
- N. Saravanan, R. Rajasekar, S. Mahalakshmi, T.P. Sathishkumar, K.S.K. Sasikumar et al., Graphene and modified graphene-based polymer nanocomposites—a review. J. Reinf. Plast. Compos. 33(12), 1158–1170 (2014). https://doi.org/10.1177/0731684414524847
- C. Vallés, A.M. Abdelkader, R.J. Young, I.A. Kinloch, The effect of flake diameter on the reinforcement of few-layer graphene–PMMA composites. Compos. Sci. Technol. 111, 17–22 (2015). https://doi.org/10.1016/j.compscitech.2015.01.005
- C. Vallés, A.M. Abdelkader, R.J. Younga, I.A. Kinlocha, Few layer graphene–polypropylene nanocomposites: the role of flake diameter. Faraday Discuss. 173, 379–390 (2014). https://doi.org/10.1039/C4FD00112E
- J.J. Liang, Y. Huang, L. Zhang, Y. Wang, Y.F. Ma et al., Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv. Funct. Mater. 19(14), 2297–2302 (2009). https://doi.org/10.1002/adfm.200801776
- R.L.G. Lecaros, G.E.J. Mendoza, W.S. Hung, Q.F. An, A.R. Caparanga et al., Tunable interlayer spacing of composite graphene oxide-framework membrane for acetic acid dehydration. Carbon 123, 660–667 (2017). https://doi.org/10.1016/j.carbon.2017.08.019
- Y.Q. Li, T. Yu, T.Y. Yang, L.X. Zheng, K. Liao, Bio-inspired nacre-like composite films based on graphene with superior mechanical, electrical, and biocompatible properties. Adv. Mater. 24(25), 3426–3431 (2012). https://doi.org/10.1002/adma.201200452
- S. Napolitano, E. Glynos, N.B. Tito, Glass transition of polymers in bulk, confined geometries, and near interfaces. Rep. Prog. Phys. 80(3), 036602 (2017). https://doi.org/10.1088/1361-6633/aa5284
- L.F. Wang, T.B. Ma, Y.Z. Hu, H. Wang, Atomic-scale friction in graphene oxide: an interfacial interaction perspective from first-principles calculations. Phys. Rev. B 86(12), 125436 (2012). https://doi.org/10.1103/PhysRevB.86.125436
- S. Zheng, Q. Tu, J.J. Urban, S. Li, B. Mi, Swelling of graphene oxide membranes in aqueous solution: characterization of interlayer spacing and insight into water transport mechanisms. ACS Nano 11(6), 6440–6450 (2017). https://doi.org/10.1021/acsnano.7b02999
- K.W. Putz, O.C. Compton, M.J. Palmeri, S.T. Nguyen, L.C. Brinson, High-nanofiller-content graphene oxide-polymer nanocomposites via vacuum-assisted self-assembly. Adv. Funct. Mater. 20(19), 3322–3329 (2010). https://doi.org/10.1002/adfm.201000723
- C. Zhang, Y. Fujii, K. Tanaka, Effect of long range interactions on the glass transition temperature of thin polystyrene films. ACS Macro Lett. 1(11), 1317–1320 (2012). https://doi.org/10.1021/mz300391g
- Y.X. Xu, W.J. Hong, H. Bai, C. Li, G.Q. Shi, Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon 47(15), 3538–3543 (2009). https://doi.org/10.1016/j.carbon.2009.08.022
- X.D. Xia, J. Li, J.J. Zhang, G.J. Weng, Uncovering the glass-transition temperature and temperature-dependent storage modulus of graphene-polymer nanocomposites through irreversible thermodynamic processes. Int. J. Eng. Sci. 158, 103411 (2021). https://doi.org/10.1016/j.ijengsci.2020.103411
- L.C. Tang, X. Wang, L.X. Gong, K. Peng, L. Zhao et al., Creep and recovery of polystyrene composites filled with graphene additives. Compos. Sci. Technol. 91, 63–70 (2014). https://doi.org/10.1016/j.compscitech.2013.11.028
- F.Z. Wang, L.T. Drzal, Y. Qin, Z.X. Huang, Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites. J. Mater. Sci. 50(3), 1082–1093 (2014). https://doi.org/10.1007/s10853-014-8665-6
- D.H. Kim, H.C. Lee, B.M. Kim, K.H. Kim, Estimation of die service life against plastic deformation and wear during hot forging processes. J. Mater. Process. Technol. 166(3), 372–380 (2005). https://doi.org/10.1016/j.jmatprotec.2004.07.103
- S. Vinod, C.S. Tiwary, L.D. Machado, S. Ozden, J. Cho et al., Strain rate dependent shear plasticity in graphite oxide. Nano Lett. 16(2), 1127–1131 (2016). https://doi.org/10.1021/acs.nanolett.5b04346
- A. Vaziri, L. Mahadevan, Localized and extended deformations of elastic shells. Proc. Natl. Acad. Sci. USA 105, 7913–7918 (2008). https://doi.org/10.1073/pnas.0707364105
- A. Lazarus, H.C.B. Florijn, P.M. Reis, Geometry-induced rigidity in nonspherical pressurized elastic shells. Phys. Rev. Lett. 109(14), 144301 (2012). https://doi.org/10.1103/PhysRevLett.109.144301
- D. Vella, A. Ajdari, A. Vaziri, A. Boudaoud, Indentation of ellipsoidal and cylindrical elastic shells. Phys. Rev. Lett. 109(14), 144302 (2012). https://doi.org/10.1103/PhysRevLett.109.144302
- A. Boudaoud, P. Patrício, Y. Couder, M.B. Amar, Dynamics of singularities in a constrained elastic plate. Nature 407(6805), 718–720 (2000). https://doi.org/10.1038/35037535
- D.F. Huang, J.Y. Wu, C.J. Chen, X.X. Fu, A.H. Brozena et al., Precision imprinted nanostructural wood. Adv. Mater. 31(48), 1903270 (2019). https://doi.org/10.1002/adma.201903270
- Z. Liu, One-step fabrication of crystalline metal nanostructures by direct nanoimprinting below melting temperatures. Nat. Commun. 8, 14910 (2017). https://doi.org/10.1038/ncomms14910
- T. Shimizu, Self-assembled nanomaterials II. Adv. Polym. Sci. 220, 123–187 (2008). https://doi.org/10.1007/978-3-540-85105-9
- J.T. Wang, N. Salim, B. Fox, N. Stanford, Anisotropic compressive behaviour of turbostratic graphite in carbon fibre. Appl. Mater. Today 9, 196–203 (2017). https://doi.org/10.1016/j.apmt.2017.07.010
- D. López-Díaz, M. López Holgado, J.L. García-Fierro, M.M. Velázquez, Evolution of the Raman spectrum with the chemical composition of graphene oxide. J. Phys. Chem. C 121(37), 20489–20497 (2017). https://doi.org/10.1021/acs.jpcc.7b06236
- T.F. Cooney, L. Wang, S.K. Sharma, R.W. Gauldie, A.J. Montana, Raman spectral study of solid and dissolved poly(vinyl alcohol) and ethylene-vinyl alcohol copolymer. J. Polym. Sci. B Polym. Phys. 32(7), 1163–1174 (1994). https://doi.org/10.1002/polb.1994.090320704
- Y. Kim, S. Lee, H.D. Cho, B. Park, D. Kim, Robust superhydrophilic/hydrophobic surface based on self-aggregated Al2O3 nanowires by single-step anodization and self-assembly method. ACS Appl. Mater. Interfaces 4(10), 5074–5078 (2012). https://doi.org/10.1021/am301411z
- Y.H. Gao, G.J. Yin, S.W. Zhang, L. Wang, Q.J. Meng et al., Research progress in electrochemical preparation of graphene. J. Mater. Engin. 48(8), 84–100 (2020). https://doi.org/10.11868/j.issn.1001-4381.2019.000704
- X.D. Zhao, H.M. Fan, J. Luo, J. Ding, X.Y. Liu et al., Electrically adjustable, super adhesive force of a superhydrophobic aligned MnO2 nanotube membrane. Adv. Funct. Mater. 21(1), 184–190 (2011). https://doi.org/10.1002/adfm.201000603
References
W. Dai, T. Ma, Q. Yan, J. Gao, X. Tan et al., Metal-level thermally conductive yet soft graphene thermal interface materials. ACS Nano 13(10), 11561–11571 (2019). https://doi.org/10.1021/acsnano.9b05163
J. Shen, G.P. Liu, K. Huang, Z.Y. Chu, W.Q. Jin et al., Subnanometer two-dimensional graphene oxide channels for ultrafast gas sieving. ACS Nano 10(3), 3398–3409 (2016). https://doi.org/10.1021/acsnano.5b07304
S.Y. Liu, M. Cerruti, F. Barthelat, Plastic forming of graphene oxide membranes into 3D structures. ACS Nano 14(11), 15936–15943 (2020). https://doi.org/10.1021/acsnano.0c07344
B. Shen, W.T. Zhai, W.G. Zheng, Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding. Adv. Funct. Mater. 24(28), 4542–4548 (2014). https://doi.org/10.1002/adfm.201400079
L. Huang, C. Li, W.J. Yuan, G.Q. Shi, Strong composite films with layered structures prepared by casting silk fibroin-graphene oxide hydrogels. Nanoscale 5(9), 3780–3786 (2013). https://doi.org/10.1039/C3NR00196B
G.I. Titelman, V. Gelman, S. Bron, R.L. Khalfin, Y. Cohe et al., Characteristics and microstructure of aqueous colloidal dispersions of graphite oxide. Carbon 43(3), 641–649 (2005). https://doi.org/10.1016/j.carbon.2004.10.035
Y.H. Xiao, Z. Xu, Y.J. Liu, L. Peng, J.B. Xi et al., Sheet collapsing approach for rubber-like graphene papers. ACS Nano 11(8), 8092–8102 (2017). https://doi.org/10.1021/acsnano.7b02915
Z. An, O.C. Compton, K.W. Putz, L.C. Brinson, S.T. Nguyen, Bio-inspired borate cross-linking in ultra-stiff graphene oxide thin films. Adv. Mater. 23(33), 3842–3846 (2011). https://doi.org/10.1002/adma.201101544
D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett et al., Preparation and characterization of graphene oxide paper. Nature 448(7152), 457–460 (2007). https://doi.org/10.1038/nature06016
G.Q. Xin, H.T. Sun, T. Hu, H.R. Fard, X. Sun et al., Large-area freestanding graphene paper for superior thermal management. Adv. Mater. 26(26), 4521–4526 (2014). https://doi.org/10.1002/adma.201400951
J. Zhong, W. Sun, Q.W. Wei, X.T. Qian, H.M. Cheng et al., Efficient and scalable synthesis of highly aligned and compact two-dimensional nanosheet films with record performances. Nat. Commun. 9(1), 3484 (2018). https://doi.org/10.1038/s41467-018-05723-2
Z. Xu, C. Gao, Graphene chiral liquid crystals and macroscopic assembled fibres. Nat. Commun. 2, 571 (2011). https://doi.org/10.1038/ncomms1583
Z. Liu, Z. Li, Z. Xu, Z.X. Xia, X.Z. Hu et al., Wet-spun continuous graphene films. Chem. Mater. 26(23), 6786–6795 (2014). https://doi.org/10.1021/cm5033089
Z. Li, Z. Xu, Y.J. Liu, R. Wang, C. Gao, Multifunctional non-woven fabrics of interfused graphene fibres. Nat. Commun. 7, 13684 (2016). https://doi.org/10.1038/ncomms13684
P. Li, M.C. Yang, Y.J. Liu, H.S. Qin, J.R. Liu et al., Continuous crystalline graphene papers with gigapascal strength by intercalation modulated plasticization. Nat. Commun. 11(1), 2645 (2020). https://doi.org/10.1038/s41467-020-16494-0
K. Pang, X. Song, Z. Xu, X.T. Liu, Y.J. Liu et al., Hydroplastic foaming of graphene aerogels and artificially intelligent tactile sensors. Sci. Adv. 6, eabd4045 (2020). https://doi.org/10.1126/sciadv.abd4045
F. Guo, Y. Wang, Y.Q. Jiang, Z.S. Li, Z. Xu et al., Hydroplastic micromolding of 2D sheets. Adv. Mater. 33(25), 2008116 (2021). https://doi.org/10.1002/adma.202008116
A. Pucci, Smart and modern thermoplastic polymer materials. Polymers 10(11), 1211 (2018). https://doi.org/10.3390/polym10111211
G.M. Scheutz, J.J. Lessard, M.B. Sims, B.S. Sumerlin, Adaptable crosslinks in polymeric materials: resolving the intersection of thermoplastics and thermosets. J. Am. Chem. Soc. 141(41), 16181–16196 (2019). https://doi.org/10.1021/jacs.9b07922
J.M. Garcia, M.L. Robertson, The future of plastics recycling. Science 358(6365), 870 (2017). https://doi.org/10.1126/science.aaq0324
S.Y. Chou, P.R. Krauss, P.J. Renstrom, Nanoimprint lithography. J. Vac. Sci. Technol. B 14(6), 4129 (1996). https://doi.org/10.1116/1.588605
C.Q. Zhao, P.C. Zhang, J.J. Zhou, S.H. Qi, Y. Yamauchi et al., Layered nanocomposites by shear-flow-induced alignment of nanosheets. Nature 580(7802), 210–215 (2020). https://doi.org/10.1038/s41586-020-2161-8
C.J. Huang, J.S. Peng, Y.R. Cheng, Q. Zhao, Y. Du et al., Ultratough nacre-inspired epoxy–graphene composites with shape memory properties. J. Mater. Chem. A 7(6), 2787–2794 (2019). https://doi.org/10.1039/C8TA10725D
H. Jeon, Y. Kim, W.R. Yu, J.U. Lee, Exfoliated graphene/thermoplastic elastomer nanocomposites with improved wear properties for 3D printing. Compos. B Eng. 189, 107912 (2020). https://doi.org/10.1016/j.compositesb.2020.107912
K. Kalaitzidou, H. Fukushima, L.T. Drzal, Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets. Carbon 45(7), 1446–1452 (2007). https://doi.org/10.1016/j.carbon.2007.03.029
N. Saravanan, R. Rajasekar, S. Mahalakshmi, T.P. Sathishkumar, K.S.K. Sasikumar et al., Graphene and modified graphene-based polymer nanocomposites—a review. J. Reinf. Plast. Compos. 33(12), 1158–1170 (2014). https://doi.org/10.1177/0731684414524847
C. Vallés, A.M. Abdelkader, R.J. Young, I.A. Kinloch, The effect of flake diameter on the reinforcement of few-layer graphene–PMMA composites. Compos. Sci. Technol. 111, 17–22 (2015). https://doi.org/10.1016/j.compscitech.2015.01.005
C. Vallés, A.M. Abdelkader, R.J. Younga, I.A. Kinlocha, Few layer graphene–polypropylene nanocomposites: the role of flake diameter. Faraday Discuss. 173, 379–390 (2014). https://doi.org/10.1039/C4FD00112E
J.J. Liang, Y. Huang, L. Zhang, Y. Wang, Y.F. Ma et al., Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv. Funct. Mater. 19(14), 2297–2302 (2009). https://doi.org/10.1002/adfm.200801776
R.L.G. Lecaros, G.E.J. Mendoza, W.S. Hung, Q.F. An, A.R. Caparanga et al., Tunable interlayer spacing of composite graphene oxide-framework membrane for acetic acid dehydration. Carbon 123, 660–667 (2017). https://doi.org/10.1016/j.carbon.2017.08.019
Y.Q. Li, T. Yu, T.Y. Yang, L.X. Zheng, K. Liao, Bio-inspired nacre-like composite films based on graphene with superior mechanical, electrical, and biocompatible properties. Adv. Mater. 24(25), 3426–3431 (2012). https://doi.org/10.1002/adma.201200452
S. Napolitano, E. Glynos, N.B. Tito, Glass transition of polymers in bulk, confined geometries, and near interfaces. Rep. Prog. Phys. 80(3), 036602 (2017). https://doi.org/10.1088/1361-6633/aa5284
L.F. Wang, T.B. Ma, Y.Z. Hu, H. Wang, Atomic-scale friction in graphene oxide: an interfacial interaction perspective from first-principles calculations. Phys. Rev. B 86(12), 125436 (2012). https://doi.org/10.1103/PhysRevB.86.125436
S. Zheng, Q. Tu, J.J. Urban, S. Li, B. Mi, Swelling of graphene oxide membranes in aqueous solution: characterization of interlayer spacing and insight into water transport mechanisms. ACS Nano 11(6), 6440–6450 (2017). https://doi.org/10.1021/acsnano.7b02999
K.W. Putz, O.C. Compton, M.J. Palmeri, S.T. Nguyen, L.C. Brinson, High-nanofiller-content graphene oxide-polymer nanocomposites via vacuum-assisted self-assembly. Adv. Funct. Mater. 20(19), 3322–3329 (2010). https://doi.org/10.1002/adfm.201000723
C. Zhang, Y. Fujii, K. Tanaka, Effect of long range interactions on the glass transition temperature of thin polystyrene films. ACS Macro Lett. 1(11), 1317–1320 (2012). https://doi.org/10.1021/mz300391g
Y.X. Xu, W.J. Hong, H. Bai, C. Li, G.Q. Shi, Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon 47(15), 3538–3543 (2009). https://doi.org/10.1016/j.carbon.2009.08.022
X.D. Xia, J. Li, J.J. Zhang, G.J. Weng, Uncovering the glass-transition temperature and temperature-dependent storage modulus of graphene-polymer nanocomposites through irreversible thermodynamic processes. Int. J. Eng. Sci. 158, 103411 (2021). https://doi.org/10.1016/j.ijengsci.2020.103411
L.C. Tang, X. Wang, L.X. Gong, K. Peng, L. Zhao et al., Creep and recovery of polystyrene composites filled with graphene additives. Compos. Sci. Technol. 91, 63–70 (2014). https://doi.org/10.1016/j.compscitech.2013.11.028
F.Z. Wang, L.T. Drzal, Y. Qin, Z.X. Huang, Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites. J. Mater. Sci. 50(3), 1082–1093 (2014). https://doi.org/10.1007/s10853-014-8665-6
D.H. Kim, H.C. Lee, B.M. Kim, K.H. Kim, Estimation of die service life against plastic deformation and wear during hot forging processes. J. Mater. Process. Technol. 166(3), 372–380 (2005). https://doi.org/10.1016/j.jmatprotec.2004.07.103
S. Vinod, C.S. Tiwary, L.D. Machado, S. Ozden, J. Cho et al., Strain rate dependent shear plasticity in graphite oxide. Nano Lett. 16(2), 1127–1131 (2016). https://doi.org/10.1021/acs.nanolett.5b04346
A. Vaziri, L. Mahadevan, Localized and extended deformations of elastic shells. Proc. Natl. Acad. Sci. USA 105, 7913–7918 (2008). https://doi.org/10.1073/pnas.0707364105
A. Lazarus, H.C.B. Florijn, P.M. Reis, Geometry-induced rigidity in nonspherical pressurized elastic shells. Phys. Rev. Lett. 109(14), 144301 (2012). https://doi.org/10.1103/PhysRevLett.109.144301
D. Vella, A. Ajdari, A. Vaziri, A. Boudaoud, Indentation of ellipsoidal and cylindrical elastic shells. Phys. Rev. Lett. 109(14), 144302 (2012). https://doi.org/10.1103/PhysRevLett.109.144302
A. Boudaoud, P. Patrício, Y. Couder, M.B. Amar, Dynamics of singularities in a constrained elastic plate. Nature 407(6805), 718–720 (2000). https://doi.org/10.1038/35037535
D.F. Huang, J.Y. Wu, C.J. Chen, X.X. Fu, A.H. Brozena et al., Precision imprinted nanostructural wood. Adv. Mater. 31(48), 1903270 (2019). https://doi.org/10.1002/adma.201903270
Z. Liu, One-step fabrication of crystalline metal nanostructures by direct nanoimprinting below melting temperatures. Nat. Commun. 8, 14910 (2017). https://doi.org/10.1038/ncomms14910
T. Shimizu, Self-assembled nanomaterials II. Adv. Polym. Sci. 220, 123–187 (2008). https://doi.org/10.1007/978-3-540-85105-9
J.T. Wang, N. Salim, B. Fox, N. Stanford, Anisotropic compressive behaviour of turbostratic graphite in carbon fibre. Appl. Mater. Today 9, 196–203 (2017). https://doi.org/10.1016/j.apmt.2017.07.010
D. López-Díaz, M. López Holgado, J.L. García-Fierro, M.M. Velázquez, Evolution of the Raman spectrum with the chemical composition of graphene oxide. J. Phys. Chem. C 121(37), 20489–20497 (2017). https://doi.org/10.1021/acs.jpcc.7b06236
T.F. Cooney, L. Wang, S.K. Sharma, R.W. Gauldie, A.J. Montana, Raman spectral study of solid and dissolved poly(vinyl alcohol) and ethylene-vinyl alcohol copolymer. J. Polym. Sci. B Polym. Phys. 32(7), 1163–1174 (1994). https://doi.org/10.1002/polb.1994.090320704
Y. Kim, S. Lee, H.D. Cho, B. Park, D. Kim, Robust superhydrophilic/hydrophobic surface based on self-aggregated Al2O3 nanowires by single-step anodization and self-assembly method. ACS Appl. Mater. Interfaces 4(10), 5074–5078 (2012). https://doi.org/10.1021/am301411z
Y.H. Gao, G.J. Yin, S.W. Zhang, L. Wang, Q.J. Meng et al., Research progress in electrochemical preparation of graphene. J. Mater. Engin. 48(8), 84–100 (2020). https://doi.org/10.11868/j.issn.1001-4381.2019.000704
X.D. Zhao, H.M. Fan, J. Luo, J. Ding, X.Y. Liu et al., Electrically adjustable, super adhesive force of a superhydrophobic aligned MnO2 nanotube membrane. Adv. Funct. Mater. 21(1), 184–190 (2011). https://doi.org/10.1002/adfm.201000603