A Mini Review on Nanocarbon-Based 1D Macroscopic Fibers: Assembly Strategies and Mechanical Properties
Corresponding Author: Chao Gao
Nano-Micro Letters,
Vol. 9 No. 4 (2017), Article Number: 51
Abstract
Nanocarbon-based materials, such as carbon nanotubes (CNTs) and graphene have been attached much attention by scientific and industrial community. As two representative nanocarbon materials, one-dimensional CNTs and two-dimensional graphene both possess remarkable mechanical properties. In the past years, a large amount of work have been done by using CNTs or graphene as building blocks for constructing novel, macroscopic, mechanically strong fibrous materials. In this review, we summarize the assembly approaches of CNT-based fibers and graphene-based fibers in chronological order, respectively. The mechanical performances of these fibrous materials are compared, and the critical influences on the mechanical properties are discussed. Personal perspectives on the fabrication methods of CNT- and graphene-based fibers are further presented.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Nardecchia, D. Carriazo, M.L. Ferrer, M.C. Gutierrez, F. Del Monte, Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications. Chem. Soc. Rev. 42(2), 794–830 (2013). doi:10.1039/C2CS35353A
- Z. Li, Z. Liu, H.Y. Sun, C. Gao, Superstructured assembly of nanocarbons: fullerenes, nanotubes, and graphene. Chem. Rev. 115(15), 7046–7117 (2015). doi:10.1021/acs.chemrev.5b00102
- L. Liu, W. Ma, Z. Zhang, Macroscopic carbon nanotube assemblies: preparation, properties, and potential applications. Small 7(11), 1504–1520 (2011). doi:10.1002/smll.201002198
- H.-P. Cong, J.-F. Chen, S.-H. Yu, Graphene-based macroscopic assemblies and architectures: an emerging material system. Chem. Soc. Rev. 43(21), 7295–7325 (2014). doi:10.1039/C4CS00181H
- N. Behabtu, M.J. Green, M. Pasquali, Carbon nanotube-based neat fibers. Nano Today 3(5–6), 24–34 (2008). doi:10.1016/s1748-0132(08)70062-8
- B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, P. Poulin, Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290(5495), 1331–1334 (2000). doi:10.1126/science.290.5495.1331
- J.N. Barisci, M. Tahhan, G.G. Wallace, S. Badaire, T. Vaugien, M. Maugey, P. Poulin, Properties of carbon nanotube fibers spun from DNA-stabilized dispersions. Adv. Funct. Mater. 14(2), 133–138 (2004). doi:10.1002/adfm.200304500
- S.R. Shin, C.K. Lee, I. So, J.H. Jeon, T.M. Kang et al., DNA-wrapped single-walled carbon nanotube hybrid fibers for supercapacitors and artificial muscles. Adv. Mater. 20(3), 466–470 (2008). doi:10.1002/adma.200701102
- A.B. Dalton, S. Collins, E. Munoz, J.M. Razal, V.H. Ebron, J.P. Ferraris, J.N. Coleman, B.G. Kim, R.H. Baughman, Super-tough carbon-nanotube fibres—these extraordinary composite fibres can be woven into electronic textiles. Nature 423(6941), 703 (2003). doi:10.1038/423703a
- E. Munoz, A.B. Dalton, S. Collins, M. Kozlov, J. Razal et al., Multifunctional carbon nanotube composite fibers. Adv. Eng. Mater. 6(10), 801–804 (2004). doi:10.1002/adem.200400092
- P. Miaudet, S. Badaire, M. Maugey, A. Derre, V. Pichot, P. Launois, P. Poulin, C. Zakri, Hot-drawing of single and multiwall carbon nanotube fibers for high toughness and alignment. Nano Lett. 5(11), 2212–2215 (2005). doi:10.1021/nl051419w
- V.A. Davis, L.M. Ericson, A.N.G. Parra-Vasquez, H. Fan, Y. Wang et al., Phase behavior and rheology of SWNTs in superacids. Macromolecules 37(1), 154–160 (2004). doi:10.1021/ma0352328
- P.K. Rai, R.A. Pinnick, A.N.G. Parra-Vasquez, V.A. Davis, H.K. Schmidt, R.H. Hauge, R.E. Smalley, M. Pasquali, Isotropic-nematic phase transition of single-walled carbon nanotubes in strong acids. J. Am. Chem. Soc. 128(2), 591–595 (2006). doi:10.1021/ja055847f
- S.J. Zhang, I.A. Kinloch, A.H. Windle, Mesogenicity drives fractionation in lyotropic aqueous suspensions of multiwall carbon nanotubes. Nano Lett. 6(3), 568–572 (2006). doi:10.1021/nl0521322
- S.J. Zhang, S. Kumar, Carbon nanotubes as liquid crystals. Small 4(9), 1270–1283 (2008). doi:10.1002/smll.200700082
- S.J. Zhang, K.K.K. Koziol, I.A. Kinloch, A.H. Windle, Macroscopic fibers of well-aligned carbon nanotubes by wet spinning. Small 4(8), 1217–1222 (2008). doi:10.1002/smll.200700998
- W. Zhou, J. Vavro, C. Guthy, K.I. Winey, J.E. Fischer et al., Single wall carbon nanotube fibers extruded from super-acid suspensions: preferred orientation, electrical, and thermal transport. J. Appl. Phys. 95(2), 649–655 (2004). doi:10.1063/1.1627457
- L.M. Ericson, H. Fan, H.Q. Peng, V.A. Davis, W. Zhou et al., Macroscopic, neat, single-walled carbon nanotube fibers. Science 305(5689), 1447–1450 (2004). doi:10.1126/science.1101398
- M.E. Kozlov, R.C. Capps, W.M. Sampson, V.H. Ebron, J.P. Ferraris, R.H. Baughman, Spinning solid and hollow polymer-free carbon nanotube fibers. Adv. Mater. 17(5), 614–617 (2005). doi:10.1002/adma.200401130
- E.Y. Jang, T.J. Kang, H. Im, S.J. Baek, S. Kim, D.H. Jeong, Y.W. Park, Y.H. Kim, Macroscopic single-walled-carbon-nanotube fiber self-assembled by dip-coating method. Adv. Mater. 21(43), 4357–4361 (2009). doi:10.1002/adma.200900480
- K. Jiang, Q. Li, S. Fan, Nanotechnology: spinning continuous carbon nanotube yarns. Nature 419(6909), 801 (2002). doi:10.1038/419801a
- Q.W. Li, X.F. Zhang, R.F. DePaula, L.X. Zheng, Y.H. Zhao et al., Sustained growth of ultralong carbon nanotube arrays for fiber spinning. Adv. Mater. 18(23), 3160–3163 (2006). doi:10.1002/adma.200601344
- X.F. Zhang, Q.W. Li, T.G. Holesinger, P.N. Arendt, J.Y. Huang et al., Ultrastrong, stiff, and lightweight carbon-nanotube fibers. Adv. Mater. 19(23), 4198–4201 (2007). doi:10.1002/adma.200700776
- X.F. Zhang, Q.W. Li, Y. Tu, Y.A. Li, J.Y. Coulter et al., Strong carbon-nanotube fibers spun from long carbon-nanotube arrays. Small 3(2), 244–248 (2007). doi:10.1002/smll.200600368
- Q.W. Li, Y. Li, X.F. Zhang, S.B. Chikkannanavar, Y.H. Zhao et al., Structure-dependent electrical properties of carbon nanotube fibers. Adv. Mater. 19(20), 3358–3363 (2007). doi:10.1002/adma.200602966
- H.S. Peng, M. Jain, Q.W. Li, D.E. Peterson, Y.T. Zhu, Q.X. Jia, Vertically aligned pearl-like carbon nanotube arrays for fiber spinning. J. Am. Chem. Soc. 130(4), 1130–1131 (2008). doi:10.1021/ja077767c
- H.W. Zhu, C.L. Xu, D.H. Wu, B.Q. Wei, R. Vajtai, P.M. Ajayan, Direct synthesis of long single-walled carbon nanotube strands. Science 296(5569), 884–886 (2002). doi:10.1126/science.1066996
- Y.L. Li, I.A. Kinloch, A.H. Windle, Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304(5668), 276–278 (2004). doi:10.1126/science.1094982
- J.J. Vilatela, A.H. Windle, Yarn-like carbon nanotube fibers. Adv. Mater. 22(44), 4959–4963 (2010). doi:10.1002/adma.201002131
- M. Motta, Y.L. Li, I. Kinloch, A. Windle, Mechanical properties of continuously spun fibers of carbon nanotubes. Nano Lett. 5(8), 1529–1533 (2005). doi:10.1021/nl050634+
- K. Koziol, J. Vilatela, A. Moisala, M. Motta, P. Cunniff, M. Sennett, A. Windle, High-performance carbon nanotube fiber. Science 318(5858), 1892–1895 (2007). doi:10.1126/science.1147635
- X.H. Zhong, Y.L. Li, Y.K. Liu, X.H. Qiao, Y. Feng et al., Continuous multilayered carbon nanotube yarns. Adv. Mater. 22(6), 692–696 (2010). doi:10.1002/adma.200902943
- W.J. Ma, L.Q. Liu, R. Yang, T.H. Zhang, Z. Zhang et al., Monitoring a micromechanical process in macroscale carbon nanotube films and fibers. Adv. Mater. 21(5), 603–608 (2009). doi:10.1002/adma.200801335
- J.M. Feng, R. Wang, Y.L. Li, X.H. Zhong, L. Cui, Q.J. Guo, F. Hou, One-step fabrication of high quality double-walled carbon nanotube thin films by a chemical vapor deposition process. Carbon 48(13), 3817–3824 (2010). doi:10.1016/j.carbon.2010.06.046
- W.J. Ma, L.Q. Liu, Z. Zhang, R. Yang, G. Liu et al., High-strength composite fibers: realizing true potential of carbon nanotubes in polymer matrix through continuous reticulate architecture and molecular level couplings. Nano Lett. 9(8), 2855–2861 (2009). doi:10.1021/nl901035v
- Y. Shang, X. He, Y. Li, L. Zhang, Z. Li et al., Super-stretchable spring-like carbon nanotube ropes. Adv. Mater. 24(21), 2896–2900 (2012). doi:10.1002/adma.201200576
- Y.Y. Shang, Y.B. Li, X.D. He, L.H. Zhang, Z. Li, P.X. Li, E.Z. Shi, S.T. Wu, A.Y. Cao, Elastic carbon nanotube straight yarns embedded with helical loops. Nanoscale 5(6), 2403–2410 (2013). doi:10.1039/c3nr33633f
- Y.B. Li, Y.Y. Shang, X.D. He, Q.Y. Peng, S.Y. Du et al., Overtwisted, resolvable carbon nanotube yarn entanglement as strain sensors and rotational actuators. ACS Nano 7(9), 8128–8135 (2013). doi:10.1021/nn403400c
- Y.Y. Shang, Y.B. Li, X.D. He, S.Y. Du, L.H. Zhang et al., Highly twisted double-helix carbon nanotube yarns. ACS Nano 7(2), 1446–1453 (2013). doi:10.1021/nn305209h
- M.D. Lima, S.L. Fang, X. Lepro, C. Lewis, R. Ovalle-Robles et al., Biscrolling nanotube sheets and functional guests into yarns. Science 331(6013), 51–55 (2011). doi:10.1126/science.1195912
- L. Ci, N. Punbusayakul, J.Q. Wei, R. Vajtai, S. Talapatra, P.M. Ajayan, Multifunctional macroarchitectures of double-walled carbon nanotube fibers. Adv. Mater. 19(13), 1719–1723 (2007). doi:10.1002/adma.200602520
- L.X. Zheng, X.F. Zhang, Q.W. Li, S.B. Chikkannanavar, Y. Li et al., Carbon-nanotube cotton for large-scale fibers. Adv. Mater. 19(18), 2567–2570 (2007). doi:10.1002/adma.200602648
- H.H. Gommans, J.W. Alldredge, H. Tashiro, J. Park, J. Magnuson, A.G. Rinzler, Fibers of aligned single-walled carbon nanotubes: polarized Raman spectroscopy. J. Appl. Phys. 88(5), 2509–2514 (2000). doi:10.1063/1.1287128
- G.T. Liu, Y.C. Zhao, K. Deng, Z. Liu, W.G. Chu et al., Highly dense and perfectly aligned single-walled carbon nanotubes fabricated by diamond wire drawing dies. Nano Lett. 8(4), 1071–1075 (2008). doi:10.1021/nl073007o
- Z. Liu, K.H. Zheng, L.J. Hu, J. Liu, C.Y. Qiu et al., Surface-energy generator of single-walled carbon nanotubes and usage in a self-powered system. Adv. Mater. 22(9), 999–1003 (2010). doi:10.1002/adma.200902153
- Z. Xu, C. Gao, Graphene chiral liquid crystals and macroscopic assembled fibres. Nat. Commun. 2, 571 (2011). doi:10.1038/ncomms1583
- Z. Xu, C. Gao, Aqueous liquid crystals of graphene oxide. ACS Nano 5(4), 2908–2915 (2011). doi:10.1021/nn200069w
- N. Behabtu, J.R. Lomeda, M.J. Green, A.L. Higginbotham, A. Sinitskii et al., Spontaneous high-concentration dispersions and liquid crystals of graphene. Nat. Nanotechnol. 5(6), 406–411 (2010). doi:10.1038/nnano.2010.86
- R. Jalili, S.H. Aboutalebi, D. Esrafilzadeh, R.L. Shepherd, J. Chen et al., Scalable one-step wet-spinning of graphene fibers and yarns from liquid crystalline dispersions of graphene oxide: towards multifunctional textiles. Adv. Funct. Mater. 23(43), 5345–5354 (2013). doi:10.1002/adfm.201300765
- B. Zheng, T. Huang, L. Kou, X. Zhao, K. Gopalsamy, C. Gao, Graphene fiber-based asymmetric micro-supercapacitors. J. Mater. Chem. A 2(25), 9736–9743 (2014). doi:10.1039/C4TA01868K
- T.Q. Huang, B.N. Zheng, L. Kou, K. Gopalsamy, Z. Xu, C. Gao, Y.N. Meng, Z.X. Wei, Flexible high performance wet-spun graphene fiber supercapacitors. RSC Adv. 3(46), 23957–23962 (2013). doi:10.1039/c3ra44935a
- H.P. Cong, X.C. Ren, P. Wang, S.H. Yu, Wet-spinning assembly of continuous, neat, and macroscopic graphene fibers. Sci. Rep. 2, 613 (2012). doi:10.1038/srep00613
- J. Sun, Y. Li, Q. Peng, S. Hou, D. Zou et al., Macroscopic, flexible, high-performance graphene ribbons. ACS Nano 7(11), 10225–10232 (2013). doi:10.1021/nn404533r
- Z. Xu, Y. Zhang, P. Li, C. Gao, Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores. ACS Nano 6(8), 7103–7113 (2012). doi:10.1021/nn3021772
- Y. Zhao, C.C. Jiang, C.G. Hu, Z.L. Dong, J.L. Xue, Y.N. Meng, N. Zheng, P.W. Chen, L.T. Qu, Large-scale spinning assembly of neat, morphology-defined, graphene-based hollow fibers. ACS Nano 7(3), 2406–2412 (2013). doi:10.1021/nn305674a
- L. Kou, T. Huang, B. Zheng, Y. Han, X. Zhao, K. Gopalsamy, H. Sun, C. Gao, Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 5, 3754 (2014). doi:10.1038/ncomms4754
- Z. Liu, Z. Xu, X.Z. Hu, C. Gao, Lyotropic liquid crystal of polyacrylonitrile-grafted graphene oxide and its assembled continuous strong nacre-mimetic fibers. Macromolecules 46(17), 6931–6941 (2013). doi:10.1021/ma400681v
- X.L. Zhao, Z. Xu, B.N. Zheng, C. Gao, Macroscopic assembled, ultrastrong and H2SO4-resistant fibres of polymer-grafted graphene oxide. Sci. Rep. 3, 3164 (2013). doi:10.1038/srep03164
- X.Z. Hu, Z. Xu, C. Gao, Multifunctional, supramolecular, continuous artificial nacre fibres. Sci. Rep. 2, 767 (2012). doi:10.1038/srep00767
- X.Z. Hu, Z. Xu, Z. Liu, C. Gao, Liquid crystal self-templating approach to ultrastrong and tough biomimic composites. Sci. Rep. 3, 2374 (2013). doi:10.1038/srep02374
- L. Kou, C. Gao, Bioinspired design and macroscopic assembly of poly(vinyl alcohol)-coated graphene into kilometers-long fibers. Nanoscale 5(10), 4370–4378 (2013). doi:10.1039/c3nr00455d
- X. Hu, S. Rajendran, Y. Yao, Z. Liu, K. Gopalsamy, L. Peng, C. Gao, A novel wet-spinning method of manufacturing continuous bio-inspired composites based on graphene oxide and sodium alginate. Nano Res. 9(3), 735–744 (2016). doi:10.1007/s12274-015-0952-2
- Z. Xu, Z. Liu, H.Y. Sun, C. Gao, Highly electrically conductive Ag-doped graphene fibers as stretchable conductors. Adv. Mater. 25(23), 3249–3253 (2013). doi:10.1002/adma.201300774
- K. Gopalsamy, Z. Xu, B. Zheng, T. Huang, L. Kou, X. Zhao, C. Gao, Bismuth oxide nanotubes-graphene fiber-based flexible supercapacitors. Nanoscale 6(15), 8595–8600 (2014). doi:10.1039/C4NR02615B
- B. Fang, L. Peng, Z. Xu, C. Gao, Wet-spinning of continuous montmorillonite-graphene fibers for fire-resistant lightweight conductors. ACS Nano 9(5), 5214–5222 (2015). doi:10.1021/acsnano.5b00616
- Z.L. Dong, C.C. Jiang, H.H. Cheng, Y. Zhao, G.Q. Shi, L. Jiang, L.T. Qu, Facile fabrication of light, flexible and multifunctional graphene fibers. Adv. Mater. 24(14), 1856–1861 (2012). doi:10.1002/adma.201200170
- H.H. Cheng, Z.L. Dong, C.G. Hu, Y. Zhao, Y. Hu, L.T. Qu, N. Chena, L.M. Dai, Textile electrodes woven by carbon nanotube-graphene hybrid fibers for flexible electrochemical capacitors. Nanoscale 5(8), 3428–3434 (2013). doi:10.1039/c3nr00320e
- J. Li, J. Li, L. Li, M. Yu, H. Ma, B. Zhang, Flexible graphene fibers prepared by chemical reduction-induced self-assembly. J. Mater. Chem. A 2(18), 6359–6362 (2014). doi:10.1039/C4TA00431K
- E.Y. Jang, J. Carretero-Gonzalez, A. Choi, W.J. Kim, M.E. Kozlov et al., Fibers of reduced graphene oxide nanoribbons. Nanotechnology 23(23), 235601–235608 (2012). doi:10.1088/0957-4484/23/23/235601
- X.M. Li, T.S. Zhao, K.L. Wang, Y. Yang, J.Q. Wei, F.Y. Kang, D.H. Wu, H.W. Zhu, Directly drawing self-assembled, porous, and monolithic graphene fiber from chemical vapor deposition grown graphene film and its electrochemical properties. Langmuir 27(19), 12164–12171 (2011). doi:10.1021/la202380g
- X.M. Li, T.S. Zhao, Q. Chen, P.X. Li, K.L. Wang et al., Flexible all solid-state supercapacitors based on chemical vapor deposition derived graphene fibers. Phys. Chem. Chem. Phys. 15(41), 17752–17757 (2013). doi:10.1039/c3cp52908h
- D.D. Nguyen, S. Suzuki, S. Kato, B.D. To, C.C. Hsu, H. Murata, E. Rokuta, N.-H. Tai, M. Yoshimura, Macroscopic, freestanding, and tubular graphene architectures fabricated via thermal annealing. ACS Nano 9(3), 3206–3214 (2015). doi:10.1021/acsnano.5b00292
- M. Xiao, T. Kong, W. Wang, Q. Song, D. Zhang, Q. Ma, G. Cheng, Interconnected graphene networks with uniform geometry for flexible conductors. Adv. Funct. Mater. 25(39), 6165–6172 (2015). doi:10.1002/adfm.201502966
- X. Shao, A. Srinivasan, Y. Zhao, A. Khursheed, A few-layer graphene ring-cathode field emitter for focused electron/ion beam applications. Carbon 110, 378–383 (2016). doi:10.1016/j.carbon.2016.09.048
- M. Naraghi, T. Filleter, A. Moravsky, M. Locascio, R.O. Loutfy, H.D. Espinosa, A multiscale study of high performance double-walled nanotube-polymer fibers. ACS Nano 4(11), 6463–6476 (2010). doi:10.1021/nn101404u
- L.X. Zheng, G.Z. Sun, Z.Y. Zhan, Tuning array morphology for high-strength carbon-nanotube fibers. Small 6(1), 132–137 (2010). doi:10.1002/smll.200900954
- L. Kai, S. Yinghui, Z. Ruifeng, Z. Hanyu, W. Jiaping, L. Liang, F. Shoushan, J. Kaili, Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method. Nanotechnology 21(4), 045708 (2010). doi:10.1088/0957-4484/21/4/045708
- A. Kis, G. Csanyi, J.P. Salvetat, T.-N. Lee, E. Couteau, A.J. Kulik, W. Benoit, J. Brugger, L. Forro, Reinforcement of single-walled carbon nanotube bundles by intertube bridging. Nat. Mater. 3(3), 153–157 (2004). doi:10.1038/nmat1076
- M.K. Shin, B. Lee, S.H. Kim, J.A. Lee, G.M. Spinks et al., Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes. Nat. Commun. 3, 650 (2012). doi:10.1038/ncomms1661
- S. Ryu, Y. Lee, J.W. Hwang, S. Hong, C. Kim, T.G. Park, H. Lee, S.H. Hong, High-strength carbon nanotube fibers fabricated by infiltration and curing of mussel-inspired catecholamine polymer. Adv. Mater. 23(17), 1971–1975 (2011). doi:10.1002/adma.201004228
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). doi:10.1126/science.1102896
- A.K. Geim, Graphene: status and prospects. Science 324(5934), 1530–1534 (2009). doi:10.1126/science.1158877
- M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: a review of graphene. Chem. Rev. 110(1), 132–145 (2010). doi:10.1021/cr900070d
- Z. Xu, C. Gao, Graphene fiber: a new trend in carbon fibers. Mater. Today 18(9), 480–492 (2015). doi:10.1016/j.mattod.2015.06.009
- L. Chen, Y. He, S. Chai, H. Qiang, F. Chen, Q. Fu, Toward high performance graphene fibers. Nanoscale 5(13), 5809–5815 (2013). doi:10.1039/C3NR01083J
- C. Xiang, C.C. Young, X. Wang, Z. Yan, C.-C. Hwang et al., Large flake graphene oxide fibers with unconventional 100% knot efficiency and highly aligned small flake graphene oxide fibers. Adv. Mater. 25(33), 4592–4597 (2013). doi:10.1002/adma.201301065
- Z. Xu, H. Sun, X. Zhao, C. Gao, Ultrastrong fibers assembled from giant graphene oxide sheets. Adv. Mater. 25(2), 188–193 (2013). doi:10.1002/adma.201203448
- G. Xin, T. Yao, H. Sun, S.M. Scott, D. Shao, G. Wang, J. Lian, Highly thermally conductive and mechanically strong graphene fibers. Science 349(6252), 1083–1087 (2015). doi:10.1126/science.aaa6502
- Z. Xu, Y. Liu, X. Zhao, L. Peng, H. Sun et al., Ultrastiff and strong graphene fibers via full-scale synergetic defect engineering. Adv. Mater. 28(30), 6449–6456 (2016). doi:10.1002/adma.201506426
- Y. Liu, Z. Xu, J. Zhan, P. Li, C. Gao, Superb electrically conductive graphene fibers via doping strategy. Adv. Mater. 28(36), 7941–7947 (2016). doi:10.1002/adma.201602444
- Y. Liu, Z. Xu, W. Gao, Z. Cheng, C. Gao, Graphene and other 2D colloids: liquid crystals and macroscopic fibers. Adv. Mater. 29(14), 1606794 (2017). doi:10.1002/adma.201606794
- B. Vigolo, P. Poulin, M. Lucas, P. Launois, P. Bernier, Improved structure and properties of single-wall carbon nanotube spun fibers. Appl. Phys. Lett. 81(7), 1210–1212 (2002). doi:10.1063/1.1497706
- W. Neri, M. Maugey, P. Miaudet, A. Derre, C. Zakri, P. Poulin, Surfactant-free spinning of composite carbon nanotube fibers. Macromol. Rapid Commun. 27(13), 1035–1038 (2006). doi:10.1002/marc.200600150
- N. Behabtu, C.C. Young, D.E. Tsentalovich, O. Kleinerman, X. Wang et al., Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 339(6116), 182–186 (2013). doi:10.1126/science.1228061
- J.N. Wang, X.G. Luo, T. Wu, Y. Chen, High-strength carbon nanotube fibre-like ribbon with high ductility and high electrical conductivity. Nat. Commun. 5, 3848 (2014). doi:10.1038/ncomms4848
- B. Alemán, V. Reguero, B. Mas, J.J. Vilatela, Strong carbon nanotube fibers by drawing inspiration from polymer fiber spinning. ACS Nano 9(7), 7392–7398 (2015). doi:10.1021/acsnano.5b02408
- J. Di, S. Fang, F.A. Moura, D.S. Galvão, J. Bykova et al., Strong, twist-stable carbon nanotube yarns and muscles by tension annealing at extreme temperatures. Adv. Mater. 28(31), 6598–6605 (2016). doi:10.1002/adma.201600628
- Y. Shang, Y. Wang, S. Li, C. Hua, M. Zou, A. Cao, High-strength carbon nanotube fibers by twist-induced self-strengthening. Carbon 119, 47–55 (2017). doi:10.1016/j.carbon.2017.03.101
References
S. Nardecchia, D. Carriazo, M.L. Ferrer, M.C. Gutierrez, F. Del Monte, Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications. Chem. Soc. Rev. 42(2), 794–830 (2013). doi:10.1039/C2CS35353A
Z. Li, Z. Liu, H.Y. Sun, C. Gao, Superstructured assembly of nanocarbons: fullerenes, nanotubes, and graphene. Chem. Rev. 115(15), 7046–7117 (2015). doi:10.1021/acs.chemrev.5b00102
L. Liu, W. Ma, Z. Zhang, Macroscopic carbon nanotube assemblies: preparation, properties, and potential applications. Small 7(11), 1504–1520 (2011). doi:10.1002/smll.201002198
H.-P. Cong, J.-F. Chen, S.-H. Yu, Graphene-based macroscopic assemblies and architectures: an emerging material system. Chem. Soc. Rev. 43(21), 7295–7325 (2014). doi:10.1039/C4CS00181H
N. Behabtu, M.J. Green, M. Pasquali, Carbon nanotube-based neat fibers. Nano Today 3(5–6), 24–34 (2008). doi:10.1016/s1748-0132(08)70062-8
B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, P. Poulin, Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290(5495), 1331–1334 (2000). doi:10.1126/science.290.5495.1331
J.N. Barisci, M. Tahhan, G.G. Wallace, S. Badaire, T. Vaugien, M. Maugey, P. Poulin, Properties of carbon nanotube fibers spun from DNA-stabilized dispersions. Adv. Funct. Mater. 14(2), 133–138 (2004). doi:10.1002/adfm.200304500
S.R. Shin, C.K. Lee, I. So, J.H. Jeon, T.M. Kang et al., DNA-wrapped single-walled carbon nanotube hybrid fibers for supercapacitors and artificial muscles. Adv. Mater. 20(3), 466–470 (2008). doi:10.1002/adma.200701102
A.B. Dalton, S. Collins, E. Munoz, J.M. Razal, V.H. Ebron, J.P. Ferraris, J.N. Coleman, B.G. Kim, R.H. Baughman, Super-tough carbon-nanotube fibres—these extraordinary composite fibres can be woven into electronic textiles. Nature 423(6941), 703 (2003). doi:10.1038/423703a
E. Munoz, A.B. Dalton, S. Collins, M. Kozlov, J. Razal et al., Multifunctional carbon nanotube composite fibers. Adv. Eng. Mater. 6(10), 801–804 (2004). doi:10.1002/adem.200400092
P. Miaudet, S. Badaire, M. Maugey, A. Derre, V. Pichot, P. Launois, P. Poulin, C. Zakri, Hot-drawing of single and multiwall carbon nanotube fibers for high toughness and alignment. Nano Lett. 5(11), 2212–2215 (2005). doi:10.1021/nl051419w
V.A. Davis, L.M. Ericson, A.N.G. Parra-Vasquez, H. Fan, Y. Wang et al., Phase behavior and rheology of SWNTs in superacids. Macromolecules 37(1), 154–160 (2004). doi:10.1021/ma0352328
P.K. Rai, R.A. Pinnick, A.N.G. Parra-Vasquez, V.A. Davis, H.K. Schmidt, R.H. Hauge, R.E. Smalley, M. Pasquali, Isotropic-nematic phase transition of single-walled carbon nanotubes in strong acids. J. Am. Chem. Soc. 128(2), 591–595 (2006). doi:10.1021/ja055847f
S.J. Zhang, I.A. Kinloch, A.H. Windle, Mesogenicity drives fractionation in lyotropic aqueous suspensions of multiwall carbon nanotubes. Nano Lett. 6(3), 568–572 (2006). doi:10.1021/nl0521322
S.J. Zhang, S. Kumar, Carbon nanotubes as liquid crystals. Small 4(9), 1270–1283 (2008). doi:10.1002/smll.200700082
S.J. Zhang, K.K.K. Koziol, I.A. Kinloch, A.H. Windle, Macroscopic fibers of well-aligned carbon nanotubes by wet spinning. Small 4(8), 1217–1222 (2008). doi:10.1002/smll.200700998
W. Zhou, J. Vavro, C. Guthy, K.I. Winey, J.E. Fischer et al., Single wall carbon nanotube fibers extruded from super-acid suspensions: preferred orientation, electrical, and thermal transport. J. Appl. Phys. 95(2), 649–655 (2004). doi:10.1063/1.1627457
L.M. Ericson, H. Fan, H.Q. Peng, V.A. Davis, W. Zhou et al., Macroscopic, neat, single-walled carbon nanotube fibers. Science 305(5689), 1447–1450 (2004). doi:10.1126/science.1101398
M.E. Kozlov, R.C. Capps, W.M. Sampson, V.H. Ebron, J.P. Ferraris, R.H. Baughman, Spinning solid and hollow polymer-free carbon nanotube fibers. Adv. Mater. 17(5), 614–617 (2005). doi:10.1002/adma.200401130
E.Y. Jang, T.J. Kang, H. Im, S.J. Baek, S. Kim, D.H. Jeong, Y.W. Park, Y.H. Kim, Macroscopic single-walled-carbon-nanotube fiber self-assembled by dip-coating method. Adv. Mater. 21(43), 4357–4361 (2009). doi:10.1002/adma.200900480
K. Jiang, Q. Li, S. Fan, Nanotechnology: spinning continuous carbon nanotube yarns. Nature 419(6909), 801 (2002). doi:10.1038/419801a
Q.W. Li, X.F. Zhang, R.F. DePaula, L.X. Zheng, Y.H. Zhao et al., Sustained growth of ultralong carbon nanotube arrays for fiber spinning. Adv. Mater. 18(23), 3160–3163 (2006). doi:10.1002/adma.200601344
X.F. Zhang, Q.W. Li, T.G. Holesinger, P.N. Arendt, J.Y. Huang et al., Ultrastrong, stiff, and lightweight carbon-nanotube fibers. Adv. Mater. 19(23), 4198–4201 (2007). doi:10.1002/adma.200700776
X.F. Zhang, Q.W. Li, Y. Tu, Y.A. Li, J.Y. Coulter et al., Strong carbon-nanotube fibers spun from long carbon-nanotube arrays. Small 3(2), 244–248 (2007). doi:10.1002/smll.200600368
Q.W. Li, Y. Li, X.F. Zhang, S.B. Chikkannanavar, Y.H. Zhao et al., Structure-dependent electrical properties of carbon nanotube fibers. Adv. Mater. 19(20), 3358–3363 (2007). doi:10.1002/adma.200602966
H.S. Peng, M. Jain, Q.W. Li, D.E. Peterson, Y.T. Zhu, Q.X. Jia, Vertically aligned pearl-like carbon nanotube arrays for fiber spinning. J. Am. Chem. Soc. 130(4), 1130–1131 (2008). doi:10.1021/ja077767c
H.W. Zhu, C.L. Xu, D.H. Wu, B.Q. Wei, R. Vajtai, P.M. Ajayan, Direct synthesis of long single-walled carbon nanotube strands. Science 296(5569), 884–886 (2002). doi:10.1126/science.1066996
Y.L. Li, I.A. Kinloch, A.H. Windle, Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304(5668), 276–278 (2004). doi:10.1126/science.1094982
J.J. Vilatela, A.H. Windle, Yarn-like carbon nanotube fibers. Adv. Mater. 22(44), 4959–4963 (2010). doi:10.1002/adma.201002131
M. Motta, Y.L. Li, I. Kinloch, A. Windle, Mechanical properties of continuously spun fibers of carbon nanotubes. Nano Lett. 5(8), 1529–1533 (2005). doi:10.1021/nl050634+
K. Koziol, J. Vilatela, A. Moisala, M. Motta, P. Cunniff, M. Sennett, A. Windle, High-performance carbon nanotube fiber. Science 318(5858), 1892–1895 (2007). doi:10.1126/science.1147635
X.H. Zhong, Y.L. Li, Y.K. Liu, X.H. Qiao, Y. Feng et al., Continuous multilayered carbon nanotube yarns. Adv. Mater. 22(6), 692–696 (2010). doi:10.1002/adma.200902943
W.J. Ma, L.Q. Liu, R. Yang, T.H. Zhang, Z. Zhang et al., Monitoring a micromechanical process in macroscale carbon nanotube films and fibers. Adv. Mater. 21(5), 603–608 (2009). doi:10.1002/adma.200801335
J.M. Feng, R. Wang, Y.L. Li, X.H. Zhong, L. Cui, Q.J. Guo, F. Hou, One-step fabrication of high quality double-walled carbon nanotube thin films by a chemical vapor deposition process. Carbon 48(13), 3817–3824 (2010). doi:10.1016/j.carbon.2010.06.046
W.J. Ma, L.Q. Liu, Z. Zhang, R. Yang, G. Liu et al., High-strength composite fibers: realizing true potential of carbon nanotubes in polymer matrix through continuous reticulate architecture and molecular level couplings. Nano Lett. 9(8), 2855–2861 (2009). doi:10.1021/nl901035v
Y. Shang, X. He, Y. Li, L. Zhang, Z. Li et al., Super-stretchable spring-like carbon nanotube ropes. Adv. Mater. 24(21), 2896–2900 (2012). doi:10.1002/adma.201200576
Y.Y. Shang, Y.B. Li, X.D. He, L.H. Zhang, Z. Li, P.X. Li, E.Z. Shi, S.T. Wu, A.Y. Cao, Elastic carbon nanotube straight yarns embedded with helical loops. Nanoscale 5(6), 2403–2410 (2013). doi:10.1039/c3nr33633f
Y.B. Li, Y.Y. Shang, X.D. He, Q.Y. Peng, S.Y. Du et al., Overtwisted, resolvable carbon nanotube yarn entanglement as strain sensors and rotational actuators. ACS Nano 7(9), 8128–8135 (2013). doi:10.1021/nn403400c
Y.Y. Shang, Y.B. Li, X.D. He, S.Y. Du, L.H. Zhang et al., Highly twisted double-helix carbon nanotube yarns. ACS Nano 7(2), 1446–1453 (2013). doi:10.1021/nn305209h
M.D. Lima, S.L. Fang, X. Lepro, C. Lewis, R. Ovalle-Robles et al., Biscrolling nanotube sheets and functional guests into yarns. Science 331(6013), 51–55 (2011). doi:10.1126/science.1195912
L. Ci, N. Punbusayakul, J.Q. Wei, R. Vajtai, S. Talapatra, P.M. Ajayan, Multifunctional macroarchitectures of double-walled carbon nanotube fibers. Adv. Mater. 19(13), 1719–1723 (2007). doi:10.1002/adma.200602520
L.X. Zheng, X.F. Zhang, Q.W. Li, S.B. Chikkannanavar, Y. Li et al., Carbon-nanotube cotton for large-scale fibers. Adv. Mater. 19(18), 2567–2570 (2007). doi:10.1002/adma.200602648
H.H. Gommans, J.W. Alldredge, H. Tashiro, J. Park, J. Magnuson, A.G. Rinzler, Fibers of aligned single-walled carbon nanotubes: polarized Raman spectroscopy. J. Appl. Phys. 88(5), 2509–2514 (2000). doi:10.1063/1.1287128
G.T. Liu, Y.C. Zhao, K. Deng, Z. Liu, W.G. Chu et al., Highly dense and perfectly aligned single-walled carbon nanotubes fabricated by diamond wire drawing dies. Nano Lett. 8(4), 1071–1075 (2008). doi:10.1021/nl073007o
Z. Liu, K.H. Zheng, L.J. Hu, J. Liu, C.Y. Qiu et al., Surface-energy generator of single-walled carbon nanotubes and usage in a self-powered system. Adv. Mater. 22(9), 999–1003 (2010). doi:10.1002/adma.200902153
Z. Xu, C. Gao, Graphene chiral liquid crystals and macroscopic assembled fibres. Nat. Commun. 2, 571 (2011). doi:10.1038/ncomms1583
Z. Xu, C. Gao, Aqueous liquid crystals of graphene oxide. ACS Nano 5(4), 2908–2915 (2011). doi:10.1021/nn200069w
N. Behabtu, J.R. Lomeda, M.J. Green, A.L. Higginbotham, A. Sinitskii et al., Spontaneous high-concentration dispersions and liquid crystals of graphene. Nat. Nanotechnol. 5(6), 406–411 (2010). doi:10.1038/nnano.2010.86
R. Jalili, S.H. Aboutalebi, D. Esrafilzadeh, R.L. Shepherd, J. Chen et al., Scalable one-step wet-spinning of graphene fibers and yarns from liquid crystalline dispersions of graphene oxide: towards multifunctional textiles. Adv. Funct. Mater. 23(43), 5345–5354 (2013). doi:10.1002/adfm.201300765
B. Zheng, T. Huang, L. Kou, X. Zhao, K. Gopalsamy, C. Gao, Graphene fiber-based asymmetric micro-supercapacitors. J. Mater. Chem. A 2(25), 9736–9743 (2014). doi:10.1039/C4TA01868K
T.Q. Huang, B.N. Zheng, L. Kou, K. Gopalsamy, Z. Xu, C. Gao, Y.N. Meng, Z.X. Wei, Flexible high performance wet-spun graphene fiber supercapacitors. RSC Adv. 3(46), 23957–23962 (2013). doi:10.1039/c3ra44935a
H.P. Cong, X.C. Ren, P. Wang, S.H. Yu, Wet-spinning assembly of continuous, neat, and macroscopic graphene fibers. Sci. Rep. 2, 613 (2012). doi:10.1038/srep00613
J. Sun, Y. Li, Q. Peng, S. Hou, D. Zou et al., Macroscopic, flexible, high-performance graphene ribbons. ACS Nano 7(11), 10225–10232 (2013). doi:10.1021/nn404533r
Z. Xu, Y. Zhang, P. Li, C. Gao, Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores. ACS Nano 6(8), 7103–7113 (2012). doi:10.1021/nn3021772
Y. Zhao, C.C. Jiang, C.G. Hu, Z.L. Dong, J.L. Xue, Y.N. Meng, N. Zheng, P.W. Chen, L.T. Qu, Large-scale spinning assembly of neat, morphology-defined, graphene-based hollow fibers. ACS Nano 7(3), 2406–2412 (2013). doi:10.1021/nn305674a
L. Kou, T. Huang, B. Zheng, Y. Han, X. Zhao, K. Gopalsamy, H. Sun, C. Gao, Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 5, 3754 (2014). doi:10.1038/ncomms4754
Z. Liu, Z. Xu, X.Z. Hu, C. Gao, Lyotropic liquid crystal of polyacrylonitrile-grafted graphene oxide and its assembled continuous strong nacre-mimetic fibers. Macromolecules 46(17), 6931–6941 (2013). doi:10.1021/ma400681v
X.L. Zhao, Z. Xu, B.N. Zheng, C. Gao, Macroscopic assembled, ultrastrong and H2SO4-resistant fibres of polymer-grafted graphene oxide. Sci. Rep. 3, 3164 (2013). doi:10.1038/srep03164
X.Z. Hu, Z. Xu, C. Gao, Multifunctional, supramolecular, continuous artificial nacre fibres. Sci. Rep. 2, 767 (2012). doi:10.1038/srep00767
X.Z. Hu, Z. Xu, Z. Liu, C. Gao, Liquid crystal self-templating approach to ultrastrong and tough biomimic composites. Sci. Rep. 3, 2374 (2013). doi:10.1038/srep02374
L. Kou, C. Gao, Bioinspired design and macroscopic assembly of poly(vinyl alcohol)-coated graphene into kilometers-long fibers. Nanoscale 5(10), 4370–4378 (2013). doi:10.1039/c3nr00455d
X. Hu, S. Rajendran, Y. Yao, Z. Liu, K. Gopalsamy, L. Peng, C. Gao, A novel wet-spinning method of manufacturing continuous bio-inspired composites based on graphene oxide and sodium alginate. Nano Res. 9(3), 735–744 (2016). doi:10.1007/s12274-015-0952-2
Z. Xu, Z. Liu, H.Y. Sun, C. Gao, Highly electrically conductive Ag-doped graphene fibers as stretchable conductors. Adv. Mater. 25(23), 3249–3253 (2013). doi:10.1002/adma.201300774
K. Gopalsamy, Z. Xu, B. Zheng, T. Huang, L. Kou, X. Zhao, C. Gao, Bismuth oxide nanotubes-graphene fiber-based flexible supercapacitors. Nanoscale 6(15), 8595–8600 (2014). doi:10.1039/C4NR02615B
B. Fang, L. Peng, Z. Xu, C. Gao, Wet-spinning of continuous montmorillonite-graphene fibers for fire-resistant lightweight conductors. ACS Nano 9(5), 5214–5222 (2015). doi:10.1021/acsnano.5b00616
Z.L. Dong, C.C. Jiang, H.H. Cheng, Y. Zhao, G.Q. Shi, L. Jiang, L.T. Qu, Facile fabrication of light, flexible and multifunctional graphene fibers. Adv. Mater. 24(14), 1856–1861 (2012). doi:10.1002/adma.201200170
H.H. Cheng, Z.L. Dong, C.G. Hu, Y. Zhao, Y. Hu, L.T. Qu, N. Chena, L.M. Dai, Textile electrodes woven by carbon nanotube-graphene hybrid fibers for flexible electrochemical capacitors. Nanoscale 5(8), 3428–3434 (2013). doi:10.1039/c3nr00320e
J. Li, J. Li, L. Li, M. Yu, H. Ma, B. Zhang, Flexible graphene fibers prepared by chemical reduction-induced self-assembly. J. Mater. Chem. A 2(18), 6359–6362 (2014). doi:10.1039/C4TA00431K
E.Y. Jang, J. Carretero-Gonzalez, A. Choi, W.J. Kim, M.E. Kozlov et al., Fibers of reduced graphene oxide nanoribbons. Nanotechnology 23(23), 235601–235608 (2012). doi:10.1088/0957-4484/23/23/235601
X.M. Li, T.S. Zhao, K.L. Wang, Y. Yang, J.Q. Wei, F.Y. Kang, D.H. Wu, H.W. Zhu, Directly drawing self-assembled, porous, and monolithic graphene fiber from chemical vapor deposition grown graphene film and its electrochemical properties. Langmuir 27(19), 12164–12171 (2011). doi:10.1021/la202380g
X.M. Li, T.S. Zhao, Q. Chen, P.X. Li, K.L. Wang et al., Flexible all solid-state supercapacitors based on chemical vapor deposition derived graphene fibers. Phys. Chem. Chem. Phys. 15(41), 17752–17757 (2013). doi:10.1039/c3cp52908h
D.D. Nguyen, S. Suzuki, S. Kato, B.D. To, C.C. Hsu, H. Murata, E. Rokuta, N.-H. Tai, M. Yoshimura, Macroscopic, freestanding, and tubular graphene architectures fabricated via thermal annealing. ACS Nano 9(3), 3206–3214 (2015). doi:10.1021/acsnano.5b00292
M. Xiao, T. Kong, W. Wang, Q. Song, D. Zhang, Q. Ma, G. Cheng, Interconnected graphene networks with uniform geometry for flexible conductors. Adv. Funct. Mater. 25(39), 6165–6172 (2015). doi:10.1002/adfm.201502966
X. Shao, A. Srinivasan, Y. Zhao, A. Khursheed, A few-layer graphene ring-cathode field emitter for focused electron/ion beam applications. Carbon 110, 378–383 (2016). doi:10.1016/j.carbon.2016.09.048
M. Naraghi, T. Filleter, A. Moravsky, M. Locascio, R.O. Loutfy, H.D. Espinosa, A multiscale study of high performance double-walled nanotube-polymer fibers. ACS Nano 4(11), 6463–6476 (2010). doi:10.1021/nn101404u
L.X. Zheng, G.Z. Sun, Z.Y. Zhan, Tuning array morphology for high-strength carbon-nanotube fibers. Small 6(1), 132–137 (2010). doi:10.1002/smll.200900954
L. Kai, S. Yinghui, Z. Ruifeng, Z. Hanyu, W. Jiaping, L. Liang, F. Shoushan, J. Kaili, Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method. Nanotechnology 21(4), 045708 (2010). doi:10.1088/0957-4484/21/4/045708
A. Kis, G. Csanyi, J.P. Salvetat, T.-N. Lee, E. Couteau, A.J. Kulik, W. Benoit, J. Brugger, L. Forro, Reinforcement of single-walled carbon nanotube bundles by intertube bridging. Nat. Mater. 3(3), 153–157 (2004). doi:10.1038/nmat1076
M.K. Shin, B. Lee, S.H. Kim, J.A. Lee, G.M. Spinks et al., Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes. Nat. Commun. 3, 650 (2012). doi:10.1038/ncomms1661
S. Ryu, Y. Lee, J.W. Hwang, S. Hong, C. Kim, T.G. Park, H. Lee, S.H. Hong, High-strength carbon nanotube fibers fabricated by infiltration and curing of mussel-inspired catecholamine polymer. Adv. Mater. 23(17), 1971–1975 (2011). doi:10.1002/adma.201004228
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). doi:10.1126/science.1102896
A.K. Geim, Graphene: status and prospects. Science 324(5934), 1530–1534 (2009). doi:10.1126/science.1158877
M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: a review of graphene. Chem. Rev. 110(1), 132–145 (2010). doi:10.1021/cr900070d
Z. Xu, C. Gao, Graphene fiber: a new trend in carbon fibers. Mater. Today 18(9), 480–492 (2015). doi:10.1016/j.mattod.2015.06.009
L. Chen, Y. He, S. Chai, H. Qiang, F. Chen, Q. Fu, Toward high performance graphene fibers. Nanoscale 5(13), 5809–5815 (2013). doi:10.1039/C3NR01083J
C. Xiang, C.C. Young, X. Wang, Z. Yan, C.-C. Hwang et al., Large flake graphene oxide fibers with unconventional 100% knot efficiency and highly aligned small flake graphene oxide fibers. Adv. Mater. 25(33), 4592–4597 (2013). doi:10.1002/adma.201301065
Z. Xu, H. Sun, X. Zhao, C. Gao, Ultrastrong fibers assembled from giant graphene oxide sheets. Adv. Mater. 25(2), 188–193 (2013). doi:10.1002/adma.201203448
G. Xin, T. Yao, H. Sun, S.M. Scott, D. Shao, G. Wang, J. Lian, Highly thermally conductive and mechanically strong graphene fibers. Science 349(6252), 1083–1087 (2015). doi:10.1126/science.aaa6502
Z. Xu, Y. Liu, X. Zhao, L. Peng, H. Sun et al., Ultrastiff and strong graphene fibers via full-scale synergetic defect engineering. Adv. Mater. 28(30), 6449–6456 (2016). doi:10.1002/adma.201506426
Y. Liu, Z. Xu, J. Zhan, P. Li, C. Gao, Superb electrically conductive graphene fibers via doping strategy. Adv. Mater. 28(36), 7941–7947 (2016). doi:10.1002/adma.201602444
Y. Liu, Z. Xu, W. Gao, Z. Cheng, C. Gao, Graphene and other 2D colloids: liquid crystals and macroscopic fibers. Adv. Mater. 29(14), 1606794 (2017). doi:10.1002/adma.201606794
B. Vigolo, P. Poulin, M. Lucas, P. Launois, P. Bernier, Improved structure and properties of single-wall carbon nanotube spun fibers. Appl. Phys. Lett. 81(7), 1210–1212 (2002). doi:10.1063/1.1497706
W. Neri, M. Maugey, P. Miaudet, A. Derre, C. Zakri, P. Poulin, Surfactant-free spinning of composite carbon nanotube fibers. Macromol. Rapid Commun. 27(13), 1035–1038 (2006). doi:10.1002/marc.200600150
N. Behabtu, C.C. Young, D.E. Tsentalovich, O. Kleinerman, X. Wang et al., Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 339(6116), 182–186 (2013). doi:10.1126/science.1228061
J.N. Wang, X.G. Luo, T. Wu, Y. Chen, High-strength carbon nanotube fibre-like ribbon with high ductility and high electrical conductivity. Nat. Commun. 5, 3848 (2014). doi:10.1038/ncomms4848
B. Alemán, V. Reguero, B. Mas, J.J. Vilatela, Strong carbon nanotube fibers by drawing inspiration from polymer fiber spinning. ACS Nano 9(7), 7392–7398 (2015). doi:10.1021/acsnano.5b02408
J. Di, S. Fang, F.A. Moura, D.S. Galvão, J. Bykova et al., Strong, twist-stable carbon nanotube yarns and muscles by tension annealing at extreme temperatures. Adv. Mater. 28(31), 6598–6605 (2016). doi:10.1002/adma.201600628
Y. Shang, Y. Wang, S. Li, C. Hua, M. Zou, A. Cao, High-strength carbon nanotube fibers by twist-induced self-strengthening. Carbon 119, 47–55 (2017). doi:10.1016/j.carbon.2017.03.101