Functionalization of carbon nanotubes and other nanocarbons by azide chemistry
Corresponding Author: Chao Gao
Nano-Micro Letters,
Vol. 2 No. 3 (2010), Article Number: 213-226
Abstract
Following the conventional carbon allotropes of diamond and graphite, fullerene, carbon nanotubes (CNTs) and graphene as 0D, 1D and 2D graphitic macromolecules have been discovered recently in succession, declaring the unlimited potential of carbon-based nanomaterials and nanotechnology. Although CNTs exhibit significant potential applications in advanced materials and other fields due to their extraordinary mechanical strength and electrical/thermal conductivity properties, their low solubility, poor wettability and bad dispersibility in common solvents and solid matrices have limited their processing and applications. Thus, the attempt to achieve wettable/processable CNTs by functionalization has attracted increasing attention in both scientific and industrial communities. In recent years, azide chemistry has been demonstrated as a powerful means to covalently modify CNTs. It consists of two major approaches: click chemistry and nitrene chemistry, which both involve the usage of various azide compounds. The former one is based on highly reactive and stereospecifical Cu(I) catalyzed azide-alkyne cycloaddition reaction; the latter one is based on the electrophilic attack to unsaturated bonds of CNTs with nitrenes as reactive intermediates formed from thermolysis or photolysis of azides. In this mini-review paper, the azide chemistry to functionalize CNTs is highlighted and the corresponding functionalization routes to build CNT-based complex structures are also discussed. Besides, covalent functionalizations of other graphitic nanomaterials such as fullerence and graphene, via azide chemistry, are commented briefly.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl and R. E. Smalley, Nature 318, 162 (1985). doi:10.1038/318162a0
- S. Iijima, Nature 354, 56 (1991). doi:10.1038/354056a0
- K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov. Science 306, 666 (2004).
- S. E. Moulton, A. I. Minett and G. G. Wallace, Sens. Lett. 3, 183 (2005). doi:10.1166/sl.2005.035
- M. Terrones, Int. Mater. Rev. 49, 325 (2004). doi:10.1179/174328004X5655
- H. J. Dai, Surf. Sci. 500, 218 (2002). doi:10.1016/S0039- 6028(01)01558-8
- P. M. Ajayan and O. Z. Zhou, Top. Appl. Phys. 80, 391 (2001). doi:10.1007/3-540-39947-X_14
- P. M. Ajayan, Chem. Rev. 99, 1787 (1999). doi:10.1021/cr970102g
- C. Gao, Polymer-Functionalized Carbon Nanotubes. In Encyclopedia of Nanoscience and Nanotechnology (Ed. H. S. Nalwa). American Scientific Publishers. 2010.
- J. Liu, A. G. Rinzler, H. J. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Rogriguez-Macias, Y. S. Shon, T. R. Lee, D. T. Colbert and R. E. Smalley, Science 280, 1253 (1998). doi:10.1126/science.280.5367.1253
- J. Chen, M. A. Hamon, H. Hu, Y. S. Chen, A. M. Rao, P. C. Eklund and R. C. Haddon, Science 282, 95 (1998). doi:10.1126/science.282.5386.95
- S. Pekker, J. P. Salvetat, E. Jakab, J. M. Bonard and L. Forro, J. Phys. Chem. B. 105, 7938 (2001). doi:10.1021/jp010642o
- T. Nakajima, S. Kasamatsu and Y. Matsuo, Eur. J. Solid State Inorg. Chem. 33, 831 (1996).
- M. A. Hamon, H. Hui, P. Bhowmik, H. M. E. Itkis and R. C. Haddon, Appl. Phys. A 74, 333 (2002). doi:10.1007/s003390201281
- J. Chen, M. A. Hamon, H. Hu, Y. S. Chen, A. M. Rao, P. C. Eklund and R. C. Haddon, Science 282, 95 (1998). doi: 10.1126/science.282.5386.95
- W. H. Lee, S. J. Kim, W. J. Lee, J. G. Lee, R. C. Haddon and P. J. Reucroft, Appl. Surf. Sci. 181, 121 (2001). doi: 10.1016 S0169-4332(01)00381-6
- J. L. Bahr, J. Yang, D. V. Kosynkin, M. J. Bronikowski, R. E. Smalley and J. M. Tour, J. Am. Chem. Soc. 123, 6536 (2001). doi:10.1021/ja010462s
- V. Georgakilas, D. Gournis, M. A. Karakassides, A. Bakandritsos and D. Petridis, Carbon 42, 865 (2004). doi:10.1016/j.carbon.2004.01.064
- N. Tagmatarchis, V. Georgakilas, M. Prato and H. Shinohara, Chem. Commun. 18, 2010 (2002). doi:10.1039/b204366a
- K. C. Hwang, Chem. Commun. 2, 173 (1995).
- D. B. Mawhinney, V. Naumenko, A. Kuznetsova, J. T. Yates, J. Liu and R. E. Smalley, J. Am. Chem. Soc. 122, 2383 (2000). doi:10.1021/ja994094s
- H. Kong, C. Gao and D. Y. Yan, J. Am. Chem. Soc. 126, 412 (2004). doi:10.1021/ja0380493
- Y. Y. Xu, C. Gao, H. Kong, D. Y. Yan, Y. Z. Jin and P. C. P. Watts, Macromolecules 37, 8846 (2004). doi:10.1021/ma0484781
- H. Kong, W. W. Li, C. Gao, D. Y. Yan, Y. Z. Jin, D. R. M. Walton and H. W. Kroto, Macromolecules 37, 6683 (2004). doi:10.1021/ma048682o
- Q. Chen, L. Dai, M. Gao, S. Huang and A. Mau, J. Phys. Chem. B 105, 618 (2001). doi:10.1021/jp003385g
- J. Zhu, M. Yudasaka, M. Zhang, D. Kasuya and S. Iijima, Nano Lett. 3, 1239 (2003). doi:10.1021/nl034459d
- Z. Konya, I. Vesselenyi, K. Niesz, A. Kukovecz, A. Demortier, A. Fonseca, J. Delhalle, Z. Mekhalif, J. B. Nagy, A. A. Koos, Z. Osvath, A. Kocsonya, L. P. Biro and I. Kiricsi, Chem. Phys. Lett. 360, 429 (2002). doi:10.1016/S0009-2614(02)00900-4
- H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew. Chem., Int. Ed. 40, 2004 (2001). doi:10.1002/1521-3773 (20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
- V. V. Rostovtsev, L. G. Green, V. V. Fokin and K. B. Sharpless, Angew. Chem. Int. Ed. 41, 2596 (2002). doi:10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4
- J. E. Moses and A. D. Moorhouse, Chem. Soc. Rev. 36, 1249 (2007). doi:10.1039/b613014n
- H. M. Li, F. Y. Cheng, A. M. Duft and A. Adronov, J. Am. Chem. Soc. 127, 14518 (2005). doi:10.1021/ja054958b
- H. M. Li and A. Adronov, Carbon 45, 984 (2007). doi:10.1016/j.carbon.2006.12.022
- J. Y. Liu, Z. H. Nie, Y. Gao, A. Adronov and H. M. Li, J. Polym. Sci. Part A: Polym. Chem. 46, 7187 (2008). doi:10.1002/pola.23026
- Y. Zhang, H. H. He and C. Gao, Macromolecules 41, 9851 (2008).
- Y. Zhang, H. H. He, C. Gao and J. Y. Wu, Langmuir 25, 5814 (2009). doi:10.1021/la803906s
- R. Voggu, P. Suguna, S. Chandrasekaran and C. N. R. Rao, Chem. Phys. Lett. 443, 118 (2007). doi:10.1016/j.cplett.2007.06.050
- H. H. He, Y. Zhang, C. Gao and J. Y. Wu, Chem. Commun. 13, 1655 (2009). doi:10.1039/b821280e
- Z. Guo, L. Liang, J. J. Liang, Y. F. Ma, X. Y. Yang, D. M. Ren, Y. S. Chen and J. Y. Zheng, J. Nanopart. Res. 10, 1077 (2008). doi:10.1007/s11051-007-9338-z
- S. Campidelli, B. Ballesteros, A. Filoramo, D. Diaaz, G. Torre, T. Torres, G. M. A. Rahman, C. Ehli, D. Kiessling, F. Werner, V. Sgobba, D. M. Guldi, C. Cioffi, M. Prato and J. P. Bourgoin, J. Am. Chem. Soc. 130, 11503 (2008). doi:10.1021/ja8033262
- T. Palacin, H. L. Khanh, B. Jousselme, P. Jegou, A. Filoramo, C. Ehli, D. M. Guldi and S. Campidell, J. Am. Chem. Soc. 131, 15394 (2009). doi:10.1021/ja906020e
- W. Lwowski, Nitrenes. (1970). Interscience. New York.
- M. Holzinger, O. Vostrowsky, A. Hirsch, F. Hennrich, M. Kappes, R. Weiss and F. Jellen, Angew. Chem. Int. Ed. 40, 4002 (2001). doi:10.1002/1521-3773(20011105)40:21<4002::AID-ANIE4002>3.0.CO;2-8
- M. Holzinger, J. Abraham, P. Whelan, R. Graupner, L. Ley, F. Hennrich, M. Kappes and A. Hirsch, J. Am. Chem. Soc. 125, 8566 (2003). doi:10.1021/ja029931w
- M. Holzinger, J. Steinmetz, D. Samaille, M. Glerup, M. Paillet, P. Bernier, L. Ley and R. Graupner, Carbon 42, 941 (2004). doi:10.1016/j.carbon.2003.12.019
- S. Qin, D. Qin, W. T. Ford, D. E. Resasco and J. E. Herrera, Macromolecules 37, 752 (2004). doi:10.1021/ma035214q
- C. Gao, H. K. He, L. Zhou, X. Zheng and Y. Zhang, Chem. Mater. 21, 360 (2009). doi:10.1021/cm802704c
- L. Zhou, C. Gao and W. J. Xu, Macromol. Chem. Phys. 210, 1011 (2009). doi:10.1002/macp.200900134
- X. Wang, L. Zhou, C. Gao and Y. H. Xu, Acta Polym. Sinica 8, 717 (2009). doi:10.3724/SP.J.1105.2009.00717
- Y. Zhu, A. T. Peng, K. Carpenter, J. A. Maguire, N. S. Hosmane and M. Takagaki, J. Am. Chem. Soc. 127, 9875 (2005). doi:10.1021/ja0517116
- S. J. Pastine, D. Okawa, B. Kessler, M. Rolandi, M. Lorente, A. Zett and J. M. J. Frechet, J. Am. Chem. Soc. 130, 4238 (2008). doi:10.1021/ja8003446
- J. Iehl, R. P. Freitas, B. D. Nicot and J. F. Nierengarten, Chem. Commun. 21, 2450 (2008). doi:10.1039/b804393k
- K. Flavin, M. N. Chaur, L. Echegoyen and S. Giordani, Org. Lett. 12, 840 (2010). doi:10.1021/ol902939f
- M. Prato, Q. C. Li and F. Wudl, J. Am. Chem. Soc. 115, 1149 (1993).
- G. Hammond, V. J. Kuck, Fullerenes Synthesis, Properties, and Chemistry of Large Carbon Cluster, ACS Symposium Series 481, American Chemical Society, Washington. DC, 1992.
- C. J. Hawker, Macromolecules 27, 4836 (1994). doi:10.1021/ma00095a027
- S. Delpeux, F. Beguin, R. Benoit, R. Erre, N. Manolova and I. Rashkov, Eur. Polym. J. 34, 905 (1998). doi: 10.1016/S0014-3057(97)00225-5
- P. Ravi, C. Wang, S. Dai and K. C. Tam, Langmuir 22, 7167 (2006). doi:10.1021/la0606345
- H. J. Fang, S. Wang, S. X. Xiao, Y. L. Li, Y. Liu, L. Z. Fan, Z. Q. Shi, C. Du and D. B. Zhu, Synth. Met. 128, 253 (2002). doi:10.1016/S0379-6779(01)00648-8
- M. Nanjo, P. W. Cyr, K. Liu, E. H. Sargent and I. Manners, Adv. Funct. Mater. 18, 470 (2008). doi:10.1002/adfm.200700315
- Y. Ederle and C. Mathis, Macromol. Rapid Commun. 19, 543 (1998). doi:10.1002/(SICI)1521-3927(19981101)19:11<543::AID-MARC543>3.0.CO;2-G
- X. F. Wang, Y. F. Zhang, Z. Y. Zhu and S. Y. Liu, Macromol. Rapid Commun. 29, 340 (2008). doi:10.1002/marc.200700811
- L. Zhou, C. Gao, D. D. Zhu, W. J. Xu, F. F. Chen, A. Palkar, L. Echegoyen and E. S. W. Kong, Chem. Eur. J. 15, 1389 (2009). doi:10.1002/chem.200801642
- S. Caterina, M. Ather and D. Erik, Carbon 48, 2127 (2010). doi:10.1016/j.carbon.2010.01.058
- K. Hyunwoo, A. Ahmeda and M. Christopher, Macromolecules. 43, 6515 (2010). doi:10.1021/ma100572e
- J. Choi, K. Kim, B. Kim, H. Lee and S. Kim, J. Phys. Chem. C 113, 9433 (2009). doi:10.1021/jp9010444
- H. K. He and C. Gao, Chem. Mater. 22, 5054 (2010). doi:10.1021/cm101634k
- L. Kou, H. K. He and C. Gao, Nano-Micro Lett. 2, 177 (2010).
References
H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl and R. E. Smalley, Nature 318, 162 (1985). doi:10.1038/318162a0
S. Iijima, Nature 354, 56 (1991). doi:10.1038/354056a0
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov. Science 306, 666 (2004).
S. E. Moulton, A. I. Minett and G. G. Wallace, Sens. Lett. 3, 183 (2005). doi:10.1166/sl.2005.035
M. Terrones, Int. Mater. Rev. 49, 325 (2004). doi:10.1179/174328004X5655
H. J. Dai, Surf. Sci. 500, 218 (2002). doi:10.1016/S0039- 6028(01)01558-8
P. M. Ajayan and O. Z. Zhou, Top. Appl. Phys. 80, 391 (2001). doi:10.1007/3-540-39947-X_14
P. M. Ajayan, Chem. Rev. 99, 1787 (1999). doi:10.1021/cr970102g
C. Gao, Polymer-Functionalized Carbon Nanotubes. In Encyclopedia of Nanoscience and Nanotechnology (Ed. H. S. Nalwa). American Scientific Publishers. 2010.
J. Liu, A. G. Rinzler, H. J. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Rogriguez-Macias, Y. S. Shon, T. R. Lee, D. T. Colbert and R. E. Smalley, Science 280, 1253 (1998). doi:10.1126/science.280.5367.1253
J. Chen, M. A. Hamon, H. Hu, Y. S. Chen, A. M. Rao, P. C. Eklund and R. C. Haddon, Science 282, 95 (1998). doi:10.1126/science.282.5386.95
S. Pekker, J. P. Salvetat, E. Jakab, J. M. Bonard and L. Forro, J. Phys. Chem. B. 105, 7938 (2001). doi:10.1021/jp010642o
T. Nakajima, S. Kasamatsu and Y. Matsuo, Eur. J. Solid State Inorg. Chem. 33, 831 (1996).
M. A. Hamon, H. Hui, P. Bhowmik, H. M. E. Itkis and R. C. Haddon, Appl. Phys. A 74, 333 (2002). doi:10.1007/s003390201281
J. Chen, M. A. Hamon, H. Hu, Y. S. Chen, A. M. Rao, P. C. Eklund and R. C. Haddon, Science 282, 95 (1998). doi: 10.1126/science.282.5386.95
W. H. Lee, S. J. Kim, W. J. Lee, J. G. Lee, R. C. Haddon and P. J. Reucroft, Appl. Surf. Sci. 181, 121 (2001). doi: 10.1016 S0169-4332(01)00381-6
J. L. Bahr, J. Yang, D. V. Kosynkin, M. J. Bronikowski, R. E. Smalley and J. M. Tour, J. Am. Chem. Soc. 123, 6536 (2001). doi:10.1021/ja010462s
V. Georgakilas, D. Gournis, M. A. Karakassides, A. Bakandritsos and D. Petridis, Carbon 42, 865 (2004). doi:10.1016/j.carbon.2004.01.064
N. Tagmatarchis, V. Georgakilas, M. Prato and H. Shinohara, Chem. Commun. 18, 2010 (2002). doi:10.1039/b204366a
K. C. Hwang, Chem. Commun. 2, 173 (1995).
D. B. Mawhinney, V. Naumenko, A. Kuznetsova, J. T. Yates, J. Liu and R. E. Smalley, J. Am. Chem. Soc. 122, 2383 (2000). doi:10.1021/ja994094s
H. Kong, C. Gao and D. Y. Yan, J. Am. Chem. Soc. 126, 412 (2004). doi:10.1021/ja0380493
Y. Y. Xu, C. Gao, H. Kong, D. Y. Yan, Y. Z. Jin and P. C. P. Watts, Macromolecules 37, 8846 (2004). doi:10.1021/ma0484781
H. Kong, W. W. Li, C. Gao, D. Y. Yan, Y. Z. Jin, D. R. M. Walton and H. W. Kroto, Macromolecules 37, 6683 (2004). doi:10.1021/ma048682o
Q. Chen, L. Dai, M. Gao, S. Huang and A. Mau, J. Phys. Chem. B 105, 618 (2001). doi:10.1021/jp003385g
J. Zhu, M. Yudasaka, M. Zhang, D. Kasuya and S. Iijima, Nano Lett. 3, 1239 (2003). doi:10.1021/nl034459d
Z. Konya, I. Vesselenyi, K. Niesz, A. Kukovecz, A. Demortier, A. Fonseca, J. Delhalle, Z. Mekhalif, J. B. Nagy, A. A. Koos, Z. Osvath, A. Kocsonya, L. P. Biro and I. Kiricsi, Chem. Phys. Lett. 360, 429 (2002). doi:10.1016/S0009-2614(02)00900-4
H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew. Chem., Int. Ed. 40, 2004 (2001). doi:10.1002/1521-3773 (20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
V. V. Rostovtsev, L. G. Green, V. V. Fokin and K. B. Sharpless, Angew. Chem. Int. Ed. 41, 2596 (2002). doi:10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4
J. E. Moses and A. D. Moorhouse, Chem. Soc. Rev. 36, 1249 (2007). doi:10.1039/b613014n
H. M. Li, F. Y. Cheng, A. M. Duft and A. Adronov, J. Am. Chem. Soc. 127, 14518 (2005). doi:10.1021/ja054958b
H. M. Li and A. Adronov, Carbon 45, 984 (2007). doi:10.1016/j.carbon.2006.12.022
J. Y. Liu, Z. H. Nie, Y. Gao, A. Adronov and H. M. Li, J. Polym. Sci. Part A: Polym. Chem. 46, 7187 (2008). doi:10.1002/pola.23026
Y. Zhang, H. H. He and C. Gao, Macromolecules 41, 9851 (2008).
Y. Zhang, H. H. He, C. Gao and J. Y. Wu, Langmuir 25, 5814 (2009). doi:10.1021/la803906s
R. Voggu, P. Suguna, S. Chandrasekaran and C. N. R. Rao, Chem. Phys. Lett. 443, 118 (2007). doi:10.1016/j.cplett.2007.06.050
H. H. He, Y. Zhang, C. Gao and J. Y. Wu, Chem. Commun. 13, 1655 (2009). doi:10.1039/b821280e
Z. Guo, L. Liang, J. J. Liang, Y. F. Ma, X. Y. Yang, D. M. Ren, Y. S. Chen and J. Y. Zheng, J. Nanopart. Res. 10, 1077 (2008). doi:10.1007/s11051-007-9338-z
S. Campidelli, B. Ballesteros, A. Filoramo, D. Diaaz, G. Torre, T. Torres, G. M. A. Rahman, C. Ehli, D. Kiessling, F. Werner, V. Sgobba, D. M. Guldi, C. Cioffi, M. Prato and J. P. Bourgoin, J. Am. Chem. Soc. 130, 11503 (2008). doi:10.1021/ja8033262
T. Palacin, H. L. Khanh, B. Jousselme, P. Jegou, A. Filoramo, C. Ehli, D. M. Guldi and S. Campidell, J. Am. Chem. Soc. 131, 15394 (2009). doi:10.1021/ja906020e
W. Lwowski, Nitrenes. (1970). Interscience. New York.
M. Holzinger, O. Vostrowsky, A. Hirsch, F. Hennrich, M. Kappes, R. Weiss and F. Jellen, Angew. Chem. Int. Ed. 40, 4002 (2001). doi:10.1002/1521-3773(20011105)40:21<4002::AID-ANIE4002>3.0.CO;2-8
M. Holzinger, J. Abraham, P. Whelan, R. Graupner, L. Ley, F. Hennrich, M. Kappes and A. Hirsch, J. Am. Chem. Soc. 125, 8566 (2003). doi:10.1021/ja029931w
M. Holzinger, J. Steinmetz, D. Samaille, M. Glerup, M. Paillet, P. Bernier, L. Ley and R. Graupner, Carbon 42, 941 (2004). doi:10.1016/j.carbon.2003.12.019
S. Qin, D. Qin, W. T. Ford, D. E. Resasco and J. E. Herrera, Macromolecules 37, 752 (2004). doi:10.1021/ma035214q
C. Gao, H. K. He, L. Zhou, X. Zheng and Y. Zhang, Chem. Mater. 21, 360 (2009). doi:10.1021/cm802704c
L. Zhou, C. Gao and W. J. Xu, Macromol. Chem. Phys. 210, 1011 (2009). doi:10.1002/macp.200900134
X. Wang, L. Zhou, C. Gao and Y. H. Xu, Acta Polym. Sinica 8, 717 (2009). doi:10.3724/SP.J.1105.2009.00717
Y. Zhu, A. T. Peng, K. Carpenter, J. A. Maguire, N. S. Hosmane and M. Takagaki, J. Am. Chem. Soc. 127, 9875 (2005). doi:10.1021/ja0517116
S. J. Pastine, D. Okawa, B. Kessler, M. Rolandi, M. Lorente, A. Zett and J. M. J. Frechet, J. Am. Chem. Soc. 130, 4238 (2008). doi:10.1021/ja8003446
J. Iehl, R. P. Freitas, B. D. Nicot and J. F. Nierengarten, Chem. Commun. 21, 2450 (2008). doi:10.1039/b804393k
K. Flavin, M. N. Chaur, L. Echegoyen and S. Giordani, Org. Lett. 12, 840 (2010). doi:10.1021/ol902939f
M. Prato, Q. C. Li and F. Wudl, J. Am. Chem. Soc. 115, 1149 (1993).
G. Hammond, V. J. Kuck, Fullerenes Synthesis, Properties, and Chemistry of Large Carbon Cluster, ACS Symposium Series 481, American Chemical Society, Washington. DC, 1992.
C. J. Hawker, Macromolecules 27, 4836 (1994). doi:10.1021/ma00095a027
S. Delpeux, F. Beguin, R. Benoit, R. Erre, N. Manolova and I. Rashkov, Eur. Polym. J. 34, 905 (1998). doi: 10.1016/S0014-3057(97)00225-5
P. Ravi, C. Wang, S. Dai and K. C. Tam, Langmuir 22, 7167 (2006). doi:10.1021/la0606345
H. J. Fang, S. Wang, S. X. Xiao, Y. L. Li, Y. Liu, L. Z. Fan, Z. Q. Shi, C. Du and D. B. Zhu, Synth. Met. 128, 253 (2002). doi:10.1016/S0379-6779(01)00648-8
M. Nanjo, P. W. Cyr, K. Liu, E. H. Sargent and I. Manners, Adv. Funct. Mater. 18, 470 (2008). doi:10.1002/adfm.200700315
Y. Ederle and C. Mathis, Macromol. Rapid Commun. 19, 543 (1998). doi:10.1002/(SICI)1521-3927(19981101)19:11<543::AID-MARC543>3.0.CO;2-G
X. F. Wang, Y. F. Zhang, Z. Y. Zhu and S. Y. Liu, Macromol. Rapid Commun. 29, 340 (2008). doi:10.1002/marc.200700811
L. Zhou, C. Gao, D. D. Zhu, W. J. Xu, F. F. Chen, A. Palkar, L. Echegoyen and E. S. W. Kong, Chem. Eur. J. 15, 1389 (2009). doi:10.1002/chem.200801642
S. Caterina, M. Ather and D. Erik, Carbon 48, 2127 (2010). doi:10.1016/j.carbon.2010.01.058
K. Hyunwoo, A. Ahmeda and M. Christopher, Macromolecules. 43, 6515 (2010). doi:10.1021/ma100572e
J. Choi, K. Kim, B. Kim, H. Lee and S. Kim, J. Phys. Chem. C 113, 9433 (2009). doi:10.1021/jp9010444
H. K. He and C. Gao, Chem. Mater. 22, 5054 (2010). doi:10.1021/cm101634k
L. Kou, H. K. He and C. Gao, Nano-Micro Lett. 2, 177 (2010).