Porous Graphene Microflowers for High-Performance Microwave Absorption
Corresponding Author: Chao Gao
Nano-Micro Letters,
Vol. 10 No. 2 (2018), Article Number: 26
Abstract
Graphene has shown great potential in microwave absorption (MA) owing to its high surface area, low density, tunable electrical conductivity and good chemical stability. To fully realize grapheneʼs MA ability, the microstructure of graphene should be carefully addressed. Here we prepared graphene microflowers (Gmfs) with highly porous structure for high-performance MA filler material. The efficient absorption bandwidth (reflection loss ≤ −10 dB) reaches 5.59 GHz and the minimum reflection loss is up to −42.9 dB, showing significant increment compared with stacked graphene. Such performance is higher than most graphene-based materials in the literature. Besides, the low filling content (10 wt%) and low density (40–50 mg cm−3) are beneficial for the practical applications. Without compounding with magnetic materials or conductive polymers, Gmfs show outstanding MA performance with the aid of rational microstructure design. Furthermore, Gmfs exhibit advantages in facile processibility and large-scale production compared with other porous graphene materials including aerogels and foams.
Highlights:
1 Graphene microflowers (Gmfs) for outstanding microwave absorption performance are produced via a three-step protocol.
2 The porous Gmfs show a broad efficient absorption bandwidth of 5.59 GHz with a minimum reflection loss of −42.9 dB, outperforming most graphene-based materials ever reported.
3 The mass productivity, low filler content (10%) and low density (40–50 mg cm−3) of Gmfs are favorable for their practical applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Qin, C. Brosseau, A review and analysis of microwave absorption in polymer composites filled with carbonaceous ps. J. Appl. Phys. 111(6), 061301 (2012). https://doi.org/10.1063/1.3688435
- B. Zhao, G. Shao, B. Fan, W. Zhao, Y. Xie, R. Zhang, Synthesis of flower-like cus hollow microspheres based on nanoflakes self-assembly and their microwave absorption properties. J. Mater. Chem. A 3(19), 10345–10352 (2015). https://doi.org/10.1039/C5TA00086F
- B. Wen, M.S. Cao, Z.L. Hou, W.L. Song, L. Zhang et al., Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 65(12), 124–139 (2013). https://doi.org/10.1016/j.carbon.2013.07.110
- Z. Fan, G. Luo, Z. Zhang, L. Zhou, F. Wei, Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites. Mater. Sci. Eng. B 132(1), 85–89 (2006). https://doi.org/10.1016/j.mseb.2006.02.045
- M. Lu, X. Wang, W. Cao, J. Yuan, M. Cao, Carbon nanotube-CdS core-shell nanowires with tunable and high-efficiency microwave absorption at elevated temperature. Nanotechnology 27(6), 065702 (2015). https://doi.org/10.1088/0957-4484/27/6/065702
- L. Liu, X.M. Bian, Z.L. Hou, Nanoscale polygonal carbon: a unique low-loading filler for effective microwave absorption. J. Mater.: Sci. Mater. El. 27(8), 8159–8168 (2016). https://doi.org/10.1007/s10854-016-4819-4
- J. Zhong, K. Jia, Z. Pu, X. Liu, Sandwich-like graphite-fullerene composites with enhanced electromagnetic wave absorption. J. Electron. Mater. 45(11), 1–7 (2016). https://doi.org/10.1007/s11664-016-4800-2
- L. Zhang, X. Zhang, G. Zhang, Z. Zhang, S. Liu, P. Li, Q. Liao, Y. Zhao, Y. Zhang, Investigation on the optimization, design and microwave absorption properties of reduced graphene oxide/tetrapod-like ZnO composites. RSC Adv. 5(14), 10197–10203 (2015). https://doi.org/10.1039/C4RA12591F
- G. Sun, B. Dong, M. Cao, B. Wei, C. Hu, Hierarchical dendrite-like magnetic materials of Fe3O4, gamma-Fe2O3, and Fe with high performance of microwave absorption. Chem. Mater. 23(6), 1587–1593 (2011). https://doi.org/10.1021/cm103441u
- C.C. Yang, Y.J. Gung, C.C. Shih, W.C. Hung, K.H. Wu, Synthesis, infrared and microwave absorbing properties of (BaFe12O19 + BaTiO3)/polyaniline composite. J. Magn. Magn. Mater. 323(7), 933–938 (2011). https://doi.org/10.1016/j.jmmm.2010.11.072
- T. Liu, Y. Pang, M. Zhu, S. Kobayashi, Microporous Co@CoO nanops with superior microwave absorption properties. Nanoscale 6(4), 2447–2454 (2014). https://doi.org/10.1039/c3nr05238a
- C. Dong, X. Wang, P. Zhou, T. Liu, J. Xie, L. Deng, Microwave magnetic and absorption properties of m-type ferrite BaCoxTixFe12−2xO19 in the ka band. J. Magn. Magn. Mater. 354, 340–344 (2014). https://doi.org/10.1016/j.jmmm.2013.11.008
- H. Pan, X. Yin, J. Xue, L. Cheng, L. Zhang, In-situ synthesis of hierarchically porous and polycrystalline carbon nanowires with excellent microwave absorption performance. Carbon 107, 36–45 (2016). https://doi.org/10.1016/j.carbon.2016.05.045
- H.L. Xu, X.W. Yin, M. Zhu, M.K. Han, Z.X. Hou, X.L. Li, L.T. Zhang, L.F. Cheng, Carbon hollow microspheres with a designable mesoporous shell for high-performance electromagnetic wave absorption. ACS Appl. Mater. Interfaces. 9(7), 6332–6341 (2017). https://doi.org/10.1021/acsami.6b15826
- H. Sun, Z. Xu, C. Gao, Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv. Mater. 25(18), 2554–2560 (2013). https://doi.org/10.1002/adma.201204576
- Z. Xu, C. Gao, Graphene chiral liquid crystals and macroscopic assembled fibres. Nature Commun. 2(1), 571 (2011). https://doi.org/10.1038/ncomms1583
- L. Kou, Y. Liu, C. Zhang, L. Shao, Z. Tian, Z. Deng, C. Gao, A mini review on nanocarbon-based 1d macroscopic fibers: assembly strategies and mechanical properties. Nano-Micro Lett. 9(4), 9–51 (2017). https://doi.org/10.1007/s40820-017-0151-7
- Z. Xu, C. Gao, Graphene in macroscopic order: liquid crystals and wet-spun fibers. Acc. Chem. Res. 47(4), 1267–1276 (2014). https://doi.org/10.1021/ar4002813
- V.K. Singh, A. Shukla, M.K. Patra, L. Saini, R.K. Jani, S.R. Vadera, N. Kumar, Microwave absorbing properties of a thermally reduced graphene oxide/nitrile butadiene rubber composite. Carbon 50(6), 2202–2208 (2012). https://doi.org/10.1016/j.carbon.2012.01.033
- Z. Liu, G. Bai, Y. Huang, F. Li, Y. Ma et al., Microwave absorption of single-walled carbon nanotubes/soluble cross-linked polyurethane composites. J. Phys. Chem. C 111(37), 13696–13700 (2007). https://doi.org/10.1021/jp0731396
- Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao, H. Chen, Z. Huang, Y. Chen, Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27(12), 2049–2053 (2015). https://doi.org/10.1002/adma.201405788
- H. Chen, Z. Huang, Y. Huang, Y. Zhang, Z. Ge et al., Synergistically assembled MWCNT/graphene foam with highly efficient microwave absorption in both C and C bands. Carbon 124, 506–514 (2017). https://doi.org/10.1016/j.carbon.2017.09.007
- X.J. Zhang, G.S. Wang, W.Q. Cao, Y.Z. Wei, J.F. Liang, L. Guo, M.S. Cao, Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride. ACS Appl. Mater. Interfaces. 6(10), 7471–7478 (2014). https://doi.org/10.1021/am500862g
- J.T. Feng, Y.H. Hou, Y.C. Wang, L.C. Li, Synthesis of hierarchical ZnFe2O4@SiO2@RGO core-shell microspheres for enhanced electromagnetic wave absorption. ACS Appl. Mater. Interfaces. 9(16), 14103–14111 (2017). https://doi.org/10.1021/acsami.7b03330
- X. Chen, J. Chen, F. Meng, L. Shan, M. Jiang, X. Xu, J. Lu, Y. Wang, Z. Zhou, Hierarchical composites of polypyrrole/graphene oxide synthesized by in situ intercalation polymerization for high efficiency and broadband responses of electromagnetic absorption. Compos. Sci. Technol. 127, 71–78 (2016). https://doi.org/10.1016/j.compscitech.2016.02.033
- K. Levon, A. Margolina, A.Z. Patashinsky, Multiple percolation in conducting polymer blends. Macromolecules 26(15), 4061–4063 (1993). https://doi.org/10.1021/ma00067a054
- C. Chen, Z. Xu, Y. Han, H. Sun, C. Gao, Redissolution of flower-shaped graphene oxide powder with high density. ACS Appl. Mater. Interfaces. 8(12), 8000–8007 (2016). https://doi.org/10.1021/acsami.6b00126
- J. Luo, H.D. Jang, T. Sun, L. Xiao, Z. He, A.P. Katsoulidis, M.G. Kanatzidis, J.M. Gibson, J. Huang, Compression and aggregation-resistant ps of crumpled soft sheets. ACS Nano 5(11), 8943–8949 (2011). https://doi.org/10.1021/nn203115u
- J. Luo, H.D. Jang, J. Huang, Effect of sheet morphology on the scalability of graphene-based ultracapacitors. ACS Nano 7(2), 1464–1471 (2013). https://doi.org/10.1021/nn3052378
- H. Chen, C. Chen, Y. Liu, X. Zhao, N. Ananth et al., High-quality graphene microflower design for high-performance Li-S and Al-ion batteries. Adv. Energy Mater. (2017). https://doi.org/10.1002/aenm.201700051
- L. Peng, Z. Xu, Z. Liu, Y. Guo, P. Li, C. Gao, Ultrahigh thermal conductive yet superflexible graphene films. Adv. Mater. 29(27), 1700589 (2017). https://doi.org/10.1002/adma.201700589
- C. Wang, X. Han, P. Xu, X. Zhang, Y. Du, S. Hu, J. Wang, X. Wang, The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. Appl. Phys. Lett. 98(7), 975–980 (2011). https://doi.org/10.1063/1.3555436
- H. Lv, Y. Guo, Z. Yang, Y. Cheng, L.P. Wang, B. Zhang, Y. Zhao, Z.J. Xu, G. Ji, A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials. J. Mater. Chem. C 5(3), 491–512 (2017). https://doi.org/10.1039/C6TC03026B
- X.J. Zhang, S. Li, S.W. Wang, Z.J. Yin, J.Q. Zhu, A.P. Guo, G.S. Wang, P.G. Yin, L. Guo, Self-supported construction of three-dimensional MoS2 hierarchical nanospheres with tunable high-performance microwave absorption in broadband. J. Phys. Chem. C 120(38), 22019–22027 (2016). https://doi.org/10.1021/acs.jpcc.6b06661
- C. Zhou, S. Geng, X. Xu, T. Wang, L. Zhang, X. Tian, F. Yang, H. Yang, Y. Li, Lightweight hollow carbon nanospheres with tunable sizes towards enhancement in microwave absorption. Carbon 108, 234–241 (2016). https://doi.org/10.1016/j.carbon.2016.07.015
- L. Wang, H. Xing, S. Gao, X. Ji, Z. Shen, Porous flower-like NiO@graphene composites with superior microwave absorption properties. J. Mater. Chem. C 5(8), 2005–2014 (2017). https://doi.org/10.1039/C6TC05179K
- A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri et al., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006). https://doi.org/10.1103/PhysRevLett.97.187401
- Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010). https://doi.org/10.1002/adma.201001068
- W.L. Song, X.T. Guan, L.Z. Fan, Y.B. Zhao, W.Q. Cao, C.Y. Wang, M.S. Cao, Strong and thermostable polymeric graphene/silica textile for lightweight practical microwave absorption composites. Carbon 100, 109–117 (2016). https://doi.org/10.1016/j.carbon.2016.01.002
- X. Chen, F. Meng, Z. Zhou, X. Tian, L. Shan et al., One-step synthesis of graphene/polyaniline hybrids by in situ intercalation polymerization and their electromagnetic properties. Nanoscale 6(14), 8140–8148 (2014). https://doi.org/10.1039/C4NR01738B
- L. Wang, Y. Huang, H. Huang, N-doped graphene@polyaniline nanorod arrays hierarchical structures: synthesis and enhanced electromagnetic absorption properties. Mater. Lett. 124(6), 89–92 (2014). https://doi.org/10.1016/j.matlet.2014.03.066
- Y. Kang, Z. Chu, D. Zhang, G. Li, Z. Jiang, H. Cheng, X. Li, Incorporate boron and nitrogen into graphene to make BCN hybrid nanosheets with enhanced microwave absorbing properties. Carbon 61(11), 200–208 (2013). https://doi.org/10.1016/j.carbon.2013.04.085
- Y. Wang, D. Chen, X. Yin, P. Xu, F. Wu, M. He, Hybrid of MoS2 and reduced graphene oxide: a lightweight and broadband electromagnetic wave absorber. ACS Appl. Mater. Interfaces. 7(47), 26226–26234 (2015). https://doi.org/10.1021/acsami.5b08410
- X. Bai, Y. Zhai, Y. Zhang, Green approach to prepare graphene-based composites with high microwave absorption capacity. J. Phys. Chem. C 115(23), 11673–11677 (2011). https://doi.org/10.1021/jp202475m
- M. Zong, Y. Huang, H. Wu, Y. Zhao, P. Liu, L. Wang, Facile preparation of RGO/Cu2O/Cu composite and its excellent microwave absorption properties. Mater. Lett. 109(1), 112–115 (2013). https://doi.org/10.1016/j.matlet.2013.07.045
- L. Wang, Y. Huang, C. Li, J. Chen, X. Sun, A facile one-pot method to synthesize a three-dimensional graphene@carbon nanotube composite as a high-efficiency microwave absorber. Phys. Chem. Chem. Phys. 17(3), 2228–2234 (2014). https://doi.org/10.1039/C4CP04745A
- X. Zhang, Y. Huang, P. Liu, Enhanced electromagnetic wave absorption properties of poly(3,4-ethylenedioxythiophene) nanofiber-decorated graphene sheets by non-covalent interactions. Nano-Micro Lett. 8(2), 131–136 (2016). https://doi.org/10.1007/s40820-015-0067-z
- P. Liu, Y. Huang, Decoration of reduced graphene oxide with polyaniline film and their enhanced microwave absorption properties. J. Polym. Res. 21(5), 1–5 (2014). https://doi.org/10.1007/s10965-014-0430-7
- H. Lv, Y. Guo, Y. Zhao, H. Zhang, B. Zhang, G. Ji, Z.J. Xu, Achieving tunable electromagnetic absorber via graphene/carbon sphere composites. Carbon 110, 130–137 (2016). https://doi.org/10.1016/j.carbon.2016.09.009
- W. Duan, X. Yin, Q. Li, L. Schlier, P. Greil, N. Travitzky, A review of absorption properties in silicon-based polymer derived ceramics. J. Eur. Ceram. Soc. 36(15), 3681–3689 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.02.002
- J. Luo, Y. Xu, W. Yao, C. Jiang, J. Xu, Synthesis and microwave absorption properties of reduced graphene oxide-magnetic porous nanospheres-polyaniline composites. Compos. Sci. Technol. 117, 315–321 (2015). https://doi.org/10.1016/j.compscitech.2015.07.008
- J. Luo, P. Shen, W. Yao, C. Jiang, J. Xu, Synthesis, characterization, and microwave absorption properties of reduced graphene oxide/strontium ferrite/polyaniline nanocomposites. Nanoscale Res. Lett. 11(1), 141 (2016). https://doi.org/10.1186/s11671-016-1340-x
- H. Zhou, J. Wang, J. Zhuang, Q. Liu, A covalent route for efficient surface modification of ordered mesoporous carbon as high performance microwave absorbers. Nanoscale 5(24), 12502–12511 (2013). https://doi.org/10.1039/c3nr04379g
References
F. Qin, C. Brosseau, A review and analysis of microwave absorption in polymer composites filled with carbonaceous ps. J. Appl. Phys. 111(6), 061301 (2012). https://doi.org/10.1063/1.3688435
B. Zhao, G. Shao, B. Fan, W. Zhao, Y. Xie, R. Zhang, Synthesis of flower-like cus hollow microspheres based on nanoflakes self-assembly and their microwave absorption properties. J. Mater. Chem. A 3(19), 10345–10352 (2015). https://doi.org/10.1039/C5TA00086F
B. Wen, M.S. Cao, Z.L. Hou, W.L. Song, L. Zhang et al., Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 65(12), 124–139 (2013). https://doi.org/10.1016/j.carbon.2013.07.110
Z. Fan, G. Luo, Z. Zhang, L. Zhou, F. Wei, Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites. Mater. Sci. Eng. B 132(1), 85–89 (2006). https://doi.org/10.1016/j.mseb.2006.02.045
M. Lu, X. Wang, W. Cao, J. Yuan, M. Cao, Carbon nanotube-CdS core-shell nanowires with tunable and high-efficiency microwave absorption at elevated temperature. Nanotechnology 27(6), 065702 (2015). https://doi.org/10.1088/0957-4484/27/6/065702
L. Liu, X.M. Bian, Z.L. Hou, Nanoscale polygonal carbon: a unique low-loading filler for effective microwave absorption. J. Mater.: Sci. Mater. El. 27(8), 8159–8168 (2016). https://doi.org/10.1007/s10854-016-4819-4
J. Zhong, K. Jia, Z. Pu, X. Liu, Sandwich-like graphite-fullerene composites with enhanced electromagnetic wave absorption. J. Electron. Mater. 45(11), 1–7 (2016). https://doi.org/10.1007/s11664-016-4800-2
L. Zhang, X. Zhang, G. Zhang, Z. Zhang, S. Liu, P. Li, Q. Liao, Y. Zhao, Y. Zhang, Investigation on the optimization, design and microwave absorption properties of reduced graphene oxide/tetrapod-like ZnO composites. RSC Adv. 5(14), 10197–10203 (2015). https://doi.org/10.1039/C4RA12591F
G. Sun, B. Dong, M. Cao, B. Wei, C. Hu, Hierarchical dendrite-like magnetic materials of Fe3O4, gamma-Fe2O3, and Fe with high performance of microwave absorption. Chem. Mater. 23(6), 1587–1593 (2011). https://doi.org/10.1021/cm103441u
C.C. Yang, Y.J. Gung, C.C. Shih, W.C. Hung, K.H. Wu, Synthesis, infrared and microwave absorbing properties of (BaFe12O19 + BaTiO3)/polyaniline composite. J. Magn. Magn. Mater. 323(7), 933–938 (2011). https://doi.org/10.1016/j.jmmm.2010.11.072
T. Liu, Y. Pang, M. Zhu, S. Kobayashi, Microporous Co@CoO nanops with superior microwave absorption properties. Nanoscale 6(4), 2447–2454 (2014). https://doi.org/10.1039/c3nr05238a
C. Dong, X. Wang, P. Zhou, T. Liu, J. Xie, L. Deng, Microwave magnetic and absorption properties of m-type ferrite BaCoxTixFe12−2xO19 in the ka band. J. Magn. Magn. Mater. 354, 340–344 (2014). https://doi.org/10.1016/j.jmmm.2013.11.008
H. Pan, X. Yin, J. Xue, L. Cheng, L. Zhang, In-situ synthesis of hierarchically porous and polycrystalline carbon nanowires with excellent microwave absorption performance. Carbon 107, 36–45 (2016). https://doi.org/10.1016/j.carbon.2016.05.045
H.L. Xu, X.W. Yin, M. Zhu, M.K. Han, Z.X. Hou, X.L. Li, L.T. Zhang, L.F. Cheng, Carbon hollow microspheres with a designable mesoporous shell for high-performance electromagnetic wave absorption. ACS Appl. Mater. Interfaces. 9(7), 6332–6341 (2017). https://doi.org/10.1021/acsami.6b15826
H. Sun, Z. Xu, C. Gao, Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv. Mater. 25(18), 2554–2560 (2013). https://doi.org/10.1002/adma.201204576
Z. Xu, C. Gao, Graphene chiral liquid crystals and macroscopic assembled fibres. Nature Commun. 2(1), 571 (2011). https://doi.org/10.1038/ncomms1583
L. Kou, Y. Liu, C. Zhang, L. Shao, Z. Tian, Z. Deng, C. Gao, A mini review on nanocarbon-based 1d macroscopic fibers: assembly strategies and mechanical properties. Nano-Micro Lett. 9(4), 9–51 (2017). https://doi.org/10.1007/s40820-017-0151-7
Z. Xu, C. Gao, Graphene in macroscopic order: liquid crystals and wet-spun fibers. Acc. Chem. Res. 47(4), 1267–1276 (2014). https://doi.org/10.1021/ar4002813
V.K. Singh, A. Shukla, M.K. Patra, L. Saini, R.K. Jani, S.R. Vadera, N. Kumar, Microwave absorbing properties of a thermally reduced graphene oxide/nitrile butadiene rubber composite. Carbon 50(6), 2202–2208 (2012). https://doi.org/10.1016/j.carbon.2012.01.033
Z. Liu, G. Bai, Y. Huang, F. Li, Y. Ma et al., Microwave absorption of single-walled carbon nanotubes/soluble cross-linked polyurethane composites. J. Phys. Chem. C 111(37), 13696–13700 (2007). https://doi.org/10.1021/jp0731396
Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao, H. Chen, Z. Huang, Y. Chen, Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27(12), 2049–2053 (2015). https://doi.org/10.1002/adma.201405788
H. Chen, Z. Huang, Y. Huang, Y. Zhang, Z. Ge et al., Synergistically assembled MWCNT/graphene foam with highly efficient microwave absorption in both C and C bands. Carbon 124, 506–514 (2017). https://doi.org/10.1016/j.carbon.2017.09.007
X.J. Zhang, G.S. Wang, W.Q. Cao, Y.Z. Wei, J.F. Liang, L. Guo, M.S. Cao, Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride. ACS Appl. Mater. Interfaces. 6(10), 7471–7478 (2014). https://doi.org/10.1021/am500862g
J.T. Feng, Y.H. Hou, Y.C. Wang, L.C. Li, Synthesis of hierarchical ZnFe2O4@SiO2@RGO core-shell microspheres for enhanced electromagnetic wave absorption. ACS Appl. Mater. Interfaces. 9(16), 14103–14111 (2017). https://doi.org/10.1021/acsami.7b03330
X. Chen, J. Chen, F. Meng, L. Shan, M. Jiang, X. Xu, J. Lu, Y. Wang, Z. Zhou, Hierarchical composites of polypyrrole/graphene oxide synthesized by in situ intercalation polymerization for high efficiency and broadband responses of electromagnetic absorption. Compos. Sci. Technol. 127, 71–78 (2016). https://doi.org/10.1016/j.compscitech.2016.02.033
K. Levon, A. Margolina, A.Z. Patashinsky, Multiple percolation in conducting polymer blends. Macromolecules 26(15), 4061–4063 (1993). https://doi.org/10.1021/ma00067a054
C. Chen, Z. Xu, Y. Han, H. Sun, C. Gao, Redissolution of flower-shaped graphene oxide powder with high density. ACS Appl. Mater. Interfaces. 8(12), 8000–8007 (2016). https://doi.org/10.1021/acsami.6b00126
J. Luo, H.D. Jang, T. Sun, L. Xiao, Z. He, A.P. Katsoulidis, M.G. Kanatzidis, J.M. Gibson, J. Huang, Compression and aggregation-resistant ps of crumpled soft sheets. ACS Nano 5(11), 8943–8949 (2011). https://doi.org/10.1021/nn203115u
J. Luo, H.D. Jang, J. Huang, Effect of sheet morphology on the scalability of graphene-based ultracapacitors. ACS Nano 7(2), 1464–1471 (2013). https://doi.org/10.1021/nn3052378
H. Chen, C. Chen, Y. Liu, X. Zhao, N. Ananth et al., High-quality graphene microflower design for high-performance Li-S and Al-ion batteries. Adv. Energy Mater. (2017). https://doi.org/10.1002/aenm.201700051
L. Peng, Z. Xu, Z. Liu, Y. Guo, P. Li, C. Gao, Ultrahigh thermal conductive yet superflexible graphene films. Adv. Mater. 29(27), 1700589 (2017). https://doi.org/10.1002/adma.201700589
C. Wang, X. Han, P. Xu, X. Zhang, Y. Du, S. Hu, J. Wang, X. Wang, The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. Appl. Phys. Lett. 98(7), 975–980 (2011). https://doi.org/10.1063/1.3555436
H. Lv, Y. Guo, Z. Yang, Y. Cheng, L.P. Wang, B. Zhang, Y. Zhao, Z.J. Xu, G. Ji, A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials. J. Mater. Chem. C 5(3), 491–512 (2017). https://doi.org/10.1039/C6TC03026B
X.J. Zhang, S. Li, S.W. Wang, Z.J. Yin, J.Q. Zhu, A.P. Guo, G.S. Wang, P.G. Yin, L. Guo, Self-supported construction of three-dimensional MoS2 hierarchical nanospheres with tunable high-performance microwave absorption in broadband. J. Phys. Chem. C 120(38), 22019–22027 (2016). https://doi.org/10.1021/acs.jpcc.6b06661
C. Zhou, S. Geng, X. Xu, T. Wang, L. Zhang, X. Tian, F. Yang, H. Yang, Y. Li, Lightweight hollow carbon nanospheres with tunable sizes towards enhancement in microwave absorption. Carbon 108, 234–241 (2016). https://doi.org/10.1016/j.carbon.2016.07.015
L. Wang, H. Xing, S. Gao, X. Ji, Z. Shen, Porous flower-like NiO@graphene composites with superior microwave absorption properties. J. Mater. Chem. C 5(8), 2005–2014 (2017). https://doi.org/10.1039/C6TC05179K
A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri et al., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006). https://doi.org/10.1103/PhysRevLett.97.187401
Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010). https://doi.org/10.1002/adma.201001068
W.L. Song, X.T. Guan, L.Z. Fan, Y.B. Zhao, W.Q. Cao, C.Y. Wang, M.S. Cao, Strong and thermostable polymeric graphene/silica textile for lightweight practical microwave absorption composites. Carbon 100, 109–117 (2016). https://doi.org/10.1016/j.carbon.2016.01.002
X. Chen, F. Meng, Z. Zhou, X. Tian, L. Shan et al., One-step synthesis of graphene/polyaniline hybrids by in situ intercalation polymerization and their electromagnetic properties. Nanoscale 6(14), 8140–8148 (2014). https://doi.org/10.1039/C4NR01738B
L. Wang, Y. Huang, H. Huang, N-doped graphene@polyaniline nanorod arrays hierarchical structures: synthesis and enhanced electromagnetic absorption properties. Mater. Lett. 124(6), 89–92 (2014). https://doi.org/10.1016/j.matlet.2014.03.066
Y. Kang, Z. Chu, D. Zhang, G. Li, Z. Jiang, H. Cheng, X. Li, Incorporate boron and nitrogen into graphene to make BCN hybrid nanosheets with enhanced microwave absorbing properties. Carbon 61(11), 200–208 (2013). https://doi.org/10.1016/j.carbon.2013.04.085
Y. Wang, D. Chen, X. Yin, P. Xu, F. Wu, M. He, Hybrid of MoS2 and reduced graphene oxide: a lightweight and broadband electromagnetic wave absorber. ACS Appl. Mater. Interfaces. 7(47), 26226–26234 (2015). https://doi.org/10.1021/acsami.5b08410
X. Bai, Y. Zhai, Y. Zhang, Green approach to prepare graphene-based composites with high microwave absorption capacity. J. Phys. Chem. C 115(23), 11673–11677 (2011). https://doi.org/10.1021/jp202475m
M. Zong, Y. Huang, H. Wu, Y. Zhao, P. Liu, L. Wang, Facile preparation of RGO/Cu2O/Cu composite and its excellent microwave absorption properties. Mater. Lett. 109(1), 112–115 (2013). https://doi.org/10.1016/j.matlet.2013.07.045
L. Wang, Y. Huang, C. Li, J. Chen, X. Sun, A facile one-pot method to synthesize a three-dimensional graphene@carbon nanotube composite as a high-efficiency microwave absorber. Phys. Chem. Chem. Phys. 17(3), 2228–2234 (2014). https://doi.org/10.1039/C4CP04745A
X. Zhang, Y. Huang, P. Liu, Enhanced electromagnetic wave absorption properties of poly(3,4-ethylenedioxythiophene) nanofiber-decorated graphene sheets by non-covalent interactions. Nano-Micro Lett. 8(2), 131–136 (2016). https://doi.org/10.1007/s40820-015-0067-z
P. Liu, Y. Huang, Decoration of reduced graphene oxide with polyaniline film and their enhanced microwave absorption properties. J. Polym. Res. 21(5), 1–5 (2014). https://doi.org/10.1007/s10965-014-0430-7
H. Lv, Y. Guo, Y. Zhao, H. Zhang, B. Zhang, G. Ji, Z.J. Xu, Achieving tunable electromagnetic absorber via graphene/carbon sphere composites. Carbon 110, 130–137 (2016). https://doi.org/10.1016/j.carbon.2016.09.009
W. Duan, X. Yin, Q. Li, L. Schlier, P. Greil, N. Travitzky, A review of absorption properties in silicon-based polymer derived ceramics. J. Eur. Ceram. Soc. 36(15), 3681–3689 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.02.002
J. Luo, Y. Xu, W. Yao, C. Jiang, J. Xu, Synthesis and microwave absorption properties of reduced graphene oxide-magnetic porous nanospheres-polyaniline composites. Compos. Sci. Technol. 117, 315–321 (2015). https://doi.org/10.1016/j.compscitech.2015.07.008
J. Luo, P. Shen, W. Yao, C. Jiang, J. Xu, Synthesis, characterization, and microwave absorption properties of reduced graphene oxide/strontium ferrite/polyaniline nanocomposites. Nanoscale Res. Lett. 11(1), 141 (2016). https://doi.org/10.1186/s11671-016-1340-x
H. Zhou, J. Wang, J. Zhuang, Q. Liu, A covalent route for efficient surface modification of ordered mesoporous carbon as high performance microwave absorbers. Nanoscale 5(24), 12502–12511 (2013). https://doi.org/10.1039/c3nr04379g