Circularly Polarized Light-Enabled Chiral Nanomaterials: From Fabrication to Application
Corresponding Author: Liguang Xu
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 39
Abstract
For decades, chiral nanomaterials have been extensively studied because of their extraordinary properties. Chiral nanostructures have attracted a lot of interest because of their potential applications including biosensing, asymmetric catalysis, optical devices, and negative index materials. Circularly polarized light (CPL) is the most attractive source for chirality owing to its high availability, and now it has been used as a chiral source for the preparation of chiral matter. In this review, the recent progress in the field of CPL-enabled chiral nanomaterials is summarized. Firstly, the recent advancements in the fabrication of chiral materials using circularly polarized light are described, focusing on the unique strategies. Secondly, an overview of the potential applications of chiral nanomaterials driven by CPL is provided, with a particular emphasis on biosensing, catalysis, and phototherapy. Finally, a perspective on the challenges in the field of CPL-enabled chiral nanomaterials is given.
Highlights:
1 This review summarized the fabrication strategy using circularly polarized light as a chiral source to construct chiral materials.
2 The potential applications of chiral nanomaterials driven by circularly polarized light in different fields are summarized, explained by representative examples.
3 The potential challenges of circularly polarized light-enabled chiral materials are outlined and future research directions are outlooked.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.E. Hein, B.H. Cao, C. Viedma, R.M. Kellogg, D.G. Blackmond, Pasteur’s tweezers revisited: on the mechanism of attrition-enhanced deracemization and resolution of chiral conglomerate solids. J. Am. Chem. Soc. 134(30), 12629–12636 (2012). https://doi.org/10.1021/ja303566g
- W.L. Noorduin, E. Vlieg, R.M. Kellogg, B. Kaptein, From ostwald ripening to single chirality. Angew. Chem. Int. Ed. 48(51), 9600–9606 (2009). https://doi.org/10.1002/anie.200905215
- W.J. Zhao, W.X. Zhang, R.Y. Wang, Y.L. Ji, X.C. Wu et al., Photocontrollable chiral switching and selection in self-assembled plasmonic nanostructure. Adv. Funct. Mater. 29(20), 1900587 (2019). https://doi.org/10.1002/adfm.201900587
- G. Yang, C.L. He, G. Zou, Synthesis of optically active polymer and structural modulation using circularly polarized light. ACTA Polym. Sin. 11, 1725–1738 (2017). https://doi.org/10.11777/j.issn1000-3304.2017.17167
- T. Yan, F. Li, S. Qi, J. Tian, R. Tian et al., Light-responsive vesicles for enantioselective release of chiral drugs prepared from a supra-amphiphilic M-helix. Chem. Commun. 56(1), 149–152 (2020). https://doi.org/10.1039/C9CC08380D
- C. Meinert, S.V. Hoffmann, P. Cassam-Chenai, A.C. Evans, C. Giri et al., Photonenergy-controlled symmetry breaking with circularly polarized light. Angew. Chem. Int. Ed. 53(1), 210–214 (2014). https://doi.org/10.1002/anie.201307855
- N.P. Huck, W.F. Jager, B.D. Lange, B.L. Feringa, Dynamic control and amplification of molecular chirality by circular polarized light. Science 273, 1686–1687 (1996). https://doi.org/10.1126/science.273.5282.1686
- R.J. Cave, Inducing chirality with circularly polarized light. Science 323, 1435–1436 (2009). https://doi.org/10.1126/science.1169338
- W.L. Noorduin, A.A. Bode, M. Meijden, H. Meekes, A.F. Etteger et al., Complete chiral symmetry breaking of an amino acid derivative directed by circularly polarized light. Nat. Chem. 1, 729–732 (2009). https://doi.org/10.1038/nchem.416
- G. Gonzalez-Rubio, J. Mosquera, V. Kumar, A. Pedrazo-Tardajos, P. Llombart et al., Micelle-directed chiral seeded growth on anisotropic gold nanocrystals. Science 368, 1472–1477 (2020). https://doi.org/10.1126/science.aba0980
- H.E. Lee, H.Y. Ahn, J. Mun, Y.Y. Lee, M. Kim et al., Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanops. Nature 556, 360–365 (2018). https://doi.org/10.1038/s41586-018-0034-1
- L. Wang, A.M. Urbas, Q. Li, Nature-inspired emerging chiral liquid crystal nanostructures: from molecular self-assembly to DNA mesophase and nanocolloids. Adv. Mater. 32(41), e1801335 (2020). https://doi.org/10.1002/adma.201801335
- M.P. Moloney, J. Govan, A. Loudon, M. Mukhina, Y.K. Gun’ko, Preparation of chiral quantum dots. Nat. Protoc. 10, 558–573 (2015). https://doi.org/10.1038/nprot.2015.028
- X. Zhang, Y. Yang, P. Xue, C. Valenzuela, Y. Chen et al., Three-dimensional electrochromic soft photonic crystals based on mxene-integrated blue. Angew. Chem. Int. Ed. 61(42), e202211030 (2022). https://doi.org/10.1002/anie.202211030
- J. Ma, Y. Yang, C. Valenzuela, X. Zhang, L. Wang et al., Mechanochromic shape-programmable and self-healable cholesteric liquid crystal elastomers. Angew. Chem. Int. Ed. 61(9), e202116219 (2022). https://doi.org/10.1002/anie.202116219
- J. Yeom, U.S. Santos, M. Chekini, M. Cha, A.F. Moura et al., Chiromagnetic nanops and gels. Science 359, 309–314 (2018). https://doi.org/10.1126/science.aao7172
- Y. Li, Y. Zhou, H.Y. Wang, S. Perrett, Y. Zhao et al., Chirality of glutathione surface coating affects the cytotoxicity of quantum dots. Angew. Chem. Int. Ed. 50(26), 5860–5864 (2011). https://doi.org/10.1002/anie.201008206
- Y. Zhou, Z. Zhu, W. Huang, W. Liu, S. Wu et al., Optical coupling between chiral biomolecules and semiconductor nanops: size-dependent circular dichroism absorption. Angew. Chem. Int. Ed. 50(48), 11456–11459 (2011). https://doi.org/10.1002/anie.201103762
- N. Suzuki, Y. Wang, P. Elvati, Z.B. Qu, K. Kim et al., Chiral graphene quantum dots. ACS Nano 10(2), 1744–1755 (2016). https://doi.org/10.1021/acsnano.5b06369
- M. Puri, V.E. Ferry, Circular dichroism of CdSe nanocrystals bound by chiral carboxylic acids. ACS Nano 11(12), 12240–12246 (2017). https://doi.org/10.1021/acsnano.7b05690
- K. Varga, S. Tannir, B.E. Haynie, B.M. Leonard, S.V. Dzyuba et al., CdSe quantum dots functionalized with chiral, thiol-free carboxylic acids: unraveling structural requirements for ligand-induced chirality. ACS Nano 11(10), 9846–9853 (2017). https://doi.org/10.1021/acsnano.7b03555
- A. Ben-Moshe, A.O. Govorov, G. Markovich, Enantioselective synthesis of intrinsically chiral mercury sulfide nanocrystals. Angew. Chem. Int. Ed. 52(4), 1275–1279 (2013). https://doi.org/10.1002/anie.201207489
- S. Jiang, M. Chekini, Z.B. Qu, Y. Wang, A. Yeltik et al., Chiral ceramic nanops and peptide catalysis. J. Am. Chem. Soc. 139(39), 13701–13712 (2017). https://doi.org/10.1021/jacs.7b01445
- Y. Wang, S. Jin, Q. Wang, M. Wu, S. Yao et al., Parallel nanoimprint forming of one-dimensional chiral semiconductor for strain-engineered optical properties. Nano-Micro Lett. 12, 160 (2020). https://doi.org/10.1007/s40820-020-00493-3
- C. Li, S. Li, J. Zhao, M. Sun, W. Wang et al., Ultrasmall magneto-chiral cobalt hydroxide nanops enable dynamic detection of reactive oxygen species in vivo. J. Am. Chem. Soc. 144(4), 1580–1588 (2022). https://doi.org/10.1021/jacs.1c09986
- C. Hao, A. Qu, L. Xu, M. Sun, H. Zhang et al., Chiral molecule-mediated porous CuxO nanop clusters with antioxidation activity for ameliorating Parkinson’s disease. J. Am. Chem. Soc. 141(2), 1091–1099 (2019). https://doi.org/10.1021/jacs.8b11856
- C. Hao, X. Wu, M. Sun, H. Zhang, A. Yuan et al., Chiral core-shell upconversion nanop@MOF nanoassemblies for quantification and bioimaging of reactive oxygen species in vivo. J. Am. Chem. Soc. 141(49), 19373–19378 (2019). https://doi.org/10.1021/jacs.9b09360
- J. Cai, W. Zhang, L. Xu, C. Hao, W. Ma et al., Polarization-sensitive optoionic membranes from chiral plasmonic nanops. Nat. Nanotechnol. 17, 408–416 (2022). https://doi.org/10.1038/s41565-022-01079-3
- J. Cai, J. Zhao, X. Gao, W. Ma, D. Meng et al., Magnetic field tuning ionic current generated by chiromagnetic nanofilms. ACS Nano 16(7), 11066–11075 (2022). https://doi.org/10.1021/acsnano.2c03778
- C. Hao, L. Xu, M. Sun, W. Ma, H. Kuang et al., Chirality on hierarchical self-assembly of Au@AuAg yolk-shell nanorods into core-satellite superstructures for biosensing in human cells. Adv. Func. Mater. 28(33), 1802372 (2018). https://doi.org/10.1002/adfm.201802372
- C. Zhou, X. Duan, N. Liu, A plasmonic nanorod that walks on DNA origami. Nat. Commun. 6, 8102 (2015). https://doi.org/10.1038/ncomms9102
- W. Jiang, Z. Qu, P. Kumar, D. Vecchio, Y. Wang et al., Emergence of complexity inhierarchically organized chiral ps. Science 368, 642 (2020). https://doi.org/10.1126/science.aaz7949
- X. Shen, C. Song, J. Wang, D. Shi, Z. Wang et al., Rolling up gold nanop-dressed DNA origami into three-dimensional plasmonic chiral nanostructures. J. Am. Chem. Soc. 134(1), 146–149 (2012). https://doi.org/10.1021/ja209861x
- X. Lan, Z. Su, Y. Zhou, T. Meyer, Y. Ke et al., Programmable supra-assembly of a DNA surface adapter for tunable chiral directional self-assembly of gold nanorods. Angew. Chem. Int. Ed. 56(46), 14632–14636 (2017). https://doi.org/10.1002/anie.201709775
- S. Wang, Y. Zhang, X. Qin, L. Zhang, Z. Zhang et al., Guanosine assembly enabled gold nanorods with dual thermo- and photoswitchable plasmonic chiroptical activity. ACS Nano 14(5), 6087–6096 (2020). https://doi.org/10.1021/acsnano.0c01819
- Q. Jiang, Q. Liu, Y. Shi, Z.G. Wang, P. Zhan et al., Stimulus-responsive plasmonic chiral signals of gold nanorods organized on DNA origami. Nano Lett. 17(11), 7125–7130 (2017). https://doi.org/10.1021/acs.nanolett.7b03946
- H. Jiang, Y. Jiang, J. Han, L. Zhang, M. Liu, Helical nanostructures: chirality transfer and a photodriven transformation from superhelix to nanokebab. Angew. Chem. Int. Ed. 58(3), 785–790 (2019). https://doi.org/10.1002/anie.201811060
- H.E. Lee, H.Y. Ahn, J. Lee, K.T. Nam, Biomolecule-enabled chiral assembly of plasmonic nanostructures. Chem. Nano. Mat. 3, 685–697 (2017). https://doi.org/10.1002/cnma.201700208
- A.G. Mark, J.G. Gibbs, T.C. Lee, P. Fischer, Hybrid nanocolloids with programmed three-dimensional shape and material composition. Nat. Mater. 12, 802–807 (2013). https://doi.org/10.1038/nmat3685
- J. Liu, L. Yang, H. Zhang, J. Wang, Z. Huang, Ultraviolet-visible chiroptical activity of aluminum nanostructures. Small 13(39), 1701112 (2017). https://doi.org/10.1002/smll.201701112
- A. Ben-Moshe, S.G. Wolf, M.B. Sadan, L. Houben, Z. Fan et al., Enantioselective control of lattice and shape chirality in inorganic nanostructures using chiral biomolecules. Nat. Commun. 5, 4302 (2014). https://doi.org/10.1038/ncomms5302
- P.P. Wang, S.J. Yu, A.O. Govorov, M. Ouyang, Cooperative expression of atomic chirality in inorganic nanostructures. Nat. Commun. 8, 14312 (2017). https://doi.org/10.1038/ncomms14312
- J.A. Kelly, M. Giese, K.E. Shopsowitz, W.Y. Hamad, M.J. MacLachlan, The development of chiral nematic mesoporous materials. Acc. Chem. Res. 47, 1088–1096 (2014). https://doi.org/10.1021/ar400243m
- W. Lewandowski, N. Vaupotic, D. Pociecha, E. Gorecka, L.M. Liz-Marzan, Chirality of liquid crystals formed from achiral molecules revealed by resonant X-ray scattering. Adv. Mater. 32(41), 1905591 (2020). https://doi.org/10.1002/adma.201905591
- B. Liu, Y. Cao, Z. Huang, Y. Duan, S. Che, Silica biomineralization via the self-assembly of helical biomolecules. Adv. Mater. 27(3), 479–497 (2015). https://doi.org/10.1002/adma.201401485
- S. Mokashi-Punekar, Y. Zhou, S.C. Brooks, N.L. Rosi, Construction of chiral, helical nanop superstructures: progress and prospects. Adv. Mater. 32(41), 1905975 (2020). https://doi.org/10.1002/adma.201905975
- C. Zeng, R. Jin, Chiral gold nanoclusters: atomic level origins of chirality. Chem. Asian J. 12, 1839–1850 (2017). https://doi.org/10.1002/asia.201700023
- M. Zhang, G. Qing, T. Sun, Chiral biointerface materials. Chem. Soc. Rev. 41(5), 1972–1984 (2012). https://doi.org/10.1039/c1cs15209b
- Y. Luo, C. Chi, M. Jiang, R. Li, S. Zu et al., Plasmonic chiral nanostructures: chiroptical effects and applications. Adv. Opt. Mater. 5(16), 1700040 (2017). https://doi.org/10.1002/adom.201700040
- M. Hentschel, M. Schaferling, X.Y. Duan, H. Giessen, N. Liu, Chiral plasmonics. Sci. Adv. 3(5), 1602735 (2017). https://doi.org/10.1126/sciadv.1602735
- X. Wang, Z. Tang, Circular dichroism studies on plasmonic nanostructures. Small 13(1), 1601115 (2017). https://doi.org/10.1002/smll.201601115
- Y. Wang, J. Xu, Y. Wang, H. Chen, Emerging chirality in nanoscience. Chem. Soc. Rev. 42(7), 2930–2962 (2013). https://doi.org/10.1039/c2cs35332f
- X. Zhang, J. Yin, J. Yoon, Recent advances in development of chiral fluorescent and colorimetric sensors. Chem. Rev. 114(9), 4918–4959 (2014). https://doi.org/10.1021/cr400568b
- Z. Chen, Q. Wang, X. Wu, Z. Li, Y.B. Jiang, Optical chirality sensing using macrocycles, synthetic and supramolecular oligomers/polymers, and nanop based sensors. Chem. Soc. Rev. 44(13), 4249–4263 (2015). https://doi.org/10.1039/c4cs00531g
- A. Cecconello, L.V. Besteiro, A.O. Govorov, I. Willner, Chiroplasmonic DNA-based nanostructures. Nat. Rev. Mater. 2, 17039 (2017). https://doi.org/10.1038/natrevmats.2017.39
- Z. Han, F. Wang, J. Sun, X. Wang, Z. Tang, Recent advances in ultrathin chiral metasurfaces by twisted stacking. Adv. Mater. (2022). https://doi.org/10.1002/adma.202206141
- W. Ma, L. Xu, A.F. Moura, X. Wu, H. Kuang et al., Chiral inorganic nanostructures. Chem. Rev. 117(12), 8041–8093 (2017). https://doi.org/10.1021/acs.chemrev.6b00755
- C. Zhou, X. Duan, N. Liu, DNA-nanotechnology-enabled chiral plasmonics: from static to dynamic. Acc. Chem. Res. 50(12), 2906–2914 (2017). https://doi.org/10.1021/acs.accounts.7b00389
- W. Ma, C.L. Hao, M.Z. Sun, L.G. Xu, C.L. Xu et al., Tuning of chiral construction, structural diversity, scale transformation and chiroptical applications. Mater. Horiz. 5, 141–161 (2018). https://doi.org/10.1039/c7mh00966f
- M. Qiu, L. Zhang, Z. Tang, W. Jin, C.W. Qiu et al., 3D metaphotonic nanostructures with intrinsic chirality. Adv. Func. Mater. 28(45), 1803147 (2018). https://doi.org/10.1002/adfm.201803147
- X. Wu, C. Hao, J. Kumar, H. Kuang, N.A. Kotov et al., Environmentally responsive plasmonic nanoassemblies for biosensing. Chem. Soc. Rev. 47(13), 4677–4696 (2018). https://doi.org/10.1039/c7cs00894e
- C. Hao, L. Xu, H. Kuang, C. Xu, Artificial chiral probes and bioapplications. Adv. Mater. 32(41), 1802075 (2020). https://doi.org/10.1002/adma.201802075
- G. Zheng, J. He, V. Kumar, S. Wang, I. Pastoriza-Santos et al., Discrete metal nanops with plasmonic chirality. Chem. Soc. Rev. 50(6), 3738–3754 (2021). https://doi.org/10.1039/c9cs00765b
- P.K. Hashim, N. Tamaoki, Enantioselective photochromism under circularly polarized light. Chem. Photo. Chem. 3, 347–355 (2019). https://doi.org/10.1002/cptc.201900068
- F. Mortaheb, K. Oberhofer, J. Riemensberger, F. Ristow, R. Kienberger et al., Enantiospecific desorption triggered by circularly polarized light. Angew. Chem. Int. Ed. 58(44), 15685–15689 (2019). https://doi.org/10.1002/anie.201906630
- G. Yang, Y.Y. Xu, Z.D. Zhang, L.H. Wang, X.H. He et al., Circularly polarized light triggered enantioselective thiol-ene polymerization reaction. Chem. Commun. 53, 1735–1738 (2017). https://doi.org/10.1039/c6cc09256j
- Y. Wang, T. Sakamoto, T. Nakano, Molecular chirality induction to an achiral pi-conjugated polymer by circularly polarized light. Chem. Commun. 48(13), 1871–1873 (2012). https://doi.org/10.1039/c2cc17027b
- L. Wang, L. Yin, W. Zhang, X. Zhu, M. Fujiki, Circularly polarized light with sense and wavelengths to regulate azobenzene supramolecular chirality in optofluidic medium. J. Am. Chem. Soc. 139(37), 13218–13226 (2017). https://doi.org/10.1021/jacs.7b07626
- H. Sugahara, C. Meinert, L. Nahon, N.C. Jones, S.V. Hoffmann et al., D-amino acids in molecular evolution in space - absolute asymmetric photolysis and synthesis of amino acids by circularly polarized light. Biochim. Biophys. Acta 1866(7), 743–758 (2018). https://doi.org/10.1016/j.bbapap.2018.01.004
- R.D. Richardson, M.G.J. Baud, C.E. Weston, H.S. Rzepa, M.K. Kuimova et al., Dual wavelength asymmetric photochemical synthesis with circularly polarized light. Chem. Sci. 6(7), 3853–3862 (2015). https://doi.org/10.1039/c4sc03897e
- T. Manaka, H. Kon, Y. Ohshima, G. Zou, M. Iwamoto, Preparation of chiral polydiacetylene film from achiral monomers using circularly polarized light. Chem. Lett. 35(9), 1028–1029 (2006). https://doi.org/10.1246/cl.2006.1028
- J.G. Hu, Y.F. Xie, H.L. Zhang, C.L. He, Q.J. Zhang, Chiral induction, modulation and locking in porphyrin based supramolecular assemblies with circularly polarized light. Chem. Commun. 55(34), 4953–4956 (2019). https://doi.org/10.1039/c9cc01613a
- M. Avalos, R. Babiano, P. Cintas, J.L. Jimenez, J.C. Palacios et al., Absolute asymmetric synthesis under physical fields: facts and fictions. Chem. Rev. 98(7), 2391–2404 (1998). https://doi.org/10.1021/cr970096o
- C. Park, J. Lee, T. Kim, J. Lim, J. Park et al., Homochiral supramolecular thin film from self-assembly of achiral triarylamine molecules by circularly polarized light. Molecules 25(2), 402 (2020). https://doi.org/10.3390/molecules25020402
- H. Kohn, Y. Ohshima, T. Manaka, M. Iwamoto, Induced optical chirality of poly(diacetylene) film by circularly polarized light and its control by changing substrate temperature. Jpn. J. Appl. Phys. 47, 1359–1362 (2008). https://doi.org/10.1143/JJAP.47.1359
- G. Zou, H. Jiang, H. Kohn, T. Manaka, M. Iwamoto, Control and modulation of chirality for azobenzene-substituted polydiacetylene LB films with circularly polarized light. Chem. Commun. 37, 5627–5629 (2009). https://doi.org/10.1039/b909085a
- G. Zou, H. Kohn, Y. Ohshima, T. Manaka, M. Iwamoto, Fabricating chiral polydiacetylene film by monolayer compression and circularly polarized ultra-violet light. Chem. Phys. Lett. 442, 97–100 (2007). https://doi.org/10.1016/j.cplett.2007.05.059
- J. Kim, J. Lee, W.Y. Kim, H. Kim, S. Lee et al., Induction and control of supramolecular chirality by light in self-assembled helical nanostructures. Nat. Commun. 6, 6959 (2015). https://doi.org/10.1038/ncomms7959
- L. Xu, X. Wang, W. Wang, M. Sun, W.J. Choie et al., Enantiomer-dependent immunological response to chiral nanops. Nature 601, 366–373 (2022). https://doi.org/10.1038/s41586-021-04243-2
- J. Yeom, B. Yeom, H. Chan, K.W. Smith, S. Dominguez-Medina et al., Chiral templating of self-assembling nanostructures by circularly polarized light. Nat. Mater. 14, 66–72 (2015). https://doi.org/10.1038/nmat4125
- J.Y. Kim, J. Yeom, G. Zhao, H. Calcaterra, J. Munn et al., Assembly of gold nanops into chiral superstructures driven by circularly polarized light. J. Am. Chem. Soc. 141(30), 11739–11744 (2019). https://doi.org/10.1021/jacs.9b00700
- K. Saito, T. Tatsuma, Chiral plasmonic nanostructures fabricated by circularly polarized light. Nano Lett. 18(5), 3209–3212 (2018). https://doi.org/10.1021/acs.nanolett.8b00929
- S. Mokashi-Punekar, A.D. Merg, N.L. Rosi, Systematic adjustment of pitch and p dimensions within a family of chiral plasmonic gold nanop single helices. J. Am. Chem. Soc. 139(42), 15043–15048 (2017). https://doi.org/10.1021/jacs.7b07143
- C. Hao, Y. Gao, D. Wu, S. Li, L. Xu et al., Tailoring chiroptical activity of iron disulfide quantum dot hydrogels with circularly polarized light. Adv. Mater. 31(36), 1903200 (2019). https://doi.org/10.1002/adma.201903200
- W. Wang, N.S.R. Satyavolu, Z. Wu, J.R. Zhang, J.J. Zhu et al., Near-infrared photothermally activated dnazyme-gold nanoshells for imaging metal ions in living cells. Angew. Chem. Int. Ed. 56(24), 6798–6802 (2017). https://doi.org/10.1002/anie.201701325
- R. Gao, L. Xu, C. Hao, C. Xu, H. Kuang, Circular polarized light activated chiral satellite nanoprobes for the imaging and analysis of multiple metal ions in living cells. Angew. Chem. Int. Ed. 58(12), 3913–3917 (2019). https://doi.org/10.1002/anie.201814282
- M. Sun, A. Qu, C. Hao, X. Wu, L. Xu et al., Chiral upconversion heterodimers for quantitative analysis and bioimaging of antibiotic-resistant bacteria in vivo. Adv. Mater. 30(50), 1804241 (2018). https://doi.org/10.1002/adma.201804241
- M.Z. Sun, L.G. Xu, A.H. Qu, P. Zhao, T.T. Hao et al., Site-selective photoinduced cleavage and profiling of DNA by chiral semiconductor nanops. Nat. Chem. 10, 821–830 (2018). https://doi.org/10.1038/s41557-018-0083-y
- W.W. Wang, C.L. Hao, M.Z. Sun, L.G. Xu, X.L. Wu et al., Peptide mediated chiral inorganic nanomaterials for combating gram-negative bacteria. Adv. Func. Mater. 28(44), 1805112 (2018). https://doi.org/10.1002/adfm.201805112
- C. Hao, R. Gao, Y. Li, L. Xu, M. Sun et al., Chiral semiconductor nanops for protein catalysis and profiling. Angew. Chem. Int. Ed. 58(22), 7371–7374 (2019). https://doi.org/10.1002/anie.201902673
- C. Hao, L. Xu, W. Ma, X. Wu, L. Wang et al., Unusual circularly polarized photocatalytic activity in nanogapped gold-silver chiroplasmonic nanostructures. Adv. Func. Mater. 25(36), 5816–5822 (2015). https://doi.org/10.1002/adfm.201502429
- L.G. Xu, M.Z. Sun, P. Cheng, R. Gao, H. Wang et al., 2D chiroptical nanostructures for high-performance photooxidants. Adv. Func. Mater. 28(18), 1707237 (2018). https://doi.org/10.1002/adfm.201707237
- A. Qu, M. Sun, J.Y. Kim, L. Xu, C. Hao et al., Stimulation of neural stem cell differentiation by circularly polarized light transduced by chiral nanoassemblies. Nat. Biomed. Eng. 5, 103–113 (2021). https://doi.org/10.1038/s41551-020-00634-4
- X. Zhao, L. Xu, M. Sun, W. Ma, X. Wu et al., Tuning the interactions between chiral plasmonic films and living cells. Nat. Commun. 8, 2007 (2017). https://doi.org/10.1038/s41467-017-02268-8
- M. Sun, L. Xu, J.H. Banhg, H. Kuang, S. Alben et al., Intracellular localization of nanop dimers by chirality reversal. Nat. Commun. 8, 1847 (2017). https://doi.org/10.1038/s41467-017-01337-2
- F. Gao, M. Sun, W. Ma, X. Wu, L. Liu et al., A singlet oxygen generating agent by chirality-dependent plasmonic shell-satellite nanoassembly. Adv. Mater. 29(18), 1606864 (2017). https://doi.org/10.1002/adma.201606864
- Y. Li, Z. Miao, Z. Shang, Y. Cai, J. Cheng et al., A visible- and NIR-light responsive photothermal therapy agent by chirality-dependent MoO3−X nanops. Adv. Func. Mater. 30(4), 1906311 (2019). https://doi.org/10.1002/adfm.201906311
- K. Rijeesh, P.K. Hashim, S.I. Noro, N. Tamaoki, Dynamic induction of enantiomeric excess from a prochiral azobenzene dimer under circularly polarized light. Chem. Sci. 6(2), 973–980 (2015). https://doi.org/10.1039/c4sc01993h
- R.E. Morris, X.H. Bu, Induction of chiral porous solids containing only achiral building blocks. Nat. Chem. 2, 353–361 (2010). https://doi.org/10.1038/nchem.628
- S.T. Wu, Z.W. Cai, Q.Y. Ye, C.H. Weng, X.H. Huang et al., Enantioselective synthesis of a chiral coordination polymer with circularly polarized visible laser. Angew. Chem. Int. Ed. 53(2), 12860–12864 (2014). https://doi.org/10.1002/anie.201407026
References
J.E. Hein, B.H. Cao, C. Viedma, R.M. Kellogg, D.G. Blackmond, Pasteur’s tweezers revisited: on the mechanism of attrition-enhanced deracemization and resolution of chiral conglomerate solids. J. Am. Chem. Soc. 134(30), 12629–12636 (2012). https://doi.org/10.1021/ja303566g
W.L. Noorduin, E. Vlieg, R.M. Kellogg, B. Kaptein, From ostwald ripening to single chirality. Angew. Chem. Int. Ed. 48(51), 9600–9606 (2009). https://doi.org/10.1002/anie.200905215
W.J. Zhao, W.X. Zhang, R.Y. Wang, Y.L. Ji, X.C. Wu et al., Photocontrollable chiral switching and selection in self-assembled plasmonic nanostructure. Adv. Funct. Mater. 29(20), 1900587 (2019). https://doi.org/10.1002/adfm.201900587
G. Yang, C.L. He, G. Zou, Synthesis of optically active polymer and structural modulation using circularly polarized light. ACTA Polym. Sin. 11, 1725–1738 (2017). https://doi.org/10.11777/j.issn1000-3304.2017.17167
T. Yan, F. Li, S. Qi, J. Tian, R. Tian et al., Light-responsive vesicles for enantioselective release of chiral drugs prepared from a supra-amphiphilic M-helix. Chem. Commun. 56(1), 149–152 (2020). https://doi.org/10.1039/C9CC08380D
C. Meinert, S.V. Hoffmann, P. Cassam-Chenai, A.C. Evans, C. Giri et al., Photonenergy-controlled symmetry breaking with circularly polarized light. Angew. Chem. Int. Ed. 53(1), 210–214 (2014). https://doi.org/10.1002/anie.201307855
N.P. Huck, W.F. Jager, B.D. Lange, B.L. Feringa, Dynamic control and amplification of molecular chirality by circular polarized light. Science 273, 1686–1687 (1996). https://doi.org/10.1126/science.273.5282.1686
R.J. Cave, Inducing chirality with circularly polarized light. Science 323, 1435–1436 (2009). https://doi.org/10.1126/science.1169338
W.L. Noorduin, A.A. Bode, M. Meijden, H. Meekes, A.F. Etteger et al., Complete chiral symmetry breaking of an amino acid derivative directed by circularly polarized light. Nat. Chem. 1, 729–732 (2009). https://doi.org/10.1038/nchem.416
G. Gonzalez-Rubio, J. Mosquera, V. Kumar, A. Pedrazo-Tardajos, P. Llombart et al., Micelle-directed chiral seeded growth on anisotropic gold nanocrystals. Science 368, 1472–1477 (2020). https://doi.org/10.1126/science.aba0980
H.E. Lee, H.Y. Ahn, J. Mun, Y.Y. Lee, M. Kim et al., Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanops. Nature 556, 360–365 (2018). https://doi.org/10.1038/s41586-018-0034-1
L. Wang, A.M. Urbas, Q. Li, Nature-inspired emerging chiral liquid crystal nanostructures: from molecular self-assembly to DNA mesophase and nanocolloids. Adv. Mater. 32(41), e1801335 (2020). https://doi.org/10.1002/adma.201801335
M.P. Moloney, J. Govan, A. Loudon, M. Mukhina, Y.K. Gun’ko, Preparation of chiral quantum dots. Nat. Protoc. 10, 558–573 (2015). https://doi.org/10.1038/nprot.2015.028
X. Zhang, Y. Yang, P. Xue, C. Valenzuela, Y. Chen et al., Three-dimensional electrochromic soft photonic crystals based on mxene-integrated blue. Angew. Chem. Int. Ed. 61(42), e202211030 (2022). https://doi.org/10.1002/anie.202211030
J. Ma, Y. Yang, C. Valenzuela, X. Zhang, L. Wang et al., Mechanochromic shape-programmable and self-healable cholesteric liquid crystal elastomers. Angew. Chem. Int. Ed. 61(9), e202116219 (2022). https://doi.org/10.1002/anie.202116219
J. Yeom, U.S. Santos, M. Chekini, M. Cha, A.F. Moura et al., Chiromagnetic nanops and gels. Science 359, 309–314 (2018). https://doi.org/10.1126/science.aao7172
Y. Li, Y. Zhou, H.Y. Wang, S. Perrett, Y. Zhao et al., Chirality of glutathione surface coating affects the cytotoxicity of quantum dots. Angew. Chem. Int. Ed. 50(26), 5860–5864 (2011). https://doi.org/10.1002/anie.201008206
Y. Zhou, Z. Zhu, W. Huang, W. Liu, S. Wu et al., Optical coupling between chiral biomolecules and semiconductor nanops: size-dependent circular dichroism absorption. Angew. Chem. Int. Ed. 50(48), 11456–11459 (2011). https://doi.org/10.1002/anie.201103762
N. Suzuki, Y. Wang, P. Elvati, Z.B. Qu, K. Kim et al., Chiral graphene quantum dots. ACS Nano 10(2), 1744–1755 (2016). https://doi.org/10.1021/acsnano.5b06369
M. Puri, V.E. Ferry, Circular dichroism of CdSe nanocrystals bound by chiral carboxylic acids. ACS Nano 11(12), 12240–12246 (2017). https://doi.org/10.1021/acsnano.7b05690
K. Varga, S. Tannir, B.E. Haynie, B.M. Leonard, S.V. Dzyuba et al., CdSe quantum dots functionalized with chiral, thiol-free carboxylic acids: unraveling structural requirements for ligand-induced chirality. ACS Nano 11(10), 9846–9853 (2017). https://doi.org/10.1021/acsnano.7b03555
A. Ben-Moshe, A.O. Govorov, G. Markovich, Enantioselective synthesis of intrinsically chiral mercury sulfide nanocrystals. Angew. Chem. Int. Ed. 52(4), 1275–1279 (2013). https://doi.org/10.1002/anie.201207489
S. Jiang, M. Chekini, Z.B. Qu, Y. Wang, A. Yeltik et al., Chiral ceramic nanops and peptide catalysis. J. Am. Chem. Soc. 139(39), 13701–13712 (2017). https://doi.org/10.1021/jacs.7b01445
Y. Wang, S. Jin, Q. Wang, M. Wu, S. Yao et al., Parallel nanoimprint forming of one-dimensional chiral semiconductor for strain-engineered optical properties. Nano-Micro Lett. 12, 160 (2020). https://doi.org/10.1007/s40820-020-00493-3
C. Li, S. Li, J. Zhao, M. Sun, W. Wang et al., Ultrasmall magneto-chiral cobalt hydroxide nanops enable dynamic detection of reactive oxygen species in vivo. J. Am. Chem. Soc. 144(4), 1580–1588 (2022). https://doi.org/10.1021/jacs.1c09986
C. Hao, A. Qu, L. Xu, M. Sun, H. Zhang et al., Chiral molecule-mediated porous CuxO nanop clusters with antioxidation activity for ameliorating Parkinson’s disease. J. Am. Chem. Soc. 141(2), 1091–1099 (2019). https://doi.org/10.1021/jacs.8b11856
C. Hao, X. Wu, M. Sun, H. Zhang, A. Yuan et al., Chiral core-shell upconversion nanop@MOF nanoassemblies for quantification and bioimaging of reactive oxygen species in vivo. J. Am. Chem. Soc. 141(49), 19373–19378 (2019). https://doi.org/10.1021/jacs.9b09360
J. Cai, W. Zhang, L. Xu, C. Hao, W. Ma et al., Polarization-sensitive optoionic membranes from chiral plasmonic nanops. Nat. Nanotechnol. 17, 408–416 (2022). https://doi.org/10.1038/s41565-022-01079-3
J. Cai, J. Zhao, X. Gao, W. Ma, D. Meng et al., Magnetic field tuning ionic current generated by chiromagnetic nanofilms. ACS Nano 16(7), 11066–11075 (2022). https://doi.org/10.1021/acsnano.2c03778
C. Hao, L. Xu, M. Sun, W. Ma, H. Kuang et al., Chirality on hierarchical self-assembly of Au@AuAg yolk-shell nanorods into core-satellite superstructures for biosensing in human cells. Adv. Func. Mater. 28(33), 1802372 (2018). https://doi.org/10.1002/adfm.201802372
C. Zhou, X. Duan, N. Liu, A plasmonic nanorod that walks on DNA origami. Nat. Commun. 6, 8102 (2015). https://doi.org/10.1038/ncomms9102
W. Jiang, Z. Qu, P. Kumar, D. Vecchio, Y. Wang et al., Emergence of complexity inhierarchically organized chiral ps. Science 368, 642 (2020). https://doi.org/10.1126/science.aaz7949
X. Shen, C. Song, J. Wang, D. Shi, Z. Wang et al., Rolling up gold nanop-dressed DNA origami into three-dimensional plasmonic chiral nanostructures. J. Am. Chem. Soc. 134(1), 146–149 (2012). https://doi.org/10.1021/ja209861x
X. Lan, Z. Su, Y. Zhou, T. Meyer, Y. Ke et al., Programmable supra-assembly of a DNA surface adapter for tunable chiral directional self-assembly of gold nanorods. Angew. Chem. Int. Ed. 56(46), 14632–14636 (2017). https://doi.org/10.1002/anie.201709775
S. Wang, Y. Zhang, X. Qin, L. Zhang, Z. Zhang et al., Guanosine assembly enabled gold nanorods with dual thermo- and photoswitchable plasmonic chiroptical activity. ACS Nano 14(5), 6087–6096 (2020). https://doi.org/10.1021/acsnano.0c01819
Q. Jiang, Q. Liu, Y. Shi, Z.G. Wang, P. Zhan et al., Stimulus-responsive plasmonic chiral signals of gold nanorods organized on DNA origami. Nano Lett. 17(11), 7125–7130 (2017). https://doi.org/10.1021/acs.nanolett.7b03946
H. Jiang, Y. Jiang, J. Han, L. Zhang, M. Liu, Helical nanostructures: chirality transfer and a photodriven transformation from superhelix to nanokebab. Angew. Chem. Int. Ed. 58(3), 785–790 (2019). https://doi.org/10.1002/anie.201811060
H.E. Lee, H.Y. Ahn, J. Lee, K.T. Nam, Biomolecule-enabled chiral assembly of plasmonic nanostructures. Chem. Nano. Mat. 3, 685–697 (2017). https://doi.org/10.1002/cnma.201700208
A.G. Mark, J.G. Gibbs, T.C. Lee, P. Fischer, Hybrid nanocolloids with programmed three-dimensional shape and material composition. Nat. Mater. 12, 802–807 (2013). https://doi.org/10.1038/nmat3685
J. Liu, L. Yang, H. Zhang, J. Wang, Z. Huang, Ultraviolet-visible chiroptical activity of aluminum nanostructures. Small 13(39), 1701112 (2017). https://doi.org/10.1002/smll.201701112
A. Ben-Moshe, S.G. Wolf, M.B. Sadan, L. Houben, Z. Fan et al., Enantioselective control of lattice and shape chirality in inorganic nanostructures using chiral biomolecules. Nat. Commun. 5, 4302 (2014). https://doi.org/10.1038/ncomms5302
P.P. Wang, S.J. Yu, A.O. Govorov, M. Ouyang, Cooperative expression of atomic chirality in inorganic nanostructures. Nat. Commun. 8, 14312 (2017). https://doi.org/10.1038/ncomms14312
J.A. Kelly, M. Giese, K.E. Shopsowitz, W.Y. Hamad, M.J. MacLachlan, The development of chiral nematic mesoporous materials. Acc. Chem. Res. 47, 1088–1096 (2014). https://doi.org/10.1021/ar400243m
W. Lewandowski, N. Vaupotic, D. Pociecha, E. Gorecka, L.M. Liz-Marzan, Chirality of liquid crystals formed from achiral molecules revealed by resonant X-ray scattering. Adv. Mater. 32(41), 1905591 (2020). https://doi.org/10.1002/adma.201905591
B. Liu, Y. Cao, Z. Huang, Y. Duan, S. Che, Silica biomineralization via the self-assembly of helical biomolecules. Adv. Mater. 27(3), 479–497 (2015). https://doi.org/10.1002/adma.201401485
S. Mokashi-Punekar, Y. Zhou, S.C. Brooks, N.L. Rosi, Construction of chiral, helical nanop superstructures: progress and prospects. Adv. Mater. 32(41), 1905975 (2020). https://doi.org/10.1002/adma.201905975
C. Zeng, R. Jin, Chiral gold nanoclusters: atomic level origins of chirality. Chem. Asian J. 12, 1839–1850 (2017). https://doi.org/10.1002/asia.201700023
M. Zhang, G. Qing, T. Sun, Chiral biointerface materials. Chem. Soc. Rev. 41(5), 1972–1984 (2012). https://doi.org/10.1039/c1cs15209b
Y. Luo, C. Chi, M. Jiang, R. Li, S. Zu et al., Plasmonic chiral nanostructures: chiroptical effects and applications. Adv. Opt. Mater. 5(16), 1700040 (2017). https://doi.org/10.1002/adom.201700040
M. Hentschel, M. Schaferling, X.Y. Duan, H. Giessen, N. Liu, Chiral plasmonics. Sci. Adv. 3(5), 1602735 (2017). https://doi.org/10.1126/sciadv.1602735
X. Wang, Z. Tang, Circular dichroism studies on plasmonic nanostructures. Small 13(1), 1601115 (2017). https://doi.org/10.1002/smll.201601115
Y. Wang, J. Xu, Y. Wang, H. Chen, Emerging chirality in nanoscience. Chem. Soc. Rev. 42(7), 2930–2962 (2013). https://doi.org/10.1039/c2cs35332f
X. Zhang, J. Yin, J. Yoon, Recent advances in development of chiral fluorescent and colorimetric sensors. Chem. Rev. 114(9), 4918–4959 (2014). https://doi.org/10.1021/cr400568b
Z. Chen, Q. Wang, X. Wu, Z. Li, Y.B. Jiang, Optical chirality sensing using macrocycles, synthetic and supramolecular oligomers/polymers, and nanop based sensors. Chem. Soc. Rev. 44(13), 4249–4263 (2015). https://doi.org/10.1039/c4cs00531g
A. Cecconello, L.V. Besteiro, A.O. Govorov, I. Willner, Chiroplasmonic DNA-based nanostructures. Nat. Rev. Mater. 2, 17039 (2017). https://doi.org/10.1038/natrevmats.2017.39
Z. Han, F. Wang, J. Sun, X. Wang, Z. Tang, Recent advances in ultrathin chiral metasurfaces by twisted stacking. Adv. Mater. (2022). https://doi.org/10.1002/adma.202206141
W. Ma, L. Xu, A.F. Moura, X. Wu, H. Kuang et al., Chiral inorganic nanostructures. Chem. Rev. 117(12), 8041–8093 (2017). https://doi.org/10.1021/acs.chemrev.6b00755
C. Zhou, X. Duan, N. Liu, DNA-nanotechnology-enabled chiral plasmonics: from static to dynamic. Acc. Chem. Res. 50(12), 2906–2914 (2017). https://doi.org/10.1021/acs.accounts.7b00389
W. Ma, C.L. Hao, M.Z. Sun, L.G. Xu, C.L. Xu et al., Tuning of chiral construction, structural diversity, scale transformation and chiroptical applications. Mater. Horiz. 5, 141–161 (2018). https://doi.org/10.1039/c7mh00966f
M. Qiu, L. Zhang, Z. Tang, W. Jin, C.W. Qiu et al., 3D metaphotonic nanostructures with intrinsic chirality. Adv. Func. Mater. 28(45), 1803147 (2018). https://doi.org/10.1002/adfm.201803147
X. Wu, C. Hao, J. Kumar, H. Kuang, N.A. Kotov et al., Environmentally responsive plasmonic nanoassemblies for biosensing. Chem. Soc. Rev. 47(13), 4677–4696 (2018). https://doi.org/10.1039/c7cs00894e
C. Hao, L. Xu, H. Kuang, C. Xu, Artificial chiral probes and bioapplications. Adv. Mater. 32(41), 1802075 (2020). https://doi.org/10.1002/adma.201802075
G. Zheng, J. He, V. Kumar, S. Wang, I. Pastoriza-Santos et al., Discrete metal nanops with plasmonic chirality. Chem. Soc. Rev. 50(6), 3738–3754 (2021). https://doi.org/10.1039/c9cs00765b
P.K. Hashim, N. Tamaoki, Enantioselective photochromism under circularly polarized light. Chem. Photo. Chem. 3, 347–355 (2019). https://doi.org/10.1002/cptc.201900068
F. Mortaheb, K. Oberhofer, J. Riemensberger, F. Ristow, R. Kienberger et al., Enantiospecific desorption triggered by circularly polarized light. Angew. Chem. Int. Ed. 58(44), 15685–15689 (2019). https://doi.org/10.1002/anie.201906630
G. Yang, Y.Y. Xu, Z.D. Zhang, L.H. Wang, X.H. He et al., Circularly polarized light triggered enantioselective thiol-ene polymerization reaction. Chem. Commun. 53, 1735–1738 (2017). https://doi.org/10.1039/c6cc09256j
Y. Wang, T. Sakamoto, T. Nakano, Molecular chirality induction to an achiral pi-conjugated polymer by circularly polarized light. Chem. Commun. 48(13), 1871–1873 (2012). https://doi.org/10.1039/c2cc17027b
L. Wang, L. Yin, W. Zhang, X. Zhu, M. Fujiki, Circularly polarized light with sense and wavelengths to regulate azobenzene supramolecular chirality in optofluidic medium. J. Am. Chem. Soc. 139(37), 13218–13226 (2017). https://doi.org/10.1021/jacs.7b07626
H. Sugahara, C. Meinert, L. Nahon, N.C. Jones, S.V. Hoffmann et al., D-amino acids in molecular evolution in space - absolute asymmetric photolysis and synthesis of amino acids by circularly polarized light. Biochim. Biophys. Acta 1866(7), 743–758 (2018). https://doi.org/10.1016/j.bbapap.2018.01.004
R.D. Richardson, M.G.J. Baud, C.E. Weston, H.S. Rzepa, M.K. Kuimova et al., Dual wavelength asymmetric photochemical synthesis with circularly polarized light. Chem. Sci. 6(7), 3853–3862 (2015). https://doi.org/10.1039/c4sc03897e
T. Manaka, H. Kon, Y. Ohshima, G. Zou, M. Iwamoto, Preparation of chiral polydiacetylene film from achiral monomers using circularly polarized light. Chem. Lett. 35(9), 1028–1029 (2006). https://doi.org/10.1246/cl.2006.1028
J.G. Hu, Y.F. Xie, H.L. Zhang, C.L. He, Q.J. Zhang, Chiral induction, modulation and locking in porphyrin based supramolecular assemblies with circularly polarized light. Chem. Commun. 55(34), 4953–4956 (2019). https://doi.org/10.1039/c9cc01613a
M. Avalos, R. Babiano, P. Cintas, J.L. Jimenez, J.C. Palacios et al., Absolute asymmetric synthesis under physical fields: facts and fictions. Chem. Rev. 98(7), 2391–2404 (1998). https://doi.org/10.1021/cr970096o
C. Park, J. Lee, T. Kim, J. Lim, J. Park et al., Homochiral supramolecular thin film from self-assembly of achiral triarylamine molecules by circularly polarized light. Molecules 25(2), 402 (2020). https://doi.org/10.3390/molecules25020402
H. Kohn, Y. Ohshima, T. Manaka, M. Iwamoto, Induced optical chirality of poly(diacetylene) film by circularly polarized light and its control by changing substrate temperature. Jpn. J. Appl. Phys. 47, 1359–1362 (2008). https://doi.org/10.1143/JJAP.47.1359
G. Zou, H. Jiang, H. Kohn, T. Manaka, M. Iwamoto, Control and modulation of chirality for azobenzene-substituted polydiacetylene LB films with circularly polarized light. Chem. Commun. 37, 5627–5629 (2009). https://doi.org/10.1039/b909085a
G. Zou, H. Kohn, Y. Ohshima, T. Manaka, M. Iwamoto, Fabricating chiral polydiacetylene film by monolayer compression and circularly polarized ultra-violet light. Chem. Phys. Lett. 442, 97–100 (2007). https://doi.org/10.1016/j.cplett.2007.05.059
J. Kim, J. Lee, W.Y. Kim, H. Kim, S. Lee et al., Induction and control of supramolecular chirality by light in self-assembled helical nanostructures. Nat. Commun. 6, 6959 (2015). https://doi.org/10.1038/ncomms7959
L. Xu, X. Wang, W. Wang, M. Sun, W.J. Choie et al., Enantiomer-dependent immunological response to chiral nanops. Nature 601, 366–373 (2022). https://doi.org/10.1038/s41586-021-04243-2
J. Yeom, B. Yeom, H. Chan, K.W. Smith, S. Dominguez-Medina et al., Chiral templating of self-assembling nanostructures by circularly polarized light. Nat. Mater. 14, 66–72 (2015). https://doi.org/10.1038/nmat4125
J.Y. Kim, J. Yeom, G. Zhao, H. Calcaterra, J. Munn et al., Assembly of gold nanops into chiral superstructures driven by circularly polarized light. J. Am. Chem. Soc. 141(30), 11739–11744 (2019). https://doi.org/10.1021/jacs.9b00700
K. Saito, T. Tatsuma, Chiral plasmonic nanostructures fabricated by circularly polarized light. Nano Lett. 18(5), 3209–3212 (2018). https://doi.org/10.1021/acs.nanolett.8b00929
S. Mokashi-Punekar, A.D. Merg, N.L. Rosi, Systematic adjustment of pitch and p dimensions within a family of chiral plasmonic gold nanop single helices. J. Am. Chem. Soc. 139(42), 15043–15048 (2017). https://doi.org/10.1021/jacs.7b07143
C. Hao, Y. Gao, D. Wu, S. Li, L. Xu et al., Tailoring chiroptical activity of iron disulfide quantum dot hydrogels with circularly polarized light. Adv. Mater. 31(36), 1903200 (2019). https://doi.org/10.1002/adma.201903200
W. Wang, N.S.R. Satyavolu, Z. Wu, J.R. Zhang, J.J. Zhu et al., Near-infrared photothermally activated dnazyme-gold nanoshells for imaging metal ions in living cells. Angew. Chem. Int. Ed. 56(24), 6798–6802 (2017). https://doi.org/10.1002/anie.201701325
R. Gao, L. Xu, C. Hao, C. Xu, H. Kuang, Circular polarized light activated chiral satellite nanoprobes for the imaging and analysis of multiple metal ions in living cells. Angew. Chem. Int. Ed. 58(12), 3913–3917 (2019). https://doi.org/10.1002/anie.201814282
M. Sun, A. Qu, C. Hao, X. Wu, L. Xu et al., Chiral upconversion heterodimers for quantitative analysis and bioimaging of antibiotic-resistant bacteria in vivo. Adv. Mater. 30(50), 1804241 (2018). https://doi.org/10.1002/adma.201804241
M.Z. Sun, L.G. Xu, A.H. Qu, P. Zhao, T.T. Hao et al., Site-selective photoinduced cleavage and profiling of DNA by chiral semiconductor nanops. Nat. Chem. 10, 821–830 (2018). https://doi.org/10.1038/s41557-018-0083-y
W.W. Wang, C.L. Hao, M.Z. Sun, L.G. Xu, X.L. Wu et al., Peptide mediated chiral inorganic nanomaterials for combating gram-negative bacteria. Adv. Func. Mater. 28(44), 1805112 (2018). https://doi.org/10.1002/adfm.201805112
C. Hao, R. Gao, Y. Li, L. Xu, M. Sun et al., Chiral semiconductor nanops for protein catalysis and profiling. Angew. Chem. Int. Ed. 58(22), 7371–7374 (2019). https://doi.org/10.1002/anie.201902673
C. Hao, L. Xu, W. Ma, X. Wu, L. Wang et al., Unusual circularly polarized photocatalytic activity in nanogapped gold-silver chiroplasmonic nanostructures. Adv. Func. Mater. 25(36), 5816–5822 (2015). https://doi.org/10.1002/adfm.201502429
L.G. Xu, M.Z. Sun, P. Cheng, R. Gao, H. Wang et al., 2D chiroptical nanostructures for high-performance photooxidants. Adv. Func. Mater. 28(18), 1707237 (2018). https://doi.org/10.1002/adfm.201707237
A. Qu, M. Sun, J.Y. Kim, L. Xu, C. Hao et al., Stimulation of neural stem cell differentiation by circularly polarized light transduced by chiral nanoassemblies. Nat. Biomed. Eng. 5, 103–113 (2021). https://doi.org/10.1038/s41551-020-00634-4
X. Zhao, L. Xu, M. Sun, W. Ma, X. Wu et al., Tuning the interactions between chiral plasmonic films and living cells. Nat. Commun. 8, 2007 (2017). https://doi.org/10.1038/s41467-017-02268-8
M. Sun, L. Xu, J.H. Banhg, H. Kuang, S. Alben et al., Intracellular localization of nanop dimers by chirality reversal. Nat. Commun. 8, 1847 (2017). https://doi.org/10.1038/s41467-017-01337-2
F. Gao, M. Sun, W. Ma, X. Wu, L. Liu et al., A singlet oxygen generating agent by chirality-dependent plasmonic shell-satellite nanoassembly. Adv. Mater. 29(18), 1606864 (2017). https://doi.org/10.1002/adma.201606864
Y. Li, Z. Miao, Z. Shang, Y. Cai, J. Cheng et al., A visible- and NIR-light responsive photothermal therapy agent by chirality-dependent MoO3−X nanops. Adv. Func. Mater. 30(4), 1906311 (2019). https://doi.org/10.1002/adfm.201906311
K. Rijeesh, P.K. Hashim, S.I. Noro, N. Tamaoki, Dynamic induction of enantiomeric excess from a prochiral azobenzene dimer under circularly polarized light. Chem. Sci. 6(2), 973–980 (2015). https://doi.org/10.1039/c4sc01993h
R.E. Morris, X.H. Bu, Induction of chiral porous solids containing only achiral building blocks. Nat. Chem. 2, 353–361 (2010). https://doi.org/10.1038/nchem.628
S.T. Wu, Z.W. Cai, Q.Y. Ye, C.H. Weng, X.H. Huang et al., Enantioselective synthesis of a chiral coordination polymer with circularly polarized visible laser. Angew. Chem. Int. Ed. 53(2), 12860–12864 (2014). https://doi.org/10.1002/anie.201407026