One Stone Four Birds: A Novel Liposomal Delivery System Multi-functionalized with Ginsenoside Rh2 for Tumor Targeting Therapy
Corresponding Author: Jianxin Wang
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 129
Abstract
Liposomes hold great potential in anti-cancer drug delivery and the targeting treatment of tumors. However, the clinical therapeutic efficacy of liposomes is still limited by the complexity of tumor microenvironment (TME) and the insufficient accumulation in tumor sites. Meanwhile, the application of cholesterol and polyethylene glycol (PEG), which are usually used to prolong the blood circulation and stabilize the structure of liposomes respectively, has been questioned due to various disadvantages. Herein, we developed a ginsenoside Rh2-based multifunctional liposome system (Rh2-lipo) to effectively address these challenges once for all. Different with the conventional ‘wooden’ liposomes, Rh2-lipo is a much more brilliant carrier with multiple functions. In Rh2-lipo, both cholesterol and PEG were substituted by Rh2, which works as membrane stabilizer, long-circulating stealther, active targeting ligand, and chemotherapy adjuvant at the same time. Firstly, Rh2 could keep the stability of liposomes and avoid the shortcomings caused by cholesterol. Secondly, Rh2-lipo showed a specifically prolonged circulation behavior in the blood. Thirdly, the accumulation of the liposomes in the tumor was significantly enhanced by the interaction of glucose transporter of tumor cells with Rh2. Fourth, Rh2-lipo could remodel the structure and reverse the immunosuppressive environment in TME. When tested in a 4T1 breast carcinoma xenograft model, the paclitaxel-loaded Rh2-lipo realized high efficient tumor growth suppression. Therefore, Rh2-lipo not only innovatively challenges the position of cholesterol as a liposome component, but also provides another innovative potential system with multiple functions for anti-cancer drug delivery.
Highlights:
1 A ginsenoside Rh2-based multifunctional liposome system (Rh2-lipo) was innovatively developed.
2 Rh2-lipo not only innovatively challenges the position of cholesterol as a liposome component, but also provides another innovative potential system with multiple functions for anti-cancer drug delivery.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Johnson, A. Gunasekera, M. Douek, Applications of nanotechnology in cancer. Discov. Med. 9, 374 (2010). https://doi.org/10.3322/CA.2007.0003
- L. Sercombe, T. Veerati, F. Moheimani, S.Y. Wu, A.K. Sood, S. Hua, Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 6, 286 (2015). https://doi.org/10.3389/fphar.2015.00286
- E.O. Blenke, E. Mastrobattista, R.M. Schiffelers, Strategies for triggered drug release from tumor targeted liposomes. Expert. Opin. Drug Del. 10, 1399–1410 (2013). https://doi.org/10.1517/17425247.2013.805742
- M.K. Riaz, M.A. Riaz, X. Zhang, C.C. Lin, K.H. Wong et al., Surface functionalization and targeting strategies of liposomes in solid tumor therapy: a review. Int. J. Mol. Sci. 19, 195 (2018). https://doi.org/10.3390/ijms19010195
- D.F. Quail, J.A. Joyce, Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423–1437 (2013). https://doi.org/10.1038/nm.3394
- Y.Q. Su, L.R. Wang, K.F. Liang, M.Y. Liu, X.R. Liu, Y.Z. Song, Y.H. Deng, The accelerated blood clearance phenomenon of pegylated nanoemulsion upon cross administration with nanoemulsions modified with polyglycerin. Asian J. Pharm. Sci. 13, 44–53 (2018). https://doi.org/10.1016/j.ajps.2017.07.003
- J.J.F. Verhoef, T.J. Anchordoquy, Questioning the use of pegylation for drug delivery. Drug Deliv. Transl. Res. 3, 499–503 (2013). https://doi.org/10.1007/s13346-013-0176-5
- D. Rosenblum, N. Joshi, W. Tao, J.M. Karp, D. Peer, Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 9, 1410 (2018). https://doi.org/10.1038/S41467-018-03705-Y
- S.M. Moghimi, I. Hamad, R. Bunger, T.L. Andresen, K. Jorgensen et al., Activation of the human complement system by cholesterol-rich and pegylated liposomes—modulation of cholesterol-rich liposome-mediated complement activation by elevated serum ldl and hdl levels. J. Liposome Res. 16, 167–174 (2006). https://doi.org/10.1080/08982100600848801
- J. Szebeni, L. Baranyi, S. Savay, M. Bodo, D.S. Morse et al., Liposome-induced pulmonary hypertension: properties and mechanism of a complement-mediated pseudoallergic reaction. Am. J. Physiol-Heart C 279, H1319–H1328 (2000). https://doi.org/10.1152/ajpheart.2000.279.3.H1319
- D.S. Alberts, D.J. Garcia, Safety aspects of pegylated liposomal doxorubicin in patients with cancer. Drugs 54, 30–35 (1997). https://doi.org/10.2165/00003495-199700544-00007
- S. Marie, Liposomal and lipid-based formulations of amphotericin b. Leukemia 10, s93 (1996)
- S.J. Levine, T.J. Walsh, A. Martinez, P.Q. Eichacker, G. Lopez-Berestein, C. Natanson, Cardiopulmonary toxicity after liposomal amphotericin b infusion. Ann. Intern. Med. 114, 664 (1991). https://doi.org/10.7326/0003-4819-114-8-664
- O. Ringden, E. Andstrom, M. Remberger, B.M. Svahn, J. Tollemar, Allergic reactions and other rare side-effects of liposomal amphotericin. Lancet 344, 1156–1157 (1994). https://doi.org/10.1016/s0140-6736(94)90663-7
- K.M. Skubitz, A.P. Skubitz, Mechanism of transient dyspnea induced by pegylated-liposomal doxorubicin (doxil). Anticancer Drugs 9, 45–50 (1998). https://doi.org/10.1097/00001813-199801000-00005
- B. Uziely, S. Jeffers, R. Isacson, K. Kutsch, D. Wei-Tsao et al., Liposomal doxorubicin: antitumor activity and unique toxicities during two complementary phase i studies. J. Clin. Oncol. 13, 1777–1785 (1995). https://doi.org/10.1200/JCO.1995.13.7.1777
- F.H. O’Neill, T.A.B. Sanders, G.R. Thompson, Comparison of efficacy of plant stanol ester and sterol ester: short-term and longer-term studies. Am. J. Cardiol. 96, 29–36 (2005). https://doi.org/10.1016/j.amjcard.2005.03.017
- J. Gallova, D. Uhrikova, N. Kucerka, M. Svorkova, S.S. Funari et al., Influence of cholesterol and beta-sitosterol on the structure of eypc bilayers. J. Membrane Biol. 243, 1 (2011). https://doi.org/10.1007/s00232-011-9387-1
- L.W. Qi, C.Z. Wang, C.S. Yuan, Ginsenosides from American ginseng: chemical and pharmacological diversity. Phytochemistry 72, 689–699 (2011). https://doi.org/10.1016/j.phytochem.2011.02.012
- K. Fukuda, H. Utsumi, J. Shoji, A. Hamada, Saponins can cause the agglutination of phospholipid-vesicles. Biochim. Biophys. Acta 820, 199–206 (1985). https://doi.org/10.1016/0005-2736(85)90113-0
- V.R. Akoev, R.E. Elemesov, B.S. Abdrasilov, Y.A. Kim, H.J. Park, Effects of triterpenoid glycosides of the dammaran series and their aglicons on phase transitions of dipalmitoylphosphatidylcholane. Biol. Membrany 13, 657–663 (1996)
- T. Yin, X.X. Cao, X.L. Liu, J. Wang, C.H. Shi et al., Interfacial molecular interactions based on the conformation recognition between the insoluble antitumor drug ad-1 and dspc. Colloid Surface B 146, 902–909 (2016). https://doi.org/10.1016/j.colsurfb.2016.07.040
- Y.Z. Wang, Q. Xu, W. Wu, Y. Liu, Y. Jiang, Q.Q. Cai, Q.Z. Lv, X.Y. Li, Brain transport profiles of ginsenoside rb1 by glucose transporter 1: in vitro and in vivo. Front. Pharmacol. 9, 398 (2018). https://doi.org/10.3389/fphar.2018.00398
- T.C. Chang, S.F. Huang, T.C. Yang, F.N. Chan, H.C. Lin, W.L. Chang, Effect of ginsenosides on glucose uptake in human caco-2 cells is mediated through altered na +/glucose cotransporter 1 expression. J. Agr. Food Chem. 55, 1993–1998 (2007). https://doi.org/10.1021/jf062714k
- R.A. Medina, G.I. Owen, Glucose transporters: expression, regulation and cancer. Biol. Res. 35, 9 (2002). https://doi.org/10.4067/s0716-97602002000100004
- S.H. Chen, Z.J. Wang, Y. Huang, S.A. O’Barr, R.A. Wong, S. Yeung, M.S.S. Chow, Ginseng and anticancer drug combination to improve cancer chemotherapy: a critical review. Evid-Based Compl. Alt. 2014, 168940 (2014). https://doi.org/10.1155/2014/168940
- Q. Lv, N. Rong, L.J. Liu, X.L. Xu, J.T. Liu, F.X. Jin, C.M. Wang, Antitumoral activity of (20R)- and (20S)-ginsenoside Rh2 on transplanted hepatocellular carcinoma in mice. Planta Med. 82, 705 (2016). https://doi.org/10.1055/s-0042-101764
- Y.J. Lin, Y. Li, Z.G. Song, H.Y. Zhu, Y.H. Jin, The interaction of serum albumin with ginsenoside Rh2 resulted in the downregulation of ginsenoside Rh2 cytotoxicity. J. Ginseng Res. 41, 330–338 (2017). https://doi.org/10.1016/j.jgr.2016.06.005
- W.W.G. Jia, X.X. Bu, D. Philips, H. Yan, G.Y. Liu, X.G. Chen, J. Bush, G. Li, Rh2, a compound extracted from ginseng, hypersensitizes multidrug-resistant tumor cells to chemotherapy. Can. J. Physiol. Pharm. 82, 431–437 (2004). https://doi.org/10.1139/Y04-049
- S. Han, A.J. Jeong, H. Yang, K. Bin Kang, H. Lee et al., Ginsenoside 20(s)-Rh2 exerts anti-cancer activity through targeting il-6-induced jak2/stat3 pathway in human colorectal cancer cells. J. Ethnopharmacol. 194, 83–90 (2016). https://doi.org/10.1016/j.jep.2016.08.039
- C.L. Zhu, F. Liu, W.B. Qian, T.Y. Zhang, F. Li, Combined effect of sodium selenite and ginsenoside rh2 on hct116 human colorectal carcinoma cells. Arch. Iran. Med. 19, 23 (2016)
- S.S. Hong, J.Y. Choi, J.O. Kim, M.K. Lee, S.H. Kim, S.J. Lim, Development of paclitaxel-loaded liposomal nanocarrier stabilized by triglyceride incorporation. Int. J. Nanomed. 2016, 4465–4477 (2016). https://doi.org/10.2147/Ijn.S113723
- S.Q. Xia, C. Tan, Y.T. Zhang, S. Abbas, B. Feng, X.M. Zhang, F. Qin, Modulating effect of lipid bilayer-carotenoid interactions on the property of liposome encapsulation. Colloid Surface B 128, 172–180 (2015). https://doi.org/10.1016/j.colsurfb.2015.02.004
- C.M.J. Hu, L. Zhang, S. Aryal, C. Cheung, R.H. Fang, L.F. Zhang, Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. U.S.A. 108, 10980–10985 (2011). https://doi.org/10.1073/pnas.1106634108
- S. Tenzer, D. Docter, J. Kuharev, A. Musyanovych, V. Fetz et al., Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotechnol. 8, 772–781 (2013). https://doi.org/10.1038/nnano.2013.181
- A.L. Barran-Berdon, D. Pozzi, G. Caracciolo, A.L. Capriotti, G. Caruso et al., Time evolution of nanoparticle-protein corona in human plasma: relevance for targeted drug delivery. Langmuir 29, 6485–6494 (2013). https://doi.org/10.1021/la401192x
- M. Mahmoudi, A.M. Abdelmonem, S. Behzadi, J.H. Clement, S. Dutz et al., Temperature: the “ignored” factor at the nanobio interface. ACS Nano 7, 6555–6562 (2013). https://doi.org/10.1021/nn305337c
- W.K. Subczynski, J. Widomska, J.B. Feix, Physical properties of lipid bilayers from epr spin labeling and their influence on chemical reactions in a membrane environment. Free Radical. Bio. Med. 46, 707–718 (2009). https://doi.org/10.1016/j.freeradbiomed.2008.11.024
- C. MacDermaid, M. Klein, G. Fiorin, Molecular dynamics simulations of cholesterol-rich membranes using a coarse-grained force field for cyclic alkanes. J. Chem. Phys. 143, 243144 (2015). https://doi.org/10.1063/1.4937153
- J.J. Inbaraj, T.B. Cardon, M. Laryukhin, S.M. Grosser, G.A. Lorigan, Determining the topology of integral membrane peptides using EPR spectroscopy. J. Am. Chem. Soc. 128, 9549–9554 (2006). https://doi.org/10.1021/ja0622204
- Z.E. Suntres, Liposomal antioxidants for protection against oxidant-induced damage. J. Toxicol. 2011, 152474 (2011). https://doi.org/10.1155/2011/152474
- Y.C. Chen, R. Xia, Y.X. Huang, W.C. Zhao, J. Li et al., An immunostimulatory dual-functional nanocarrier that improves cancer immunochemotherapy. Nat. Commun. 7, 13443 (2016). https://doi.org/10.1038/Ncomms13443
- S. Jain, D. Kumar, N.K. Swarnakar, K. Thanki, Polyelectrolyte stabilized multilayered liposomes for oral delivery of paclitaxel. Biomaterials 33, 6758–6768 (2012). https://doi.org/10.1016/j.biomaterials.2012.05.026
- X.L. Sun, X.F. Yan, O. Jacobson, W.J. Sun, Z.T. Wang et al., Improved tumor uptake by optimizing liposome based res blockade strategy. Theranostics 7, 319–328 (2017). https://doi.org/10.7150/thno.18078
- M. Papi, D. Caputo, V. Palmieri, R. Coppola, S. Palchetti et al., Clinically approved pegylated nanoparticles are covered by a protein corona that boosts the uptake by cancer cells. Nanoscale 9, 10327–10334 (2017). https://doi.org/10.1039/c7nr03042h
- A. Bigdeli, S. Palchetti, D. Pozzi, M.R. Hormozi-Nezhad, F.B. Bombelli, G. Caracciolo, M. Mahmoudi, Exploring cellular interactions of liposomes using protein corona fingerprints and physicochemical properties. ACS Nano 10, 3723–3737 (2016). https://doi.org/10.1021/acsnano.6b00261
- S.D. Li, L. Huang, Stealth nanoparticles: high density but sheddable peg is a key for tumor targeting. J. Control. Release 145, 178–181 (2010). https://doi.org/10.1016/j.jconrel.2010.03.016
- N. Bertrand, P. Grenier, M. Mahmoudi, E.M. Lima, E.A. Appel et al., Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics. Nat. Commun. 8, 777 (2017). https://doi.org/10.1038/s41467-017-00600-w
- S. Schottler, G. Becker, S. Winzen, T. Steinbach, K. Mohr, K. Landfester, V. Mailander, F.R. Wurm, Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nat. Nanotechnol. 11, 372–377 (2016). https://doi.org/10.1038/Nnano.2015.330
- L. Miao, C.M. Lin, L. Huang, Stromal barriers and strategies for the delivery of nanomedicine to desmoplastic tumors. J. Control. Release 219, 192–204 (2015). https://doi.org/10.1016/j.jconrel.2015.08.017
- Y. Chen, Q. Yu, C.B. Xu, A convenient method for quantifying collagen fibers in atherosclerotic lesions by imagej software. Int. J. Clin. Exp. Med. 10, 14904–14910 (2017)
- D.J. Verbik, S.S. Joshi, Immune cells and cytokines—their role in cancer-immunotherapy (review). Int. J. Oncol. 7, 205–223 (1995). https://doi.org/10.3892/ijo.7.2.205
References
L. Johnson, A. Gunasekera, M. Douek, Applications of nanotechnology in cancer. Discov. Med. 9, 374 (2010). https://doi.org/10.3322/CA.2007.0003
L. Sercombe, T. Veerati, F. Moheimani, S.Y. Wu, A.K. Sood, S. Hua, Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 6, 286 (2015). https://doi.org/10.3389/fphar.2015.00286
E.O. Blenke, E. Mastrobattista, R.M. Schiffelers, Strategies for triggered drug release from tumor targeted liposomes. Expert. Opin. Drug Del. 10, 1399–1410 (2013). https://doi.org/10.1517/17425247.2013.805742
M.K. Riaz, M.A. Riaz, X. Zhang, C.C. Lin, K.H. Wong et al., Surface functionalization and targeting strategies of liposomes in solid tumor therapy: a review. Int. J. Mol. Sci. 19, 195 (2018). https://doi.org/10.3390/ijms19010195
D.F. Quail, J.A. Joyce, Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423–1437 (2013). https://doi.org/10.1038/nm.3394
Y.Q. Su, L.R. Wang, K.F. Liang, M.Y. Liu, X.R. Liu, Y.Z. Song, Y.H. Deng, The accelerated blood clearance phenomenon of pegylated nanoemulsion upon cross administration with nanoemulsions modified with polyglycerin. Asian J. Pharm. Sci. 13, 44–53 (2018). https://doi.org/10.1016/j.ajps.2017.07.003
J.J.F. Verhoef, T.J. Anchordoquy, Questioning the use of pegylation for drug delivery. Drug Deliv. Transl. Res. 3, 499–503 (2013). https://doi.org/10.1007/s13346-013-0176-5
D. Rosenblum, N. Joshi, W. Tao, J.M. Karp, D. Peer, Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 9, 1410 (2018). https://doi.org/10.1038/S41467-018-03705-Y
S.M. Moghimi, I. Hamad, R. Bunger, T.L. Andresen, K. Jorgensen et al., Activation of the human complement system by cholesterol-rich and pegylated liposomes—modulation of cholesterol-rich liposome-mediated complement activation by elevated serum ldl and hdl levels. J. Liposome Res. 16, 167–174 (2006). https://doi.org/10.1080/08982100600848801
J. Szebeni, L. Baranyi, S. Savay, M. Bodo, D.S. Morse et al., Liposome-induced pulmonary hypertension: properties and mechanism of a complement-mediated pseudoallergic reaction. Am. J. Physiol-Heart C 279, H1319–H1328 (2000). https://doi.org/10.1152/ajpheart.2000.279.3.H1319
D.S. Alberts, D.J. Garcia, Safety aspects of pegylated liposomal doxorubicin in patients with cancer. Drugs 54, 30–35 (1997). https://doi.org/10.2165/00003495-199700544-00007
S. Marie, Liposomal and lipid-based formulations of amphotericin b. Leukemia 10, s93 (1996)
S.J. Levine, T.J. Walsh, A. Martinez, P.Q. Eichacker, G. Lopez-Berestein, C. Natanson, Cardiopulmonary toxicity after liposomal amphotericin b infusion. Ann. Intern. Med. 114, 664 (1991). https://doi.org/10.7326/0003-4819-114-8-664
O. Ringden, E. Andstrom, M. Remberger, B.M. Svahn, J. Tollemar, Allergic reactions and other rare side-effects of liposomal amphotericin. Lancet 344, 1156–1157 (1994). https://doi.org/10.1016/s0140-6736(94)90663-7
K.M. Skubitz, A.P. Skubitz, Mechanism of transient dyspnea induced by pegylated-liposomal doxorubicin (doxil). Anticancer Drugs 9, 45–50 (1998). https://doi.org/10.1097/00001813-199801000-00005
B. Uziely, S. Jeffers, R. Isacson, K. Kutsch, D. Wei-Tsao et al., Liposomal doxorubicin: antitumor activity and unique toxicities during two complementary phase i studies. J. Clin. Oncol. 13, 1777–1785 (1995). https://doi.org/10.1200/JCO.1995.13.7.1777
F.H. O’Neill, T.A.B. Sanders, G.R. Thompson, Comparison of efficacy of plant stanol ester and sterol ester: short-term and longer-term studies. Am. J. Cardiol. 96, 29–36 (2005). https://doi.org/10.1016/j.amjcard.2005.03.017
J. Gallova, D. Uhrikova, N. Kucerka, M. Svorkova, S.S. Funari et al., Influence of cholesterol and beta-sitosterol on the structure of eypc bilayers. J. Membrane Biol. 243, 1 (2011). https://doi.org/10.1007/s00232-011-9387-1
L.W. Qi, C.Z. Wang, C.S. Yuan, Ginsenosides from American ginseng: chemical and pharmacological diversity. Phytochemistry 72, 689–699 (2011). https://doi.org/10.1016/j.phytochem.2011.02.012
K. Fukuda, H. Utsumi, J. Shoji, A. Hamada, Saponins can cause the agglutination of phospholipid-vesicles. Biochim. Biophys. Acta 820, 199–206 (1985). https://doi.org/10.1016/0005-2736(85)90113-0
V.R. Akoev, R.E. Elemesov, B.S. Abdrasilov, Y.A. Kim, H.J. Park, Effects of triterpenoid glycosides of the dammaran series and their aglicons on phase transitions of dipalmitoylphosphatidylcholane. Biol. Membrany 13, 657–663 (1996)
T. Yin, X.X. Cao, X.L. Liu, J. Wang, C.H. Shi et al., Interfacial molecular interactions based on the conformation recognition between the insoluble antitumor drug ad-1 and dspc. Colloid Surface B 146, 902–909 (2016). https://doi.org/10.1016/j.colsurfb.2016.07.040
Y.Z. Wang, Q. Xu, W. Wu, Y. Liu, Y. Jiang, Q.Q. Cai, Q.Z. Lv, X.Y. Li, Brain transport profiles of ginsenoside rb1 by glucose transporter 1: in vitro and in vivo. Front. Pharmacol. 9, 398 (2018). https://doi.org/10.3389/fphar.2018.00398
T.C. Chang, S.F. Huang, T.C. Yang, F.N. Chan, H.C. Lin, W.L. Chang, Effect of ginsenosides on glucose uptake in human caco-2 cells is mediated through altered na +/glucose cotransporter 1 expression. J. Agr. Food Chem. 55, 1993–1998 (2007). https://doi.org/10.1021/jf062714k
R.A. Medina, G.I. Owen, Glucose transporters: expression, regulation and cancer. Biol. Res. 35, 9 (2002). https://doi.org/10.4067/s0716-97602002000100004
S.H. Chen, Z.J. Wang, Y. Huang, S.A. O’Barr, R.A. Wong, S. Yeung, M.S.S. Chow, Ginseng and anticancer drug combination to improve cancer chemotherapy: a critical review. Evid-Based Compl. Alt. 2014, 168940 (2014). https://doi.org/10.1155/2014/168940
Q. Lv, N. Rong, L.J. Liu, X.L. Xu, J.T. Liu, F.X. Jin, C.M. Wang, Antitumoral activity of (20R)- and (20S)-ginsenoside Rh2 on transplanted hepatocellular carcinoma in mice. Planta Med. 82, 705 (2016). https://doi.org/10.1055/s-0042-101764
Y.J. Lin, Y. Li, Z.G. Song, H.Y. Zhu, Y.H. Jin, The interaction of serum albumin with ginsenoside Rh2 resulted in the downregulation of ginsenoside Rh2 cytotoxicity. J. Ginseng Res. 41, 330–338 (2017). https://doi.org/10.1016/j.jgr.2016.06.005
W.W.G. Jia, X.X. Bu, D. Philips, H. Yan, G.Y. Liu, X.G. Chen, J. Bush, G. Li, Rh2, a compound extracted from ginseng, hypersensitizes multidrug-resistant tumor cells to chemotherapy. Can. J. Physiol. Pharm. 82, 431–437 (2004). https://doi.org/10.1139/Y04-049
S. Han, A.J. Jeong, H. Yang, K. Bin Kang, H. Lee et al., Ginsenoside 20(s)-Rh2 exerts anti-cancer activity through targeting il-6-induced jak2/stat3 pathway in human colorectal cancer cells. J. Ethnopharmacol. 194, 83–90 (2016). https://doi.org/10.1016/j.jep.2016.08.039
C.L. Zhu, F. Liu, W.B. Qian, T.Y. Zhang, F. Li, Combined effect of sodium selenite and ginsenoside rh2 on hct116 human colorectal carcinoma cells. Arch. Iran. Med. 19, 23 (2016)
S.S. Hong, J.Y. Choi, J.O. Kim, M.K. Lee, S.H. Kim, S.J. Lim, Development of paclitaxel-loaded liposomal nanocarrier stabilized by triglyceride incorporation. Int. J. Nanomed. 2016, 4465–4477 (2016). https://doi.org/10.2147/Ijn.S113723
S.Q. Xia, C. Tan, Y.T. Zhang, S. Abbas, B. Feng, X.M. Zhang, F. Qin, Modulating effect of lipid bilayer-carotenoid interactions on the property of liposome encapsulation. Colloid Surface B 128, 172–180 (2015). https://doi.org/10.1016/j.colsurfb.2015.02.004
C.M.J. Hu, L. Zhang, S. Aryal, C. Cheung, R.H. Fang, L.F. Zhang, Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. U.S.A. 108, 10980–10985 (2011). https://doi.org/10.1073/pnas.1106634108
S. Tenzer, D. Docter, J. Kuharev, A. Musyanovych, V. Fetz et al., Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotechnol. 8, 772–781 (2013). https://doi.org/10.1038/nnano.2013.181
A.L. Barran-Berdon, D. Pozzi, G. Caracciolo, A.L. Capriotti, G. Caruso et al., Time evolution of nanoparticle-protein corona in human plasma: relevance for targeted drug delivery. Langmuir 29, 6485–6494 (2013). https://doi.org/10.1021/la401192x
M. Mahmoudi, A.M. Abdelmonem, S. Behzadi, J.H. Clement, S. Dutz et al., Temperature: the “ignored” factor at the nanobio interface. ACS Nano 7, 6555–6562 (2013). https://doi.org/10.1021/nn305337c
W.K. Subczynski, J. Widomska, J.B. Feix, Physical properties of lipid bilayers from epr spin labeling and their influence on chemical reactions in a membrane environment. Free Radical. Bio. Med. 46, 707–718 (2009). https://doi.org/10.1016/j.freeradbiomed.2008.11.024
C. MacDermaid, M. Klein, G. Fiorin, Molecular dynamics simulations of cholesterol-rich membranes using a coarse-grained force field for cyclic alkanes. J. Chem. Phys. 143, 243144 (2015). https://doi.org/10.1063/1.4937153
J.J. Inbaraj, T.B. Cardon, M. Laryukhin, S.M. Grosser, G.A. Lorigan, Determining the topology of integral membrane peptides using EPR spectroscopy. J. Am. Chem. Soc. 128, 9549–9554 (2006). https://doi.org/10.1021/ja0622204
Z.E. Suntres, Liposomal antioxidants for protection against oxidant-induced damage. J. Toxicol. 2011, 152474 (2011). https://doi.org/10.1155/2011/152474
Y.C. Chen, R. Xia, Y.X. Huang, W.C. Zhao, J. Li et al., An immunostimulatory dual-functional nanocarrier that improves cancer immunochemotherapy. Nat. Commun. 7, 13443 (2016). https://doi.org/10.1038/Ncomms13443
S. Jain, D. Kumar, N.K. Swarnakar, K. Thanki, Polyelectrolyte stabilized multilayered liposomes for oral delivery of paclitaxel. Biomaterials 33, 6758–6768 (2012). https://doi.org/10.1016/j.biomaterials.2012.05.026
X.L. Sun, X.F. Yan, O. Jacobson, W.J. Sun, Z.T. Wang et al., Improved tumor uptake by optimizing liposome based res blockade strategy. Theranostics 7, 319–328 (2017). https://doi.org/10.7150/thno.18078
M. Papi, D. Caputo, V. Palmieri, R. Coppola, S. Palchetti et al., Clinically approved pegylated nanoparticles are covered by a protein corona that boosts the uptake by cancer cells. Nanoscale 9, 10327–10334 (2017). https://doi.org/10.1039/c7nr03042h
A. Bigdeli, S. Palchetti, D. Pozzi, M.R. Hormozi-Nezhad, F.B. Bombelli, G. Caracciolo, M. Mahmoudi, Exploring cellular interactions of liposomes using protein corona fingerprints and physicochemical properties. ACS Nano 10, 3723–3737 (2016). https://doi.org/10.1021/acsnano.6b00261
S.D. Li, L. Huang, Stealth nanoparticles: high density but sheddable peg is a key for tumor targeting. J. Control. Release 145, 178–181 (2010). https://doi.org/10.1016/j.jconrel.2010.03.016
N. Bertrand, P. Grenier, M. Mahmoudi, E.M. Lima, E.A. Appel et al., Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics. Nat. Commun. 8, 777 (2017). https://doi.org/10.1038/s41467-017-00600-w
S. Schottler, G. Becker, S. Winzen, T. Steinbach, K. Mohr, K. Landfester, V. Mailander, F.R. Wurm, Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nat. Nanotechnol. 11, 372–377 (2016). https://doi.org/10.1038/Nnano.2015.330
L. Miao, C.M. Lin, L. Huang, Stromal barriers and strategies for the delivery of nanomedicine to desmoplastic tumors. J. Control. Release 219, 192–204 (2015). https://doi.org/10.1016/j.jconrel.2015.08.017
Y. Chen, Q. Yu, C.B. Xu, A convenient method for quantifying collagen fibers in atherosclerotic lesions by imagej software. Int. J. Clin. Exp. Med. 10, 14904–14910 (2017)
D.J. Verbik, S.S. Joshi, Immune cells and cytokines—their role in cancer-immunotherapy (review). Int. J. Oncol. 7, 205–223 (1995). https://doi.org/10.3892/ijo.7.2.205