Correction: Monodomain Liquid Crystals of Two-Dimensional Sheets by Boundary-Free Sheargraphy
Corresponding Author: Chao Gao
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 224
Abstract
Eliminating topological defects to achieve monodomain liquid crystals is highly significant for the fundamental studies of soft matter and building long-range ordered materials. However, liquid crystals are metastable and sensitive to external stimuli, such as flow, confinement, and electromagnetic fields, which cause their intrinsic polycrystallinity and topological defects. Here, we achieve the monodomain liquid crystals of graphene oxide over 30 cm through boundary-free sheargraphy. The obtained monodomain liquid crystals exhibit large-area uniform alignment of sheets, which has the same optical polarized angle and intensity. The monodomain liquid crystals provide bidirectionally ordered skeletons, which can be applied as lightweight thermal management materials with bidirectionally high thermal and electrical conductivity. Furthermore, we extend the controllable topology of two-dimensional colloids by introducing singularities and disclinations in monodomain liquid crystals. Topological structures with defect strength from − 2 to + 2 were realized. This work provides a facile methodology to study the structural order of soft matter at a macroscopic level, facilitating the fabrication of metamaterials with tunable and highly anisotropic architectures.
Highlights:
1 Monodomain liquid crystals of graphene oxide over 30 cm is realized by boundary-free sheargraphy.
2 The achieved monodomain liquid crystals have bidirectional sheet ordering, exhibiting unique optical, rheological, and conductive properties.
3 Boundary-free sheargraphy extends to freely design delicate topology of two-dimensional colloids, including topological structures with defect strength from − 2 to + 2 and complex polydomain.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- I. Dierking, Textures of Liquid Crystals (Wiley, Heidelberg, 2003)
- A. Sengupta, S. Herminghaus, C. Bahr, Liquid crystal microfluidics: surface, elastic and viscous interactions at microscales. Liq. Cryst. Rev. 2(2), 73–110 (2014). https://doi.org/10.1080/21680396.2014.963716
- S.J. Woltman, G.D. Jay, G.P. Crawford, Liquid-crystal materials find a new order in biomedical applications. Nat. Mater. 6(12), 929–938 (2007). https://doi.org/10.1038/nmat2010
- C.W. See, A.Y.M. Ng, M.G. Somekh, Quantitative optical microscope with enhanced resolution using a pixelated liquid crystal spatial light modulator. J. Microsc. 214(3), 334–340 (2004). https://doi.org/10.1111/j.0022-2720.2004.01323.x
- S.C. Gebhart, R.C. Thompson, A.M. Jansen, Liquid-crystal tunable filter spectral imaging for brain tumor demarcation. Appl. Opt. 46(10), 1896–1910 (2007). https://doi.org/10.1364/ao.46.001896
- G.N. Mol, K.D. Harris, C.W.M. Bastiaansen, D.J. Broer, Thermo-mechanical responses of liquid-crystal networks with a splayed molecular organization. Adv. Funct. Mater. 15(7), 1155–1159 (2005). https://doi.org/10.1002/adfm.200400503
- Q.L. Zhu, C.F. Dai, D. Wagner, M. Daab, W. Hong et al., Distributed electric field induces orientations of nanosheets to prepare hydrogels with elaborate ordered structures and programmed deformations. Adv. Mater. 32(47), 2005567 (2020). https://doi.org/10.1002/adma.202005567
- S. Zhang, M.A. Greenfield, A. Mata, L.C. Palmer, R. Bitton et al., A self-assembly pathway to aligned monodomain gels. Nat. Mater. 9(7), 594–601 (2010). https://doi.org/10.1038/nmat2778
- X. Feng, K. Kawabata, M.G. Cowan, G.E. Dwulet, K. Toth et al., Single crystal texture by directed molecular self-assembly along dual axes. Nat. Mater. 18(11), 1235–1243 (2019). https://doi.org/10.1038/s41563-019-0389-1
- C.W. Chen, C.T. Hou, C.C. Li, H.C. Jau, C.T. Wang et al., Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases. Nat. Commun. 8, 727 (2017). https://doi.org/10.1038/s41467-017-00822-y
- C.F. Dietrich, P. Rudquist, K. Lorenz, F. Giesselmann, Chiral structures from achiral micellar lyotropic liquid crystals under capillary confinement. Langmuir 33(23), 5852–5862 (2017). https://doi.org/10.1021/acs.langmuir.7b01074
- Y.S. Kim, M. Liu, Y. Ishida, Y. Ebina, M. Osada et al., Thermoresponsive actuation enabled by permittivity switching in an electrostatically anisotropic hydrogel. Nat. Mater. 14(10), 1002–1007 (2015). https://doi.org/10.1038/nmat4363
- T.Z. Shen, S.H. Hong, J.K. Song, Electro-optical switching of graphene oxide liquid crystals with an extremely large Kerr coefficient. Nat. Mater. 13(4), 394–399 (2014). https://doi.org/10.1038/nmat3888
- Y. Wang, Y. Chen, J. Gao, H.G. Yoon, L. Jin et al., Highly conductive and thermally stable ion gels with tunable anisotropy and modulus. Adv. Mater. 28(13), 2571–2578 (2016). https://doi.org/10.1002/adma.201505183
- X. Wang, X. Li, S. Aya, F. Araoka, Y. Ishida et al., Reversible switching of the magnetic orientation of titanate nanosheets by photochemical reduction and autoxidation. J. Am. Chem. Soc. 140(48), 16396–16401 (2018). https://doi.org/10.1021/jacs.8b09625
- J. Zhang, M.I. Boamfa, A.E. Rowan, T. Rasing, Compartmentalized multistable liquid crystal alignment. Adv. Mater. 22(9), 961–965 (2010). https://doi.org/10.1002/adma.200903045
- I. Dierking, Surface anchoring and elasticity. Textures of Liquid Crystals, (Wiley, Weinheim, 2003). pp. 21–32 http://doi.org/https://doi.org/10.1002/3527602054
- Y. Zhang, W. Yang, M. Gu, Q. Wei, P. Lv et al., Versatile homeotropic liquid crystal alignment with tunable functionality prepared by one-step method. J. Colloid. Interface Sci. 608(3), 2290–2297 (2022). https://doi.org/10.1016/j.jcis.2021.10.159
- Y.J. Liu, Z. Xu, W.W. Gao, Z.D. Cheng, C. Gao, Graphene and other two-dimensional colloids: liquid crystals and macroscopic fibers. Adv. Mater. 29(14), 1606794–1606831 (2017). https://doi.org/10.1002/adma.201606794
- Z.P. Han, J.Q. Wang, S.P. Liu, Q.H. Zhang, Y.J. Liu et al., Electrospinning of neat graphene nanofibers. Adv. Fiber Mater. 4, 268–279 (2022). https://doi.org/10.1007/s42765-021-00105-8
- Z.S. Li, F. Guo, K. Pang, J.H. Lin, Q. Gao et al., Precise thermoplastic processing of graphene oxide layered solid by polymer intercalation. Nano-Micro Lett. 14, 13 (2022). https://doi.org/10.1007/s40820-021-00755-8
- Y.Q. Jiang, F. Guo, Z. Xu, W.W. Gao, C. Gao, Artificial colloidal liquid metacrystals by shearing microlithography. Nat. Commun. 10, 4111 (2019). https://doi.org/10.1038/s41467-019-11941-z
- F. Lin, Z. Zhu, X. Zhou, W. Qiu, C. Niu et al., Orientation control of graphene flakes by magnetic field: broad device applications of macroscopically aligned graphene. Adv. Mater. 29(1), 394–399 (2017). https://doi.org/10.1002/adma.201604453
- J.E. Kim, T.H. Han, S.H. Lee, J.Y. Kim, C.W. Ahn et al., Graphene oxide liquid crystals. Angew. Chem. Int. Ed. 50(13), 3043–3047 (2011). https://doi.org/10.1002/anie.201004692
- E.B. Sirota, C.R. Safinya, R.F. Bruinsma, C. Jeppesen, R.J. Plano et al., Structure of membrane surfactant and liquid crystalline smectic lamellar phases under flow. Science 261(5121), 588–591 (1993). https://doi.org/10.1126/science.261.5121.588
- M.A. Haque, G. Kamita, T. Kurokawa, K. Tsujii, J.P. Gong, Unidirectional alignment of lamellar bilayer in hydrogel: one-dimensional swelling, anisotropic modulus, and stress/strain tunable structural color. Adv. Mater. 22(45), 5110–5114 (2010). https://doi.org/10.1002/adma.201002509
- Z. Liu, Z. Li, Z. Xu, Z.X. Xia, X.Z. Hu et al., Wet-spun continuous graphene films. Chem. Mater. 26(23), 6786–6795 (2014). https://doi.org/10.1021/cm5033089
- P. Pieranski, E. Guyon, Transverse effects in nematic flows. Phys. Lett. A 49(7705), 237–238 (1974). https://doi.org/10.1016/0375-9601(74)90866-4
- Y. Xia, T.S. Mathis, M.Q. Zhao, B. Anasori, A. Dang et al., Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 557(7705), 409–412 (2018). https://doi.org/10.1038/s41586-018-0109-z
- A. Sengupta, Flow of nematic liquid crystals in a microfluidic environment, in Topological Microfluidics. (Springer, Cham, 2013), pp.83–135
- M. Stoter, D.A. Kunz, M. Schmidt, D. Hirsemann, H. Kalo et al., Nanoplatelets of sodium hectorite showing aspect ratios of approximately 20,000 and superior purity. Langmuir 29(4), 1280–1285 (2013). https://doi.org/10.1021/la304453h
- S.P. Liu, Y.Z. Wang, X. Ming, Z. Xu, Y.J. Liu et al., High-speed blow spinning of neat graphene fibrous materials. Nano Lett. 21(12), 5116–5125 (2021). https://doi.org/10.1021/acs.nanolett.1c01076
- P. Kumar, U.N. Maiti, K.E. Lee, S.O. Kim, Rheological properties of graphene oxide liquid crystal. Carbon 80(12), 453–461 (2014). https://doi.org/10.1016/j.carbon.2014.08.085
- Y. Chen, H. Bai, B. Delattre, A.P. Tomsia, R.O. Ritchie, Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Sci. Adv. 1(11), e150089 (2015). https://doi.org/10.1126/sciadv.1500849
- H. Liang, Q. Liao, N. Chen, Y. Liang, G. Lv et al., Thermal efficiency of solar steam generation approaching 100 % through capillary water transport. Angew. Chem. Int. Ed. 58(52), 19041–19046 (2019). https://doi.org/10.1002/anie.201911457
- R.M. Jalili, S.A. Yamini, T.M. Benedetti, S.H. Aboutalebi, Y. Chao et al., Processable two-dimensional materials beyond graphene: MoS2 liquid crystals and fibres. Nanoscale 8(38), 16862–16867 (2016). https://doi.org/10.1039/C6NR03681C
- L. Li, X. Cheng, J.R. Jokisaari, P. Gao, J. Britson et al., Defect-induced hedgehog polarization states in multiferroics. Phys. Rev. Lett. 120(13), 137602 (2018). https://doi.org/10.1103/PhysRevLett.120.137602
- E. Loiseau, F.C. Keber, T. Sanchez, S.J. DeCamp, L. Giomi et al., Topology and dynamics of active nematic vesicles. Science 345(6201), 1135–1139 (2014). https://doi.org/10.1126/science.1254784
- Y.K. Kim, X. Wang, P. Mondkar, E. Bukusoglu, N.L. Abbott, Self-reporting and self-regulating liquid crystals. Nature 557(7706), 539–544 (2018). https://doi.org/10.1038/s41586-018-0098-y
- S.B. Wu, L.L. Ma, P. Chen, H.M. Cao, S.J. Ge et al., Smectic defect engineering enabled by programmable photoalignment. Adv. Opt. Mater. 8(17), 2000593 (2020). https://doi.org/10.1002/adom.202000593
- L.L. Ma, M.J. Tang, W. Hu, Z.Q. Cui, S.J. Ge et al., Smectic layer origami via preprogrammed photoalignment. Adv. Mater. 29(15), 1606671 (2017). https://doi.org/10.1002/adma.201606671
References
I. Dierking, Textures of Liquid Crystals (Wiley, Heidelberg, 2003)
A. Sengupta, S. Herminghaus, C. Bahr, Liquid crystal microfluidics: surface, elastic and viscous interactions at microscales. Liq. Cryst. Rev. 2(2), 73–110 (2014). https://doi.org/10.1080/21680396.2014.963716
S.J. Woltman, G.D. Jay, G.P. Crawford, Liquid-crystal materials find a new order in biomedical applications. Nat. Mater. 6(12), 929–938 (2007). https://doi.org/10.1038/nmat2010
C.W. See, A.Y.M. Ng, M.G. Somekh, Quantitative optical microscope with enhanced resolution using a pixelated liquid crystal spatial light modulator. J. Microsc. 214(3), 334–340 (2004). https://doi.org/10.1111/j.0022-2720.2004.01323.x
S.C. Gebhart, R.C. Thompson, A.M. Jansen, Liquid-crystal tunable filter spectral imaging for brain tumor demarcation. Appl. Opt. 46(10), 1896–1910 (2007). https://doi.org/10.1364/ao.46.001896
G.N. Mol, K.D. Harris, C.W.M. Bastiaansen, D.J. Broer, Thermo-mechanical responses of liquid-crystal networks with a splayed molecular organization. Adv. Funct. Mater. 15(7), 1155–1159 (2005). https://doi.org/10.1002/adfm.200400503
Q.L. Zhu, C.F. Dai, D. Wagner, M. Daab, W. Hong et al., Distributed electric field induces orientations of nanosheets to prepare hydrogels with elaborate ordered structures and programmed deformations. Adv. Mater. 32(47), 2005567 (2020). https://doi.org/10.1002/adma.202005567
S. Zhang, M.A. Greenfield, A. Mata, L.C. Palmer, R. Bitton et al., A self-assembly pathway to aligned monodomain gels. Nat. Mater. 9(7), 594–601 (2010). https://doi.org/10.1038/nmat2778
X. Feng, K. Kawabata, M.G. Cowan, G.E. Dwulet, K. Toth et al., Single crystal texture by directed molecular self-assembly along dual axes. Nat. Mater. 18(11), 1235–1243 (2019). https://doi.org/10.1038/s41563-019-0389-1
C.W. Chen, C.T. Hou, C.C. Li, H.C. Jau, C.T. Wang et al., Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases. Nat. Commun. 8, 727 (2017). https://doi.org/10.1038/s41467-017-00822-y
C.F. Dietrich, P. Rudquist, K. Lorenz, F. Giesselmann, Chiral structures from achiral micellar lyotropic liquid crystals under capillary confinement. Langmuir 33(23), 5852–5862 (2017). https://doi.org/10.1021/acs.langmuir.7b01074
Y.S. Kim, M. Liu, Y. Ishida, Y. Ebina, M. Osada et al., Thermoresponsive actuation enabled by permittivity switching in an electrostatically anisotropic hydrogel. Nat. Mater. 14(10), 1002–1007 (2015). https://doi.org/10.1038/nmat4363
T.Z. Shen, S.H. Hong, J.K. Song, Electro-optical switching of graphene oxide liquid crystals with an extremely large Kerr coefficient. Nat. Mater. 13(4), 394–399 (2014). https://doi.org/10.1038/nmat3888
Y. Wang, Y. Chen, J. Gao, H.G. Yoon, L. Jin et al., Highly conductive and thermally stable ion gels with tunable anisotropy and modulus. Adv. Mater. 28(13), 2571–2578 (2016). https://doi.org/10.1002/adma.201505183
X. Wang, X. Li, S. Aya, F. Araoka, Y. Ishida et al., Reversible switching of the magnetic orientation of titanate nanosheets by photochemical reduction and autoxidation. J. Am. Chem. Soc. 140(48), 16396–16401 (2018). https://doi.org/10.1021/jacs.8b09625
J. Zhang, M.I. Boamfa, A.E. Rowan, T. Rasing, Compartmentalized multistable liquid crystal alignment. Adv. Mater. 22(9), 961–965 (2010). https://doi.org/10.1002/adma.200903045
I. Dierking, Surface anchoring and elasticity. Textures of Liquid Crystals, (Wiley, Weinheim, 2003). pp. 21–32 http://doi.org/https://doi.org/10.1002/3527602054
Y. Zhang, W. Yang, M. Gu, Q. Wei, P. Lv et al., Versatile homeotropic liquid crystal alignment with tunable functionality prepared by one-step method. J. Colloid. Interface Sci. 608(3), 2290–2297 (2022). https://doi.org/10.1016/j.jcis.2021.10.159
Y.J. Liu, Z. Xu, W.W. Gao, Z.D. Cheng, C. Gao, Graphene and other two-dimensional colloids: liquid crystals and macroscopic fibers. Adv. Mater. 29(14), 1606794–1606831 (2017). https://doi.org/10.1002/adma.201606794
Z.P. Han, J.Q. Wang, S.P. Liu, Q.H. Zhang, Y.J. Liu et al., Electrospinning of neat graphene nanofibers. Adv. Fiber Mater. 4, 268–279 (2022). https://doi.org/10.1007/s42765-021-00105-8
Z.S. Li, F. Guo, K. Pang, J.H. Lin, Q. Gao et al., Precise thermoplastic processing of graphene oxide layered solid by polymer intercalation. Nano-Micro Lett. 14, 13 (2022). https://doi.org/10.1007/s40820-021-00755-8
Y.Q. Jiang, F. Guo, Z. Xu, W.W. Gao, C. Gao, Artificial colloidal liquid metacrystals by shearing microlithography. Nat. Commun. 10, 4111 (2019). https://doi.org/10.1038/s41467-019-11941-z
F. Lin, Z. Zhu, X. Zhou, W. Qiu, C. Niu et al., Orientation control of graphene flakes by magnetic field: broad device applications of macroscopically aligned graphene. Adv. Mater. 29(1), 394–399 (2017). https://doi.org/10.1002/adma.201604453
J.E. Kim, T.H. Han, S.H. Lee, J.Y. Kim, C.W. Ahn et al., Graphene oxide liquid crystals. Angew. Chem. Int. Ed. 50(13), 3043–3047 (2011). https://doi.org/10.1002/anie.201004692
E.B. Sirota, C.R. Safinya, R.F. Bruinsma, C. Jeppesen, R.J. Plano et al., Structure of membrane surfactant and liquid crystalline smectic lamellar phases under flow. Science 261(5121), 588–591 (1993). https://doi.org/10.1126/science.261.5121.588
M.A. Haque, G. Kamita, T. Kurokawa, K. Tsujii, J.P. Gong, Unidirectional alignment of lamellar bilayer in hydrogel: one-dimensional swelling, anisotropic modulus, and stress/strain tunable structural color. Adv. Mater. 22(45), 5110–5114 (2010). https://doi.org/10.1002/adma.201002509
Z. Liu, Z. Li, Z. Xu, Z.X. Xia, X.Z. Hu et al., Wet-spun continuous graphene films. Chem. Mater. 26(23), 6786–6795 (2014). https://doi.org/10.1021/cm5033089
P. Pieranski, E. Guyon, Transverse effects in nematic flows. Phys. Lett. A 49(7705), 237–238 (1974). https://doi.org/10.1016/0375-9601(74)90866-4
Y. Xia, T.S. Mathis, M.Q. Zhao, B. Anasori, A. Dang et al., Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 557(7705), 409–412 (2018). https://doi.org/10.1038/s41586-018-0109-z
A. Sengupta, Flow of nematic liquid crystals in a microfluidic environment, in Topological Microfluidics. (Springer, Cham, 2013), pp.83–135
M. Stoter, D.A. Kunz, M. Schmidt, D. Hirsemann, H. Kalo et al., Nanoplatelets of sodium hectorite showing aspect ratios of approximately 20,000 and superior purity. Langmuir 29(4), 1280–1285 (2013). https://doi.org/10.1021/la304453h
S.P. Liu, Y.Z. Wang, X. Ming, Z. Xu, Y.J. Liu et al., High-speed blow spinning of neat graphene fibrous materials. Nano Lett. 21(12), 5116–5125 (2021). https://doi.org/10.1021/acs.nanolett.1c01076
P. Kumar, U.N. Maiti, K.E. Lee, S.O. Kim, Rheological properties of graphene oxide liquid crystal. Carbon 80(12), 453–461 (2014). https://doi.org/10.1016/j.carbon.2014.08.085
Y. Chen, H. Bai, B. Delattre, A.P. Tomsia, R.O. Ritchie, Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Sci. Adv. 1(11), e150089 (2015). https://doi.org/10.1126/sciadv.1500849
H. Liang, Q. Liao, N. Chen, Y. Liang, G. Lv et al., Thermal efficiency of solar steam generation approaching 100 % through capillary water transport. Angew. Chem. Int. Ed. 58(52), 19041–19046 (2019). https://doi.org/10.1002/anie.201911457
R.M. Jalili, S.A. Yamini, T.M. Benedetti, S.H. Aboutalebi, Y. Chao et al., Processable two-dimensional materials beyond graphene: MoS2 liquid crystals and fibres. Nanoscale 8(38), 16862–16867 (2016). https://doi.org/10.1039/C6NR03681C
L. Li, X. Cheng, J.R. Jokisaari, P. Gao, J. Britson et al., Defect-induced hedgehog polarization states in multiferroics. Phys. Rev. Lett. 120(13), 137602 (2018). https://doi.org/10.1103/PhysRevLett.120.137602
E. Loiseau, F.C. Keber, T. Sanchez, S.J. DeCamp, L. Giomi et al., Topology and dynamics of active nematic vesicles. Science 345(6201), 1135–1139 (2014). https://doi.org/10.1126/science.1254784
Y.K. Kim, X. Wang, P. Mondkar, E. Bukusoglu, N.L. Abbott, Self-reporting and self-regulating liquid crystals. Nature 557(7706), 539–544 (2018). https://doi.org/10.1038/s41586-018-0098-y
S.B. Wu, L.L. Ma, P. Chen, H.M. Cao, S.J. Ge et al., Smectic defect engineering enabled by programmable photoalignment. Adv. Opt. Mater. 8(17), 2000593 (2020). https://doi.org/10.1002/adom.202000593
L.L. Ma, M.J. Tang, W. Hu, Z.Q. Cui, S.J. Ge et al., Smectic layer origami via preprogrammed photoalignment. Adv. Mater. 29(15), 1606671 (2017). https://doi.org/10.1002/adma.201606671