Mesoporous TiO2/Carbon Beads: One-Pot Preparation and Their Application in Visible-Light-Induced Photodegradation
Corresponding Author: Kaifeng Lin
Nano-Micro Letters,
Vol. 7 No. 3 (2015), Article Number: 243-254
Abstract
Mesoporous TiO2/Carbon beads have been prepared via a facile impregnation-carbonization approach, in which a porous anion-exchange resin and K2TiO(C2O4)2 were used as hard carbon and titanium source, respectively. Characterization results reveal that the self-assembled composites have disordered mesostructure, uniform mesopores, large pore volumes, and high surface areas. The mesopore walls are composed of amorphous carbon, well-dispersed and confined anatase or rutile nanoparticles. Some anatase phase of TiO2 was transformed to rutile phase via an increase of carbonization temperature or repeated impregnation of the resin with TiO(C2O4) 2−2 species. X-ray photoelectron spectroscopy, carbon, hydrogen, and nitrogen element analysis, and thermal gravity analysis results indicate the doping of carbon into the TiO2 lattice and strong interaction between carbon and TiO2 nanoparticles. A synergy effect by carbon and TiO2 in the composites has been discussed herein on the degradation of methyl orange under visible light. The dye removal process involves adsorption of the dye from water by the mesopores in the composites, followed by photodegradation on the separated dye-loaded catalysts. Mesopores allow full access of the dye molecules to the surface of TiO2 nanoparticles. Importantly, the bead format of such composite enables their straightforward separation from the reaction mixture in their application as a liquid-phase heterogeneous photodegradation catalyst.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Zhao, Y. Sun, F.N. Castellano, Visible-light induced water detoxification catalyzed by Pt II dye sensitized titania. J. Am. Chem. Soc. 130(38), 12566–12567 (2008). doi:10.1021/ja803522v
- X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8(1), 76–80 (2009). doi:10.1038/nmat2317
- W. Zhao, W. Ma, C. Chen, J. Zhao, Z. Shuai, Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-xBx under visible irradiation. J. Am. Chem. Soc. 126(15), 4782–4783 (2004). doi:10.1021/ja0396753
- G. Liu, L. Wang, H. Yang, H. Cheng, G. Lu, Titania-based photocatalysts-crystal growth, doping and hetero structuring. J. Mater. Chem. 20(5), 831–843 (2010). doi:10.1039/b909930a
- Q. Xiang, J. Yu, M. Jaroniec, Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 41(2), 782–796 (2012). doi:10.1039/c1cs15172j
- R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528), 269–271 (2001). doi:10.1126/science.1061051
- F. Wei, L. Ni, P. Cui, Preparation and characterization of N-S-codoped TiO2 photocatalyst and its photocatalytic activity. J. Hazard. Mater. 156(1–3), 135–140 (2008). doi:10.1016/j.jhazmat.2007.12.018
- Y. Cong, X. Li, Y. Qin, Z. Dong, G. Yuan, Z. Cui, X. Lai, Carbon-doped TiO2 coating on multiwalled carbon nanotubes with higher visible light photocatalytic activity. Appl. Catal. B-Environ. 107(1–2), 128–134 (2011). doi:10.1016/j.apcatb.2011.07.005
- D. Chen, Z. Jiang, J. Geng, Q. Wang, D. Yang, Carbon and nitrogen Co-doped TiO2 with enhanced visible-light photocatalytic activity. Ind. Eng. Chem. Res. 46(9), 2741–2746 (2007). doi:10.1021/ie061491k
- S.C. Pillai, P. Periyat, R. George, D.E. McCormack, M.K. Seery, H. Hayden, J. Colreavy, D. Corr, S.J. Hinder, Synthesis of high-temperature stable anatase TiO2 photocatalyst. J. Phys. Chem. C 111(4), 1605–1611 (2007). doi:10.1021/jp065933h
- H. Zang, R. Zong, J. Zhao, Y. Zhu, Dramatic visible photocatalytic degradation performances due to synergetic effect of TiO2 with PANI. Environ. Sci. Technol. 42(10), 3803–3807 (2008). doi:10.1021/es703037x
- L. Gu, J.Y. Wang, R. Qi, X.Y. Wang, P. Xu, X.J. Han, A novel incorporating style of polyaniline/TiO2 composites as effective visible photocatalysts. J. Mol. Catal. A-Chem. 357, 19–25 (2012). doi:10.1016/j.molcata.2012.01.012
- D. Landy, I. Mallard, A. Ponchel, E. Monflier, S. Fourmentin, Remediation technologies using cyclodextrins: an overview. Environ. Chem. Lett. 10(3), 225–237 (2012). doi:10.1007/s10311-011-0351-1
- R. Bleta, A. Lannoy, C. Machut, E. Monflier, A. Ponchel, Understanding the role of cyclodextrins in the self-Assembly, crystallinity, and porosity of titania nanostructures. Langmuir 30(39), 11812–11822 (2014). doi:10.1021/la502911v
- J.H. Park, S. Kim, A.J. Bard, Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett. 6(1), 24–28 (2006). doi:10.1021/nl051807y
- S. Sakthivel, H. Kisch, Daylight photocatalysis by carbon-modified titanium dioxide. Angew. Chem. Int. Ed. 42(40), 4908–4911 (2003). doi:10.1002/anie.200351577
- F. Dong, H. Wang, Z. Wu, One-step “green” synthetic approach for mesoporous C-doped titanium dioxide with efficient visible light photocatalytic activity. J. Phys. Chem. C 113(38), 16717–16723 (2009). doi:10.1021/jp9049654
- S. Liu, J. Yu, M. Jaroniec, Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed 001 facets. J. Am. Chem. Soc. 132, 11914–11916 (2010). doi:10.1021/jp9049654
- C.H. Kim, B.H. Kim, K.S. Yang, TiO2 nanoparticles loaded on graphene/carbon composite nanofibers by electrospinning for increased photocatalysis. Carbon 50(7), 2472–2481 (2012). doi:10.1016/j.carbon.2012.01.069
- W. Wei, C. Yu, Q. Zhao, G. Li, Y. Wan, Improvement of the visible-light photocatalytic performance of TiO2 by carbon mesostructures. Chem. Eur. J. 19(2), 566–577 (2013). doi:10.1002/chem.201202691
- W. Wei, C. Yu, Q. Zhao, X. Qian, G. Li, Y. Wan, Synergy effect in photodegradation of contaminants from water using ordered mesoporous carbon-based titania catalyst. Appl. Catal. B-Environ. 146, 151–161 (2014). doi:10.1016/j.apcatb.2013.04.048
- J. Matos, A. Garcia, P.S. Poon, Environmental green chemistry applications of nanoporous carbons. J. Mater. Sci. 45, 4934–4944 (2010). doi:10.1007/s10853-009-4184-2
- G. Zhang, F. Teng, Y. Wang, P. Zhang, C. Gong, L. Chen, C. Zhao, E. Xie, Preparation of carbon-TiO2 nanocomposites by a hydrothermal method and their enhanced photocatalytic activity. RSC Adv. 3, 24644–24649 (2013). doi:10.1039/c3ra44950e
- L. Zhao, X. Chen, X. Wang, Y. Zhang, W. Wei, Y. Sun, M. Antonietti, M.M. Titirici, One-Step solvothermal synthesis of a carbon@TiO2 dyade structure effectively promoting visible-light photocatalysis. Adv. Mater. 22(30), 3317–3321 (2010). doi:10.1002/adma.201000660
- Z. Zhang, J. Jiatieli, D. Liu, F. Yu, S. Xue, W. Gao, Y. Li, D.D. Dionysiou, Microwave induced degradation of parathion in the presence of supported anatase- and rutile-TiO2/AC and comparison of their catalytic activity. Chem. Eng. J. 231, 84–93 (2013). doi:10.1016/j.cej.2013.07.001
- M. Asilturk, S. Sener, TiO2-activated carbon photocatalysts: Preparation, characterization and photocatalytic activities. Chem. Eng. J. 180, 354–363 (2012). doi:10.1016/j.cej.2011.11.045
- M.H. Baek, W.C. Jung, J.W. Yoon, J.S. Hong, Y.S. Lee, J.K. Suh, Preparation, characterization and photocatalytic activity evaluation of micro- and mesoporous TiO2/spherical activated carbon. J. Ind. Eng. Chem. 19(2), 469–477 (2013). doi:10.1016/j.jiec.2012.08.026
- J. Shi, H. Cui, J. Chen, M. Fu, B. Xu, H. Luo, Z. Ye, TiO2/activated carbon fibers photocatalyst: Effects of coating procedures on the microstructure, adhesion property, and photocatalytic ability. J. Colloid Interface Sci. 388(1), 201–208 (2012). doi:10.1016/j.jcis.2012.08.038
- Z. Tan, Z.H. Sun, Q. Guo, H.H. Wang, D.S. Su, A novel ion-exchange method for the synthesis of nano-SnO/micro-C hybrid structure as high capacity anode material in lithium ion batteries. J. Mater. Sci. Technol. 29(7), 609–612 (2013). doi:10.1016/j.jmst.2013.04.001
- Z. Tan, Z.H. Sun, H.H. Wang, Q. Guo, D.S. Su, Fabrication of porous Sn-C composites with high initial coulomb efficiency and good cyclic performance for lithium ion batteries. J. Mater. Chem. A 1(33), 9462–9468 (2013). doi:10.1039/c3ta10524e
- J. Zhang, R. Wang, E.Z. Liu, X.F. Gao, Z.H. Sun, F.S. Xiao, F. Girgsdies, D.S. Su, Spherical structures composed of multiwalled carbon nanotubes: formation mechanism and catalytic performance. Angew. Chem. Int. Edit. 51(30), 7581–7585 (2012). doi:10.1002/anie.201200969
- K. Lin, O.I. Lebedev, G.V. Tendeloo, P.A. Jacobs, P.P. Pescarmona, Titanosilicate beads with hierarchical porosity: synthesis and application as epoxidation catalysts. Chem. Eur. J. 16(45), 13509–13518 (2010). doi:10.1002/chem.201001508
- S.K. Parayil, H.S. Kibombo, C. Wu, R. Peng, J. Baltrusaitis, R.T. Koodali, Enhanced photocatalytic water splitting activity of carbon-modified TiO2 composite materials synthesized by a green synthetic approach. Int. J. Hydrogen Energy 37(10), 8257–8267 (2012). doi:10.1016/j.ijhydene.2012.02.067
- G. Zhao, C. Zhao, L. Wu, G. Duan, J. Wang, G. Han, Study on the electrical and optical properties of vanadium doped TiN thin films prepared by atmospheric pressure chemical vapor. J. Alloy. Compd. 569, 1–5 (2013). doi:10.1016/j.jallcom.2013.03.110
- R. Liu, Y. Ren, Y. Shi, F. Zhang, L. Zhang, B. Tu, D. Zhao, Controlled synthesis of ordered mesoporous C-TiO2 nanocomposites with crystalline titania frameworks from organic-inorganic-amphiphilic coassembly. Chem. Mater. 20(3), 1140–1146 (2008). doi:10.1021/cm071470w
- P. Chang, C. Huang, R.A. Doong, Ordered mesoporous carbon-TiO2 materials for improved electrochemical performance of lithium ion battery. Carbon 50(11), 4259–4268 (2012). doi:10.1016/j.carbon.2012.05.009
- Z. Sun, L. Wang, P. Liu, S. Wang, B. Sun, D. Jiang, F. Xiao, Magnetically motive porous sphere composite and its excellent properties for the removal of pollutants in water by adsorption and desorption cycles. Adv. Mater. 18(15), 1968–1971 (2006). doi:10.1002/adma.200600337
- A.E. Eliyas, L. Ljutzkanov, I.D. Stambolova, V.N. Blaskov, S.V. Vassilev, E.N. Razkazova-Velkova, D.R. Mehandjiev, Visible light photocatalytic activity of TiO2 deposited on activated carbon. Cent. Eur. J. Chem. 11(3), 464–470 (2013). doi:10.2478/s11532-012-0183-2
- G. Dai, S. Liu, Y. Liang, H. Liu, Z. Zhong, A simple preparation of carbon and nitrogen co-doped nanoscaled TiO2 with exposed 001 facets for enhanced visible-light photocatalytic activity. J. Mol. Catal. A 368, 38–42 (2013). doi:10.1016/j.molcata.2012.11.014
References
W. Zhao, Y. Sun, F.N. Castellano, Visible-light induced water detoxification catalyzed by Pt II dye sensitized titania. J. Am. Chem. Soc. 130(38), 12566–12567 (2008). doi:10.1021/ja803522v
X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8(1), 76–80 (2009). doi:10.1038/nmat2317
W. Zhao, W. Ma, C. Chen, J. Zhao, Z. Shuai, Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-xBx under visible irradiation. J. Am. Chem. Soc. 126(15), 4782–4783 (2004). doi:10.1021/ja0396753
G. Liu, L. Wang, H. Yang, H. Cheng, G. Lu, Titania-based photocatalysts-crystal growth, doping and hetero structuring. J. Mater. Chem. 20(5), 831–843 (2010). doi:10.1039/b909930a
Q. Xiang, J. Yu, M. Jaroniec, Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 41(2), 782–796 (2012). doi:10.1039/c1cs15172j
R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528), 269–271 (2001). doi:10.1126/science.1061051
F. Wei, L. Ni, P. Cui, Preparation and characterization of N-S-codoped TiO2 photocatalyst and its photocatalytic activity. J. Hazard. Mater. 156(1–3), 135–140 (2008). doi:10.1016/j.jhazmat.2007.12.018
Y. Cong, X. Li, Y. Qin, Z. Dong, G. Yuan, Z. Cui, X. Lai, Carbon-doped TiO2 coating on multiwalled carbon nanotubes with higher visible light photocatalytic activity. Appl. Catal. B-Environ. 107(1–2), 128–134 (2011). doi:10.1016/j.apcatb.2011.07.005
D. Chen, Z. Jiang, J. Geng, Q. Wang, D. Yang, Carbon and nitrogen Co-doped TiO2 with enhanced visible-light photocatalytic activity. Ind. Eng. Chem. Res. 46(9), 2741–2746 (2007). doi:10.1021/ie061491k
S.C. Pillai, P. Periyat, R. George, D.E. McCormack, M.K. Seery, H. Hayden, J. Colreavy, D. Corr, S.J. Hinder, Synthesis of high-temperature stable anatase TiO2 photocatalyst. J. Phys. Chem. C 111(4), 1605–1611 (2007). doi:10.1021/jp065933h
H. Zang, R. Zong, J. Zhao, Y. Zhu, Dramatic visible photocatalytic degradation performances due to synergetic effect of TiO2 with PANI. Environ. Sci. Technol. 42(10), 3803–3807 (2008). doi:10.1021/es703037x
L. Gu, J.Y. Wang, R. Qi, X.Y. Wang, P. Xu, X.J. Han, A novel incorporating style of polyaniline/TiO2 composites as effective visible photocatalysts. J. Mol. Catal. A-Chem. 357, 19–25 (2012). doi:10.1016/j.molcata.2012.01.012
D. Landy, I. Mallard, A. Ponchel, E. Monflier, S. Fourmentin, Remediation technologies using cyclodextrins: an overview. Environ. Chem. Lett. 10(3), 225–237 (2012). doi:10.1007/s10311-011-0351-1
R. Bleta, A. Lannoy, C. Machut, E. Monflier, A. Ponchel, Understanding the role of cyclodextrins in the self-Assembly, crystallinity, and porosity of titania nanostructures. Langmuir 30(39), 11812–11822 (2014). doi:10.1021/la502911v
J.H. Park, S. Kim, A.J. Bard, Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett. 6(1), 24–28 (2006). doi:10.1021/nl051807y
S. Sakthivel, H. Kisch, Daylight photocatalysis by carbon-modified titanium dioxide. Angew. Chem. Int. Ed. 42(40), 4908–4911 (2003). doi:10.1002/anie.200351577
F. Dong, H. Wang, Z. Wu, One-step “green” synthetic approach for mesoporous C-doped titanium dioxide with efficient visible light photocatalytic activity. J. Phys. Chem. C 113(38), 16717–16723 (2009). doi:10.1021/jp9049654
S. Liu, J. Yu, M. Jaroniec, Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed 001 facets. J. Am. Chem. Soc. 132, 11914–11916 (2010). doi:10.1021/jp9049654
C.H. Kim, B.H. Kim, K.S. Yang, TiO2 nanoparticles loaded on graphene/carbon composite nanofibers by electrospinning for increased photocatalysis. Carbon 50(7), 2472–2481 (2012). doi:10.1016/j.carbon.2012.01.069
W. Wei, C. Yu, Q. Zhao, G. Li, Y. Wan, Improvement of the visible-light photocatalytic performance of TiO2 by carbon mesostructures. Chem. Eur. J. 19(2), 566–577 (2013). doi:10.1002/chem.201202691
W. Wei, C. Yu, Q. Zhao, X. Qian, G. Li, Y. Wan, Synergy effect in photodegradation of contaminants from water using ordered mesoporous carbon-based titania catalyst. Appl. Catal. B-Environ. 146, 151–161 (2014). doi:10.1016/j.apcatb.2013.04.048
J. Matos, A. Garcia, P.S. Poon, Environmental green chemistry applications of nanoporous carbons. J. Mater. Sci. 45, 4934–4944 (2010). doi:10.1007/s10853-009-4184-2
G. Zhang, F. Teng, Y. Wang, P. Zhang, C. Gong, L. Chen, C. Zhao, E. Xie, Preparation of carbon-TiO2 nanocomposites by a hydrothermal method and their enhanced photocatalytic activity. RSC Adv. 3, 24644–24649 (2013). doi:10.1039/c3ra44950e
L. Zhao, X. Chen, X. Wang, Y. Zhang, W. Wei, Y. Sun, M. Antonietti, M.M. Titirici, One-Step solvothermal synthesis of a carbon@TiO2 dyade structure effectively promoting visible-light photocatalysis. Adv. Mater. 22(30), 3317–3321 (2010). doi:10.1002/adma.201000660
Z. Zhang, J. Jiatieli, D. Liu, F. Yu, S. Xue, W. Gao, Y. Li, D.D. Dionysiou, Microwave induced degradation of parathion in the presence of supported anatase- and rutile-TiO2/AC and comparison of their catalytic activity. Chem. Eng. J. 231, 84–93 (2013). doi:10.1016/j.cej.2013.07.001
M. Asilturk, S. Sener, TiO2-activated carbon photocatalysts: Preparation, characterization and photocatalytic activities. Chem. Eng. J. 180, 354–363 (2012). doi:10.1016/j.cej.2011.11.045
M.H. Baek, W.C. Jung, J.W. Yoon, J.S. Hong, Y.S. Lee, J.K. Suh, Preparation, characterization and photocatalytic activity evaluation of micro- and mesoporous TiO2/spherical activated carbon. J. Ind. Eng. Chem. 19(2), 469–477 (2013). doi:10.1016/j.jiec.2012.08.026
J. Shi, H. Cui, J. Chen, M. Fu, B. Xu, H. Luo, Z. Ye, TiO2/activated carbon fibers photocatalyst: Effects of coating procedures on the microstructure, adhesion property, and photocatalytic ability. J. Colloid Interface Sci. 388(1), 201–208 (2012). doi:10.1016/j.jcis.2012.08.038
Z. Tan, Z.H. Sun, Q. Guo, H.H. Wang, D.S. Su, A novel ion-exchange method for the synthesis of nano-SnO/micro-C hybrid structure as high capacity anode material in lithium ion batteries. J. Mater. Sci. Technol. 29(7), 609–612 (2013). doi:10.1016/j.jmst.2013.04.001
Z. Tan, Z.H. Sun, H.H. Wang, Q. Guo, D.S. Su, Fabrication of porous Sn-C composites with high initial coulomb efficiency and good cyclic performance for lithium ion batteries. J. Mater. Chem. A 1(33), 9462–9468 (2013). doi:10.1039/c3ta10524e
J. Zhang, R. Wang, E.Z. Liu, X.F. Gao, Z.H. Sun, F.S. Xiao, F. Girgsdies, D.S. Su, Spherical structures composed of multiwalled carbon nanotubes: formation mechanism and catalytic performance. Angew. Chem. Int. Edit. 51(30), 7581–7585 (2012). doi:10.1002/anie.201200969
K. Lin, O.I. Lebedev, G.V. Tendeloo, P.A. Jacobs, P.P. Pescarmona, Titanosilicate beads with hierarchical porosity: synthesis and application as epoxidation catalysts. Chem. Eur. J. 16(45), 13509–13518 (2010). doi:10.1002/chem.201001508
S.K. Parayil, H.S. Kibombo, C. Wu, R. Peng, J. Baltrusaitis, R.T. Koodali, Enhanced photocatalytic water splitting activity of carbon-modified TiO2 composite materials synthesized by a green synthetic approach. Int. J. Hydrogen Energy 37(10), 8257–8267 (2012). doi:10.1016/j.ijhydene.2012.02.067
G. Zhao, C. Zhao, L. Wu, G. Duan, J. Wang, G. Han, Study on the electrical and optical properties of vanadium doped TiN thin films prepared by atmospheric pressure chemical vapor. J. Alloy. Compd. 569, 1–5 (2013). doi:10.1016/j.jallcom.2013.03.110
R. Liu, Y. Ren, Y. Shi, F. Zhang, L. Zhang, B. Tu, D. Zhao, Controlled synthesis of ordered mesoporous C-TiO2 nanocomposites with crystalline titania frameworks from organic-inorganic-amphiphilic coassembly. Chem. Mater. 20(3), 1140–1146 (2008). doi:10.1021/cm071470w
P. Chang, C. Huang, R.A. Doong, Ordered mesoporous carbon-TiO2 materials for improved electrochemical performance of lithium ion battery. Carbon 50(11), 4259–4268 (2012). doi:10.1016/j.carbon.2012.05.009
Z. Sun, L. Wang, P. Liu, S. Wang, B. Sun, D. Jiang, F. Xiao, Magnetically motive porous sphere composite and its excellent properties for the removal of pollutants in water by adsorption and desorption cycles. Adv. Mater. 18(15), 1968–1971 (2006). doi:10.1002/adma.200600337
A.E. Eliyas, L. Ljutzkanov, I.D. Stambolova, V.N. Blaskov, S.V. Vassilev, E.N. Razkazova-Velkova, D.R. Mehandjiev, Visible light photocatalytic activity of TiO2 deposited on activated carbon. Cent. Eur. J. Chem. 11(3), 464–470 (2013). doi:10.2478/s11532-012-0183-2
G. Dai, S. Liu, Y. Liang, H. Liu, Z. Zhong, A simple preparation of carbon and nitrogen co-doped nanoscaled TiO2 with exposed 001 facets for enhanced visible-light photocatalytic activity. J. Mol. Catal. A 368, 38–42 (2013). doi:10.1016/j.molcata.2012.11.014