Electrospinning of Flexible Poly(vinyl alcohol)/MXene Nanofiber-Based Humidity Sensor Self-Powered by Monolayer Molybdenum Diselenide Piezoelectric Nanogenerator
Corresponding Author: Liandong Yu
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 57
Abstract
Two-dimensional material has been widely investigated for potential applications in sensor and flexible electronics. In this work, a self-powered flexible humidity sensing device based on poly(vinyl alcohol)/Ti3C2Tx (PVA/MXene) nanofibers film and monolayer molybdenum diselenide (MoSe2) piezoelectric nanogenerator (PENG) was reported for the first time. The monolayer MoSe2-based PENG was fabricated by atmospheric pressure chemical vapor deposition techniques, which can generate a peak output of 35 mV and a power density of 42 mW m−2. The flexible PENG integrated on polyethylene terephthalate (PET) substrate can harvest energy generated by different parts of human body and exhibit great application prospects in wearable devices. The electrospinned PVA/MXene nanofiber-based humidity sensor with flexible PET substrate under the driven of monolayer MoSe2 PENG, shows high response of ∼40, fast response/recovery time of 0.9/6.3 s, low hysteresis of 1.8% and excellent repeatability. The self-powered flexible humidity sensor yields the capability of detecting human skin moisture and ambient humidity. This work provides a pathway to explore the high-performance humidity sensor integrated with PENG for the self-powered flexible electronic devices.
Highlights:
1 A flexible piezoelectric nanogenerator (PENG) based on 2D single-layer MoSe2 flake on polyethylene terephthalate was fabricated.
2 A high-performance flexible poly(vinyl alcohol)/MXene (PVA/MXene)-based humidity sensor was fabricated by electrospinning.
3 The PVA/MXene composite-based humidity sensor was self-powered by MoSe2 PENG and exhibited excellent properties.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Cai, C. Lv, E. Aoyagi, S. Ogawa, A. Watanabe, Laser direct writing of a high-performance all-graphene humidity sensor working in a novel sensing mode for portable electronics. ACS Appl. Mater. Interfaces 10, 23987–23996 (2018). https://doi.org/10.1021/acsami.8b07373
- B. Li, Q. Tian, H. Su, X. Wang, T. Wang et al., High sensitivity portable capacitive humidity sensor based on In2O3 nanocubes-decorated GO nanosheets and its wearable application in respiration detection. Sens. Actuat. B 299, 126973 (2019). https://doi.org/10.1016/j.snb.2019.126973
- D. Zhing, D. Wang, P. Li, X. Zhou, X. Zong et al., Facile fabrication of high-performance QCM humidity sensor based on layer-by-layer self-assembled polyaniline/graphene oxide nanocomposite film. Sens. Actuat. B 255, 1869–1877 (2018). https://doi.org/10.1016/j.snb.2017.08.212
- Y. Yao, Y. Xue, Influence of the oxygen content on the humidity sensing properties of functionalized graphene films based on bulk acoustic wave humidity sensors. Sens. Actuat. B 222, 755–762 (2016). https://doi.org/10.1016/j.snb.2015.08.121
- Z. Xu, Y. Yuan, Implementation of guiding layers of surface acoustic wave devices: a review. Biosens. Bioelectron. 99, 500–512 (2018). https://doi.org/10.1016/j.bios.2017.07.060
- Y. Yang, J. Qi, Q. Liao, H. Li, Y. Wang et al., High-performance piezoelectric gate diode of a single polar-surface dominated ZnO nanobelt. Nanotechnology 20, 125201 (2009). https://doi.org/10.1088/0957-4484/20/12/125201
- Y. Yang, J. Qi, W. Guo, Y. Gu, Y. Huang et al., Transverse piezoelectric field-effect transistor based on single ZnO nanobelts. Phys. Chem. Chem. Phys. 12, 12415–12419 (2019). https://doi.org/10.1039/C0CP00420K
- T. Gao, Y. Ji, Y. Yang, Thermo-phototronic effect induced electricity in long semiconducting ZnO materials for self-powered light and temperature sensors. Adv. Mater. Technol. US 5(7), 2000176 (2020). https://doi.org/10.1002/admt.202000176
- Y. Yang, W. Guo, J. Qi, Y. Zhang, Flexible piezoresistive strain sensor based on single Sb-doped ZnO nanobelts. Appl. Phys. Lett. 97, 223107 (2010). https://doi.org/10.1063/1.3522885
- D. Zhang, K. Zhang, Y. Wang, Y. Wang, Y. Yang, Thermoelectric effect induced electricity in stretchable graphene-polymer nanocomposites for ultrasensitive self-powered strain sensor system. Nano Energy 56, 25–32 (2019). https://doi.org/10.1016/j.nanoen.2018.11.026
- Y. Wang, Y. Wang, Y. Yang, Graphene-polymer nanocomposite-based redox-induced electricity for flexible self-powered strain sensors. Adv. Energy Mater. 8, 1800961 (2018). https://doi.org/10.1002/aenm.201800961
- K. Zhang, S. Wang, Y. Yang, A one-structure-based piezo-tribo-pyro-photoelectric effects coupled nanogenerator for simultaneously scavenging mechanical, thermal, and solar energies. Adv. Energy Mater. 7, 1601852 (2017). https://doi.org/10.1002/aenm.201601852
- W. Qian, W. Yang, Y. Zhang, C.R. Bowen, Y. Yang, Piezoelectric materials for controlling electro-chemical processes. Nano-Micro Lett. 12, 149 (2020). https://doi.org/10.1007/s40820-020-00489-z
- K. Zhao, Z.L. Wang, Y. Yang, Self-powered wireless smart sensor node enabled by an ultrastable, highly efficient, and superhydrophobic-surface-based triboelectric nanogenerator. ACS Nano 10, 9044–9052 (2016). https://doi.org/10.1021/acsnano.6b05815
- H. Wang, Z. Xiang, P. Giorgia, X. Mu, Y. Yang et al., Triboelectric liquid volume sensor for self-powered lab-on-chip applications. Nano Energy 23, 80–88 (2016). https://doi.org/10.1016/j.nanoen.2016.02.054
- Z. Wu, W. Ding, Y. Dai, K. Dong, C. Wu et al., Self-powered multifunctional motion sensor enabled by magnetic-regulated triboelectric nanogenerator. ACS Nano 12, 5726–5733 (2018). https://doi.org/10.1021/acsnano.8b01589
- Z. Wu, B. Zhang, H. Zou, Z. Lin, G. Liu et al., Multifunctional sensor based on translational-rotary triboelectric nanogenerator. Adv. Energy Mater. 9, 1901124 (2019). https://doi.org/10.1002/aenm.201901124
- K. Song, N. Ma, Y.K. Mishra, R. Adelung, Y. Yang, Achieving light-induced ultrahigh pyroelectric charge density toward self-powered UV light detection. Adv. Electron. Mater. 5, 1800413 (2019). https://doi.org/10.1002/aelm.201800413
- K. Zhao, B. Ouyang, C.R. Bowen, Z.L. Wang, Y. Yang, One-structure-based multi-effects coupled nanogenerators for flexible and self-powered multi-functional coupled sensor systems. Nano Energy 71, 104632 (2020). https://doi.org/10.1016/j.nanoen.2020.104632
- Y. Chen, Y. Cheng, Y. Jie, X. Cao, N. Wang et al., Energy harvesting and wireless power transmission by a hybridized electromagnetic-triboelectric nanogenerator. Energy Environ. Sci. 12, 2678–2684 (2019). https://doi.org/10.1039/C9EE01245A
- Z. Wu, T. Cheng, Z.L. Wang, Self-powered sensors and systems based on nanogenerators. Sensors 20, 2925 (2020). https://doi.org/10.3390/s20102925
- Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006). https://doi.org/10.1126/science.1124005
- C. Sun, Q. Shi, D. Hasan, M.S. Yazici, M. Zhu et al., Self-powered multifunctional monitoring system using hybrid integrated triboelectric nanogenerators and piezoelectric microsensors. Nano Energy 58, 612–623 (2019). https://doi.org/10.1016/j.nanoen.2019.01.096
- M. Ma, Q. Liao, G. Zhang, Z. Zhang, Q. Liang et al., Self-recovering triboelectric nanogenerator as active multifunctional sensors. Adv. Funct. Mater. 25, 6489–6494 (2015). https://doi.org/10.1002/adfm.201503180
- K. Xia, Z. Zhu, J. Fu, Y. Chi, Z. Xu, Multifunctional conductive copper tape-based triboelectric nanogenerator and as a self-powered humidity sensor. IEEE Trans. Electron Devices 66, 2741–2745 (2019). https://doi.org/10.1109/TED.2019.2911637
- S. Wang, H. Tai, B. Liu, Z. Duan, Z. Yuan et al., A facile respiration-driven triboelectric nanogenerator for multifunctional respiratory monitoring. Nano Energy 58, 312–321 (2019). https://doi.org/10.1016/j.nanoen.2019.01.042
- K.A.N. Duerloo, M.T. Ong, E.J. Reed, Intrinsic piezoelectricity in two-dimensional materials. J. Phys. Chem. Lett. 3, 2871–2876 (2012). https://doi.org/10.1021/jz3012436
- W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin et al., Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514, 470–474 (2014). https://doi.org/10.1038/nature13792
- D. Zhang, Z. Yang, P. Li, M. Pang, Q. Xue, Flexible self-powered high-performance ammonia sensor based on Au-decorated MoSe2 nanoflowers driven by single layer MoS2-flake piezoelectric nanogenerator. Nano Energy 65, 103974 (2019). https://doi.org/10.1016/j.nanoen.2019.103974
- E. Lee, A. Vahidmohammadi, B.C. Prorok, Y.S. Yoon, M. Beidaghi et al., Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Appl. Mater. Interfaces 9, 37184–37190 (2017). https://doi.org/10.1021/acsami.7b11055
- Y. Yue, N. Liu, W. Liu, M. Li, Y. Ma et al., 3D hybrid porous Mxene-sponge network and its application in piezoresistive sensor. Nano Energy 50, 79–87 (2018). https://doi.org/10.1016/j.nanoen.2018.05.020
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- Z. Yang, A. Liu, C. Wang, F. Liu, J. He et al., Improvement of gas and humidity sensing properties of organ-like MXene by alkaline treatment. ACS Sens. 4, 1261–1269 (2019). https://doi.org/10.1021/acssensors.9b00127
- K. Wang, Z. Lou, L. Wang, L. Zhao, S. Zhao et al., Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors. ACS Nano 13, 9139–9147 (2019). https://doi.org/10.1021/acsnano.9b03454
- R. Yang, J. He, L. Xu, J. Yu, Effect of solution concentration on diameter and morphology of PVA nanofibres in bubble electrospinning process. J. Mater. Sci. Technol. 26, 1313–1316 (2010). https://doi.org/10.1179/026708310X12798718274476
- C. Jiang, C. Wu, X. Li, Y. Yao, L. Lan et al., All-electrospun flexible triboelectric nanogenerator based on metallic MXene nanosheets. Nano Energy 59, 268–276 (2019). https://doi.org/10.1016/j.nanoen.2019.02.052
- X. Chen, P. Hu, K. Song, X. Wang, C. Zuo et al., CVD growth of large-scale hexagon-like shaped MoSe2 monolayers with sawtooth edge. Chem. Phys. Lett. 733, 136663 (2019). https://doi.org/10.1016/j.cplett.2019.136663
- Y. Chang, W. Zhang, Y. Zhu, Y. Han, J. Pu et al., Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS Nano 8, 8582–8590 (2014). https://doi.org/10.1021/nn503287m
- P. He, W. Chen, J. Li, H. Zhang, Y. Li et al., Keggin and Dawson polyoxometalates as electrodes for flexible and transparent piezoelectric nanogenerators to efficiently utilize mechanical energy in the environment. Sci. Bull. 65, 35–44 (2020). https://doi.org/10.1016/j.scib.2019.09.026
- G. Viola, J. Chang, T. Maltby, F. Steckler, M. Jomaa et al., Bioinspired multiresonant acoustic devices based on electrospun piezoelectric polymeric nanofibers. ACS Appl. Mater. Interfaces 12, 34643–34657 (2020). https://doi.org/10.1021/acsami.0c09238
- P.K. Yang, S.A. Chou, C.H. Hsu, R.J. Mathew, K.H. Chiang et al., Tin disulfide piezoelectric nanogenerators for biomechanical energy harvesting and intelligent human-robot interface applications. Nano Energy 75, 104879 (2020). https://doi.org/10.1016/j.nanoen.2020.104879
- Z. Wang, H. Kurita, H. Nagaoka, F. Narita, Potassium sodium niobate lead-free piezoelectric nanocomposite generators based on carbon-fiber-reinforced polymer electrodes for energy-harvesting structures. Compos. Sci. Technol. 199, 108331 (2020). https://doi.org/10.1016/j.compscitech.2020.108331
- C. Peng, X. Yang, Y. Li, H. Yu, H. Wang et al., Hybrids of two-dimensional Ti3C2 and TiO2 exposing 001 facets toward enhanced photocatalytic activity. ACS Appl. Mater. Interfaces 8, 6051–6060 (2016). https://doi.org/10.1021/acsami.5b11973
- M. Das, D. Sarkar, Development of room temperature ethanol sensor from polypyrrole (PPy) embedded in polyvinyl alcohol (PVA) matrix. Polym. Bull. 75, 3109–3125 (2018). https://doi.org/10.1007/s00289-017-2192-y
- J. Fan, J. Luo, X. Zhang, B. Zhen, C. Dong et al., A novel electrospun β-CD/CS/PVA nanofiber membrane for simultaneous and rapid removal of organic micropollutants and heavy metal ions from water. Chem. Eng. J. 378, 122232 (2019). https://doi.org/10.1016/j.cej.2019.122232
- L. Wang, L. Chen, P. Song, C. Liang, Y. Lu et al., Fabrication on the annealed Ti3C2Tx MXene/Epoxy nanocomposites for electromagnetic interference shielding application. Compos Part B 171, 111–118 (2019). https://doi.org/10.1016/j.compositesb.2019.04.050
- E.A. Mayerberger, O. Urbanek, R.M. McDaniel, R.M. Street, M.W. Barsoum et al., Preparation and characterization of polymer-Ti3C2Tx(MXene) composite nanofibers produced via electrospinning. J. Appl. Polym. Sci. 134, 45295 (2017). https://doi.org/10.1002/app.45295
- D. Zhang, D. Wang, X. Zong, G. Dong, Y. Zhang, High-performance QCM humidity sensor based on graphene oxide/tinoxide/polyaniline ternary nanocomposite prepared by in-situoxidative polymerization method. Sens. Actuat. B 262, 531–541 (2018). https://doi.org/10.1016/j.snb.2018.02.012
- H. An, T. Habib, S. Shah, H. Gao, A. Patel et al., Water Sorption in MXene/polyelectrolyte multilayers for ultrafast humidity sensing. ACS Appl. Nano Mater. 2, 948–955 (2019). https://doi.org/10.1021/acsanm.8b02265
- E.S. Muckley, M. Naguib, H.W. Wang, L. Vlcek, N.C. Osti et al., Multimodality of structural, electrical, and gravimetric responses of intercalated MXenes to water. ACS Nano 11, 11118–11128 (2017). https://doi.org/10.1021/acsnano.7b05264
- M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary article: Mxenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014). https://doi.org/10.1002/adma.201304138
- Z. Ahmad, M. Abbas, I. Gunawan, R.A. Shakoor, F. Ubaid et al., Electro-sprayed PVA coating with texture-enriched surface morphology for augmented humidity sensing. Prog. Org. Coat. 17, 7–9 (2018). https://doi.org/10.1016/j.porgcoat.2017.12.010
- Y. Su, G. Xie, S. Wang, H. Tai, Q. Zhang et al., Novel high-performance self-powered humidity detection enabled by triboelectric effect. Sens. Actuat. B 251, 144–152 (2017). https://doi.org/10.1016/j.snb.2017.04.039
- T. Zhao, Y. Fu, Y. Zhao, L. Xing, X. Xue, Ga-doped ZnO nanowire nanogenerator as self-powered/active humidity sensor with high sensitivity and fast response. J. Alloys Compd. 648, 571–576 (2015). https://doi.org/10.1016/j.jallcom.2015.07.035
References
J. Cai, C. Lv, E. Aoyagi, S. Ogawa, A. Watanabe, Laser direct writing of a high-performance all-graphene humidity sensor working in a novel sensing mode for portable electronics. ACS Appl. Mater. Interfaces 10, 23987–23996 (2018). https://doi.org/10.1021/acsami.8b07373
B. Li, Q. Tian, H. Su, X. Wang, T. Wang et al., High sensitivity portable capacitive humidity sensor based on In2O3 nanocubes-decorated GO nanosheets and its wearable application in respiration detection. Sens. Actuat. B 299, 126973 (2019). https://doi.org/10.1016/j.snb.2019.126973
D. Zhing, D. Wang, P. Li, X. Zhou, X. Zong et al., Facile fabrication of high-performance QCM humidity sensor based on layer-by-layer self-assembled polyaniline/graphene oxide nanocomposite film. Sens. Actuat. B 255, 1869–1877 (2018). https://doi.org/10.1016/j.snb.2017.08.212
Y. Yao, Y. Xue, Influence of the oxygen content on the humidity sensing properties of functionalized graphene films based on bulk acoustic wave humidity sensors. Sens. Actuat. B 222, 755–762 (2016). https://doi.org/10.1016/j.snb.2015.08.121
Z. Xu, Y. Yuan, Implementation of guiding layers of surface acoustic wave devices: a review. Biosens. Bioelectron. 99, 500–512 (2018). https://doi.org/10.1016/j.bios.2017.07.060
Y. Yang, J. Qi, Q. Liao, H. Li, Y. Wang et al., High-performance piezoelectric gate diode of a single polar-surface dominated ZnO nanobelt. Nanotechnology 20, 125201 (2009). https://doi.org/10.1088/0957-4484/20/12/125201
Y. Yang, J. Qi, W. Guo, Y. Gu, Y. Huang et al., Transverse piezoelectric field-effect transistor based on single ZnO nanobelts. Phys. Chem. Chem. Phys. 12, 12415–12419 (2019). https://doi.org/10.1039/C0CP00420K
T. Gao, Y. Ji, Y. Yang, Thermo-phototronic effect induced electricity in long semiconducting ZnO materials for self-powered light and temperature sensors. Adv. Mater. Technol. US 5(7), 2000176 (2020). https://doi.org/10.1002/admt.202000176
Y. Yang, W. Guo, J. Qi, Y. Zhang, Flexible piezoresistive strain sensor based on single Sb-doped ZnO nanobelts. Appl. Phys. Lett. 97, 223107 (2010). https://doi.org/10.1063/1.3522885
D. Zhang, K. Zhang, Y. Wang, Y. Wang, Y. Yang, Thermoelectric effect induced electricity in stretchable graphene-polymer nanocomposites for ultrasensitive self-powered strain sensor system. Nano Energy 56, 25–32 (2019). https://doi.org/10.1016/j.nanoen.2018.11.026
Y. Wang, Y. Wang, Y. Yang, Graphene-polymer nanocomposite-based redox-induced electricity for flexible self-powered strain sensors. Adv. Energy Mater. 8, 1800961 (2018). https://doi.org/10.1002/aenm.201800961
K. Zhang, S. Wang, Y. Yang, A one-structure-based piezo-tribo-pyro-photoelectric effects coupled nanogenerator for simultaneously scavenging mechanical, thermal, and solar energies. Adv. Energy Mater. 7, 1601852 (2017). https://doi.org/10.1002/aenm.201601852
W. Qian, W. Yang, Y. Zhang, C.R. Bowen, Y. Yang, Piezoelectric materials for controlling electro-chemical processes. Nano-Micro Lett. 12, 149 (2020). https://doi.org/10.1007/s40820-020-00489-z
K. Zhao, Z.L. Wang, Y. Yang, Self-powered wireless smart sensor node enabled by an ultrastable, highly efficient, and superhydrophobic-surface-based triboelectric nanogenerator. ACS Nano 10, 9044–9052 (2016). https://doi.org/10.1021/acsnano.6b05815
H. Wang, Z. Xiang, P. Giorgia, X. Mu, Y. Yang et al., Triboelectric liquid volume sensor for self-powered lab-on-chip applications. Nano Energy 23, 80–88 (2016). https://doi.org/10.1016/j.nanoen.2016.02.054
Z. Wu, W. Ding, Y. Dai, K. Dong, C. Wu et al., Self-powered multifunctional motion sensor enabled by magnetic-regulated triboelectric nanogenerator. ACS Nano 12, 5726–5733 (2018). https://doi.org/10.1021/acsnano.8b01589
Z. Wu, B. Zhang, H. Zou, Z. Lin, G. Liu et al., Multifunctional sensor based on translational-rotary triboelectric nanogenerator. Adv. Energy Mater. 9, 1901124 (2019). https://doi.org/10.1002/aenm.201901124
K. Song, N. Ma, Y.K. Mishra, R. Adelung, Y. Yang, Achieving light-induced ultrahigh pyroelectric charge density toward self-powered UV light detection. Adv. Electron. Mater. 5, 1800413 (2019). https://doi.org/10.1002/aelm.201800413
K. Zhao, B. Ouyang, C.R. Bowen, Z.L. Wang, Y. Yang, One-structure-based multi-effects coupled nanogenerators for flexible and self-powered multi-functional coupled sensor systems. Nano Energy 71, 104632 (2020). https://doi.org/10.1016/j.nanoen.2020.104632
Y. Chen, Y. Cheng, Y. Jie, X. Cao, N. Wang et al., Energy harvesting and wireless power transmission by a hybridized electromagnetic-triboelectric nanogenerator. Energy Environ. Sci. 12, 2678–2684 (2019). https://doi.org/10.1039/C9EE01245A
Z. Wu, T. Cheng, Z.L. Wang, Self-powered sensors and systems based on nanogenerators. Sensors 20, 2925 (2020). https://doi.org/10.3390/s20102925
Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006). https://doi.org/10.1126/science.1124005
C. Sun, Q. Shi, D. Hasan, M.S. Yazici, M. Zhu et al., Self-powered multifunctional monitoring system using hybrid integrated triboelectric nanogenerators and piezoelectric microsensors. Nano Energy 58, 612–623 (2019). https://doi.org/10.1016/j.nanoen.2019.01.096
M. Ma, Q. Liao, G. Zhang, Z. Zhang, Q. Liang et al., Self-recovering triboelectric nanogenerator as active multifunctional sensors. Adv. Funct. Mater. 25, 6489–6494 (2015). https://doi.org/10.1002/adfm.201503180
K. Xia, Z. Zhu, J. Fu, Y. Chi, Z. Xu, Multifunctional conductive copper tape-based triboelectric nanogenerator and as a self-powered humidity sensor. IEEE Trans. Electron Devices 66, 2741–2745 (2019). https://doi.org/10.1109/TED.2019.2911637
S. Wang, H. Tai, B. Liu, Z. Duan, Z. Yuan et al., A facile respiration-driven triboelectric nanogenerator for multifunctional respiratory monitoring. Nano Energy 58, 312–321 (2019). https://doi.org/10.1016/j.nanoen.2019.01.042
K.A.N. Duerloo, M.T. Ong, E.J. Reed, Intrinsic piezoelectricity in two-dimensional materials. J. Phys. Chem. Lett. 3, 2871–2876 (2012). https://doi.org/10.1021/jz3012436
W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin et al., Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514, 470–474 (2014). https://doi.org/10.1038/nature13792
D. Zhang, Z. Yang, P. Li, M. Pang, Q. Xue, Flexible self-powered high-performance ammonia sensor based on Au-decorated MoSe2 nanoflowers driven by single layer MoS2-flake piezoelectric nanogenerator. Nano Energy 65, 103974 (2019). https://doi.org/10.1016/j.nanoen.2019.103974
E. Lee, A. Vahidmohammadi, B.C. Prorok, Y.S. Yoon, M. Beidaghi et al., Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Appl. Mater. Interfaces 9, 37184–37190 (2017). https://doi.org/10.1021/acsami.7b11055
Y. Yue, N. Liu, W. Liu, M. Li, Y. Ma et al., 3D hybrid porous Mxene-sponge network and its application in piezoresistive sensor. Nano Energy 50, 79–87 (2018). https://doi.org/10.1016/j.nanoen.2018.05.020
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
Z. Yang, A. Liu, C. Wang, F. Liu, J. He et al., Improvement of gas and humidity sensing properties of organ-like MXene by alkaline treatment. ACS Sens. 4, 1261–1269 (2019). https://doi.org/10.1021/acssensors.9b00127
K. Wang, Z. Lou, L. Wang, L. Zhao, S. Zhao et al., Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors. ACS Nano 13, 9139–9147 (2019). https://doi.org/10.1021/acsnano.9b03454
R. Yang, J. He, L. Xu, J. Yu, Effect of solution concentration on diameter and morphology of PVA nanofibres in bubble electrospinning process. J. Mater. Sci. Technol. 26, 1313–1316 (2010). https://doi.org/10.1179/026708310X12798718274476
C. Jiang, C. Wu, X. Li, Y. Yao, L. Lan et al., All-electrospun flexible triboelectric nanogenerator based on metallic MXene nanosheets. Nano Energy 59, 268–276 (2019). https://doi.org/10.1016/j.nanoen.2019.02.052
X. Chen, P. Hu, K. Song, X. Wang, C. Zuo et al., CVD growth of large-scale hexagon-like shaped MoSe2 monolayers with sawtooth edge. Chem. Phys. Lett. 733, 136663 (2019). https://doi.org/10.1016/j.cplett.2019.136663
Y. Chang, W. Zhang, Y. Zhu, Y. Han, J. Pu et al., Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS Nano 8, 8582–8590 (2014). https://doi.org/10.1021/nn503287m
P. He, W. Chen, J. Li, H. Zhang, Y. Li et al., Keggin and Dawson polyoxometalates as electrodes for flexible and transparent piezoelectric nanogenerators to efficiently utilize mechanical energy in the environment. Sci. Bull. 65, 35–44 (2020). https://doi.org/10.1016/j.scib.2019.09.026
G. Viola, J. Chang, T. Maltby, F. Steckler, M. Jomaa et al., Bioinspired multiresonant acoustic devices based on electrospun piezoelectric polymeric nanofibers. ACS Appl. Mater. Interfaces 12, 34643–34657 (2020). https://doi.org/10.1021/acsami.0c09238
P.K. Yang, S.A. Chou, C.H. Hsu, R.J. Mathew, K.H. Chiang et al., Tin disulfide piezoelectric nanogenerators for biomechanical energy harvesting and intelligent human-robot interface applications. Nano Energy 75, 104879 (2020). https://doi.org/10.1016/j.nanoen.2020.104879
Z. Wang, H. Kurita, H. Nagaoka, F. Narita, Potassium sodium niobate lead-free piezoelectric nanocomposite generators based on carbon-fiber-reinforced polymer electrodes for energy-harvesting structures. Compos. Sci. Technol. 199, 108331 (2020). https://doi.org/10.1016/j.compscitech.2020.108331
C. Peng, X. Yang, Y. Li, H. Yu, H. Wang et al., Hybrids of two-dimensional Ti3C2 and TiO2 exposing 001 facets toward enhanced photocatalytic activity. ACS Appl. Mater. Interfaces 8, 6051–6060 (2016). https://doi.org/10.1021/acsami.5b11973
M. Das, D. Sarkar, Development of room temperature ethanol sensor from polypyrrole (PPy) embedded in polyvinyl alcohol (PVA) matrix. Polym. Bull. 75, 3109–3125 (2018). https://doi.org/10.1007/s00289-017-2192-y
J. Fan, J. Luo, X. Zhang, B. Zhen, C. Dong et al., A novel electrospun β-CD/CS/PVA nanofiber membrane for simultaneous and rapid removal of organic micropollutants and heavy metal ions from water. Chem. Eng. J. 378, 122232 (2019). https://doi.org/10.1016/j.cej.2019.122232
L. Wang, L. Chen, P. Song, C. Liang, Y. Lu et al., Fabrication on the annealed Ti3C2Tx MXene/Epoxy nanocomposites for electromagnetic interference shielding application. Compos Part B 171, 111–118 (2019). https://doi.org/10.1016/j.compositesb.2019.04.050
E.A. Mayerberger, O. Urbanek, R.M. McDaniel, R.M. Street, M.W. Barsoum et al., Preparation and characterization of polymer-Ti3C2Tx(MXene) composite nanofibers produced via electrospinning. J. Appl. Polym. Sci. 134, 45295 (2017). https://doi.org/10.1002/app.45295
D. Zhang, D. Wang, X. Zong, G. Dong, Y. Zhang, High-performance QCM humidity sensor based on graphene oxide/tinoxide/polyaniline ternary nanocomposite prepared by in-situoxidative polymerization method. Sens. Actuat. B 262, 531–541 (2018). https://doi.org/10.1016/j.snb.2018.02.012
H. An, T. Habib, S. Shah, H. Gao, A. Patel et al., Water Sorption in MXene/polyelectrolyte multilayers for ultrafast humidity sensing. ACS Appl. Nano Mater. 2, 948–955 (2019). https://doi.org/10.1021/acsanm.8b02265
E.S. Muckley, M. Naguib, H.W. Wang, L. Vlcek, N.C. Osti et al., Multimodality of structural, electrical, and gravimetric responses of intercalated MXenes to water. ACS Nano 11, 11118–11128 (2017). https://doi.org/10.1021/acsnano.7b05264
M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary article: Mxenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014). https://doi.org/10.1002/adma.201304138
Z. Ahmad, M. Abbas, I. Gunawan, R.A. Shakoor, F. Ubaid et al., Electro-sprayed PVA coating with texture-enriched surface morphology for augmented humidity sensing. Prog. Org. Coat. 17, 7–9 (2018). https://doi.org/10.1016/j.porgcoat.2017.12.010
Y. Su, G. Xie, S. Wang, H. Tai, Q. Zhang et al., Novel high-performance self-powered humidity detection enabled by triboelectric effect. Sens. Actuat. B 251, 144–152 (2017). https://doi.org/10.1016/j.snb.2017.04.039
T. Zhao, Y. Fu, Y. Zhao, L. Xing, X. Xue, Ga-doped ZnO nanowire nanogenerator as self-powered/active humidity sensor with high sensitivity and fast response. J. Alloys Compd. 648, 571–576 (2015). https://doi.org/10.1016/j.jallcom.2015.07.035