Surface-Alloyed Nanoporous Zinc as Reversible and Stable Anodes for High-Performance Aqueous Zinc-Ion Battery
Corresponding Author: Qing Jiang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 128
Abstract
Metallic zinc (Zn) is one of the most attractive multivalent-metal anode materials in post-lithium batteries because of its high abundance, low cost and high theoretical capacity. However, it usually suffers from large voltage polarization, low Coulombic efficiency and high propensity for dendritic failure during Zn stripping/plating, hindering the practical application in aqueous rechargeable zinc-metal batteries (AR-ZMBs). Here we demonstrate that anionic surfactant-assisted in situ surface alloying of Cu and Zn remarkably improves Zn reversibility of 3D nanoporous Zn electrodes for potential use as high-performance AR-ZMB anode materials. As a result of the zincophilic ZnxCuy alloy shell guiding uniform Zn deposition with a zero nucleation overpotential and facilitating Zn stripping via the ZnxCuy/Zn galvanic couples, the self-supported nanoporous ZnxCuy/Zn electrodes exhibit superior dendrite-free Zn stripping/plating behaviors in ambient aqueous electrolyte, with ultralow polarizations under current densities up to 50 mA cm‒2, exceptional stability for 1900 h and high Zn utilization. This enables AR-ZMB full cells constructed with nanoporous ZnxCuy/Zn anode and KzMnO2 cathode to achieve specific energy of as high as ~ 430 Wh kg‒1 with ~ 99.8% Coulombic efficiency, and retain ~ 86% after long-term cycles for > 700 h.
Highlights:
1 ZnxCuy alloy shell was in-situ formed on self-supported three-dimensional nanoporous Zn anode by anionic surfactant-assisted surface alloying of Zn and Cu.
2 The self-supported nanoporous ZnxCuy/Zn anodes exhibit high-rate capability, outstanding reversibility and stability during Zn stripping/plating because of zincophilic ZnxCuy to guide uniform Zn deposition and facilitate Zn stripping.
3 Aqueous Zn-ion batteries assembled with nanoporous ZnxCuy/Zn anode and KzMnO2 cathode achieve specific energy of as high as ~430 Wh kg‒1 and retain ~86% after long-term cycles for >700 h.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
- Z.P. Cano, D. Banham, S. Ye, A. Hintennach, J. Lu et al., Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 3(4), 279–289 (2018). https://doi.org/10.1038/s41560-018-0108-1
- Y. Sun, N. Liu, Y. Cui, Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 1, 16071 (2016). https://doi.org/10.1038/nenergy.2016.71
- Y. Tian, G. Zeng, A. Rutt, T. Shi, H. Kim et al., Promises and challenges of next-generation “beyond Li-ion” batteries for electric vehicles and grid decarbonization. Chem. Rev. 121(3), 1623–1669 (2021). https://doi.org/10.1021/acs.chemrev.0c00767
- J.Y. Hwang, S.T. Myung, Y.K. Sun, Sodium-ion batteries: present and future. Chem. Soc. Rev. 46(12), 3529–3614 (2017). https://doi.org/10.1039/C6CS00776G
- W. Zhang, Y. Liu, Z, Guo, Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci. Adv. 5(5), eaav7412 (2019). https://doi.org/10.1126/sciadv.aav7412
- H. Kim, J. Hong, K.Y. Park, H. Kim, S.W. Kim et al., Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114(23), 11788–11827 (2014). https://doi.org/10.1021/cr500232y
- G. Liang, F. Mo, X. Ji, C. Zhi, Non-metallic charge carriers for aqueous batteries. Nat. Rev. Mater. 6(2), 109–123 (2021). https://doi.org/10.1038/s41578-020-00241-4
- Y. Liu, X. Lu, F. Lai, T. Liu, P.R. Shearing et al., Rechargeable aqueous Zn-based energy storage devices. Joule 5(11), 2845–2903 (2021). https://doi.org/10.1016/j.joule.2021.10.011
- Y. Sui, X. Ji, Anticatalytic strategies to suppress water electrolysis in aqueous batteries. Chem. Rev. 121(11), 6654–6695 (2021). https://doi.org/10.1021/acs.chemrev.1c00191
- J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun et al., Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano-Micro Lett. 14, 42 (2022). https://doi.org/10.1007/s40820-021-00782-5
- H. Dong, O. Tutusaus, Y. Liang, Y. Zhang, Z. Lebens-Higgins et al., High-power Mg batteries enabled by heterogeneous enolization redox chemistry and weakly coordinating electrolytes. Nat. Energy 5(12), 1043–1050 (2020). https://doi.org/10.1038/s41560-020-00734-0
- C. Wu, S. Gu, Q. Zhang, Y. Bai, M. Li et al., Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery. Nat. Commun. 10, 73 (2019). https://doi.org/10.1038/s41467-018-07980-7
- B. Li, X. Zhang, T. Wang, Z. He, B. Lu et al., Interfacial engineering strategy for high-performance Zn metal anodes. Nano-Micro Lett. 14, 6 (2022). https://doi.org/10.1007/s40820-021-00764-7
- Q. Ran, H. Shi, H. Meng, S.P. Zeng, W.B. Wan et al., Aluminum-copper alloy anode materials for high-energy aqueous aluminum batteries. Nat. Commun. 13, 576 (2022). https://doi.org/10.1038/s41467-022-28238-3
- S.B. Wang, Q. Ran, R.Q. Yao, H. Shi, Z. Wen et al., Lamella-nanostructured eutectic zinc–aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nat. Commun. 11, 1634 (2020). https://doi.org/10.1038/s41467-020-15478-4
- X. Jia, C. Liu, Z.G. Neale, J. Yang, G. Cao, Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 120(15), 7795–7866 (2020). https://doi.org/10.1021/acs.chemrev.9b00628
- N. Zhang, X. Chen, M. Yu, Z. Niu, F. Cheng et al., Materials chemistry for rechargeable zinc-ion batteries. Chem. Soc. Rev. 49(13), 4203–4219 (2020). https://doi.org/10.1039/c9cs00349e
- H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
- J. Huang, Z. Wang, M. Hou, X. Dong, Y. Liu et al., Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat. Commun. 9, 2906 (2018). https://doi.org/10.1038/s41467-018-04949-4
- X. Tang, D. Zhou, B. Zhang, S. Wang, P. Li et al., A universal strategy towards high–energy aqueous multivalent–ion batteries. Nat. Commun. 12, 2857 (2021). https://doi.org/10.1038/s41467-021-23209-6
- D. Feng, T.N. Gao, L. Zhang, B. Guo, S. Song et al., Boosting high-rate zinc-storage performance by the rational design of Mn2O3 nanoporous architecture cathode. Nano-Micro Lett. 12, 14 (2020). https://doi.org/10.1007/s40820-019-0351-4
- X.Z. Zhai, J. Qu, S.M. Hao, Y.Q. Jing, W. Chang et al., Layered birnessite cathode with a displacement/intercalation mechanism for high-performance aqueous zinc-ion batteries. Nano-Micro Lett. 12, 56 (2020). https://doi.org/10.1007/s40820-020-0397-3
- D. Kundu, B. Adams, V. Duffort, S.H. Vajargah, L.F. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1, 16119 (2016). https://doi.org/10.1038/nenergy.2016.119
- Y. Zhang, F. Wan, S. Huang, S. Wang, Z. Niu et al., A chemically self-charging aqueous zinc-ion battery. Nat. Commun. 11, 2199 (2020). https://doi.org/10.1038/s41467-020-16039-5
- Y. Yang, Y. Tang, G. Fang, L. Shan, J. Guo et al., Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ. Sci. 11(11), 3157–3162 (2018). https://doi.org/10.1039/c8ee01651h
- S.B. Wang, Q. Ran, W.B. Wan, H. Shi, S.P. Zeng et al., Ultrahigh-energy and -power aqueous rechargeable zinc-ion microbatteries based on highly cation-compatible vanadium oxides. J. Mater. Sci. Technol. 120, 159–166 (2022). https://doi.org/10.1016/j.jmst.2022.01.007
- Q. Li, X. Rui, D. Chen, Y. Feng, N. Xiao et al., A high-capacity ammonium vanadate cathode for zinc-ion battery. Nano-Micro Lett. 12, 67 (2020). https://doi.org/10.1007/s40820-020-0401-y
- Y. Liang, Y. Jing, S. Gheytani, K.Y. Lee, P. Liu et al., Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat. Mater. 16(8), 841–848 (2017). https://doi.org/10.1038/nmat4919
- Q. Zhao, W. Huang, Z. Luo, L. Liu, Y. Lu et al., High-capacity aqueous zinc batteries using sustainable quinone electrodes. Sci. Adv. 4(3), eaao1761 (2018). https://doi.org/10.1126/sciadv.aao1761
- G. Fang, J. Zhou, A. Pan, S. Liang, Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3(10), 2480–2501 (2018). https://doi.org/10.1021/acsenergylett.8b01426
- W. Lu, C. Zhang, H. Zhang, X. Li, Anode for zinc-based batteries: challenges, strategies, and prospects. ACS Energy Lett. 6(8), 2765–2785 (2021). https://doi.org/10.1021/acsenergylett.1c00939
- L. Ma, M.A. Schroeder, O. Borodin, T.P. Pollard, M.S. Ding et al., Realizing high zinc reversibility in rechargeable batteries. Nat. Energy 5(10), 743–749 (2020). https://doi.org/10.1038/s41560-020-0674-x
- Z. Yi, G. Chen, F. Hou, L. Wang, J. Liang, Strategies for the stabilization of Zn metal anodes for Zn-ion batteries. Adv. Energy Mater. 11(1), 2003065 (2021). https://doi.org/10.1002/aenm.202003065
- F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17(6), 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
- M. Yan, N. Dong, X. Zhao, Y. Sun, H. Pan, Tailoring the stability and kinetics of Zn anodes through trace organic polymer additives in dilute aqueous electrolyte. ACS Energy Lett. 6(9), 3236–3243 (2021). https://doi.org/10.1021/acsenergylett.1c01418
- C. Liu, X. Xie, B. Lu, J. Zhou, S. Liang, Electrolyte strategies toward better zinc-ion batteries. ACS Energy Lett. 6(3), 1015–1033 (2021). https://doi.org/10.1021/acsenergylett.0c02684
- Y. Zhu, J. Yin, X. Zheng, A.H. Emwas, Y. Lei et al., Concentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries. Energy Environ. Sci. 14(8), 4463 (2021). https://doi.org/10.1039/d1ee01472b
- B. Zhang, L. Qin, Y. Fang, Y. Chai, X. Xie et al., Tuning Zn2+ coordination tunnel by hierarchical gel electrolyte for dendrite-free zinc anode. Sci. Bull. (2022). https://doi.org/10.1016/j.scib.2022.01.027
- L. Li, S. Liu, D. Ba, W. Liu, Q. Gui et al., Electrolyte concentration regulation boosting zinc storage stability of high-capacity K0.486V2O5 cathode for bendable quasi-solid-state zinc ion batteries. Nano-Micro Lett. 13, 34 (2021). https://doi.org/10.1007/s40820-020-00554-7
- P. Sun, L. Ma, W. Zhou, M. Qiu, Z. Wang et al., Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew. Chem. Int. Ed. 60(33), 18247–18255 (2021). https://doi.org/10.1002/anie.202105756
- A. Bayaguud, X. Luo, Y. Fu, C. Zhu, Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries. ACS Energy Lett. 5(9), 3012–3020 (2020). https://doi.org/10.1021/acsenergylett.0c01792
- Z. Wang, L. Dong, W. Huang, H. Jia, Q. Zhao et al., Simultaneously regulating uniform Zn2+ flux and electron conduction by MOF/rGO interlayers for high-performance Zn anodes. Nano-Micro Lett. 13, 73 (2021). https://doi.org/10.1007/s40820-021-00594-7
- J. Zheng, Q. Zhao, T. Tang, J. Yin, C.D. Quilty et al., Reversible epitaxial electrodeposition of metals in battery anodes. Science 366(6465), 645–648 (2019). https://doi.org/10.1126/science.aax6873
- J. Zheng, Y. Deng, J. Yin, T. Tang, R. Garcia-Mendez et al., Textured electrodes: manipulating built-in crystallographic heterogeneity of metal electrodes via severe plastic deformation. Adv. Mater. 34(1), 2106867 (2021). https://doi.org/10.1002/adma.202106867
- M. Zhou, S. Guo, J. Li, X. Luo, Z. Liu et al., Surface-preferred crystal plane for a stable and reversible zinc anode. Adv. Mater. 33(21), 2100187 (2021). https://doi.org/10.1002/adma.202100187
- L. Kang, M. Cui, F. Jiang, Y. Gao, H. Luo et al., Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 8(25), 1801090 (2018). https://doi.org/10.1002/aenm.201801090
- N. Zhang, S. Huang, Z. Yuan, J. Zhu, Z. Zhao et al., Direct self-assembly of MXene on Zn anodes for dendrite-free aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 60(6), 2861–2865 (2021). https://doi.org/10.1002/anie.202012322
- K. Wu, J. Yi, X. Liu, Y. Sun, J. Cui et al., Regulating Zn deposition via an artificial solid–electrolyte interface with aligned dipoles for long life Zn anode. Nano-Micro Lett. 13, 79 (2021). https://doi.org/10.1007/s40820-021-00599-2
- X. Yang, C. Li, Z. Sun, S. Yang, Z. Shi et al., Interfacial manipulation via in situ grown ZnSe cultivator toward highly reversible Zn metal anodes. Adv. Mater. 33(52), 2105951 (2021). https://doi.org/10.1002/adma.202105951
- J. Hao, B. Li, X. Li, X. Zeng, S. Zhang et al., An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries. Adv. Mater. 32(34), 2003021 (2020). https://doi.org/10.1002/adma.202003021
- X. Wang, J. Meng, X. Lin, Y. Yang, S. Zhou et al., Stable zinc metal anodes with textured crystal faces and functional zinc compound coatings. Adv. Funct. Mater. 31(48), 2106114 (2021). https://doi.org/10.1002/adfm.202106114
- Z. Guo, L. Fan, C. Zhao, A. Chen, N. Liu et al., A dynamic and self-adapting interface coating for stable Zn-metal anodes. Adv. Mater. 34(2), 2105133 (2021). https://doi.org/10.1002/adma.202105133
- Y. Jiao, F. Li, X. Jin, Q. Lei, L. Li et al., Engineering polymer glue towards 90% zinc utilization for 1000 hours to make high-performance Zn-ion batteries. Adv. Funct. Mater. 31(49), 2107652 (2021). https://doi.org/10.1002/adfm.202107652
- S. Xie, Y. Li, X. Li, Y. Zhou, Z. Dang et al., Stable zinc anodes enabled by zincophilic Cu nanowire networks. Nano-Micro Lett. 14, 39 (2022). https://doi.org/10.1007/s40820-021-00783-4
- H. Zhao, Y. Lei, 3D nanostructures for the next generation of high-performance nanodevices for electrochemical energy conversion and storage. Adv. Energy Mater. 10(28), 2001460 (2020). https://doi.org/10.1002/aenm.202001460
- W. Guo, Z. Cong, Z. Guo, C. Chang, X. Liang et al., Dendrite-free Zn anode with dual channel 3D porous frameworks for rechargeable Zn batteries. Energy Storage Mater. 30, 104–112 (2020). https://doi.org/10.1016/j.ensm.2020.04.038
- C. Li, X. Xie, H. Liu, P. Wang, C. Deng et al., Integrated ‘all-in-one’ strategy to stabilize zinc anodes for high-performance zinc-ion batteries. Natl. Sci. Rev. 9(3), nwab177 (2022). https://doi.org/10.1093/nsr/nwab177
- Y. An, Y. Tian, S. Xiong, J. Feng, Y. Qian, Scalable and controllable synthesis of interface engineered nanoporous host for dendrite-free and high rate zinc metal batteries. ACS Nano 15(7), 11828–11842 (2021). https://doi.org/10.1021/acsnano.1c02928
- H. Shi, Y.T. Zhou, R.Q. Yao, W.B. Wang, Q.H. Zhang et al., Intermetallic Cu5Zr clusters anchored on hierarchical nanoporous copper as efficient catalysts for hydrogen evolution reaction. Research 2020, 2987234 (2020). https://doi.org/10.34133/2020/2987234
- H. Shi, Y.T. Zhou, R.Q. Yao, W.B. Wang, X. Ge et al., Spontaneously separated intermetallic Co3Mo from nanoporous copper as versatile electrocatalysts for highly efficient water splitting. Nat. Commun. 11, 2940 (2020). https://doi.org/10.1038/s41467-020-16769-6
- I.C. Oppenheim, D.J. Trevor, C.E.D. Chidsey, P.L. Trevor, K. Sieradzki, In situ scanning tunneling microscopy of corrosion of silver-gold alloys. Science 254(5032), 687–689 (1991). https://doi.org/10.1126/science.254.5032.687
- J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Evolution of nanoporosity in dealloying. Nature 410(6827), 450–453 (2001). https://doi.org/10.1038/35068529
- X.Y. Lang, H.Y. Fu, C. Hou, G.F. Han, P. Yang et al., Nanoporous gold supported cobalt oxide microelectrodes as high-performance electrochemical biosensors. Nat. Commun. 4, 2169 (2013). https://doi.org/10.1038/ncomms3169
- F. Jia, C. Yu, Z. Ai, L. Zhang, Fabrication of nanoporous gold film electrodes with ultrahigh surface area and electrochemical activity. Chem. Mater. 19(15), 3648–3653 (2007). https://doi.org/10.1021/cm070425l
- K. Yan, Z. Lu, H.W. Lee, F. Xiong, P.C. Hsu et al., Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016). https://doi.org/10.1038/nenergy.2016.10
- R. Zhang, X.R. Chen, X. Chen, X.B. Cheng, X.Q. Zhang et al., Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem. Int. Ed. 56(27), 7764–7768 (2017). https://doi.org/10.1002/anie.201702099
- J.F. Parker, C.N. Chervin, E.S. Nelson, D.R. Rolison, J.W. Long, Wiring zinc in three dimensions re-writes battery performance—dendrite-free cycling. Energy Environ. Sci. 7(3), 1117–1124 (2014). https://doi.org/10.1039/c3ee43754j
- J.F. Parker, C.N. Chervin, I.R. Pala, M. Machler, M.F. Burz et al., Rechargeable nickel–3D zinc batteries: an energy-dense, safer alternative to lithium-ion. Science 356(6336), 414–417 (2017). https://doi.org/10.1126/science.aak9991
- R. Zhang, P.G. Yin, N. Wang, L. Guo, Photoluminescence and Raman scattering of ZnO nanorods. Solid State Sci. 11(4), 865–869 (2009). https://doi.org/10.1016/j.solidstatesciences.2008.10.016
- C. Liu, W. Xu, C. Mei, M. Li, W. Chen et al., A chemically self-charging flexible solid-state zinc-ion battery based on VO2 cathode and polyacrylamide–chitin nanofiber hydrogel electrolyte. Adv. Energy Mater. 11(25), 2003902 (2021). https://doi.org/10.1002/aenm.202003902
- Z. Lv, Y. Luo, Y. Tang, J. Wei, Z. Zhu et al., Editable supercapacitors with customizable stretchability based on mechanically strengthened ultralong MnO2 nanowire composite. Adv. Mater. 30(2), 1704531 (2018). https://doi.org/10.1002/adma.201704531
References
B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
Z.P. Cano, D. Banham, S. Ye, A. Hintennach, J. Lu et al., Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 3(4), 279–289 (2018). https://doi.org/10.1038/s41560-018-0108-1
Y. Sun, N. Liu, Y. Cui, Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 1, 16071 (2016). https://doi.org/10.1038/nenergy.2016.71
Y. Tian, G. Zeng, A. Rutt, T. Shi, H. Kim et al., Promises and challenges of next-generation “beyond Li-ion” batteries for electric vehicles and grid decarbonization. Chem. Rev. 121(3), 1623–1669 (2021). https://doi.org/10.1021/acs.chemrev.0c00767
J.Y. Hwang, S.T. Myung, Y.K. Sun, Sodium-ion batteries: present and future. Chem. Soc. Rev. 46(12), 3529–3614 (2017). https://doi.org/10.1039/C6CS00776G
W. Zhang, Y. Liu, Z, Guo, Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci. Adv. 5(5), eaav7412 (2019). https://doi.org/10.1126/sciadv.aav7412
H. Kim, J. Hong, K.Y. Park, H. Kim, S.W. Kim et al., Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114(23), 11788–11827 (2014). https://doi.org/10.1021/cr500232y
G. Liang, F. Mo, X. Ji, C. Zhi, Non-metallic charge carriers for aqueous batteries. Nat. Rev. Mater. 6(2), 109–123 (2021). https://doi.org/10.1038/s41578-020-00241-4
Y. Liu, X. Lu, F. Lai, T. Liu, P.R. Shearing et al., Rechargeable aqueous Zn-based energy storage devices. Joule 5(11), 2845–2903 (2021). https://doi.org/10.1016/j.joule.2021.10.011
Y. Sui, X. Ji, Anticatalytic strategies to suppress water electrolysis in aqueous batteries. Chem. Rev. 121(11), 6654–6695 (2021). https://doi.org/10.1021/acs.chemrev.1c00191
J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun et al., Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano-Micro Lett. 14, 42 (2022). https://doi.org/10.1007/s40820-021-00782-5
H. Dong, O. Tutusaus, Y. Liang, Y. Zhang, Z. Lebens-Higgins et al., High-power Mg batteries enabled by heterogeneous enolization redox chemistry and weakly coordinating electrolytes. Nat. Energy 5(12), 1043–1050 (2020). https://doi.org/10.1038/s41560-020-00734-0
C. Wu, S. Gu, Q. Zhang, Y. Bai, M. Li et al., Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery. Nat. Commun. 10, 73 (2019). https://doi.org/10.1038/s41467-018-07980-7
B. Li, X. Zhang, T. Wang, Z. He, B. Lu et al., Interfacial engineering strategy for high-performance Zn metal anodes. Nano-Micro Lett. 14, 6 (2022). https://doi.org/10.1007/s40820-021-00764-7
Q. Ran, H. Shi, H. Meng, S.P. Zeng, W.B. Wan et al., Aluminum-copper alloy anode materials for high-energy aqueous aluminum batteries. Nat. Commun. 13, 576 (2022). https://doi.org/10.1038/s41467-022-28238-3
S.B. Wang, Q. Ran, R.Q. Yao, H. Shi, Z. Wen et al., Lamella-nanostructured eutectic zinc–aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nat. Commun. 11, 1634 (2020). https://doi.org/10.1038/s41467-020-15478-4
X. Jia, C. Liu, Z.G. Neale, J. Yang, G. Cao, Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 120(15), 7795–7866 (2020). https://doi.org/10.1021/acs.chemrev.9b00628
N. Zhang, X. Chen, M. Yu, Z. Niu, F. Cheng et al., Materials chemistry for rechargeable zinc-ion batteries. Chem. Soc. Rev. 49(13), 4203–4219 (2020). https://doi.org/10.1039/c9cs00349e
H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
J. Huang, Z. Wang, M. Hou, X. Dong, Y. Liu et al., Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat. Commun. 9, 2906 (2018). https://doi.org/10.1038/s41467-018-04949-4
X. Tang, D. Zhou, B. Zhang, S. Wang, P. Li et al., A universal strategy towards high–energy aqueous multivalent–ion batteries. Nat. Commun. 12, 2857 (2021). https://doi.org/10.1038/s41467-021-23209-6
D. Feng, T.N. Gao, L. Zhang, B. Guo, S. Song et al., Boosting high-rate zinc-storage performance by the rational design of Mn2O3 nanoporous architecture cathode. Nano-Micro Lett. 12, 14 (2020). https://doi.org/10.1007/s40820-019-0351-4
X.Z. Zhai, J. Qu, S.M. Hao, Y.Q. Jing, W. Chang et al., Layered birnessite cathode with a displacement/intercalation mechanism for high-performance aqueous zinc-ion batteries. Nano-Micro Lett. 12, 56 (2020). https://doi.org/10.1007/s40820-020-0397-3
D. Kundu, B. Adams, V. Duffort, S.H. Vajargah, L.F. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1, 16119 (2016). https://doi.org/10.1038/nenergy.2016.119
Y. Zhang, F. Wan, S. Huang, S. Wang, Z. Niu et al., A chemically self-charging aqueous zinc-ion battery. Nat. Commun. 11, 2199 (2020). https://doi.org/10.1038/s41467-020-16039-5
Y. Yang, Y. Tang, G. Fang, L. Shan, J. Guo et al., Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ. Sci. 11(11), 3157–3162 (2018). https://doi.org/10.1039/c8ee01651h
S.B. Wang, Q. Ran, W.B. Wan, H. Shi, S.P. Zeng et al., Ultrahigh-energy and -power aqueous rechargeable zinc-ion microbatteries based on highly cation-compatible vanadium oxides. J. Mater. Sci. Technol. 120, 159–166 (2022). https://doi.org/10.1016/j.jmst.2022.01.007
Q. Li, X. Rui, D. Chen, Y. Feng, N. Xiao et al., A high-capacity ammonium vanadate cathode for zinc-ion battery. Nano-Micro Lett. 12, 67 (2020). https://doi.org/10.1007/s40820-020-0401-y
Y. Liang, Y. Jing, S. Gheytani, K.Y. Lee, P. Liu et al., Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat. Mater. 16(8), 841–848 (2017). https://doi.org/10.1038/nmat4919
Q. Zhao, W. Huang, Z. Luo, L. Liu, Y. Lu et al., High-capacity aqueous zinc batteries using sustainable quinone electrodes. Sci. Adv. 4(3), eaao1761 (2018). https://doi.org/10.1126/sciadv.aao1761
G. Fang, J. Zhou, A. Pan, S. Liang, Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3(10), 2480–2501 (2018). https://doi.org/10.1021/acsenergylett.8b01426
W. Lu, C. Zhang, H. Zhang, X. Li, Anode for zinc-based batteries: challenges, strategies, and prospects. ACS Energy Lett. 6(8), 2765–2785 (2021). https://doi.org/10.1021/acsenergylett.1c00939
L. Ma, M.A. Schroeder, O. Borodin, T.P. Pollard, M.S. Ding et al., Realizing high zinc reversibility in rechargeable batteries. Nat. Energy 5(10), 743–749 (2020). https://doi.org/10.1038/s41560-020-0674-x
Z. Yi, G. Chen, F. Hou, L. Wang, J. Liang, Strategies for the stabilization of Zn metal anodes for Zn-ion batteries. Adv. Energy Mater. 11(1), 2003065 (2021). https://doi.org/10.1002/aenm.202003065
F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17(6), 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
M. Yan, N. Dong, X. Zhao, Y. Sun, H. Pan, Tailoring the stability and kinetics of Zn anodes through trace organic polymer additives in dilute aqueous electrolyte. ACS Energy Lett. 6(9), 3236–3243 (2021). https://doi.org/10.1021/acsenergylett.1c01418
C. Liu, X. Xie, B. Lu, J. Zhou, S. Liang, Electrolyte strategies toward better zinc-ion batteries. ACS Energy Lett. 6(3), 1015–1033 (2021). https://doi.org/10.1021/acsenergylett.0c02684
Y. Zhu, J. Yin, X. Zheng, A.H. Emwas, Y. Lei et al., Concentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries. Energy Environ. Sci. 14(8), 4463 (2021). https://doi.org/10.1039/d1ee01472b
B. Zhang, L. Qin, Y. Fang, Y. Chai, X. Xie et al., Tuning Zn2+ coordination tunnel by hierarchical gel electrolyte for dendrite-free zinc anode. Sci. Bull. (2022). https://doi.org/10.1016/j.scib.2022.01.027
L. Li, S. Liu, D. Ba, W. Liu, Q. Gui et al., Electrolyte concentration regulation boosting zinc storage stability of high-capacity K0.486V2O5 cathode for bendable quasi-solid-state zinc ion batteries. Nano-Micro Lett. 13, 34 (2021). https://doi.org/10.1007/s40820-020-00554-7
P. Sun, L. Ma, W. Zhou, M. Qiu, Z. Wang et al., Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew. Chem. Int. Ed. 60(33), 18247–18255 (2021). https://doi.org/10.1002/anie.202105756
A. Bayaguud, X. Luo, Y. Fu, C. Zhu, Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries. ACS Energy Lett. 5(9), 3012–3020 (2020). https://doi.org/10.1021/acsenergylett.0c01792
Z. Wang, L. Dong, W. Huang, H. Jia, Q. Zhao et al., Simultaneously regulating uniform Zn2+ flux and electron conduction by MOF/rGO interlayers for high-performance Zn anodes. Nano-Micro Lett. 13, 73 (2021). https://doi.org/10.1007/s40820-021-00594-7
J. Zheng, Q. Zhao, T. Tang, J. Yin, C.D. Quilty et al., Reversible epitaxial electrodeposition of metals in battery anodes. Science 366(6465), 645–648 (2019). https://doi.org/10.1126/science.aax6873
J. Zheng, Y. Deng, J. Yin, T. Tang, R. Garcia-Mendez et al., Textured electrodes: manipulating built-in crystallographic heterogeneity of metal electrodes via severe plastic deformation. Adv. Mater. 34(1), 2106867 (2021). https://doi.org/10.1002/adma.202106867
M. Zhou, S. Guo, J. Li, X. Luo, Z. Liu et al., Surface-preferred crystal plane for a stable and reversible zinc anode. Adv. Mater. 33(21), 2100187 (2021). https://doi.org/10.1002/adma.202100187
L. Kang, M. Cui, F. Jiang, Y. Gao, H. Luo et al., Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 8(25), 1801090 (2018). https://doi.org/10.1002/aenm.201801090
N. Zhang, S. Huang, Z. Yuan, J. Zhu, Z. Zhao et al., Direct self-assembly of MXene on Zn anodes for dendrite-free aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 60(6), 2861–2865 (2021). https://doi.org/10.1002/anie.202012322
K. Wu, J. Yi, X. Liu, Y. Sun, J. Cui et al., Regulating Zn deposition via an artificial solid–electrolyte interface with aligned dipoles for long life Zn anode. Nano-Micro Lett. 13, 79 (2021). https://doi.org/10.1007/s40820-021-00599-2
X. Yang, C. Li, Z. Sun, S. Yang, Z. Shi et al., Interfacial manipulation via in situ grown ZnSe cultivator toward highly reversible Zn metal anodes. Adv. Mater. 33(52), 2105951 (2021). https://doi.org/10.1002/adma.202105951
J. Hao, B. Li, X. Li, X. Zeng, S. Zhang et al., An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries. Adv. Mater. 32(34), 2003021 (2020). https://doi.org/10.1002/adma.202003021
X. Wang, J. Meng, X. Lin, Y. Yang, S. Zhou et al., Stable zinc metal anodes with textured crystal faces and functional zinc compound coatings. Adv. Funct. Mater. 31(48), 2106114 (2021). https://doi.org/10.1002/adfm.202106114
Z. Guo, L. Fan, C. Zhao, A. Chen, N. Liu et al., A dynamic and self-adapting interface coating for stable Zn-metal anodes. Adv. Mater. 34(2), 2105133 (2021). https://doi.org/10.1002/adma.202105133
Y. Jiao, F. Li, X. Jin, Q. Lei, L. Li et al., Engineering polymer glue towards 90% zinc utilization for 1000 hours to make high-performance Zn-ion batteries. Adv. Funct. Mater. 31(49), 2107652 (2021). https://doi.org/10.1002/adfm.202107652
S. Xie, Y. Li, X. Li, Y. Zhou, Z. Dang et al., Stable zinc anodes enabled by zincophilic Cu nanowire networks. Nano-Micro Lett. 14, 39 (2022). https://doi.org/10.1007/s40820-021-00783-4
H. Zhao, Y. Lei, 3D nanostructures for the next generation of high-performance nanodevices for electrochemical energy conversion and storage. Adv. Energy Mater. 10(28), 2001460 (2020). https://doi.org/10.1002/aenm.202001460
W. Guo, Z. Cong, Z. Guo, C. Chang, X. Liang et al., Dendrite-free Zn anode with dual channel 3D porous frameworks for rechargeable Zn batteries. Energy Storage Mater. 30, 104–112 (2020). https://doi.org/10.1016/j.ensm.2020.04.038
C. Li, X. Xie, H. Liu, P. Wang, C. Deng et al., Integrated ‘all-in-one’ strategy to stabilize zinc anodes for high-performance zinc-ion batteries. Natl. Sci. Rev. 9(3), nwab177 (2022). https://doi.org/10.1093/nsr/nwab177
Y. An, Y. Tian, S. Xiong, J. Feng, Y. Qian, Scalable and controllable synthesis of interface engineered nanoporous host for dendrite-free and high rate zinc metal batteries. ACS Nano 15(7), 11828–11842 (2021). https://doi.org/10.1021/acsnano.1c02928
H. Shi, Y.T. Zhou, R.Q. Yao, W.B. Wang, Q.H. Zhang et al., Intermetallic Cu5Zr clusters anchored on hierarchical nanoporous copper as efficient catalysts for hydrogen evolution reaction. Research 2020, 2987234 (2020). https://doi.org/10.34133/2020/2987234
H. Shi, Y.T. Zhou, R.Q. Yao, W.B. Wang, X. Ge et al., Spontaneously separated intermetallic Co3Mo from nanoporous copper as versatile electrocatalysts for highly efficient water splitting. Nat. Commun. 11, 2940 (2020). https://doi.org/10.1038/s41467-020-16769-6
I.C. Oppenheim, D.J. Trevor, C.E.D. Chidsey, P.L. Trevor, K. Sieradzki, In situ scanning tunneling microscopy of corrosion of silver-gold alloys. Science 254(5032), 687–689 (1991). https://doi.org/10.1126/science.254.5032.687
J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Evolution of nanoporosity in dealloying. Nature 410(6827), 450–453 (2001). https://doi.org/10.1038/35068529
X.Y. Lang, H.Y. Fu, C. Hou, G.F. Han, P. Yang et al., Nanoporous gold supported cobalt oxide microelectrodes as high-performance electrochemical biosensors. Nat. Commun. 4, 2169 (2013). https://doi.org/10.1038/ncomms3169
F. Jia, C. Yu, Z. Ai, L. Zhang, Fabrication of nanoporous gold film electrodes with ultrahigh surface area and electrochemical activity. Chem. Mater. 19(15), 3648–3653 (2007). https://doi.org/10.1021/cm070425l
K. Yan, Z. Lu, H.W. Lee, F. Xiong, P.C. Hsu et al., Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016). https://doi.org/10.1038/nenergy.2016.10
R. Zhang, X.R. Chen, X. Chen, X.B. Cheng, X.Q. Zhang et al., Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem. Int. Ed. 56(27), 7764–7768 (2017). https://doi.org/10.1002/anie.201702099
J.F. Parker, C.N. Chervin, E.S. Nelson, D.R. Rolison, J.W. Long, Wiring zinc in three dimensions re-writes battery performance—dendrite-free cycling. Energy Environ. Sci. 7(3), 1117–1124 (2014). https://doi.org/10.1039/c3ee43754j
J.F. Parker, C.N. Chervin, I.R. Pala, M. Machler, M.F. Burz et al., Rechargeable nickel–3D zinc batteries: an energy-dense, safer alternative to lithium-ion. Science 356(6336), 414–417 (2017). https://doi.org/10.1126/science.aak9991
R. Zhang, P.G. Yin, N. Wang, L. Guo, Photoluminescence and Raman scattering of ZnO nanorods. Solid State Sci. 11(4), 865–869 (2009). https://doi.org/10.1016/j.solidstatesciences.2008.10.016
C. Liu, W. Xu, C. Mei, M. Li, W. Chen et al., A chemically self-charging flexible solid-state zinc-ion battery based on VO2 cathode and polyacrylamide–chitin nanofiber hydrogel electrolyte. Adv. Energy Mater. 11(25), 2003902 (2021). https://doi.org/10.1002/aenm.202003902
Z. Lv, Y. Luo, Y. Tang, J. Wei, Z. Zhu et al., Editable supercapacitors with customizable stretchability based on mechanically strengthened ultralong MnO2 nanowire composite. Adv. Mater. 30(2), 1704531 (2018). https://doi.org/10.1002/adma.201704531