Surface Oxygen Injection in Tin Disulfide Nanosheets for Efficient CO2 Electroreduction to Formate and Syngas
Corresponding Author: Tao Yao
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 189
Abstract
Surface chemistry modification represents a promising strategy to tailor the adsorption and activation of reaction intermediates for enhancing activity. Herein, we designed a surface oxygen-injection strategy to tune the electronic structure of SnS2 nanosheets, which showed effectively enhanced electrocatalytic activity and selectivity of CO2 reduction to formate and syngas (CO and H2). The oxygen-injection SnS2 nanosheets exhibit a remarkable Faradaic efficiency of 91.6% for carbonaceous products with a current density of 24.1 mA cm−2 at −0.9 V vs RHE, including 83.2% for formate production and 16.5% for syngas with the CO/H2 ratio of 1:1. By operando X-ray absorption spectroscopy, we unravel the in situ surface oxygen doping into the matrix during reaction, thereby optimizing the Sn local electronic states. Operando synchrotron radiation infrared spectroscopy along with theoretical calculations further reveals that the surface oxygen doping facilitated the CO2 activation and enhanced the affinity for HCOO* species. This result demonstrates the potential strategy of surface oxygen injection for the rational design of advanced catalysts for CO2 electroreduction.
Highlights:
1 A surface oxygen-injection strategy is proposed to synergistically modulate the electronic structure of the SnS2 nanosheets, thereby regulating the oxophilicity of the catalyst surface.
2 The surface oxygen doping facilitates the CO2 activation and enhances the affinity for HCOO* species.
3 The oxygen-injection SnS2 nanosheets exhibit a remarkable Faradaic efficiency of 91.6% for carbonaceous products with a current density of 24.1 mA cm−2 at -0.9 V vs RHE.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Li, C. Qiu, S. Ren, Q. Dong, S. Zhang et al., Na+-gated water-conducting nanochannels for boosting CO2 conversion to liquid fuels. Science 367(6478), 667–671 (2020). https://doi.org/10.1126/science.aaz6053
- J. Gu, C-S. Hsu, L. Bai, H.M. Chen, X. Hu, Atomically dispersed f Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 364(6445), 1091–1094 (2019). https://doi.org/10.1126/science.aaw7515
- T. Möller, F. Scholten, T.N. Thanh, I. Sinev, J. Timoshenko et al., Electrocatalytic CO2 reduction on cuox nanocubes: tracking the evolution of chemical state, geometric structure, and catalytic selectivity using operando spectroscopy. Angew. Chem. Int. Ed. 132(41), 18130–18139 (2020). https://doi.org/10.1002/anie.202007136
- K. Jiang, Y. Huang, G. Zeng, F.M. Toma, W.A. Goddard et al., Effects of surface roughness on the electrochemical reduction of CO2 over Cu. ACS Energy Lett. 5(4), 1206–1214 (2020). https://doi.org/10.1021/acsenergylett.0c00482
- W. Ma, S. Xie, T. Liu, Q. Fan, J. Ye et al., Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C-C coupling over fluorine-modified copper. Nat. Catal. 3(6), 478–487 (2020). https://doi.org/10.1038/s41929-020-0450-0
- Q. Gong, P. Ding, M. Xu, X. Zhu, M. Wang et al., Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction. Nat. Commun. 10(1), 2807 (2019). https://doi.org/10.1038/s41467-019-10819-4
- G. Wen, D.U. Lee, B. Ren, F.M. Hassan, G. Jiang et al., Orbital interactions in Bi-Sn bimetallic electrocatalysts for highly selective electrochemical CO2 reduction toward formate production. Adv. Energy Mater. 8(31), 1802427 (2018). https://doi.org/10.1002/aenm.201802427
- X. Wei, Y. Li, L. Chen, J. Shi, Formic acid electro-synthesis by concurrent cathodic CO2 reduction and anodic CH3OH oxidation. Angew. Chem. Int. Ed. 60(6), 3148–3155 (2021). https://doi.org/10.1002/anie.202012066.
- Y. Xing, X. Kong, X. Guo, Y. Liu, Q. Li et al., Bi@Sn core–shell structure with compressive strain boosts the electroreduction of CO2 into formic acid. Adv. Sci. 7(22), 1902989 (2020). https://doi.org/10.1002/advs.201902989
- F. Li, L. Chen, M. Xue, T. Williams, Y. Zhang et al., Towards a better Sn: Efficient electrocatalytic reduction of CO2 to formate by Sn/SnS2 derived from SnS2 nanosheets. Nano Energy 31, 270–277 (2017). https://doi.org/10.1016/j.nanoen.2016.11.004
- J. Xu, S. Lai, M. Hu, S. Ge, R. Xie et al., Semimetal 1H-SnS2 enables high-efficiency electroreduction of CO2 to CO. Small Methods 4(10), 2000567 (2020). https://doi.org/10.1002/smtd.202000567
- X. Li. S. Dou, J. Wang, X., Investigation of structural evolution of SnO2 nanosheets towards electrocatalytic CO2 reduction. Chem. Asian J. 15, 1558–1561 (2020). https://doi.org/10.1002/asia.202000252
- X. Zheng, P. De Luna, F.P. García de Arquer, B. Zhang, N. Becknell et al., Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate. Joule 1(4), 794–805 (2017). https://doi.org/10.1016/j.joule.2017.09.014
- Z. Li, A. Cao, Q. Zheng, Y. Fu, T. Wang et al., Elucidation of the synergistic effect of dopants and vacancies on promoted selectivity for CO2 electroreduction to formate. Adv. Mater. 33(2), 2005113 (2021). https://doi.org/10.1002/adma.202005113
- J. Wang, S. Ning, M. Luo, D. Xiang, W. Chen et al., In-Sn alloy core-shell nanoparticles: In-doped snox shell enables high stability and activity towards selective formate production from electrochemical reduction of CO2. Appl. Catal. B: Environ. 288, 119979 (2021). https://doi.org/10.1016/j.apcatb.2021.119979
- J. Wu, Y. Xie, S. Du, Z. Ren, P. Yu et al., Heterophase engineering of SnO2/Sn3O4 drives enhanced carbon dioxide electrocatalytic reduction to formic acid. Sci. China Mater. 63(11), 2314–2324 (2020). https://doi.org/10.1007/s40843-020-1361-3
- C. Hu, L. Zhang, L. Li, W. Zhu, W. Deng et al., Theory assisted design of n-doped tin oxides for enhanced electrochemical CO2 activation and reduction. Sci. China Mater. 62(8), 1030–1036 (2019). https://doi.org/10.1007/s11426-019-9474-0
- W. Zhang, P. He, C. Wang, T. Ding, T. Chen et al., Operando evidence of Cu+ stabilization via a single-atom modifier for CO2 electroreduction. J. Mater. Chem. A 8(48), 25970–25977 (2020). https://doi.org/10.1039/D0TA08369K
- W. Guo, X. Tan, J. Bi, L. Xu, D. Yang et al., Atomic indium catalysts for switching CO2 electroreduction products from formate to CO. J. Am. Chem. Soc. 143(18), 6877–6885 (2021). https://doi.org/10.1021/jacs.1c00151
- I. Grigioni, L.K. Sagar, Y.C. Li, G. Lee, Y. Yan et al., CO2 electroreduction to formate at a partial current density of 930 mA cm–2 with inp colloidal quantum dot derived catalysts. ACS Energy Lett. 6(1), 79–84 (2021). (https://doi.org/10.1021/acsenergylett.0c02165
- R. Pang, P. Tian, H. Jiang, M. Zhu, X. Su et al., Tracking structural evolution: Operando regenerative CeOx/Bi interface structure for high-performance CO2 electroreduction. Nat. Sci. Rev. nwaa187 (2020). https://doi.org/10.1093/nsr/nwaa187
- F. Yang, X. Ma, W.-B. Cai, P. Song, W. Xu, Nature of oxygen-containing groups on carbon for high-efficiency electrocatalytic CO2 reduction reaction. J. Am. Chem. Soc. 141(51), 20451–20459 (2019). https://doi.org/10.1021/jacs.9b11123
- H. Li, N. Xiao, Y. Wang, C. Li, X. Ye et al., Nitrogen-doped tubular carbon foam electrodes for efficient electroreduction of CO2 to syngas with potential-independent CO/H2 ratios. J. Mater. Chem. A 7(32), 18852–18860 (2019). https://doi.org/10.1039/C9TA05904K
- R. Daiyan, E.C. Lovell, B. Huang, M. Zubair, J. Leverett et al., Uncovering atomic-scale stability and reactivity in engineered zinc oxide electrocatalysts for controllable syngas production. Adv. Energy Mater. 10(28), 2001381 (2020). https://doi.org/10.1002/aenm.202001381
- X. Wang, Z. Wang, F.P. Garcia de Arquer, C.-T. Dinh, A. Ozden et al., Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation Nat. Energy 5(6), 478–486 (2020). https://doi.org/10.1038/s41560-020-0607-8
- M.S. Xie, B.Y. Xia, Y. Li, Y. Yan, Y. Yang et al., Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons. Energy Environ. Sci. 9(5), 1687–1695 (2016). https://doi.org/10.1039/C5EE03694A
- J. Jeong, J.S. Kang, H. Shin, S.H. Lee, J. Jang et al., Self-supported mesoscopic tin oxide nanofilms for electrocatalytic reduction of carbon dioxide to formate. Chem. Commun. 57(28), 3445–3448 (2021). https://doi.org/10.1039/D1CC00927C
- S. Gao, Y. Lin, X. Jiao, Y. Sun, Q. Luo et al., Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 529(7584), 68–71 (2016). https://doi.org/10.1038/nature16455
- D.H. Won, C.H. Choi, J. Chung, M.W. Chung, E.-H. Kim et al., Rational design of a hierarchical tin dendrite electrode for efficient electrochemical reduction of CO2. CheSusChem 8(18), 3092–3098 (2015). https://doi.org/10.1002/cssc.201500694
- Y. Wang, Y. W.u, X. Liu, H. Zhang, M. Zhou et al., Atomic sandwiched p-n homojunctions. Angew. Chem. Int. Ed. 60, 3487 (2020). https://doi.org/10.1002/anie.202012734
- A. Zhang, R. He, H. Li, Y. Chen, T. Kong et al., Nickel doping in atomically thin tin disulfide nanosheets enables highly efficient CO2 reduction. Angew. Chem. Int. Ed. 130(34), 11120–11124 (2018). https://doi.org/10.1002/ange.201806043
- M.F. Baruch, J.E. Pander III, J.L. White, A.B. Bocarsly, Mechanistic insights into the reduction of CO2 on tin electrodes using in situ ATR-IR spectroscopy. ACS Catal. 5(5), 3148–3156 (2015). https://doi.org/10.1021/acscatal.5b00402
- H. Cheng, S. Liu, J. Zhang, T. Zhou, N. Zhang et al., Surface nitrogen-injection engineering for high formation rate of CO2 reduction to formate. Nano Lett. 20(8), 6097–6103 (2020). https://doi.org/10.1021/acs.nanolett.0c02144
- Z. Zhang, F. Ahmad, W. Zhao, W. Yan, W. Zhang et al., Enhanced electrocatalytic reduction of CO2 via chemical coupling between indium oxide and reduced graphene oxide. Nano Lett. 19(6), 4029–4034 (2019). https://doi.org/10.1021/acs.nanolett.9b01393
- A. Zhang, Y. Liang, H. Li, X. Zhao, Y. Chen et al., Harmonizing the electronic structures of the adsorbate and catalysts for efficient CO2 reduction. Nano Lett. 19(9), 6547–6553 (2019). https://doi.org/10.1021/acs.nanolett.9b02782
- Z. Chen, M.-R. Gao, N. Duan, J. Zhang, Y.-Q. Zhang et al., Tuning adsorption strength of CO2 and its intermediates on tin oxide-based electrocatalyst for efficient CO2 reduction towards carbonaceous products. Appl. Catal. B: Environ. 277, 119252 (2020). https://doi.org/10.1016/j.apcatb.2020.119252
- K. Fan, H. Zou, Y. Lu, H. Chen, F. Li et al., Direct observation of structural evolution of metal chalcogenide in electrocatalytic water oxidation. ACS Nano 12(12), 12369–12379 (2018). https://doi.org/10.1021/acsnano.8b06312
- S. Jin, Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts? ACS Energy Lett. 2(8), 1937–1938 (2017). https://doi.org/10.1021/acsenergylett.7b00679
- A. Dutta, A.K. Samantara, S.K. Dutta, B.K. Jena, N. Pradhan, Surface-oxidized dicobalt phosphide nanoneedles as a nonprecious, durable, and efficient oer catalyst. ACS Energy Lett. 1(1), 169–174 (2016). https://doi.org/10.1021/acsenergylett.6b00144
- A. Sivanantham, P. Ganesan, A. Vinu, S. Shanmugam, Surface activation and reconstruction of non-oxide-based catalysts through in situ electrochemical tuning for oxygen evolution reactions in alkaline media. ACS Catal. 10(1), 463–493 (2020). https://doi.org/10.1021/acscatal.9b04216
- O. Mabayoje, A. Shoola, B.R. Wygant, C.B. Mullins, The role of anions in metal chalcogenide oxygen evolution catalysis: electrodeposited thin films of nickel sulfide as “pre-catalysts”. ACS Energy Lett. 1(1), 195–201 (2016). https://doi.org/10.1021/acsenergylett.6b00084
- L. Liu, Y. Jiang, H. Zhao, J. Chen, J. Cheng et al., Engineering coexposed {001} and {101} facets in oxygen-deficient TiO2 nanocrystals for enhanced CO2 photoreduction under visible light. ACS Catal. 6(2), 1097–1108 (2016). https://doi.org/10.1021/acscatal.5b02098
- W. Zhang, Y. Hu, L. Ma, G. Zhu, Y. Wang et al., Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv. Sci. 5(1), 1700275 (2018). https://doi.org/10.1002/advs.201700275
- H. Yang, Y. Hu, J. Chen, M.S. Balogun, P. Fang et al., Intermediates adsorption engineering of CO2 electroreduction reaction in highly selective heterostructure Cu-based electrocatalysts for CO production. Adv. Energy Mater. 9(27), 1901396 (2019). https://doi.org/10.1002/aenm.201901396
References
H. Li, C. Qiu, S. Ren, Q. Dong, S. Zhang et al., Na+-gated water-conducting nanochannels for boosting CO2 conversion to liquid fuels. Science 367(6478), 667–671 (2020). https://doi.org/10.1126/science.aaz6053
J. Gu, C-S. Hsu, L. Bai, H.M. Chen, X. Hu, Atomically dispersed f Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 364(6445), 1091–1094 (2019). https://doi.org/10.1126/science.aaw7515
T. Möller, F. Scholten, T.N. Thanh, I. Sinev, J. Timoshenko et al., Electrocatalytic CO2 reduction on cuox nanocubes: tracking the evolution of chemical state, geometric structure, and catalytic selectivity using operando spectroscopy. Angew. Chem. Int. Ed. 132(41), 18130–18139 (2020). https://doi.org/10.1002/anie.202007136
K. Jiang, Y. Huang, G. Zeng, F.M. Toma, W.A. Goddard et al., Effects of surface roughness on the electrochemical reduction of CO2 over Cu. ACS Energy Lett. 5(4), 1206–1214 (2020). https://doi.org/10.1021/acsenergylett.0c00482
W. Ma, S. Xie, T. Liu, Q. Fan, J. Ye et al., Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C-C coupling over fluorine-modified copper. Nat. Catal. 3(6), 478–487 (2020). https://doi.org/10.1038/s41929-020-0450-0
Q. Gong, P. Ding, M. Xu, X. Zhu, M. Wang et al., Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction. Nat. Commun. 10(1), 2807 (2019). https://doi.org/10.1038/s41467-019-10819-4
G. Wen, D.U. Lee, B. Ren, F.M. Hassan, G. Jiang et al., Orbital interactions in Bi-Sn bimetallic electrocatalysts for highly selective electrochemical CO2 reduction toward formate production. Adv. Energy Mater. 8(31), 1802427 (2018). https://doi.org/10.1002/aenm.201802427
X. Wei, Y. Li, L. Chen, J. Shi, Formic acid electro-synthesis by concurrent cathodic CO2 reduction and anodic CH3OH oxidation. Angew. Chem. Int. Ed. 60(6), 3148–3155 (2021). https://doi.org/10.1002/anie.202012066.
Y. Xing, X. Kong, X. Guo, Y. Liu, Q. Li et al., Bi@Sn core–shell structure with compressive strain boosts the electroreduction of CO2 into formic acid. Adv. Sci. 7(22), 1902989 (2020). https://doi.org/10.1002/advs.201902989
F. Li, L. Chen, M. Xue, T. Williams, Y. Zhang et al., Towards a better Sn: Efficient electrocatalytic reduction of CO2 to formate by Sn/SnS2 derived from SnS2 nanosheets. Nano Energy 31, 270–277 (2017). https://doi.org/10.1016/j.nanoen.2016.11.004
J. Xu, S. Lai, M. Hu, S. Ge, R. Xie et al., Semimetal 1H-SnS2 enables high-efficiency electroreduction of CO2 to CO. Small Methods 4(10), 2000567 (2020). https://doi.org/10.1002/smtd.202000567
X. Li. S. Dou, J. Wang, X., Investigation of structural evolution of SnO2 nanosheets towards electrocatalytic CO2 reduction. Chem. Asian J. 15, 1558–1561 (2020). https://doi.org/10.1002/asia.202000252
X. Zheng, P. De Luna, F.P. García de Arquer, B. Zhang, N. Becknell et al., Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate. Joule 1(4), 794–805 (2017). https://doi.org/10.1016/j.joule.2017.09.014
Z. Li, A. Cao, Q. Zheng, Y. Fu, T. Wang et al., Elucidation of the synergistic effect of dopants and vacancies on promoted selectivity for CO2 electroreduction to formate. Adv. Mater. 33(2), 2005113 (2021). https://doi.org/10.1002/adma.202005113
J. Wang, S. Ning, M. Luo, D. Xiang, W. Chen et al., In-Sn alloy core-shell nanoparticles: In-doped snox shell enables high stability and activity towards selective formate production from electrochemical reduction of CO2. Appl. Catal. B: Environ. 288, 119979 (2021). https://doi.org/10.1016/j.apcatb.2021.119979
J. Wu, Y. Xie, S. Du, Z. Ren, P. Yu et al., Heterophase engineering of SnO2/Sn3O4 drives enhanced carbon dioxide electrocatalytic reduction to formic acid. Sci. China Mater. 63(11), 2314–2324 (2020). https://doi.org/10.1007/s40843-020-1361-3
C. Hu, L. Zhang, L. Li, W. Zhu, W. Deng et al., Theory assisted design of n-doped tin oxides for enhanced electrochemical CO2 activation and reduction. Sci. China Mater. 62(8), 1030–1036 (2019). https://doi.org/10.1007/s11426-019-9474-0
W. Zhang, P. He, C. Wang, T. Ding, T. Chen et al., Operando evidence of Cu+ stabilization via a single-atom modifier for CO2 electroreduction. J. Mater. Chem. A 8(48), 25970–25977 (2020). https://doi.org/10.1039/D0TA08369K
W. Guo, X. Tan, J. Bi, L. Xu, D. Yang et al., Atomic indium catalysts for switching CO2 electroreduction products from formate to CO. J. Am. Chem. Soc. 143(18), 6877–6885 (2021). https://doi.org/10.1021/jacs.1c00151
I. Grigioni, L.K. Sagar, Y.C. Li, G. Lee, Y. Yan et al., CO2 electroreduction to formate at a partial current density of 930 mA cm–2 with inp colloidal quantum dot derived catalysts. ACS Energy Lett. 6(1), 79–84 (2021). (https://doi.org/10.1021/acsenergylett.0c02165
R. Pang, P. Tian, H. Jiang, M. Zhu, X. Su et al., Tracking structural evolution: Operando regenerative CeOx/Bi interface structure for high-performance CO2 electroreduction. Nat. Sci. Rev. nwaa187 (2020). https://doi.org/10.1093/nsr/nwaa187
F. Yang, X. Ma, W.-B. Cai, P. Song, W. Xu, Nature of oxygen-containing groups on carbon for high-efficiency electrocatalytic CO2 reduction reaction. J. Am. Chem. Soc. 141(51), 20451–20459 (2019). https://doi.org/10.1021/jacs.9b11123
H. Li, N. Xiao, Y. Wang, C. Li, X. Ye et al., Nitrogen-doped tubular carbon foam electrodes for efficient electroreduction of CO2 to syngas with potential-independent CO/H2 ratios. J. Mater. Chem. A 7(32), 18852–18860 (2019). https://doi.org/10.1039/C9TA05904K
R. Daiyan, E.C. Lovell, B. Huang, M. Zubair, J. Leverett et al., Uncovering atomic-scale stability and reactivity in engineered zinc oxide electrocatalysts for controllable syngas production. Adv. Energy Mater. 10(28), 2001381 (2020). https://doi.org/10.1002/aenm.202001381
X. Wang, Z. Wang, F.P. Garcia de Arquer, C.-T. Dinh, A. Ozden et al., Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation Nat. Energy 5(6), 478–486 (2020). https://doi.org/10.1038/s41560-020-0607-8
M.S. Xie, B.Y. Xia, Y. Li, Y. Yan, Y. Yang et al., Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons. Energy Environ. Sci. 9(5), 1687–1695 (2016). https://doi.org/10.1039/C5EE03694A
J. Jeong, J.S. Kang, H. Shin, S.H. Lee, J. Jang et al., Self-supported mesoscopic tin oxide nanofilms for electrocatalytic reduction of carbon dioxide to formate. Chem. Commun. 57(28), 3445–3448 (2021). https://doi.org/10.1039/D1CC00927C
S. Gao, Y. Lin, X. Jiao, Y. Sun, Q. Luo et al., Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 529(7584), 68–71 (2016). https://doi.org/10.1038/nature16455
D.H. Won, C.H. Choi, J. Chung, M.W. Chung, E.-H. Kim et al., Rational design of a hierarchical tin dendrite electrode for efficient electrochemical reduction of CO2. CheSusChem 8(18), 3092–3098 (2015). https://doi.org/10.1002/cssc.201500694
Y. Wang, Y. W.u, X. Liu, H. Zhang, M. Zhou et al., Atomic sandwiched p-n homojunctions. Angew. Chem. Int. Ed. 60, 3487 (2020). https://doi.org/10.1002/anie.202012734
A. Zhang, R. He, H. Li, Y. Chen, T. Kong et al., Nickel doping in atomically thin tin disulfide nanosheets enables highly efficient CO2 reduction. Angew. Chem. Int. Ed. 130(34), 11120–11124 (2018). https://doi.org/10.1002/ange.201806043
M.F. Baruch, J.E. Pander III, J.L. White, A.B. Bocarsly, Mechanistic insights into the reduction of CO2 on tin electrodes using in situ ATR-IR spectroscopy. ACS Catal. 5(5), 3148–3156 (2015). https://doi.org/10.1021/acscatal.5b00402
H. Cheng, S. Liu, J. Zhang, T. Zhou, N. Zhang et al., Surface nitrogen-injection engineering for high formation rate of CO2 reduction to formate. Nano Lett. 20(8), 6097–6103 (2020). https://doi.org/10.1021/acs.nanolett.0c02144
Z. Zhang, F. Ahmad, W. Zhao, W. Yan, W. Zhang et al., Enhanced electrocatalytic reduction of CO2 via chemical coupling between indium oxide and reduced graphene oxide. Nano Lett. 19(6), 4029–4034 (2019). https://doi.org/10.1021/acs.nanolett.9b01393
A. Zhang, Y. Liang, H. Li, X. Zhao, Y. Chen et al., Harmonizing the electronic structures of the adsorbate and catalysts for efficient CO2 reduction. Nano Lett. 19(9), 6547–6553 (2019). https://doi.org/10.1021/acs.nanolett.9b02782
Z. Chen, M.-R. Gao, N. Duan, J. Zhang, Y.-Q. Zhang et al., Tuning adsorption strength of CO2 and its intermediates on tin oxide-based electrocatalyst for efficient CO2 reduction towards carbonaceous products. Appl. Catal. B: Environ. 277, 119252 (2020). https://doi.org/10.1016/j.apcatb.2020.119252
K. Fan, H. Zou, Y. Lu, H. Chen, F. Li et al., Direct observation of structural evolution of metal chalcogenide in electrocatalytic water oxidation. ACS Nano 12(12), 12369–12379 (2018). https://doi.org/10.1021/acsnano.8b06312
S. Jin, Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts? ACS Energy Lett. 2(8), 1937–1938 (2017). https://doi.org/10.1021/acsenergylett.7b00679
A. Dutta, A.K. Samantara, S.K. Dutta, B.K. Jena, N. Pradhan, Surface-oxidized dicobalt phosphide nanoneedles as a nonprecious, durable, and efficient oer catalyst. ACS Energy Lett. 1(1), 169–174 (2016). https://doi.org/10.1021/acsenergylett.6b00144
A. Sivanantham, P. Ganesan, A. Vinu, S. Shanmugam, Surface activation and reconstruction of non-oxide-based catalysts through in situ electrochemical tuning for oxygen evolution reactions in alkaline media. ACS Catal. 10(1), 463–493 (2020). https://doi.org/10.1021/acscatal.9b04216
O. Mabayoje, A. Shoola, B.R. Wygant, C.B. Mullins, The role of anions in metal chalcogenide oxygen evolution catalysis: electrodeposited thin films of nickel sulfide as “pre-catalysts”. ACS Energy Lett. 1(1), 195–201 (2016). https://doi.org/10.1021/acsenergylett.6b00084
L. Liu, Y. Jiang, H. Zhao, J. Chen, J. Cheng et al., Engineering coexposed {001} and {101} facets in oxygen-deficient TiO2 nanocrystals for enhanced CO2 photoreduction under visible light. ACS Catal. 6(2), 1097–1108 (2016). https://doi.org/10.1021/acscatal.5b02098
W. Zhang, Y. Hu, L. Ma, G. Zhu, Y. Wang et al., Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv. Sci. 5(1), 1700275 (2018). https://doi.org/10.1002/advs.201700275
H. Yang, Y. Hu, J. Chen, M.S. Balogun, P. Fang et al., Intermediates adsorption engineering of CO2 electroreduction reaction in highly selective heterostructure Cu-based electrocatalysts for CO production. Adv. Energy Mater. 9(27), 1901396 (2019). https://doi.org/10.1002/aenm.201901396