A Self-supported Graphene/Carbon Nanotube Hollow Fiber for Integrated Energy Conversion and Storage
Corresponding Author: Tao Chen
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 64
Abstract
Wearable fiber-shaped integrated energy conversion and storage devices have attracted increasing attention, but it remains a big challenge to achieve a common fiber electrode for both energy conversion and storage with high performance. Here, we grow aligned carbon nanotubes (CNTs) array on continuous graphene (G) tube, and their seamlessly connected structure provides the obtained G/CNTs composite fiber with a unique self-supported hollow structure. Taking advantage of the hollow structure, other active materials (e.g., polyaniline, PANI) could be easily functionalized on both inner and outer surfaces of the tube, and the obtained G/CNTs/PANI composite hollow fibers achieve a high mass loading (90%) of PANI. The G/CNTs/PANI composite hollow fibers can not only be used for high-performance fiber-shaped supercapacitor with large specific capacitance of 472 mF cm−2, but also can replace platinum wire to build fiber-shaped dye-sensitized solar cell (DSSC) with a high power conversion efficiency of 4.20%. As desired, the integrated device of DSSC and supercapacitor with the G/CNTs/PANI composite hollow fiber used as the common electrode exhibits a total power conversion and storage efficiency as high as 2.1%. Furthermore, the self-supported G/CNTs hollow fiber could be further functionalized with other active materials for building other flexible and wearable electronics.
Highlights:
1 A novel self-supported hollow fiber with CNT array grown from graphene layer is designed and developed. The fiber provides a perfect conductive platform to deposit PANI on both inner and outer surfaces of the fiber with high mass loading.
2 With G/CNTs/PANI hollow fiber as a common electrode, an integrated energy device with a total power conversion and storage efficiency of 2.1% is realized.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Lee, H. Kwon, J. Seo, S. Shin, J.H. Koo et al., Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv. Mater. 27, 2433–2439 (2015). https://doi.org/10.1002/adma.201500009
- S. Ryu, P. Lee, J.B. Chou, R. Xu, R. Zhao, A.J. Hart, S.-G. Kim, Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion. ACS Nano 9, 5929–5936 (2015). https://doi.org/10.1021/acsnano.5b00599
- C. Choi, J.M. Lee, S.H. Kim, S.J. Kim, J. Di, R.H. Baughman, Twistable and stretchable sandwich structured fiber for wearable sensors and supercapacitors. Nano Lett. 16, 7677–7684 (2016). https://doi.org/10.1021/acs.nanolett.6b03739
- J. Zhong, Y. Zhang, Q. Zhong, Q. Hu, B. Hu, Z.L. Wang, J. Zhou, Fiber-based generator for wearable electronics and mobile medication. ACS Nano 8, 6273–6280 (2014). https://doi.org/10.1021/nn501732z
- Y. Niu, R. Wang, W. Jiao, G. Ding, L. Hao, F. Yang, X. He, MoS2 graphene fiber based gas sensing devices. Carbon 9, 34–41 (2015). https://doi.org/10.1016/j.carbon.2015.08.002
- Y. Zhou, J. He, H. Wang, K. Qi, N. Nan et al., Highly sensitive, self-powered and wearable electronic skin based on pressure-sensitive nanofiber woven fabric sensor. Sci. Rep. 7, 12949 (2017). https://doi.org/10.1038/s41598-017-13281-8
- Y. Cheng, R. Wang, H. Zhai, J. Sun, Stretchable electronic skin based on silver nanowire composite fiber electrodes for sensing pressure, proximity, and multidirectional strain. Nanoscale 9, 3834–3842 (2017). https://doi.org/10.1039/c7nr00121e
- B.S. Shim, W. Chen, C. Doty, C. Xu, N.A. Kotov, Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes. Nano Lett. 8, 4151–4157 (2008). https://doi.org/10.1021/nl801495p
- Y.C. Lai, J. Deng, S.L. Zhang, S. Niu, H. Guo, Z.L Wang, Single-thread-based wearable and highly stretchable triboelectric nanogenerators and their applications in cloth-based self-powered human-interactive and biomedical sensing. Adv. Funct. Mater. 27, 1604462 (2017). https://doi.org/10.1002/adfm.201604462
- J. Lee, S. Shin, S. Lee, J. Song, S. Kang et al., Highly sensitive multifilament fiber strain sensors with ultrabroad sensing range for textile electronics. ACS Nano 12, 4259–4268 (2018). https://doi.org/10.1021/acsnano.7b07795
- Y. Fu, X. Cai, H. Wu, Z. Lv, S. Hou, M. Peng, X. Yu, D. Zou, Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage. Adv. Mater. 24, 5713–5718 (2012). https://doi.org/10.1002/adma.201202930
- S. He, Y. Hu, J. Wan, Q. Gao, Y. Wang et al., Biocompatible carbon nanotube fibers for implantable supercapacitors. Carbon 122, 162–167 (2017). https://doi.org/10.1016/j.carbon.2017.06.053
- H.J. Sim, C. Choi, D.Y. Lee, H. Kim, J.-H. Yun et al., Biomolecule based fiber supercapacitor for implantable device. Nano Energy 47, 385–392 (2018). https://doi.org/10.1016/j.nanoen.2018.03.011
- T. Chen, S. Wang, Z. Yang, Q. Feng, X. Sun, L. Li, Z.-S. Wang, H. Peng, Flexible, light-weight, ultrastrong, and semiconductive carbon nanotube fibers for a highly efficient solar cell. Angew. Chem. Int. Ed. 50, 1815–1819 (2011). https://doi.org/10.1002/anie.201003870
- M. Peng, D. Zou, Flexible fiber/wire-shaped solar cells in progress: Properties, materials, and designs. J. Mater. Chem. A 3, 20435–20458 (2015). https://doi.org/10.1039/c5ta03731j
- J. Bae, M.K. Song, Y.J. Park, J.M. Kim, M. Liu, Z.L. Wang, Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. Angew. Chem. Int. Ed. 50, 1683–1687 (2011). https://doi.org/10.1002/anie.201006062
- G. Qu, J. Cheng, X. Li, D. Yuan, P. Chen, X. Chen, B. Wang, H. Peng, A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode. Adv. Mater. 28, 3646–3652 (2016). https://doi.org/10.1002/adma.201600689
- X. Xiao, T. Li, P. Yang, Y. Gao, H. Jin et al., Fiber-based all-solid-state flexible supercapacitors for self-powered systems. ACS Nano 6, 9200–9206 (2012). https://doi.org/10.1021/nn303530k
- Z. Xiong, C. Liao, W. Han, X. Wang, Mechanically tough large-area hierarchical porous graphene films for high-performance flexible supercapacitor applications. Adv. Mater. 27, 4469–4475 (2015). https://doi.org/10.1002/adma.201501983
- H. Sun, J. Deng, L. Qiu, X. Fang, H. Peng, Recent progress in solar cells based on one-dimensional nanomaterials. Energy Environ. Sci. 8, 1139–1159 (2015). https://doi.org/10.1039/C4EE03853C
- T. Lv, Y. Yao, N. Li, T. Chen, Wearable fiber-shaped energy conversion and storage devices based on aligned carbon nanotubes. Nano Today 11, 644–660 (2016). https://doi.org/10.1016/j.nantod.2016.08.010
- F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, V. Pellegrini, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347, 1246501 (2015). https://doi.org/10.1126/science.1246501
- J. Bae, Y.J. Park, M. Lee, S.N. Cha, Y.J. Choi, C.S. Lee, J.M. Kim, Z.L. Wang, Single-fiber-based hybridization of energy converters and storage units using graphene as electrodes. Adv. Mater. 23, 3446–3449 (2011). https://doi.org/10.1002/adma.201101345
- H. Sun, X. You, J. Deng, X. Chen, Z. Yang, J. Ren, H. Peng, Novel graphene/carbon nanotube composite fibers for efficient wire-shaped miniature energy devices. Adv. Mater. 26, 2868–2873 (2014). https://doi.org/10.1002/adma.201305188
- Z. Yang, H. Sun, T. Chen, L. Qiu, Y. Luo, H. Peng, Photovoltaic wire derived from a graphene composite fiber achieving an 8.45% energy conversion efficiency. Angew. Chem. Int. Ed. 52, 7545–7548 (2013). https://doi.org/10.1002/anie.201301776
- T. Chen, L. Qiu, Z. Yang, Z. Cai, J. Ren, H. Li, H. Lin, X. Sun, H. Peng, An integrated “energy wire” for both photoelectric conversion and energy storage. Angew. Chem. Int. Ed. 51, 11977–11980 (2012). https://doi.org/10.1002/anie.201207023
- Q. Wang, X. Wang, J. Xu, X. Ouyang, X. Hou, D. Chen, R. Wang, G. Shen, Flexible coaxial-type fiber supercapacitor based on NiCo2O4 nanosheets electrodes. Nano Energy 8, 44–51 (2014). https://doi.org/10.1016/j.nanoen.2014.05.014
- X. Li, X. Li, J. Cheng, D. Yuan, W. Ni, Q. Guan, L. Gao, B. Wang, Fiber-shaped solid-state supercapacitors based on molybdenum disulfide nanosheets for a self-powered photodetecting system. Nano Energy 21, 228–237 (2016). https://doi.org/10.1016/j.nanoen.2016.01.011
- Y. Ma, P. Li, J.W. Sedloff, X. Zhang, H. Zhang, J. Liu, Conductive graphene fibers for wire-shaped supercapacitors strengthened by unfunctionalized few-walled carbon nanotubes. ACS Nano 9, 1352–1359 (2015). https://doi.org/10.1021/nn505412v
- T. Chen, L. Dai, Macroscopic graphene fibers directly assembled from CVD-grown fiber-shaped hollow graphene tubes. Angew. Chem. Int. Ed. 54, 14947–14950 (2015). https://doi.org/10.1002/anie.201507246
- L. Dong, G. Liang, C. Xu, W. Liu, Z. Pan, E. Zhou, F. Kang, Q.-H. Yang, Multi hierarchical construction-induced superior capacitive performances of flexible electrodes for wearable energy storage. Nano Energy 34, 242–248 (2017). https://doi.org/10.1016/j.nanoen.2017.02.031
- L. Dong, G. Liang, C. Xu, D. Ren, J. Wang, Z. Pan, B. Li, F. Kang, Q.-H. Yang, Stacking up layers of polyaniline/carbon nanotube networks inside papers as highly flexible electrodes with large areal capacitance and superior rate capability. J. Mater. Chem. A 5, 19934–19942 (2017). https://doi.org/10.1039/c7ta06135h
- T. Lv, Y. Yao, N. Li, T. Chen, Highly stretchable supercapacitors based on aligned carbon nanotube/molybdenum disulfide composites. Angew. Chem. Int. Ed. 55, 9191–9195 (2016). https://doi.org/10.1002/anie.201603356
- J. Sun, Y. Huang, C. Fu, Z. Wang, Y. Huang, M. Zhu, C. Zhi, H. Hu, High-performance stretchable yarn supercapacitor based on PPy@ CNTs@ urethane elastic fiber core spun yarn. Nano Energy 27, 230–237 (2016). https://doi.org/10.1016/j.nanoen.2016.07.008
- Z. Zhang, F. Xiao, S. Wang, Hierarchically structured MnO2/graphene/carbon fiber and porous graphene hydrogel wrapped copper wire for fiber-based flexible all-solid-state asymmetric supercapacitors. J. Mater. Chem. A 3, 11215–11223 (2015). https://doi.org/10.1039/c5ta02331a
- H. Yang, H. Xu, M. Li, L. Zhang, Y. Huang, X. Hu, Assembly of NiO/Ni(OH)2/PEDOT nanocomposites on contra wires for fiber-shaped flexible asymmetric supercapacitors. ACS Appl. Mater. Interfaces. 8, 1774–1779 (2016). https://doi.org/10.1021/acsami.5b09526
- J. Sun, Y. Huang, C. Fu, Y. Huang, M. Zhu, X. Tao, C. Zhi, H. Hu, A high performance fiber-shaped PEDOT@MnO2//C@Fe3O4 asymmetric supercapacitor for wearable electronics. J. Mater. Chem. A 4, 14877–14883 (2016). https://doi.org/10.1039/C6TA05898A
- Y. Huang, H. Hu, Y. Huang, M. Zhu, W. Meng et al., From industrially weavable and knittable highly conductive yarns to large wearable energy storage textiles. ACS Nano 9, 4766–4775 (2015). https://doi.org/10.1021/acsnano.5b00860
- X. Pu, L. Li, M. Liu, C. Jiang, C. Du, Z. Zhao, W. Hu, Z.L. Wang, Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv. Mater. 28, 98–105 (2016). https://doi.org/10.1002/adma.201504403
- J. Velten, Z. Kuanyshbekova, O. Goktepe, F. Goktepe, A. Zakhidov, Weavable dye sensitized solar cells exploiting carbon nanotube yarns. Appl. Phys. Lett. 102, 203902 (2013). https://doi.org/10.1063/1.4807891
- M. Peng, K. Yan, H. Hu, D. Shen, W. Song, D. Zou, Efficient fiber shaped zinc bromide batteries and dye sensitized solar cells for flexible power sources. J. Mater. Chem. C 3, 2157–2165 (2015). https://doi.org/10.1039/c4tc02997f
- G. Calogero, P. Calandra, A. Irrera, A. Sinopoli, I. Citro, G. Di Marco, A new type of transparent and low cost counter-electrode based on platinum nanoparticles for dye-sensitized solar cells. Energy Environ. Sci. 4(5), 1838–1844 (2011). https://doi.org/10.1039/c0ee00463d
References
J. Lee, H. Kwon, J. Seo, S. Shin, J.H. Koo et al., Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv. Mater. 27, 2433–2439 (2015). https://doi.org/10.1002/adma.201500009
S. Ryu, P. Lee, J.B. Chou, R. Xu, R. Zhao, A.J. Hart, S.-G. Kim, Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion. ACS Nano 9, 5929–5936 (2015). https://doi.org/10.1021/acsnano.5b00599
C. Choi, J.M. Lee, S.H. Kim, S.J. Kim, J. Di, R.H. Baughman, Twistable and stretchable sandwich structured fiber for wearable sensors and supercapacitors. Nano Lett. 16, 7677–7684 (2016). https://doi.org/10.1021/acs.nanolett.6b03739
J. Zhong, Y. Zhang, Q. Zhong, Q. Hu, B. Hu, Z.L. Wang, J. Zhou, Fiber-based generator for wearable electronics and mobile medication. ACS Nano 8, 6273–6280 (2014). https://doi.org/10.1021/nn501732z
Y. Niu, R. Wang, W. Jiao, G. Ding, L. Hao, F. Yang, X. He, MoS2 graphene fiber based gas sensing devices. Carbon 9, 34–41 (2015). https://doi.org/10.1016/j.carbon.2015.08.002
Y. Zhou, J. He, H. Wang, K. Qi, N. Nan et al., Highly sensitive, self-powered and wearable electronic skin based on pressure-sensitive nanofiber woven fabric sensor. Sci. Rep. 7, 12949 (2017). https://doi.org/10.1038/s41598-017-13281-8
Y. Cheng, R. Wang, H. Zhai, J. Sun, Stretchable electronic skin based on silver nanowire composite fiber electrodes for sensing pressure, proximity, and multidirectional strain. Nanoscale 9, 3834–3842 (2017). https://doi.org/10.1039/c7nr00121e
B.S. Shim, W. Chen, C. Doty, C. Xu, N.A. Kotov, Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes. Nano Lett. 8, 4151–4157 (2008). https://doi.org/10.1021/nl801495p
Y.C. Lai, J. Deng, S.L. Zhang, S. Niu, H. Guo, Z.L Wang, Single-thread-based wearable and highly stretchable triboelectric nanogenerators and their applications in cloth-based self-powered human-interactive and biomedical sensing. Adv. Funct. Mater. 27, 1604462 (2017). https://doi.org/10.1002/adfm.201604462
J. Lee, S. Shin, S. Lee, J. Song, S. Kang et al., Highly sensitive multifilament fiber strain sensors with ultrabroad sensing range for textile electronics. ACS Nano 12, 4259–4268 (2018). https://doi.org/10.1021/acsnano.7b07795
Y. Fu, X. Cai, H. Wu, Z. Lv, S. Hou, M. Peng, X. Yu, D. Zou, Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage. Adv. Mater. 24, 5713–5718 (2012). https://doi.org/10.1002/adma.201202930
S. He, Y. Hu, J. Wan, Q. Gao, Y. Wang et al., Biocompatible carbon nanotube fibers for implantable supercapacitors. Carbon 122, 162–167 (2017). https://doi.org/10.1016/j.carbon.2017.06.053
H.J. Sim, C. Choi, D.Y. Lee, H. Kim, J.-H. Yun et al., Biomolecule based fiber supercapacitor for implantable device. Nano Energy 47, 385–392 (2018). https://doi.org/10.1016/j.nanoen.2018.03.011
T. Chen, S. Wang, Z. Yang, Q. Feng, X. Sun, L. Li, Z.-S. Wang, H. Peng, Flexible, light-weight, ultrastrong, and semiconductive carbon nanotube fibers for a highly efficient solar cell. Angew. Chem. Int. Ed. 50, 1815–1819 (2011). https://doi.org/10.1002/anie.201003870
M. Peng, D. Zou, Flexible fiber/wire-shaped solar cells in progress: Properties, materials, and designs. J. Mater. Chem. A 3, 20435–20458 (2015). https://doi.org/10.1039/c5ta03731j
J. Bae, M.K. Song, Y.J. Park, J.M. Kim, M. Liu, Z.L. Wang, Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. Angew. Chem. Int. Ed. 50, 1683–1687 (2011). https://doi.org/10.1002/anie.201006062
G. Qu, J. Cheng, X. Li, D. Yuan, P. Chen, X. Chen, B. Wang, H. Peng, A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode. Adv. Mater. 28, 3646–3652 (2016). https://doi.org/10.1002/adma.201600689
X. Xiao, T. Li, P. Yang, Y. Gao, H. Jin et al., Fiber-based all-solid-state flexible supercapacitors for self-powered systems. ACS Nano 6, 9200–9206 (2012). https://doi.org/10.1021/nn303530k
Z. Xiong, C. Liao, W. Han, X. Wang, Mechanically tough large-area hierarchical porous graphene films for high-performance flexible supercapacitor applications. Adv. Mater. 27, 4469–4475 (2015). https://doi.org/10.1002/adma.201501983
H. Sun, J. Deng, L. Qiu, X. Fang, H. Peng, Recent progress in solar cells based on one-dimensional nanomaterials. Energy Environ. Sci. 8, 1139–1159 (2015). https://doi.org/10.1039/C4EE03853C
T. Lv, Y. Yao, N. Li, T. Chen, Wearable fiber-shaped energy conversion and storage devices based on aligned carbon nanotubes. Nano Today 11, 644–660 (2016). https://doi.org/10.1016/j.nantod.2016.08.010
F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, V. Pellegrini, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347, 1246501 (2015). https://doi.org/10.1126/science.1246501
J. Bae, Y.J. Park, M. Lee, S.N. Cha, Y.J. Choi, C.S. Lee, J.M. Kim, Z.L. Wang, Single-fiber-based hybridization of energy converters and storage units using graphene as electrodes. Adv. Mater. 23, 3446–3449 (2011). https://doi.org/10.1002/adma.201101345
H. Sun, X. You, J. Deng, X. Chen, Z. Yang, J. Ren, H. Peng, Novel graphene/carbon nanotube composite fibers for efficient wire-shaped miniature energy devices. Adv. Mater. 26, 2868–2873 (2014). https://doi.org/10.1002/adma.201305188
Z. Yang, H. Sun, T. Chen, L. Qiu, Y. Luo, H. Peng, Photovoltaic wire derived from a graphene composite fiber achieving an 8.45% energy conversion efficiency. Angew. Chem. Int. Ed. 52, 7545–7548 (2013). https://doi.org/10.1002/anie.201301776
T. Chen, L. Qiu, Z. Yang, Z. Cai, J. Ren, H. Li, H. Lin, X. Sun, H. Peng, An integrated “energy wire” for both photoelectric conversion and energy storage. Angew. Chem. Int. Ed. 51, 11977–11980 (2012). https://doi.org/10.1002/anie.201207023
Q. Wang, X. Wang, J. Xu, X. Ouyang, X. Hou, D. Chen, R. Wang, G. Shen, Flexible coaxial-type fiber supercapacitor based on NiCo2O4 nanosheets electrodes. Nano Energy 8, 44–51 (2014). https://doi.org/10.1016/j.nanoen.2014.05.014
X. Li, X. Li, J. Cheng, D. Yuan, W. Ni, Q. Guan, L. Gao, B. Wang, Fiber-shaped solid-state supercapacitors based on molybdenum disulfide nanosheets for a self-powered photodetecting system. Nano Energy 21, 228–237 (2016). https://doi.org/10.1016/j.nanoen.2016.01.011
Y. Ma, P. Li, J.W. Sedloff, X. Zhang, H. Zhang, J. Liu, Conductive graphene fibers for wire-shaped supercapacitors strengthened by unfunctionalized few-walled carbon nanotubes. ACS Nano 9, 1352–1359 (2015). https://doi.org/10.1021/nn505412v
T. Chen, L. Dai, Macroscopic graphene fibers directly assembled from CVD-grown fiber-shaped hollow graphene tubes. Angew. Chem. Int. Ed. 54, 14947–14950 (2015). https://doi.org/10.1002/anie.201507246
L. Dong, G. Liang, C. Xu, W. Liu, Z. Pan, E. Zhou, F. Kang, Q.-H. Yang, Multi hierarchical construction-induced superior capacitive performances of flexible electrodes for wearable energy storage. Nano Energy 34, 242–248 (2017). https://doi.org/10.1016/j.nanoen.2017.02.031
L. Dong, G. Liang, C. Xu, D. Ren, J. Wang, Z. Pan, B. Li, F. Kang, Q.-H. Yang, Stacking up layers of polyaniline/carbon nanotube networks inside papers as highly flexible electrodes with large areal capacitance and superior rate capability. J. Mater. Chem. A 5, 19934–19942 (2017). https://doi.org/10.1039/c7ta06135h
T. Lv, Y. Yao, N. Li, T. Chen, Highly stretchable supercapacitors based on aligned carbon nanotube/molybdenum disulfide composites. Angew. Chem. Int. Ed. 55, 9191–9195 (2016). https://doi.org/10.1002/anie.201603356
J. Sun, Y. Huang, C. Fu, Z. Wang, Y. Huang, M. Zhu, C. Zhi, H. Hu, High-performance stretchable yarn supercapacitor based on PPy@ CNTs@ urethane elastic fiber core spun yarn. Nano Energy 27, 230–237 (2016). https://doi.org/10.1016/j.nanoen.2016.07.008
Z. Zhang, F. Xiao, S. Wang, Hierarchically structured MnO2/graphene/carbon fiber and porous graphene hydrogel wrapped copper wire for fiber-based flexible all-solid-state asymmetric supercapacitors. J. Mater. Chem. A 3, 11215–11223 (2015). https://doi.org/10.1039/c5ta02331a
H. Yang, H. Xu, M. Li, L. Zhang, Y. Huang, X. Hu, Assembly of NiO/Ni(OH)2/PEDOT nanocomposites on contra wires for fiber-shaped flexible asymmetric supercapacitors. ACS Appl. Mater. Interfaces. 8, 1774–1779 (2016). https://doi.org/10.1021/acsami.5b09526
J. Sun, Y. Huang, C. Fu, Y. Huang, M. Zhu, X. Tao, C. Zhi, H. Hu, A high performance fiber-shaped PEDOT@MnO2//C@Fe3O4 asymmetric supercapacitor for wearable electronics. J. Mater. Chem. A 4, 14877–14883 (2016). https://doi.org/10.1039/C6TA05898A
Y. Huang, H. Hu, Y. Huang, M. Zhu, W. Meng et al., From industrially weavable and knittable highly conductive yarns to large wearable energy storage textiles. ACS Nano 9, 4766–4775 (2015). https://doi.org/10.1021/acsnano.5b00860
X. Pu, L. Li, M. Liu, C. Jiang, C. Du, Z. Zhao, W. Hu, Z.L. Wang, Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv. Mater. 28, 98–105 (2016). https://doi.org/10.1002/adma.201504403
J. Velten, Z. Kuanyshbekova, O. Goktepe, F. Goktepe, A. Zakhidov, Weavable dye sensitized solar cells exploiting carbon nanotube yarns. Appl. Phys. Lett. 102, 203902 (2013). https://doi.org/10.1063/1.4807891
M. Peng, K. Yan, H. Hu, D. Shen, W. Song, D. Zou, Efficient fiber shaped zinc bromide batteries and dye sensitized solar cells for flexible power sources. J. Mater. Chem. C 3, 2157–2165 (2015). https://doi.org/10.1039/c4tc02997f
G. Calogero, P. Calandra, A. Irrera, A. Sinopoli, I. Citro, G. Di Marco, A new type of transparent and low cost counter-electrode based on platinum nanoparticles for dye-sensitized solar cells. Energy Environ. Sci. 4(5), 1838–1844 (2011). https://doi.org/10.1039/c0ee00463d