Curtailing Carbon Usage with Addition of Functionalized NiFe2O4 Quantum Dots: Toward More Practical S Cathodes for Li–S Cells
Corresponding Author: Jian Jiang
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 145
Abstract
Smart combination of manifold carbonaceous materials with admirable functionalities (like full of pores/functional groups, high specific surface area) is still a mainstream/preferential way to address knotty issues of polysulfides dissolution/shuttling and poor electrical conductivity for S-based cathodes. However, extensive use of conductive carbon fillers in cell designs/technology would induce electrolytic overconsumption and thereby shelve high-energy-density promise of Li–S cells. To cut down carbon usage, we propose the incorporation of multi-functionalized NiFe2O4 quantum dots (QDs) as affordable additive substitutes. The total carbon content can be greatly curtailed from 26% (in traditional S/C cathodes) to a low/commercial mass ratio (~ 5%). Particularly, note that NiFe2O4 QDs additives own superb chemisorption interactions with soluble Li2Sn molecules and proper catalytic features facilitating polysulfide phase conversions and can also strengthen charge-transfer capability/redox kinetics of overall cathode systems. Benefiting from these intrinsic properties, such hybrid cathodes demonstrate prominent rate behaviors (decent capacity retention with ~ 526 mAh g−1 even at 5 A g−1) and stable cyclic performance in LiNO3-free electrolytes (only ~ 0.08% capacity decay per cycle in 500 cycles at 0.2 A g−1). This work may arouse tremendous research interest in seeking other alternative QDs and offer an economical/more applicable methodology to construct low-carbon-content electrodes for practical usage.
Highlights
1 Using NiFe2O4 quantum dots (QDs) as additive substitutes, the total carbon content in cathodes is sharply reduced from original ~ 26% (in traditional S/C cathodes) to a low mass ratio of ~ 5%.
2 The as-built S@CB ⊆ QDs demonstrate more appropriate tap density (~1.32 g cm−3) and specific surface area (~19.9 m2 g−1) values than S@CB counterparts.
3 NiFe2O4 QDs additives possess superb chemisorption interactions with Li2Sn molecules and proper charge-transfer/catalytic features to strengthen redox kinetics of overall cathode systems.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Cheng, J. Shang, Y.M. Sun, L.K. Ono, D.R. Wang et al., Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium. Nat. Commun. 9, 4480 (2018). https://doi.org/10.1038/s41467-018-06879-7
- Z.L. Xu, S.H. Lin, N. Onofrio, L.M. Zhou, F.Y. Shi, W. Lu, K. Kang, Q. Zhang, S.P. Lau, Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries. Nat. Commun. 9, 4164 (2018). https://doi.org/10.1038/s41467-018-06629-9
- L.L. Fan, M. Li, X.F. Li, W. Xiao, Z.W. Chen, J. Lu, Interlayer material selection for Lithium-Sulfur batteries. Joule 3, 361–386 (2019). https://doi.org/10.1016/j.joule.2019.01.003
- J. Pu, Z.H. Shen, J.X. Zheng, W.L. Wu, C. Zhu et al., Multifunctional Co3S4@sulfur nanotubes for enhanced Lithium-Sulfur battery performance. Nano Energy 37, 7–14 (2017). https://doi.org/10.1016/j.nanoen.2017.05.009
- Z.H. Li, Q. He, X. Xu, Y. Zhao, X.W. Liu et al., A 3D nitrogen-doped graphene/TiN nanowires composite as a strong polysulfides anchor for lithium-sulfur batteries with enhanced rate performance and high areal capacity. Adv. Energy Mater. 30, 1804089 (2018). https://doi.org/10.1002/adma.201804089
- S. Choi, C. Kim, J.M. Suh, H.W. Jang, Reduced graphene oxide-based materials for electrochemical energy conversion reactions. Carbon Energy 1, 85–108 (2019). https://doi.org/10.1002/cey2.13
- Y. Zhong, X.H. Xia, S.J. Deng, J.Y. Zhan, R.Y. Fang et al., Popcorn inspired porous macrocellular carbon: rapid puffng fabrication from rice and its applications in lithium-sulfur batteries. Adv. Energy Mater. 8, 1701110 (2017). https://doi.org/10.1002/aenm.201701110
- Y.Y. Shi, G.J. Liu, R.C. Jin, H. Xu, Q.Y. Wang, S.M. Gao, Carbon materials from melamine sponges for supercapacitors and lithium battery electrode materials: a review. Carbon Energy 1, 253–275 (2019). https://doi.org/10.1002/cey2.19
- F. Liu, C.J. Wang, X. Sui, M.A. Riaz, M.Y. Xu, L. Wei, Y. Chen, Synthesis of graphene materials by electrochemical exfoliation: recent progress and future potential. Carbon Energy 1, 173–199 (2019). https://doi.org/10.1002/cey2.14
- Q. Wu, L.J. Yang, X.Z. Wang, Z. Hu, From carbon-based nanotubes to nanocages for advanced energy conversion and storage. Acc. Chem. Res. 50, 435–444 (2017). https://doi.org/10.1021/acs.accounts.6b00541
- A. Bhargav, J.R. He, A. Gupta, A. Manthiram, Lithium-sulfur batteries: attaining the critical metrics. Joule 4, 1–6 (2020). https://doi.org/10.1016/j.joule.2020.01.001
- S.H. Chung, C.H. Chang, A. Manthiram, Progress on the critical parameters for lithium-sulfur batteries to be practically viable. Adv. Funct. Mater. 28, 1801188 (2018). https://doi.org/10.1002/adfm.201801188
- M.J. Klein, G.M. Veith, A. Manthiram, Rational design of lithium-sulfur battery cathodes based on experimentally determined maximum active material thickness. J. Am. Chem. Soc. 139, 9229–9237 (2017). https://doi.org/10.1021/jacs.7b03380
- J.J. Park, J.H. Moon, C.J. Kim, J.H. Kang, E. Lim et al., Graphene quantum dots: structural integrity and oxygen functional groups for high sulfur/sulfide utilization in lithium sulfur batteries. NPG Asia Mater. 8, e272 (2016). https://doi.org/10.1038/am.2016.61
- X.Y. Tao, J.G. Wang, Z.J. Ying, Q.X. Cai, G.Y. Zheng et al., Strong sulfur binding with conducting magnéli-phase TinO2n–1 nanomaterials for improving lithium-sulfur batteries. Nano Lett. 14, 5288–5294 (2014). https://doi.org/10.1021/nl502331f
- X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss, L.F. Nazar, A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat. Commun. 6, 5682 (2015). https://doi.org/10.1038/ncomms6682
- S.S. Zhang, D.T. Tran, Pyrite FeS2 as an efficient adsorbent of lithium polysulphide for improved lithium-sulfur batteries. J. Mater. Chem. A 4, 4371–4374 (2016). https://doi.org/10.1039/C6TA01214K
- M. Nawwar, R. Poon, R. Chen, R.P. Sahu, I.K. Puri, I. Zhitomirsky, High areal capacitance of Fe3O4-decorated carbon nanotubes for supercapacitor electrodes. Carbon Energy 1, 124–133 (2019). https://doi.org/10.1002/cey2.6
- X. Liu, J.Q. Huang, Q. Zhang, L.Q. Mai, Nanostructured metal oxides and sulfdes for lithium-sulfur batteries. Adv. Mater. 29, 1601759 (2017). https://doi.org/10.1002/adma.201601759
- X. Liang, C.Y. Kwok, F. Lodi-Marzano, Q. Pang, M. Cuisinier et al., Tuning transition metal oxide-sulfur interactions for long life lithium sulfur batteries: the “Goldilocks” principle. Adv. Energy Mater. 6, 1501636 (2016). https://doi.org/10.1002/aenm.201501636
- Y. Lu, X.N. Li, J.W. Liang, H. Lei, Y.C. Zhu, Y.T. Qian, A simple melting-diffusing-reacting strategy tofabricate S/NiS2-C for lithium-sulfur batteries. Nanoscale 8, 17616–17622 (2016). https://doi.org/10.1039/c6nr05626a
- Y. Li, J. Chen, Y.F. Zhang, Z.Y. Yu, T.Z. Zhang, W.Q. Ge, L.P. Zhang, NiS2/rGO/S capable of lithium polysulfide trapping as an enhanced cathode material for lithium sulfur batteries. J. Alloy. Compd. 766, 804–812 (2018). https://doi.org/10.1016/j.jallcom.2018.06.369
- Q. Fan, W. Liu, Z. Weng, Y.M. Sun, H.L. Wang, Ternary hybrid material for high-performance lithium-sulfur battery. J. Am. Chem. Soc. 137, 12946–12953 (2015). https://doi.org/10.1021/jacs.5b07071
- X.T. Gao, Y. Xie, X.D. Zhu, K.N. Sun, X.M. Xie et al., Ultrathin MXene nanosheets decorated with TiO2 quantum dots as an effcient sulfur host toward fast and stable Li-S batteries. Small 14, 1802443 (2018). https://doi.org/10.1002/smll.201802443
- Y. Hu, W. Chen, T.Y. Lei, B. Zhou, Y. Jiao et al., Carbon quantum dots-modified interfacial interactions and ion conductivity for enhanced high current density performance in Lithium-Sulfur batteries. Adv. Energy Mater. 9, 1802955 (2018). https://doi.org/10.1002/aenm.201802955
- R.P. Fang, S.Y. Zhao, S.F. Pei, X.T. Qian, P.X. Hou, H.M. Cheng, C. Liu, F. Li, Toward more eeliable lithium-sulfur batteries: an all-graphene cathode structure. ACS Nano 10, 8682–8686 (2016). https://doi.org/10.1021/acsnano.6b04019
- A.J. Ahlawat, V.G. Sathe, V.R. Reddy, A.M. Gupta, Raman and X-ray diffraction studies of superparamagnetic NiFe2O4 nanoparticles prepared by sol-gel auto-combustion method. J. Magn. Magn. Mater. 323, 2049–2054 (2011). https://doi.org/10.1016/j.jmmm.2011.03.017
- A.J. Ahlawat, V.G. Sathe, Raman study of NiFe2O4 nanoparticles, bulk and films: effect of laser power. J. Raman Spectrosc. 42, 1087–1094 (2011). https://doi.org/10.1002/jrs.2791
- S. Deng, Y. Zhong, Y. Zeng, Y. Wang, X. Wang et al., Hollow TiO2@Co9S8 core-branch arrays as bifunctional electrocatalysts for efficient oxygen/hydrogen production. Adv. Sci. 5, 1700772 (2018). https://doi.org/10.1002/advs.201700772
- Y. Wang, R. Zhang, Y.C. Pang, X. Chen, J. Lang et al., Carbon@Titanium nitride dual shell nanospheres as multi-functional hosts for lithium sulfur batteries. Energy Storage Mater. 16, 228–235 (2019). https://doi.org/10.1016/j.ensm.2018.05.019
- L. Zhang, Z. Chen, F.N. Dong, M. Li, C. Diao et al., Nickel-cobalt double hydroxide as a multifunctional mediator for ultrahigh-rate and ultralong-life Li-S batteries. Adv. Energy Mater. 8, 1802431 (2018). https://doi.org/10.1002/aenm.201802431
- X.D. Jia, Y.F. Zhao, G.B. Chen, L. Shang, R. Shi et al., Water splitting: Ni3FeN nanoparticles derived from ultrathin NiFe-layered double hydroxide nanosheets: an efficient overall water splitting electrocatalyst. Adv. Energy Mater. 6, 1502585 (2016). https://doi.org/10.1002/aenm.201502585
- J. Xu, W. Zhang, H. Fan, F. Cheng, D. Su, G. Wang, Promoting lithium polysulfides/sulfide redox kinetics by the catalyzing of zinc sulfide for high performance Lithium-Sulfur battery. Nano Energy 51, 73–82 (2018). https://doi.org/10.1016/j.nanoen.2018.06.046
- K. Xi, D. He, C. Harris, Y. Wang, C. Lai et al., Enhanced sulfur transformation by multifunctional FeS2/FeS/S composites for high-volumetric capacity cathodes in Lithium-Sulfur batteries. Adv. Sci. 6, 1800815 (2019). https://doi.org/10.1002/advs.201800815
- L.Y. Hu, C.L Dai, H. Liu, Y. Li, B.L. Shen et al., Double-shelled NiO-NiCo2O4 heterostructure@carbon hollow nanocages as an effcient sulfur host for advanced lithium-sulfur batteries. Adv. Energy Mater. 8, 1800709 (2018). https://doi.org/10.1002/aenm.201800709
- Z.F. Deng, Z.A. Zhan, Y.Q. Lai, J. Liu, J. Li, Y.X. Liu, Electrochemical impedance spectroscopy study of a lithium/sulfur battery: modeling and analysis of capacity fading. J. Electrochem. Soc. 160, A553–A558 (2013). https://doi.org/10.1149/2.026304jes
- W.W. Zeng, L. Wang, X. Peng, T.F. Liu, Y.Y. Jiang et al., Enhanced ion conductivity in conducting polymer binder for high-performance silicon anodes in advanced lithium-ion batteries. Adv. Energy Mater. 8, 1702314 (2018). https://doi.org/10.1002/aenm.201702314
- H.J. Peng, Z.W. Zhang, J.Q. Huang, G. Xie, J. Zhang et al., A cooperative interface for highly efficient lithium-sulfur batteries. Adv. Mater. 28, 9551–9558 (2016). https://doi.org/10.1002/adma.201603401
- M. Zhao, H.J. Peng, Z.W. Zhang, B.Q. Li, X. Chen et al., Activating inert metallic compounds for high-rate lithium-sulfur batteries through in situ etching of extrinsic metal. Angew. Chem. Int. Ed. 58, 3779–3783 (2019). https://doi.org/10.1002/anie.201812062
- G.E. LeCroy, S.K. Sonkar, F. Yang, L.M. Veca, P. Wang et al., Toward structurally defined carbon dots as ultracompact fluorescent probes. ACS Nano 8, 4522–4529 (2014). https://doi.org/10.1021/nn406628s
- Y. Hu, M.M. Awak, F. Yang, S.J. Yan, Q.W. Xiong et al., Photoexcited state properties of carbon dots from thermally induced functionalization of carbon nanoparticles. J. Mater. Chem. C 4, 10554–10561 (2016). https://doi.org/10.1021/nn406628s
- W.L. Wu, J. Pu, J. Wang, Z.H. Shen, H.Y. Tang et al., Biomimetic bipolar microcapsules derived from staphylococcus aureus for enhanced properties of lithium-sulfur battery cathodes. Adv. Energy Mater. 8, 1702373 (2018). https://doi.org/10.1002/aenm.201702373
- T. Liu, C.J. Jiang, B. Cheng, W. You, J.G. Yu, Hierarchical NiS/N-doped carbon composite hollow spheres with excellent supercapacitor performance. J. Mater. Chem. A 5, 21257–21265 (2017). https://doi.org/10.1039/C7TA06149H
References
J. Cheng, J. Shang, Y.M. Sun, L.K. Ono, D.R. Wang et al., Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium. Nat. Commun. 9, 4480 (2018). https://doi.org/10.1038/s41467-018-06879-7
Z.L. Xu, S.H. Lin, N. Onofrio, L.M. Zhou, F.Y. Shi, W. Lu, K. Kang, Q. Zhang, S.P. Lau, Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries. Nat. Commun. 9, 4164 (2018). https://doi.org/10.1038/s41467-018-06629-9
L.L. Fan, M. Li, X.F. Li, W. Xiao, Z.W. Chen, J. Lu, Interlayer material selection for Lithium-Sulfur batteries. Joule 3, 361–386 (2019). https://doi.org/10.1016/j.joule.2019.01.003
J. Pu, Z.H. Shen, J.X. Zheng, W.L. Wu, C. Zhu et al., Multifunctional Co3S4@sulfur nanotubes for enhanced Lithium-Sulfur battery performance. Nano Energy 37, 7–14 (2017). https://doi.org/10.1016/j.nanoen.2017.05.009
Z.H. Li, Q. He, X. Xu, Y. Zhao, X.W. Liu et al., A 3D nitrogen-doped graphene/TiN nanowires composite as a strong polysulfides anchor for lithium-sulfur batteries with enhanced rate performance and high areal capacity. Adv. Energy Mater. 30, 1804089 (2018). https://doi.org/10.1002/adma.201804089
S. Choi, C. Kim, J.M. Suh, H.W. Jang, Reduced graphene oxide-based materials for electrochemical energy conversion reactions. Carbon Energy 1, 85–108 (2019). https://doi.org/10.1002/cey2.13
Y. Zhong, X.H. Xia, S.J. Deng, J.Y. Zhan, R.Y. Fang et al., Popcorn inspired porous macrocellular carbon: rapid puffng fabrication from rice and its applications in lithium-sulfur batteries. Adv. Energy Mater. 8, 1701110 (2017). https://doi.org/10.1002/aenm.201701110
Y.Y. Shi, G.J. Liu, R.C. Jin, H. Xu, Q.Y. Wang, S.M. Gao, Carbon materials from melamine sponges for supercapacitors and lithium battery electrode materials: a review. Carbon Energy 1, 253–275 (2019). https://doi.org/10.1002/cey2.19
F. Liu, C.J. Wang, X. Sui, M.A. Riaz, M.Y. Xu, L. Wei, Y. Chen, Synthesis of graphene materials by electrochemical exfoliation: recent progress and future potential. Carbon Energy 1, 173–199 (2019). https://doi.org/10.1002/cey2.14
Q. Wu, L.J. Yang, X.Z. Wang, Z. Hu, From carbon-based nanotubes to nanocages for advanced energy conversion and storage. Acc. Chem. Res. 50, 435–444 (2017). https://doi.org/10.1021/acs.accounts.6b00541
A. Bhargav, J.R. He, A. Gupta, A. Manthiram, Lithium-sulfur batteries: attaining the critical metrics. Joule 4, 1–6 (2020). https://doi.org/10.1016/j.joule.2020.01.001
S.H. Chung, C.H. Chang, A. Manthiram, Progress on the critical parameters for lithium-sulfur batteries to be practically viable. Adv. Funct. Mater. 28, 1801188 (2018). https://doi.org/10.1002/adfm.201801188
M.J. Klein, G.M. Veith, A. Manthiram, Rational design of lithium-sulfur battery cathodes based on experimentally determined maximum active material thickness. J. Am. Chem. Soc. 139, 9229–9237 (2017). https://doi.org/10.1021/jacs.7b03380
J.J. Park, J.H. Moon, C.J. Kim, J.H. Kang, E. Lim et al., Graphene quantum dots: structural integrity and oxygen functional groups for high sulfur/sulfide utilization in lithium sulfur batteries. NPG Asia Mater. 8, e272 (2016). https://doi.org/10.1038/am.2016.61
X.Y. Tao, J.G. Wang, Z.J. Ying, Q.X. Cai, G.Y. Zheng et al., Strong sulfur binding with conducting magnéli-phase TinO2n–1 nanomaterials for improving lithium-sulfur batteries. Nano Lett. 14, 5288–5294 (2014). https://doi.org/10.1021/nl502331f
X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss, L.F. Nazar, A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat. Commun. 6, 5682 (2015). https://doi.org/10.1038/ncomms6682
S.S. Zhang, D.T. Tran, Pyrite FeS2 as an efficient adsorbent of lithium polysulphide for improved lithium-sulfur batteries. J. Mater. Chem. A 4, 4371–4374 (2016). https://doi.org/10.1039/C6TA01214K
M. Nawwar, R. Poon, R. Chen, R.P. Sahu, I.K. Puri, I. Zhitomirsky, High areal capacitance of Fe3O4-decorated carbon nanotubes for supercapacitor electrodes. Carbon Energy 1, 124–133 (2019). https://doi.org/10.1002/cey2.6
X. Liu, J.Q. Huang, Q. Zhang, L.Q. Mai, Nanostructured metal oxides and sulfdes for lithium-sulfur batteries. Adv. Mater. 29, 1601759 (2017). https://doi.org/10.1002/adma.201601759
X. Liang, C.Y. Kwok, F. Lodi-Marzano, Q. Pang, M. Cuisinier et al., Tuning transition metal oxide-sulfur interactions for long life lithium sulfur batteries: the “Goldilocks” principle. Adv. Energy Mater. 6, 1501636 (2016). https://doi.org/10.1002/aenm.201501636
Y. Lu, X.N. Li, J.W. Liang, H. Lei, Y.C. Zhu, Y.T. Qian, A simple melting-diffusing-reacting strategy tofabricate S/NiS2-C for lithium-sulfur batteries. Nanoscale 8, 17616–17622 (2016). https://doi.org/10.1039/c6nr05626a
Y. Li, J. Chen, Y.F. Zhang, Z.Y. Yu, T.Z. Zhang, W.Q. Ge, L.P. Zhang, NiS2/rGO/S capable of lithium polysulfide trapping as an enhanced cathode material for lithium sulfur batteries. J. Alloy. Compd. 766, 804–812 (2018). https://doi.org/10.1016/j.jallcom.2018.06.369
Q. Fan, W. Liu, Z. Weng, Y.M. Sun, H.L. Wang, Ternary hybrid material for high-performance lithium-sulfur battery. J. Am. Chem. Soc. 137, 12946–12953 (2015). https://doi.org/10.1021/jacs.5b07071
X.T. Gao, Y. Xie, X.D. Zhu, K.N. Sun, X.M. Xie et al., Ultrathin MXene nanosheets decorated with TiO2 quantum dots as an effcient sulfur host toward fast and stable Li-S batteries. Small 14, 1802443 (2018). https://doi.org/10.1002/smll.201802443
Y. Hu, W. Chen, T.Y. Lei, B. Zhou, Y. Jiao et al., Carbon quantum dots-modified interfacial interactions and ion conductivity for enhanced high current density performance in Lithium-Sulfur batteries. Adv. Energy Mater. 9, 1802955 (2018). https://doi.org/10.1002/aenm.201802955
R.P. Fang, S.Y. Zhao, S.F. Pei, X.T. Qian, P.X. Hou, H.M. Cheng, C. Liu, F. Li, Toward more eeliable lithium-sulfur batteries: an all-graphene cathode structure. ACS Nano 10, 8682–8686 (2016). https://doi.org/10.1021/acsnano.6b04019
A.J. Ahlawat, V.G. Sathe, V.R. Reddy, A.M. Gupta, Raman and X-ray diffraction studies of superparamagnetic NiFe2O4 nanoparticles prepared by sol-gel auto-combustion method. J. Magn. Magn. Mater. 323, 2049–2054 (2011). https://doi.org/10.1016/j.jmmm.2011.03.017
A.J. Ahlawat, V.G. Sathe, Raman study of NiFe2O4 nanoparticles, bulk and films: effect of laser power. J. Raman Spectrosc. 42, 1087–1094 (2011). https://doi.org/10.1002/jrs.2791
S. Deng, Y. Zhong, Y. Zeng, Y. Wang, X. Wang et al., Hollow TiO2@Co9S8 core-branch arrays as bifunctional electrocatalysts for efficient oxygen/hydrogen production. Adv. Sci. 5, 1700772 (2018). https://doi.org/10.1002/advs.201700772
Y. Wang, R. Zhang, Y.C. Pang, X. Chen, J. Lang et al., Carbon@Titanium nitride dual shell nanospheres as multi-functional hosts for lithium sulfur batteries. Energy Storage Mater. 16, 228–235 (2019). https://doi.org/10.1016/j.ensm.2018.05.019
L. Zhang, Z. Chen, F.N. Dong, M. Li, C. Diao et al., Nickel-cobalt double hydroxide as a multifunctional mediator for ultrahigh-rate and ultralong-life Li-S batteries. Adv. Energy Mater. 8, 1802431 (2018). https://doi.org/10.1002/aenm.201802431
X.D. Jia, Y.F. Zhao, G.B. Chen, L. Shang, R. Shi et al., Water splitting: Ni3FeN nanoparticles derived from ultrathin NiFe-layered double hydroxide nanosheets: an efficient overall water splitting electrocatalyst. Adv. Energy Mater. 6, 1502585 (2016). https://doi.org/10.1002/aenm.201502585
J. Xu, W. Zhang, H. Fan, F. Cheng, D. Su, G. Wang, Promoting lithium polysulfides/sulfide redox kinetics by the catalyzing of zinc sulfide for high performance Lithium-Sulfur battery. Nano Energy 51, 73–82 (2018). https://doi.org/10.1016/j.nanoen.2018.06.046
K. Xi, D. He, C. Harris, Y. Wang, C. Lai et al., Enhanced sulfur transformation by multifunctional FeS2/FeS/S composites for high-volumetric capacity cathodes in Lithium-Sulfur batteries. Adv. Sci. 6, 1800815 (2019). https://doi.org/10.1002/advs.201800815
L.Y. Hu, C.L Dai, H. Liu, Y. Li, B.L. Shen et al., Double-shelled NiO-NiCo2O4 heterostructure@carbon hollow nanocages as an effcient sulfur host for advanced lithium-sulfur batteries. Adv. Energy Mater. 8, 1800709 (2018). https://doi.org/10.1002/aenm.201800709
Z.F. Deng, Z.A. Zhan, Y.Q. Lai, J. Liu, J. Li, Y.X. Liu, Electrochemical impedance spectroscopy study of a lithium/sulfur battery: modeling and analysis of capacity fading. J. Electrochem. Soc. 160, A553–A558 (2013). https://doi.org/10.1149/2.026304jes
W.W. Zeng, L. Wang, X. Peng, T.F. Liu, Y.Y. Jiang et al., Enhanced ion conductivity in conducting polymer binder for high-performance silicon anodes in advanced lithium-ion batteries. Adv. Energy Mater. 8, 1702314 (2018). https://doi.org/10.1002/aenm.201702314
H.J. Peng, Z.W. Zhang, J.Q. Huang, G. Xie, J. Zhang et al., A cooperative interface for highly efficient lithium-sulfur batteries. Adv. Mater. 28, 9551–9558 (2016). https://doi.org/10.1002/adma.201603401
M. Zhao, H.J. Peng, Z.W. Zhang, B.Q. Li, X. Chen et al., Activating inert metallic compounds for high-rate lithium-sulfur batteries through in situ etching of extrinsic metal. Angew. Chem. Int. Ed. 58, 3779–3783 (2019). https://doi.org/10.1002/anie.201812062
G.E. LeCroy, S.K. Sonkar, F. Yang, L.M. Veca, P. Wang et al., Toward structurally defined carbon dots as ultracompact fluorescent probes. ACS Nano 8, 4522–4529 (2014). https://doi.org/10.1021/nn406628s
Y. Hu, M.M. Awak, F. Yang, S.J. Yan, Q.W. Xiong et al., Photoexcited state properties of carbon dots from thermally induced functionalization of carbon nanoparticles. J. Mater. Chem. C 4, 10554–10561 (2016). https://doi.org/10.1021/nn406628s
W.L. Wu, J. Pu, J. Wang, Z.H. Shen, H.Y. Tang et al., Biomimetic bipolar microcapsules derived from staphylococcus aureus for enhanced properties of lithium-sulfur battery cathodes. Adv. Energy Mater. 8, 1702373 (2018). https://doi.org/10.1002/aenm.201702373
T. Liu, C.J. Jiang, B. Cheng, W. You, J.G. Yu, Hierarchical NiS/N-doped carbon composite hollow spheres with excellent supercapacitor performance. J. Mater. Chem. A 5, 21257–21265 (2017). https://doi.org/10.1039/C7TA06149H