Two-Dimensional Black Phosphorus Nanomaterials: Emerging Advances in Electrochemical Energy Storage Science
Corresponding Author: Han Zhang
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 179
Abstract
Two-dimensional black phosphorus (2D BP), well known as phosphorene, has triggered tremendous attention since the first discovery in 2014. The unique puckered monolayer structure endows 2D BP intriguing properties, which facilitate its potential applications in various fields, such as catalyst, energy storage, sensor, etc. Owing to the large surface area, good electric conductivity, and high theoretical specific capacity, 2D BP has been widely studied as electrode materials and significantly enhanced the performance of energy storage devices. With the rapid development of energy storage devices based on 2D BP, a timely review on this topic is in demand to further extend the application of 2D BP in energy storage. In this review, recent advances in experimental and theoretical development of 2D BP are presented along with its structures, properties, and synthetic methods. Particularly, their emerging applications in electrochemical energy storage, including Li−/K−/Mg−/Na-ion, Li–S batteries, and supercapacitors, are systematically summarized with milestones as well as the challenges. Benefited from the fast-growing dynamic investigation of 2D BP, some possible improvements and constructive perspectives are provided to guide the design of 2D BP-based energy storage devices with high performance.
Highlights:
1 Two-dimensional black phosphorus (2D BP) possesses huge potential in electrochemical energy storage field owing to its unique electronic structure, high charge carrier mobility, and large interlayer spacing.
2 Comparison on the different preparation methods and processes, characteristics, and applications of few-layer BP is presented.
3 The applications of 2D BP in electrochemical energy storage devices in these years are well reviewed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). https://doi.org/10.1126/science.1102896
- A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007). https://doi.org/10.1038/nmat1849
- A.K. Geim, I.V. Grigorieva, Van der waals heterostructures. Nature 499, 419–425 (2013). https://doi.org/10.1038/nature12385
- X. Zhang, Z. Lai, C. Tan, H. Zhang, Solution-processed two-dimensional MoS2 nanosheets: preparation, hybridization, and applications. Angew. Chem. Int. Ed. 55, 8816–8838 (2016). https://doi.org/10.1002/anie.201509933
- K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. CastroNeto, 2D materials and van der waals heterostructures. Science 353, aac9439 (2016). https://doi.org/10.1126/science.aac9439
- A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008). https://doi.org/10.1021/nl0731872
- C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008). https://doi.org/10.1126/science.1157996
- R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth et al., Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008). https://doi.org/10.1126/science.1156965
- X. Li, X. Meng, J. Liu, D. Geng, Y. Zhang et al., Tin oxide with controlled morphology and crystallinity by atomic layer deposition onto graphene nanosheets for enhanced lithium storage. Adv. Funct. Mater. 22, 1647–1654 (2012). https://doi.org/10.1002/adfm.201101068
- M. Xu, T. Liang, M. Shi, H. Chen, Graphene-like two-dimensional materials. Chem. Rev. 113, 3766–3798 (2013). https://doi.org/10.1021/cr300263a
- M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014). https://doi.org/10.1002/adma.201304138
- K. Wang, Z. Lou, L.L. Wang, L.J. Zhao, S.F. Zhao et al., Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors. ACS Nano 13, 9139–9147 (2019). https://doi.org/10.1021/acsnano.9b03454
- L.J. Zhao, K. Wang, W. Wei, L.L. Wang, W. Han, High-performance flexible sensing devices based on polyaniline/MXene nanocomposites. InfoMat 1, 407–416 (2019). https://doi.org/10.1002/inf2.12032
- X. Duan, C. Wang, A. Pan, R. Yu, X. Duan, Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. Chem. Soc. Rev. 44, 8859–8876 (2015). https://doi.org/10.1039/c5cs00507h
- H. Liu, Y. Du, Y. Deng, P.D. Ye, Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44, 2732–2743 (2015). https://doi.org/10.1039/c4cs00257a
- C. Chowdhury, A. Datta, Exotic physics and chemistry of two-dimensional phosphorus: phosphorene. J. Phys. Chem. Lett. 8, 2909–2916 (2017). https://doi.org/10.1021/acs.jpclett.7b01290
- W. Li, Z. Yang, M. Li, Y. Jiang, X. Wei et al., Amorphous red phosphorus embedded in highly ordered mesoporous carbon with superior lithium and sodium storage capacity. Nano Lett. 16, 1546–1553 (2016). https://doi.org/10.1021/acs.nanolett.5b03903
- S. Lin, Y. Li, W. Lu, Y.S. Chui, L. Rogée, Q. Bao, S.P. Lau, In situ observation of the thermal stability of black phosphorus. 2D Mater. 4, 2 (2017). https://doi.org/10.1088/2053-1583/aa55b2
- P.W. Bridgman, Two new modifications of phosphorus. J. Am. Chem. Soc. 36, 1344–1363 (1914). https://doi.org/10.1021/ja02184a002
- N.A. Piro, J.S. Figueroa, J.T. McKellar, C.C. Cummins, Triple-bond reactivity of diphosphorus molecules. Science 313, 1276–1279 (2006). https://doi.org/10.1126/science.1129630
- C.M. Park, H.J. Sohn, Black phosphorus and its composite for lithium rechargeable batteries. Adv. Mater. 19, 2465–2468 (2007). https://doi.org/10.1002/adma.200602592
- L.K. Li, Y.J. Yu, G.J. Ye, Q.Q. Ge, X.D. Ou et al., Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014). https://doi.org/10.1038/nnano.2014.35
- H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X.F. Xu, D. Tománek, P.D. Ye, Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014). https://doi.org/10.1021/nn501226z
- W.Z. Wu, Y.J. Zhou, J. Wang, Y.B. Shao, D.G. Kong, Y.C. Gao, Y.G. Wang, The pump fluence and wavelength-dependent ultrafast carrier dynamics and optical nonlinear absorption in black phosphorus nanosheets. Nanophotonics (2020). https://doi.org/10.1515/nanoph-2020-0025
- W.L. Guo, Z. Dong, Y.J. Xu, C.L. Liu, D.C. Wei et al., Terahertz detection and imaging driven by the photothermoelectric effect in ultrashort-channel black phosphorus devices. Adv. Sci. 7, 1902699 (2020). https://doi.org/10.1002/advs.201902699
- Y. Wang, M.X. He, S.B. Ma, C.H. Yang, M. Yu, G.P. Yin, P.J. Zuo, Low-temperature solution synthesis of black phosphorus from red phosphorus: crystallization mechanism and lithium ion battery applications. Phys. Chem. Lett. 11(7), 2708–2716 (2020). https://doi.org/10.1021/acs.jpclett.0c00746
- D.N. Liu, J.H. Wang, S. Bian, Q. Liu, Y.H. Gao et al., Photoelectrochemical synthesis of ammonia with black phosphorus. Adv. Funct. Mater. 30, 2002731 (2020). https://doi.org/10.1002/adfm.202002731
- J. Lu, J. Wu, A. Carvalho, A. Ziletti, H. Liu et al., Bandgap engineering of phosphorene by laser oxidation toward functional 2D materials. ACS Nano 9, 10411–10421 (2015). https://doi.org/10.1021/acsnano.5b04623
- W.D. Ma, J.F. Lu, B.S. Wan, D.F. Peng, Q. Xu et al., Piezoelectricity in multilayer black phosphorus for piezotronics and nanogenerators. Adv. Mater. 32, 1905795 (2020). https://doi.org/10.1002/adma.201905795
- V. Tran, R. Soklaski, Y.F. Liang, L. Yang, Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B Condens. Matter Mater. Phys. 89, 1–6 (2014). https://doi.org/10.1103/PhysRevB.89.235319
- X.J. Zhu, T.M. Zhang, Z.J. Sun, H.L. Chen, J. Guan et al., Black phosphorus revisited: a missing metal-free elemental photocatalyst for visible light hydrogen evolution. Adv. Mater. 29, 1–7 (2017). https://doi.org/10.1002/adma.201605776
- M. Qiu, Z.T. Sun, D.K. Sang, X.G. Han, H. Zhang, C.M. Niu, Current progress in black phosphorus materials and their applications in electrochemical energy storage. Nanoscale 9, 13384–13403 (2017). https://doi.org/10.1039/c7nr03318d
- M. Batmunkh, M. Bat-Erdene, J.G. Shapter, Phosphorene and phosphorene -based materials-prospects for future applications. Adv. Mater. 28, 8586–8617 (2016). https://doi.org/10.1002/adma.201602254
- G.C. Guo, X.L. Wei, D. Wang, Y.P. Luo, L.M. Liu, Pristine and defect-containing phosphorene as promising anode materials for rechargeable Li batteries. J. Mater. Chem. A 3, 11246–11252 (2015). https://doi.org/10.1039/c5ta01661d
- S. Balendhran, S. Walia, H. Nili, S. Sriram, M. Bhaskaran, Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene. Small 11, 640–652 (2015). https://doi.org/10.1002/smll.201402041
- M. Mehboudi, A.M. Dorio, W.J. Zhu, A.V.D. Zande, H.O.H. Churchill et al., Two-dimensional disorder in black phosphorus and monochalcogenide monolayers. Nano Lett. 16, 1704–1712 (2016). https://doi.org/10.1021/acs.nanolett.5b04613
- R. Hultgren, N.S. Gingrich, B.E. Warren, The atomic distribution in red and black phosphorus and the crystal structure of black phosphorus. J. Chem. Phys. 3, 351–355 (1935). https://doi.org/10.1063/1.1749671
- R.W. Keyes, The electrical properties of black phosphorus. Phys. Rev. 92, 580–584 (1953). https://doi.org/10.1103/PhysRev.92.580
- A. Morita, Semiconducting black phosphorus. Appl. Phys. A Solids Surfaces 39, 227–242 (1986). https://doi.org/10.1007/BF00617267
- F.N. Xia, H. Wang, Y.C. Jia, Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 1–6 (2014). https://doi.org/10.1038/ncomms5458
- L.F. Gao, J.Y. Xu, Z.Y. Zhu, C.X. Hu, L. Zhang, Q. Wang, H.L. Zhang, Small molecule-assisted fabrication of black phosphorus quantum dots with a broadband nonlinear optical response. Nanoscale 8, 15132–15136 (2016). https://doi.org/10.1039/c6nr04773d
- S. Ge, L. Zhang, P. Wang, Y. Fang, Intense, stable and excitation wavelength -independent photoluminescence emission in the blue-violet region from phosphorene quantum dots. Sci. Rep. 26, 1–6 (2016). https://doi.org/10.1038/srep27307
- X. Wang, A.M. Jones, K.L. Seyler, V. Tran, Y. Jia et al., Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 10, 517–521 (2015). https://doi.org/10.1038/nnano.2015.71
- S.H. Lin, Y.Y. Li, J.S. Qian, S.P. Lau, Emerging opportunities for black phosphorus in energy applications. Mater. Today Energy 12, 1–25 (2019). https://doi.org/10.1016/j.mtener.2018.12.004
- A. Jain, A.J.H. McGaughey, Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Sci. Rep. 5, 8501 (2015). https://doi.org/10.1038/srep08501
- J. Guan, Z. Zhu, D. Tománek, Phase coexistence and metal-insulator transition in few-layer phosphorene: a computational study. Phys. Rev. Lett. 113, 1–5 (2014). https://doi.org/10.1103/PhysRevLett.113.046804
- J. Jia, S.K. Jang, S. Lai, J. Xu, Y.J. Choi, J.H. Park, S. Lee, Plasma-treated thickness-controlled two-dimensional black phosphorus and its electronic transport properties. ACS Nano 9, 8729–8736 (2015). https://doi.org/10.1021/acsnano.5b04265
- S. Seo, H.U. Lee, S.C. Lee, Y. Kim, H. Kim et al., Triangular black phosphorus atomic layers by liquid exfoliation. Science 6, 23736 (2016). https://doi.org/10.1038/srep23736
- S.H. Lin, Y. Li, W. Lu, Y.S. Chui, L. Rogee, Q.L. Bao, S.P. Lau, In situ observation of the thermal stability of black phosphorus. 2D Mater. 4, 025001 (2017). https://doi.org/10.1088/2053-1583/aa55b2
- G. Lee, J.Y. Lee, G.H. Lee, J. Kim, Tuning the thickness of black phosphorus via ion bombardment-free plasma etching for device performance improvement. J. Mater. Chem. A 4, 6234–6239 (2016). https://doi.org/10.1039/C6TC01514J
- S. Walia, Y. Sabri, T. Ahmed, M.R. Field, R. Ramanathan et al., Defining the role of humidity in the ambient degradation of few-layer black phosphorus. 2D Mater. 4, 015025 (2017). https://doi.org/10.1088/2053-1583/4/1/015025
- A.S. Pawbake, M.B. Erande, S.R. Jadkar, D.J. Late, Temperature dependent Raman spectroscopy of electrochemically exfoliated few layer black phosphorus nanosheets. RSC Adv. 6, 76551 (2016). https://doi.org/10.1039/C6RA15996F
- Z. Hou, B. Yang, Y. Wang, B. Ding, X. Zhang et al., Large and anisotropic linear magnetoresistance in single crystals of black phosphorus arising from mobility fluctuations. Sci. Rep. 6, 23807 (2016). https://doi.org/10.1038/srep23807
- J.B. Smith, D. Hagaman, H.F. Ji, Growth of 2D black phosphorus film from chemical vapor deposition. Nanotechnology 27, 215602 (2016). https://doi.org/10.1088/0957-4484/27/21/215602
- H. Muramatsu, Y.A. Kim, K.S. Yang, R. Cruz-Silva, I. Toda et al., Rice husk-derived graphene with nano-sized domains and clean edges. Small 10, 2766 (2014). https://doi.org/10.1002/small.201400017
- Z.X. Gan, L.L. Sun, X.L. Wu, M. Meng, J.C. Shen, P.K. Chu, Tunable photoluminescence from sheet-like black phosphorus crystal by electrochemical oxidation. Appl. Phys. Lett. 107, 021901 (2015). https://doi.org/10.1063/1.4926727
- W. Lei, G. Liu, J. Zhang, M. Liu, Black phosphorus nanostructures: recent advances in hybridization, doping and functionalization. Chem. Soc. Rev. 46, 3492–3509 (2017). https://doi.org/10.1039/c7cs00021a
- M. Schütz, L. Maschio, A.J. Karttunen, D. Usvyat, Exfoliation energy of black phosphorus revisited: a coupled cluster benchmark. J. Phys. Chem. Lett. 8, 1290–1294 (2017). https://doi.org/10.1021/acs.jpclett.7b00253
- L. Sun, Z.H. Zhang, H. Wang, M. Li, Electronic properties of phosphorene nanoribbons with nanoholes. RSC Adv. 8, 7486–7493 (2018). https://doi.org/10.1039/c7ra12351e
- G. Schusteritsch, M. Uhrin, C.J. Pickard, Single-layered hittorf’s phosphorus: a wide-bandgap high mobility 2D material. Nano Lett. 16, 2975–2980 (2016). https://doi.org/10.1021/acs.nanolett.5b05068
- S.M. Kelso, D.E. Aspnes, C.G. Olson, D.W. Lynch, R.E. Nahory, M.A. Pollack, Band structure and optical properties of In1-xGaxAsyP1-y. J. Appl. Phys. 19, 327–331 (1980). https://doi.org/10.7567/JJAPS.19S3.327
- J.H. Lin, H. Zhang, X.L. Cheng, First-principle study on the optical response of phosphorene. Front. Phys. 10, 1–9 (2015). https://doi.org/10.1007/s11467-015-0468-y
- R. Fei, L. Yang, Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett. 14, 2884–2889 (2014). https://doi.org/10.1021/nl500935z
- L. Sun, Z.H. Zhang, H. Wang, M. Li, Electronic and transport properties of zigzag phosphorene nanoribbons with nonmetallic atom terminations. RSC Adv. 10, 1400–1409 (2020). https://doi.org/10.1039/c9ra06360a
- H.B. Ribeiro, M.A. Pimenta, C.J.S. De Matos, R.L. Moreira, A.S. Rodin et al., Unusual angular dependence of the Raman response in black phosphorus. ACS Nano 9, 4270–4276 (2015). https://doi.org/10.1021/acsnano.5b00698
- D. ÇakIr, H. Sahin, F.M. Peeters, Tuning of the electronic and optical properties of single-layer black phosphorus by strain. Phys. Rev. B Condens. Matter Mater. Phys. 90, 1–7 (2014). https://doi.org/10.1103/PhysRevB.90.205421
- S.C. Dhanabalan, J.S. Ponraj, Z. Guo, S. Li, Q. Bao, H. Zhang, Emerging trends in phosphorene fabrication towards next generation devices. Adv. Sci. 4(6), 1600305 (2017). https://doi.org/10.1002/advs.201600305
- L. Liang, J. Wang, W. Lin, B.G. Sumpter, V. Meunier, M. Pan, Electronic bandgap and edge reconstruction in phosphorene materials. Nano Lett. 14, 6400–6406 (2014). https://doi.org/10.1021/nl502892t
- C.R. Ryder, J.D. Wood, S.A. Wells, M.C. Hersam, Chemically tailoring semiconducting two-dimensional transition metal dichalcogenides and black phosphorus. ACS Nano 10, 3900–3917 (2016). https://doi.org/10.1021/acsnano.6b01091
- J. He, D. He, Y. Wang, Q. Cui, M.Z. Bellus, H.Y. Chiu, H. Zhao, Exceptional and anisotropic transport properties of photocarriers in black phosphorus. ACS Nano 9, 6436–6442 (2015). https://doi.org/10.1021/acsnano.5b02104
- T. Hu, H. Wu, H. Zeng, K. Deng, E. Kan, New ferroelectric phase in atomic-thick phosphorene nanoribbons: existence of in-plane electric polarization. Nano Lett. 16, 8015–8020 (2016). https://doi.org/10.1021/acs.nanolett.6b04630
- M. Ezawa, Highly anisotropic physics in phosphorene. J. Phys: Conf. Ser. 603, 14–15 (2015). https://doi.org/10.1088/1742-6596/603/1/012006
- R. Xu, J. Yang, Y. Zhu, H. Yan, J. Pei et al., Layer-dependent surface potential of phosphorene and anisotropic/layer-dependent charge transfer in phosphorene-gold hybrid systems. Nanoscale 8, 129–135 (2016). https://doi.org/10.1039/c5nr04366b
- J. Qiao, X. Kong, Z.X. Hu, F. Yang, W. Ji, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 1–7 (2014). https://doi.org/10.1038/ncomms5475
- X. Peng, Q. Wei, A. Copple, Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene. Phys. Rev. B Condens. Matter Mater. Phys. 90, 1–10 (2014). https://doi.org/10.1103/PhysRevB.90.085402
- D.B. Shinde, V.K. Pillai, Electrochemical preparation of luminescent graphene quantum dots from multiwalled carbon nanotubes. Chem. A Eur. J. 18, 12522–12528 (2012). https://doi.org/10.1002/chem.201201043
- B. Sa, Y.L. Li, J. Qi, R. Ahuja, Z. Sun, Strain engineering for phosphorene: the potential application as a photocatalyst. J. Phys. Chem. C 118, 26560–26568 (2014). https://doi.org/10.1021/jp508618t
- G. Zhang, S. Huang, A. Chaves, C. Song, V.O. Özçelik, T. Low, H. Yan, Infrared fingerprints of few-layer black phosphorus. Nat. Commun. 8, 14071 (2017). https://doi.org/10.1038/ncomms14071
- Y. Zhang, Z.F. Wu, P.F. Gao, D.Q. Fang, E.H. Zhang, S.L. Zhang, Structural, elastic, electronic, and optical properties of the tricycle-like phosphorene. Phys. Chem. Chem. Phys. 19, 2245–2251 (2017). https://doi.org/10.1039/c6cp07575d
- Y. Liu, K.W. Ang, Monolithically integrated flexible black phosphorus complementary inverter circuits. ACS Nano 11, 7416–7423 (2017). https://doi.org/10.1021/acsnano.7b03703
- W. Zhu, M.N. Yogeesh, S. Yang, S.H. Aldave, J. Kim et al., Flexible black phosphorus ambipolar transistors, circuits and AM demodulator. Nano Lett. 15, 1883–1890 (2015). https://doi.org/10.1021/nl5047329
- X. Li, B. Deng, X. Wang, S. Chen, M. Vaisman et al., Synthesis of thin-film black phosphorus on a flexible substrate. 2D Mater. 2, 3 (2015). https://doi.org/10.1088/2053-1583/2/3/031002
- W. Zhu, S. Park, M.N. Yogeesh, K.M. McNicholas, S.R. Bank, D. Akinwande, Black phosphorus flexible thin film transistors at gighertz frequencies. Nano Lett. 16, 2301–2306 (2016). https://doi.org/10.1021/acs.nanolett.5b04768
- Q. Wei, X. Peng, Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett. 104, 251915 (2014). https://doi.org/10.1063/1.4885215
- Y. Cai, Q. Ke, G. Zhang, Y.P. Feng, V.B. Shenoy, Y.W. Zhang, Giant phononic anisotropy and unusual anharmonicity of phosphorene: interlayer coupling and strain engineering. Adv. Funct. Mater. 25, 2230–2236 (2015). https://doi.org/10.1002/adfm.201404294
- Z.Y. Ong, Y. Cai, G. Zhang, Y.W. Zhang, Strong thermal transport anisotropy and strain modulation in single-layer phosphorene. J. Phys. Chem. C 118, 25272–25277 (2014). https://doi.org/10.1021/jp5079357
- S. Appalakondaiah, G. Vaitheeswaran, S. Lebègue, N.E. Christensen, A. Svane, Effect of van der waals interactions on the structural and elastic properties of black phosphorus. Phys. Rev. B Condens. Matter Mater. Phys. 86, 1–9 (2012). https://doi.org/10.1103/PhysRevB.86.035105
- J.W. Jiang, H.S. Park, Mechanical properties of single-layer black phosphorus. J. Phys. D Appl. Phys. 47, 38 (2014). https://doi.org/10.1088/0022-3727/47/38/385304
- X. Liu, J.D. Wood, K.S. Chen, E. Cho, M.C. Hersam, In situ thermal decomposition of exfoliated two-dimensional black phosphorus. J. Phys. Chem. Lett. 6, 773–778 (2015). https://doi.org/10.1021/acs.jpclett.5b00043
- L. Zhu, G. Zhang, B. Li, Coexistence of size-dependent and size-independent thermal conductivities in phosphorene. Phys. Rev. B Condens. Matter Mater. Phys. 90, 2–7 (2014). https://doi.org/10.1103/PhysRevB.90.214302
- H. Jang, J.D. Wood, C.R. Ryder, M.C. Hersam, D.G. Cahill, Anisotropic thermal conductivity of exfoliated black phosphorus. Adv. Mater. 27, 8017–8022 (2015). https://doi.org/10.1002/adma.201503466
- L. Guan, B.R. Xing, X.Y. Niu, D. Wang, Y. Yu et al., Metal-assisted exfoliation of few-layer black phosphorus with high yield. Chem. Commun. 54, 595–598 (2018). https://doi.org/10.1039/C7CC08488A
- Y. Song, S. Chang, S. Gradecak, J. Kong, Visibly-transparent organic solar cells on flexible substrates with all-graphene electrodes. Adv. Energy Mater. 6, 1–8 (2016). https://doi.org/10.1002/aenm.201600847
- G. Sansone, L. Maschio, D. Usvyat, M. Schütz, A. Karttunen, Toward an accurate estimate of the exfoliation energy of black phosphorus: a periodic quantum chemical approach. J. Phys. Chem. Lett. 7, 131–136 (2016). https://doi.org/10.1021/acs.jpclett.5b02174
- L.X. Benedict, N.G. Chopra, M.L. Cohen, A. Zettl, S.G. Louie, V.H. Crespi, Microscopic determination of the interlayer binding energy in graphite. Chem. Phys. Lett. 286, 490–496 (1998). https://doi.org/10.1016/S0009-2614(97)01466-8
- S. Bae, H. Kim, Y. Lee, X. Xu, J.S. Park et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010). https://doi.org/10.1038/nnano.2010.132
- D. Lee, E. Hwang, Y. Lee, Y. Choi, J.S. Kim, S. Lee, J.H. Cho, Multibit MoS2 photoelectronic memory with ultrahigh sensitivity. Adv. Mater. 28, 9196–9202 (2016). https://doi.org/10.1002/adma.201603571
- S. Li, B.N. Peele, C.M. Larson, H. Zhao, R.F. Shepherd, A stretchable multicolor display and touch interface using photopatterning and transfer printing. Adv. Mater. 28, 9770–9775 (2016). https://doi.org/10.1002/adma.201603408
- Q. Zhang, Z. Chang, G. Xu, Z. Wang, Y. Zhang et al., Strain relaxation of monolayer WS2 on plastic substrate. Adv. Funct. Mater. 26, 8707–8714 (2016). https://doi.org/10.1002/adfm.201603064
- A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H.S.J. VanDerZant, G.A. Steele, Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 1 (2014). https://doi.org/10.1088/2053-1583/1/1/011002
- Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012). https://doi.org/10.1038/nnano.2012.193
- S. Wu, K.S. Hui, K.N. Hui, 2D black phosphorus: from preparation to applications for electrochemical energy storage. Adv. Sci. 5, 1700491 (2018). https://doi.org/10.1002/advs.201700491
- A. Favron, E. Gaufrès, F. Fossard, A.L. Phaneuf-Laheureux, N.Y.W. Tang et al., Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 14, 826–832 (2015). https://doi.org/10.1038/nmat4299
- M. Buscema, D.J. Groenendijk, S.I. Blanter, G.A. Steele, H.S.J. VanDerZant, A. Castellanos-Gomez, Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 14, 3347–3352 (2014). https://doi.org/10.1021/nl5008085
- Z. Luo, J. Maassen, Y. Deng, Y. Du, R.P. Garrelts et al., Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun. 6, 1–8 (2015). https://doi.org/10.1038/ncomms9572
- Z.N. Guo, H. Zhang, S.B. Lu, Z.T. Wang, S.Y. Tang et al., From black phosphorus to phosphorene: basic solvent exfoliation, evolution of raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater. 25(45), 6996–7002 (2015). https://doi.org/10.1002/adfm.201502902
- V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Liquid exfoliation of layered materials. Science 340, 72–75 (2013). https://doi.org/10.1126/science.1226419
- C. Zhu, F. Xu, L. Zhang, M. Li, J. Chen et al., Ultrafast preparation of black phosphorus quantum dots for efficient humidity sensing. Chem. A Eur. J. 22, 7357–7362 (2016). https://doi.org/10.1002/chem.201600719
- A. Gupta, T. Sakthivel, S. Seal, Recent development in 2D materials beyond graphene. Prog. Mater Sci. 73, 44–126 (2015). https://doi.org/10.1016/j.pmatsci.2015.02.002
- V. Sresht, A.A.H. Pádua, D. Blankschtein, Liquid-phase exfoliation of phos- phorene: design rules from molecular dynamics simulations. ACS Nano 9, 8255–8268 (2015). https://doi.org/10.1021/acsnano.5b02683
- Z. Sun, H. Xie, S. Tang, X.F. Yu et al., Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents. Angew. Chem. Int. Ed. 54, 11526–11530 (2015). https://doi.org/10.1002/anie.201506154
- Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang et al., From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater. 25, 6996–7002 (2015). https://doi.org/10.1002/adfm.201502902
- J. Kang, J.D. Wood, S.A. Wells, J.H. Lee, X. Liu, K.S. Chen, M.C. Hersam, Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. ACS Nano 9, 3596–3604 (2015). https://doi.org/10.1021/acsnano.5b01143
- J.R. Brent, N. Savjani, E.A. Lewis, S.J. Haigh, D.J. Lewis, P. O’Brien, Production of few-layer phosphorene by liquid exfoliation of black phosphorus. Chem. Commun. 50, 13338–13341 (2014). https://doi.org/10.1039/c4cc05752j
- D. Hanlon, C. Backes, E. Doherty, C.S. Cucinotta, N.C. Berner et al., Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. 6, 8563 (2015). https://doi.org/10.1038/ncomms9563
- P. Yasaei, B. Kumar, T. Foroozan, C. Wang, M. Asadi et al., High-quality black phosphorus atomic layers by liquid-phase exfoliation. Adv. Mater. 27, 1887–1892 (2015). https://doi.org/10.1002/adma.201405150
- A.H. Woomer, T.W. Farnsworth, J. Hu, R.A. Wells, C.L. Donley, S.C. Warren, Phosphorene: synthesis, scale-up, and quantitative optical spectroscopy. ACS Nano 9, 8869–8884 (2015). https://doi.org/10.1021/acsnano.5b02599
- A. Ciesielski, P. Samorì, Graphene via sonication assisted liquid-phase exfoliation. Chem. Soc. Rev. 43, 381–398 (2014). https://doi.org/10.1039/c3cs60217f
- E.A. Lewis, J.R. Brent, B. Derby, S.J. Haigh, D.J. Lewis, Solution processing of two-dimensional black phosphorus. Chem. Commun. 53, 1445–1458 (2017). https://doi.org/10.1039/c6cc09658a
- X. Cui, C. Zhang, R. Hao, Y. Hou, Liquid-phase exfoliation, functionalization and applications of graphene. Nanoscale 3, 2118–2126 (2011). https://doi.org/10.1039/c1nr10127g
- S. Lin, Y. Chui, Y. Li, S.P. Lau, Liquid-phase exfoliation of black phosphorus and its applications. FlatChem 2, 15–37 (2017). https://doi.org/10.1016/j.flatc.2017.03.001
- W. Zhao, Z. Xue, J. Wang, J. Jiang, X. Zhao, T. Mu, Large-scale, highly efficient, and green liquid-exfoliation of black phosphorus in ionic liquids. ACS Appl. Mater. Interfaces. 7, 27608–27612 (2015). https://doi.org/10.1021/acsami.5b10734
- Z. Liu, Y. Wang, Z. Wang, Y. Yao, J. Dai, S. Das, L. Hu, Solvo-thermal microwave-powered two-dimensional material exfoliation. Chem. Commun. 52, 5757–5760 (2016). https://doi.org/10.1039/c5cc10546c
- M. Matsumoto, Y. Saito, C. Park, T. Fukushima, T. Aida, Ultrahigh-throughput exfoliation of graphite into pristine “single-layer” graphene using microwaves and molecularly engineered ionic liquids. Nat. Chem. 7, 730–736 (2015). https://doi.org/10.1038/nchem.2315
- D. Voiry, J. Yang, J. Kupferberg, R. Fullon, C. Lee et al., High-quality graphene via microwave reduction of solution -exfoliated graphene oxide. Science 353, 1413–1416 (2016). https://doi.org/10.1126/science.aah3398
- J. Kang, S.A. Wells, J.D. Wood, J.H. Lee, X. Liu et al., Stable aqueous dispersions of optically and electronically active phosphorene. Proc. Natl. Acad. Sci. U.S.A. 113, 11688–11693 (2016). https://doi.org/10.1073/pnas.1602215113
- K. Parvez, Z.S. Wu, R. Li, X. Liu, R. Graf, X. Feng, K. Müllen, Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc. 136, 6083–6091 (2014). https://doi.org/10.1021/ja5017156
- Z. Zeng, T. Sun, J. Zhu, X. Huang, Z. Yin et al., An effective method for the fabrication of few-layer-thick inorganic nanosheets. Angew. Chem. Int. Ed. 51, 9052–9056 (2012). https://doi.org/10.1002/anie.201204208
- M.B. Erande, M.S. Pawar, D.J. Late, Humidity sensing and photodetection behavior of electrochemically exfoliated atomically thin-layered black phosphorus nanosheets. ACS Appl. Mater. Interfaces. 8, 11548–11556 (2016). https://doi.org/10.1021/acsami.5b10247
- M.B. Erande, S.R. Suryawanshi, M.A. More, D.J. Late, Electrochemically exfoliated black phosphorus nanosheets-prospective field emitters. Eur. J. Inorg. Chem. 2015, 3102–3107 (2015). https://doi.org/10.1002/ejic.201500145
- Z. Huang, H. Hou, Y. Zhang, C. Wang, X. Qiu, X. Ji, Layer-tunable phosphorene modulated by the cation insertion rate as a sodium-storage anode. Adv. Mater. 29, 1–7 (2017). https://doi.org/10.1002/adma.201702372
- H. Wang, X. Yang, W. Shao, S. Chen, J. Xie et al., Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation. J. Am. Chem. Soc. 137, 11376–11382 (2015). https://doi.org/10.1021/jacs.5b06025
- A. Ambrosi, Z. Sofer, M. Pumera, Electrochemical exfoliation of layered black phosphorus into phosphorene. Angew. Chem. Int. Ed. 129, 10579–10581 (2017). https://doi.org/10.1002/ange.201705071
- Z.N. Guo, H. Zhang, S.B. Lu, Z.T. Wang, S.Y. Tang et al., From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater. 25, 7100 (2015). https://doi.org/10.1002/adfm.201570292
- S.K. Jang, J. Youn, Y.J. Song, S.J. Lee, Synthesis and characterization of hexagonal boron nitride as a gate dielectric. Sci. Rep. 6, 30449 (2016). https://doi.org/10.1038/srep30449
- Y.H. Lee, X.Q. Zhang, W. Zhang, M.T. Chang, C.T. Lin et al., Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012). https://doi.org/10.1002/adma.201104798
- L. Chen, G. Zhou, Z. Liu, X. Ma, J. Chen et al., Scalable clean exfoliation of high-quality few-layer black phosphorus for a flexible lithium ion battery. Adv. Mater. 28, 510–517 (2016). https://doi.org/10.1002/adma.201503678
- J.B. Smith, D. Hagaman, H.F. Ji, Growth of 2D black phosphorus film from chemical vapor deposition. Nanotechnology 27, 21 (2016). https://doi.org/10.1088/0957-4484/27/21/215602
- Y. Guo, S. Zhou, J. Zhang, Y. Bai, J. Zhao, Atomic structures and electronic properties of phosphorene grain boundaries. 2D Mater. 3, 2 (2016). https://doi.org/10.1088/2053-1583/3/2/025008
- Y. Yu, J.D. Yao, X.Y. Niu, B.R. Xing, Y.L. Liu et al., Synthesis and electrical properties of single crystalline black phosphorus nanoribbons. CrystEngComm 22, 3824–3830 (2020). https://doi.org/10.1039/D0CE00390E
- M. Mehboudi, K. Utt, H. Terrones, E.O. Harriss, A.A.P. SanJuan, S. Barraza-Lopez, Strain and the optoelectronic properties of nonplanar phosphorene monolayers. Proc. Natl. Acad. Sci. U.S.A. 112, 5888–5892 (2015). https://doi.org/10.1073/pnas.1500633112
- M. Liu, S. Feng, Y. Hou, S. Zhao, L. Tang et al., High yield growth and doping of black phosphorus with tunable electronic properties. Mater. Today 36, 91–101 (2020). https://doi.org/10.1016/j.mattod.2019.12.027
- P. Yasaei, B. Kumar, T. Foroozan, C. Wang, M. Asadi et al., High-quality black phosphorus atomic layers by liquid-phase exfoliation. Adv. Mater. 11, 1887–1892 (2015). https://doi.org/10.1002/adma.201405150
- J. Li, Z.S. Gao, X.X. Ke, Y.Y. Lv, H.L. Zhang et al., Growth of black phosphorus nanobelts and microbelts. Small 1, 1702501 (2018). https://doi.org/10.1002/smll.201702501
- T. Nilges, M. Kersting, T. Pfeifer, A fast low-pressure transport route to large black phosphorus single crystals. J. Solid State Chem. 181(8), 1707–1711 (2008). https://doi.org/10.1016/j.jssc.2008.03.008
- M. Köpf, N. Eckstein, D. Pfister, C. Grotz, I. Krüger et al., Access and in situ growth of phosphorene precursor black phosphorus. J. Cryst. Growth (2014). https://doi.org/10.1016/j.jssc.2008.03.008
- S.C. Xu, B.Y. Man, S.Z. Jiang, A.H. Liu, G.D. Hu et al., Direct synthesis of graphene on any nonmetallic substrate based on KrF laser ablation of ordered pyrolytic graphite. Laser Phys. Lett. 11, 096001 (2014). https://doi.org/10.1088/1612-2011/11/9/096001
- Y. Bleu, F. Bourquard, T. Tite, A.S. Loir, C. Maddi, C. Donnet, F. Garreli, Review of graphene growth from a solid carbon source by pulsed laser deposition (PLD). Front. Chem. 6, 572 (2018). https://doi.org/10.3389/fchem.2018.00572
- Z. Yang, J. Hao, S. Yuan, S. Lin, H.M. Yau, J. Dai, S.P. Lau, Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition. Adv. Mater. 27, 3748–3754 (2015). https://doi.org/10.1002/adma.201500990
- C. Li, Y. Wu, B. Deng, Y. Xie, Q. Guo et al., Synthesis of crystalline black phosphorus thin film on sapphire. Adv. Mater. 30, 1–8 (2018). https://doi.org/10.1002/adma.201703748
- Y.Y. Zhang, X.H. Rui, Y.X. Tang, Y.Q. Liu, J.Q. Wei et al., Wet-chemical processing of phosphorus composite nanosheets for high-rate and high-capacity lithium-ion batteries. Adv. Energy Mater. 6, 1502409 (2016). https://doi.org/10.1002/aenm.201502409
- Y. Du, Z. Yin, J. Zhu, X. Huang, X.J. Wu, Z. Zeng, Q. Yan, H. Zhang, A general method for the large-scale synthesis of uniform ultrathin metal sulphide nanocrystals. Nat. Commun. 3, 1–7 (2012). https://doi.org/10.1038/ncomms2181
- D. Yoo, M. Kim, S. Jeong, J. Han, J. Cheon, Chemical synthetic strategy for single-layer transition-metal chalcogenides. J. Am. Chem. Soc. 136, 14670–14673 (2014). https://doi.org/10.1021/ja5079943
- J.S. Son, J.H. Yu, S.G. Kwon, J. Lee, J. Joo, T. Hyeon, Colloidal synthesis of ultrathin two-dimensional semiconductor nanocrystals. Adv. Mater. 23, 3214–3219 (2011). https://doi.org/10.1002/adma.201101334
- Z. Sun, T. Liao, Y. Dou, S.M. Hwang, M.S. Park et al., Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets. Nat. Commun. 5, 3813 (2014). https://doi.org/10.1038/ncomms4813
- M. Choucair, P. Thordarson, J.A. Stride, Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat. Nanotechnol. 4, 30–33 (2009). https://doi.org/10.1038/nnano.2008.365
- Y. Xu, Z. Wang, Z. Guo, H. Huang, Q. Xiao, H. Zhang, X.F. Yu, Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots. Adv. Opt. Mater. 4, 1223–1229 (2016). https://doi.org/10.1002/adom.201600214
- S.Q. Fan, J.S. Qiao, J.W. Lai, H.C. Hei, Z.H. Feng et al., Wet chemical method for black phosphorus thinning and passivation. ACS Appl. Mater. Interfaces. 11, 9213–9222 (2019). https://doi.org/10.1021/acsami.8b21655
- X.X. Shi, Y.P. Pang, B.C. Wang, H. Sun, X.T. Wang et al., In situ forming LiF nano-decorated electrolyte/electrode interfaces for stable all-solid-state batteries. Mater. Today Nano 10, 100079 (2020). https://doi.org/10.1016/j.mtnano.2020.100079
- L. Lu, X. Han, J. Li, J. Hua, M. Ouyang, A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sour. 226, 272–288 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.060
- M. Armand, J.M. Tarascon, Building better batteries. Nature 451, 652–657 (2008). https://doi.org/10.1038/451652a
- J.B. Goodenough, K.S. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013). https://doi.org/10.1021/ja3091438
- G.S. Zakharova, C. Jähne, A. Popa, C. Täschner, T. Gemming et al., Anatase nanotubes as an electrode material for lithium-ion batteries. J. Phys. Chem. C 116, 8714–8720 (2012). https://doi.org/10.1021/jp300955r
- J. Qian, X. Wu, Y. Cao, X. Ai, H. Yang, High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew. Chem. Int. Ed. 52, 4633–4636 (2013). https://doi.org/10.1002/anie.201209689
- H. Jin, H. Wang, Z. Qi, D. Bin, T. Zhang et al., A black phosphorus-graphite composite anode for Li-/Na-/K-ion Batteries. Angew. Chem. Int. Ed. 59(6), 2318–2322 (2020). https://doi.org/10.1002/anie.201913129
- M. Winter, J.O. Besenhard, M.E. Spahr, P. Novák, Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 10, 725–763 (1998)
- Y. Xue, Q. Zhang, W. Wang, H. Cao, Q. Yang, L. Fu, Opening two-dimensional materials for energy conversion and storage: a concept. Adv. Energy Mater. 7, 1–23 (2017). https://doi.org/10.1002/aenm.201602684
- Y. Xue, Q. Zhang, T. Zhang, L. Fu, Black phosphorus: properties, synthesis, and applications in energy conversion and storage. ChemNanoMat 3, 352–361 (2017). https://doi.org/10.1002/cnma.201700030
- H.Y. Xu, C.X. Peng, Y.H. Yan, F. Dong, H. Sun, J.H. Yang, S.Y. Zheng, “All-In-One” integrated ultrathin SnS2@3D multichannel carbon matrix power high-areal-capacity lithium battery anode. Carbon Energy 1, 276–288 (2019). https://doi.org/10.1002/cey2.22
- N. Nitta, F. Wu, J.T. Lee, G. Yush, Li-ion battery materials: present and future. Mater. Today 18, 252–264 (2015). https://doi.org/10.1016/j.mattod.2014.10.040
- Z. Chang, Y. Yang, X. Wang, M. Li, Z. Fu, Y. Wu, R. Holze, Hybrid system for rechargeable magnesium battery with high energy density. Sci. Rep. 5, 1–8 (2015). https://doi.org/10.1038/srep11931
- L.E. Marbella, M.L. Evans, M.F. Groh, J. Nelson, K.J. Griffith, A.J. Morris, C.P. Grey, Sodiation and desodiation via helical phosphorus intermediates in high-capacity anodes for sodium-ion batteries. J. Am. Chem. Soc. 140(25), 7994–8004 (2018). https://doi.org/10.1021/jacs.8b04183
- S.S. Liang, W.Q. Yan, X. Wu, Y. Zhang, Y.S. Zhu, H.W. Wang, Y.P. Wu, Gel polymer electrolytes for lithium ion batteries: fabrication, characterization and performance. Solid State Ionics 318, 2–18 (2018). https://doi.org/10.1016/j.ssi.2017.12.023
- Y. Xue, Q. Zhang, W. Wang, H. Cao, Q. Yang, L. Fu, Opening two -dimensional materials for energy conversion and storage: a concept. Adv. Energy Mater. 7, 1602684 (2017). https://doi.org/10.1002/aenm.201602684
- L. Zhang, J. Deng, L. Liu, W. Si, S. Oswald et al., Hierarchically designed SiOx/SiOy bilayer nanomembranes as stable anodes for lithium ion batteries. Adv. Mater. 26, 4527–4532 (2014). https://doi.org/10.1002/adma.201401194
- J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001). https://doi.org/10.1038/35104644
- J.W. Fergus, Recent developments in cathode materials for lithium ion batteries. J. Power Sour. 195, 939–954 (2020). https://doi.org/10.1016/j.jpowsour.2009.08.089
- W. Wang, X. Yue, J. Meng, J. Wang, X. Wang et al., Lithium phosphorus oxynitride as an efficient protective layer on lithium metal anodes for advanced lithium-sulfur batteries. Energy Storage Mater. 18, 414–422 (2019). https://doi.org/10.1016/j.ensm.2018.08.010
- X. Wei, X. Wang, Q. An, C. Han, L. Mai, Operando x-ray diffraction characterization for understanding the intrinsic electrochemical mechanism in rechargeable battery materials. Small Methods 1, 1700083 (2017). https://doi.org/10.1002/smtd.201700083
- V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243–3262 (2011). https://doi.org/10.1039/C1EE01598B
- S. Zhao, W. Kang, J. Xue, The potential application of phosphorene as an anode material in Li-ion batteries. J. Mater. Chem. A 2, 19046–19052 (2014). https://doi.org/10.1039/c4ta04368e
- W. Li, Y. Yang, G. Zhang, Y.W. Zhang, Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery. Nano Lett. 15, 1691–1697 (2015). https://doi.org/10.1021/nl504336h
- G.C. Guo, D. Wang, X.L. Wei, Q. Zhang, H. Liu, W.M. Lau, L.M. Liu, First-principles study of phosphorene and graphene heterostructure as anode materials for rechargeable Li batteries. J. Phys. Chem. Lett. 6, 5002–5008 (2015). https://doi.org/10.1021/acs.jpclett.5b02513
- Y.P. Zhang, L.L. Wang, H. Xu, J.M. Cao, D. Chen, W. Han, 3D chemical cross-linking structure of black phosphorus@ CNTs hybrid as a promising anode material for lithium ion batteries. Adv. Funct. Mater. 30, 1909372 (2020). https://doi.org/10.1002/adfm.201909372
- C. Zhang, M. Yu, G. Anderson, R.R. Dharmasena, G. Sumanasekera, The prospects of phosphorene as an anode material for high-performance lithium-ion batteries: a fundamental study. Nanotechnology 28, 7 (2017). https://doi.org/10.1088/1361-6528/aa52ac
- Q.F. Li, C.G. Duan, X.G. Wan, J.L. Kuo, Theoretical prediction of anode materials in Li-ion batteries on layered black and blue phosphorus. J. Phys. Chem. C 119, 8662–8670 (2015). https://doi.org/10.1021/jp512411g
- Y. Zhang, H. Wang, Z. Luo, H.T. Tan, B. Li et al., An air-stable densely packed phosphorene-graphene composite toward advanced lithium storage properties. Adv. Energy Mater. 6, 1–9 (2016). https://doi.org/10.1002/aenm.201600453
- J.O. Island, G.A. Steele, H.S.J. Van Der Zant, A. Castellanos-Gomez, Environmental instability of few-layer black phosphorus. 2D Mater. 2, 1 (2015). https://doi.org/10.1088/2053-1583/2/1/011002
- G. Xu, Y.Y. Liu, J.W. Hong, D.N. Fang, Lithium intercalation drives mechanical properties deterioration in bulk and single-layered black phosphorus: a first-principles study. 2D Mater. 7, 025028 (2020). https://doi.org/10.1088/2053-1583/ab6705
- A. Ziletti, A. Carvalho, D.K. Campbell, D.F. Coker, A.H. CastroNeto, Oxygen defects in phosphorene. Phys. Rev. Lett. 114, 26–29 (2015). https://doi.org/10.1103/PhysRevLett.114.046801
- G. Wang, W.J. Slough, R. Pandey, S.P. Karna, Degradation of phosphorene in air: understanding at atomic level. 2D Mater. 3, 2 (2016). https://doi.org/10.1088/2053-1583/3/2/025011
- S. Walia, Y. Sabri, T. Ahmed, M.R. Field, R. Ramanathan et al., Defining the role of humidity in the ambient degradation of few-layer black phosphorus. 2D Mater. 4, 1 (2017). https://doi.org/10.1088/2053-1583/4/1/015025
- Q. Zhou, Q. Chen, Y. Tong, J. Wang, Light-induced ambient degradation of few-layer black phosphorus: mechanism and protection. Angew. Chem. Int. Ed. 55, 11437–11441 (2016). https://doi.org/10.1002/anie.201605168
- H. Hou, Q. Xu, Y. Pang, L. Li, J. Wang, C. Zhang, C. Sun, Efficient storing energy harvested by triboelectric nanogenerators using a safe and durable all-solid-state sodium-ion battery. Adv. Sci. 4, 1–5 (2017). https://doi.org/10.1002/advs.201700072
- X. Xiong, G. Wang, Y. Lin, Y. Wang, X. Ou, F. Zheng, C. Yang, J. Wang, M. Liu, Enhancing sodium ion battery performance by strongly binding nanostructured Sb2S3 on sulfur-doped graphene sheets. ACS Nano 10, 10953–10959 (2016). https://doi.org/10.1021/acsnano.6b05653
- M.S. Balogun, Y. Luo, W. Qiu, P. Liu, Y. Tong, A review of carbon materials and their composites with alloy metals for sodium ion battery anodes. Carbon 98, 162–178 (2016). https://doi.org/10.1016/j.carbon.2015.09.091
- M. Sheng, F. Zhang, B. Ji, X. Tong, Y. Tang, A novel tin-graphite dual-ion battery based on sodium-ion electrolyte with high energy density. Adv. Energy Mater. 7, 1601963 (2017). https://doi.org/10.1002/aenm.201601963
- Y. Jiang, S. Yu, B. Wang, Y. Li, W. Sun et al., Prussian blue@C composite as an ultrahigh-rate and long-life sodium-ion battery cathode. Adv. Funct. Mater. 26, 5315–5321 (2016). https://doi.org/10.1002/adfm.201600747
- Y. Xu, Q. Wei, C. Xu, Q. Li, Q. An et al., Layer-by-layer Na3V2(PO4)3 embedded in reduced graphene oxide as superior rate and ultralong-life sodium-ion battery cathode. Adv. Energy Mater. 6, 1–9 (2016). https://doi.org/10.1002/aenm.201600389
- E.E.S. Fonsaca, S.H. Domingues, E.S. Orth, A.J.G. Zarbin, A black phosphorus-based cathode for aqueous Na-ion batteries operating under ambient conditions. Chem. Commun. 56, 802–805 (2020). https://doi.org/10.1039/C9CC09279
- X. Guo, W.X. Zhang, J.Q. Zhang, D. Zhou, X. Tang et al., Boosting sodium storage in two-dimensional phosphorene/Ti3C2Tx MXene nanoarchitectures with stable fluorinated interphase. ACS Nano 14, 3651–3659 (2020). https://doi.org/10.1021/acsnano.0c00177
- J.L. Tang, A.D. Dysart, V.G. Pol, Advancement in sodium-ion rechargeable batteries. Curr. Opin. Chem. Eng. 9, 34–41 (2015). https://doi.org/10.1016/j.coche.2015.08.007
- V.V. Kulish, O.I. Malyi, C. Persson, P. Wu, Phosphorene as an anode material for Na-ion batteries: a first-principles study. Phys. Chem. Chem. Phys. 17, 13921–13928 (2015). https://doi.org/10.1039/c5cp01502b
- J. Sun, H.W. Lee, M. Pasta, H. Yuan, G. Zheng et al., A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 10, 980–985 (2015). https://doi.org/10.1038/nnano.2015.194
- A. Nie, Y. Cheng, S. Ning, T. Foroozan, P. Yasaei et al., Selective ionic transport pathways in phosphorene. Nano Lett. 16, 2240–2247 (2016). https://doi.org/10.1021/acs.nanolett.5b04514
- K. Amine, R. Kanno, Y. Tzeng, Rechargeable lithium batteries and beyond: progress, challenges, and future directions. MRS Bull. 39, 395–401 (2014). https://doi.org/10.1557/mrs.2014.62
- I. Shterenberg, M. Salama, Y. Gofer, E. Levi, D. Aurbach, The challenge of developing rechargeable magnesium batteries. MRS Bull. 39, 453–460 (2014). https://doi.org/10.1557/mrs.2014.61
- X. Ren, P. Lian, D. Xie, Y. Yang, Y. Mei et al., Properties, preparation and application of black phosphorus/phosphorene for energy storage: a review. J. Mater. Sci. 52, 10364–10386 (2017). https://doi.org/10.1007/s10853-017-1194-3
- W. Jin, Z. Wang, Y.Q. Fu, Monolayer black phosphorus as potential anode materials for Mg-ion batteries. J. Mater. Sci. 51, 7355–7360 (2016). https://doi.org/10.1007/s10853-016-0023-4
- S. Banerjee, S.K. Pati, Anodic performance of black phosphorus in magnesium-ion batteries: the significance of Mg-P bond-synergy. Chem. Commun. 52, 8381–8384 (2016). https://doi.org/10.1039/c6cc04236h
- K.P.S.S. Hembram, H. Jung, B.C. Yeo, S.J. Pai, H.J. Lee, K.R. Lee, S.S. Han, A comparative first-principles study of the lithiation, sodiation, and magnesiation of black phosphorus for Li-, Na-, and Mg-ion batteries. Phys. Chem. Chem. Phys. 18, 21391–21397 (2016). https://doi.org/10.1039/c6cp02049f
- W.W. Yang, Y.X. Lu, C.X. Zhao, H.L. Liu, First-principles study of black phosphorus as anode material for rechargeable potassium-ion batteries. Electron. Mater. Lett. 16, 89–98 (2020). https://doi.org/10.1007/s13391-019-00178-z
- H.C. Jin, H.Y. Wang, Z.K. Qi, D.S. Bin, T.M. Zhang et al., A black phosphorus-graphite composite anode for Li−/Na−/K− ion batteries. Angew. Chem. Int. Ed. 59, 2318–2322 (2020). https://doi.org/10.1002/anie.201913129
- C. Song, C. Peng, Z. Bian, F. Dong, H. Xu, J. Yang, S. Zheng, Stable and fast lithium-sulfur battery achieved by rational design of multifunctional separator. Energy Environ. Mater. 2, 216–224 (2019). https://doi.org/10.1002/eem2.12036
- S. Zheng, Y. Wen, Y. Zhu, Z. Han, J. Wang, J. Yang, C. Wang, In-situ sulfur reduction and intercalation of graphite oxides for Li–S battery cathode. Adv. Energy Mater. 4(16), 1400482 (2014). https://doi.org/10.1002/aenm.201400482
- S. Evers, L.F. Nazar, New approaches for high energy density lithium-sulfur battery cathodes. Acc. Chem. Res. 46, 1135–1143 (2013). https://doi.org/10.1021/ar3001348
- P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.M. Tarascon, Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012). https://doi.org/10.1038/nmat3191
- L. Ji, P. Meduri, V. Agubra, X. Xiao, M. Alcoutlabi, Graphene-based nanocomposites for energy storage. Adv. Energy Mater. 6, 1502159 (2016). https://doi.org/10.1002/aenm.201502159
- S. Rehman, T. Tang, Z. Ali, X. Huang, Y. Hou, Integrated design of MnO2 @carbon hollow nanoboxes to synergistically encapsulate polysulfides for empowering lithium sulfur batteries. Small 13, 1–8 (2017). https://doi.org/10.1002/smll.201700087
- L. Oakes, R. Carter, C.L. Pint, Nanoscale defect engineering of lithium-sulfur battery composite cathodes for improved performance. Nanoscale 8, 19368–19375 (2016). https://doi.org/10.1039/c6nr06332b
- X. Tao, J. Wan, C. Liu, H. Wang, H. Yao et al., Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design. Nat. Commun. 7, 11203 (2016). https://doi.org/10.1038/ncomms11203
- X. Fang, W. Weng, J. Ren, H. Peng, A cable-shaped lithium sulfur battery. Adv. Mater. 28, 491–496 (2016). https://doi.org/10.1002/adma.201504241
- L. Qie, C. Zu, A. Manthiram, A high energy lithium-sulfur battery with ultrahigh-loading lithium polysulfide cathode and its failure mechanism. Adv. Energy Mater. 6, 1–7 (2016). https://doi.org/10.1002/aenm.201502459
- W. Lv, Z. Li, Y. Deng, Q.H. Yang, F. Kang, Graphene-based materials for electrochemical energy storage devices: opportunities and challenges. Energy Storage Mater. 2, 107–138 (2016). https://doi.org/10.1016/j.ensm.2015.10.002
- L. Li, L. Chen, S. Mukherjee, J. Gao, H. Sun et al., Phosphorene as a polysulfide immobilizer and catalyst in high-performance lithium-sulfur batteries. Adv. Mater. 29, 1–8 (2017). https://doi.org/10.1002/adma.201602734
- J. Zhao, Y. Yang, R.S. Katiyar, Z. Chen, Phosphorene as a promising anchoring material for lithium-sulfur batteries: a computational study. J. Mater. Chem. A 4, 6124–6130 (2016). https://doi.org/10.1039/c6ta00871b
- T. Chen, L. Dai, Flexible supercapacitors based on carbon nanomaterials. J. Mater. Chem. A 2, 10756–10775 (2014). https://doi.org/10.1039/c4ta00567h
- X. Wang, Y. Chen, O.G. Schmidt, C. Yan, Engineered nanomembranes for smart energy storage devices. Chem. Soc. Rev. 45, 1308–1330 (2016). https://doi.org/10.1039/c5cs00708a
- C.X. Hao, B.C. Yang, F.S. Wen, J.Y. Xiang, L. Li et al., Flexible all-solid-state supercapacitors based on liquid-exfoliated black-phosphorus nanoflakes. Adv. Mater. 28, 3194–3201 (2016). https://doi.org/10.1002/adma.201505730
- A. Sajedi-Moghaddam, C.C. Mayorga-Martinez, Z.K. Sofer, D. Bouša, E. Saievar-Iranizad, M. Pumera, Black phosphorus nanoflakes/polyaniline hybrid material for high-performance pseudocapacitors. J. Phys. Chem. C 121, 20532–20538 (2017). https://doi.org/10.1021/acs.jpcc.7b06958
- L. Jiang, L. Sheng, C. Long, T. Wei, Z. Fan, Functional pillared graphene frameworks for ultrahigh volumetric performance supercapacitors. Adv. Energy Mater. 5, 1–9 (2015). https://doi.org/10.1002/aenm.201500771
- H. Li, Y. Hou, F. Wang, M.R. Lohe, X. Zhuang, L. Niu, X. Feng, Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable MXene and electrochemically exfoliated graphene. Adv. Energy Mater. 7, 2–7 (2017). https://doi.org/10.1002/aenm.201601847
- Z.S. Wu, K. Parvez, X. Feng, K. Müllen, Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nat. Commun. 4, 2487 (2013). https://doi.org/10.1038/ncomms3487
- M.F. El-kady, R.B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4, 1475 (2013). https://doi.org/10.1038/ncomms2446
- H. Xiao, Z.S. Wu, L. Chen, F. Zhou, S. Zheng et al., One-step device fabrication of phosphorene and graphene interdigital micro-supercapacitors with high energy density. ACS Nano 11, 7284–7292 (2017). https://doi.org/10.1021/acsnano.7b03288
- B. Mortazavi, O. Rahaman, S. Ahzi, T. Rabczuk, Flat borophene films as anode materials for Mg, Na or Li-ion batteries with ultra high capacities: a first-principles study. Appl. Mater. Today 8, 60–67 (2017). https://doi.org/10.1016/j.apmt.2017.04.010
- F.F. Zhu, W.J. Chen, Y. Xu, C.L. Gao, D.D. Guan et al., Epitaxial growth of two-dimensional stanene. Nat. Mater. 14, 1020–1025 (2015). https://doi.org/10.1038/nmat4384
- B. Mortazavi, A. Dianat, G. Cuniberti, T. Rabczuk, Application of silicene, germanene and stanene for Na or Li ion storage: a theoretical investigation. Electrochim. Acta 213, 865–870 (2016). https://doi.org/10.1016/j.electacta.2016.08.027
- A. Kumar, P. AnnLin, A. Xue, B. Hao, Y. KhinYap, R.M. Sankaran, Formation of nanodiamonds at near-ambient conditions via microplasma dissociation of ethanol vapour. Nat. Commun. 4, 2618 (2013). https://doi.org/10.1038/ncomms3618
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- Y. Chen, M. Wu, P. Tang, S. Chen, J. Du et al., The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator based saturable absorber. Laser Phys. Lett. 11, 5 (2014). https://doi.org/10.1088/1612-2011/11/5/055101
- Q. Wu, S. Chen, Y. Wang, L. Wu, X. Jiang et al., MZI-based all-optical modulator using MXene Ti3C2Tx (T = F, O, or OH) deposited microfiber. Adv. Mater. Technol. 4, 1–10 (2019). https://doi.org/10.1002/admt.201800532
- X. Jiang, S. Liu, W. Liang, S. Luo, Z. He et al., Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH). Laser Photon. Rev. 12(2), 1700229 (2018). https://doi.org/10.1002/lpor.201700229
- Q. Tang, Z. Zhou, P. Shen, Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J. Am. Chem. Soc. 134, 16909–16916 (2012). https://doi.org/10.1021/ja308463r
- A. Byeon, M.Q. Zhao, C.E. Ren, J. Halim, S. Kota et al., Two-dimensional titanium carbide MXene as a cathode material for hybrid magnesium/lithium-ion batteries. ACS Appl. Mater. Interfaces. 9, 4296–4300 (2017). https://doi.org/10.1021/acsami.6b04198
- D.Q. Zhang, T.T. Liu, J.Y. Cheng, Q. Cao, G.P. Zheng et al., Lightweight and high-performance microwave absorber based on 2D WS2-RGO heterostructures. Nano-Micro Lett. 11, 38 (2019). https://doi.org/10.1007/s40820-019-0270-4
- D.Q. Zhang, H.B. Zhang, J.Y. Cheng, H. Raza, T.T. Liu et al., Customizing coaxial stacking VS2 nanosheets for dual-band microwave absorption with superior performance in the C- and Ku-bands. J. Mater. Chem. C 8, 5923 (2020). https://doi.org/10.1002/adom.201701166
- D.Q. Zhang, Y.F. Xiong, J.Y. Cheng, J.X. Chai, T.T. Liu et al., Synergetic dielectric loss and magnetic loss towards superior microwave absorption through hybridization of few-layer WS2 nanosheets with NiO nanoparticles. Sci. Bull. 65, 138–146 (2020). https://doi.org/10.1016/j.scib.2019.10.011
- L. Zhang, W. Fan, T. Liu, Flexible hierarchical membranes of WS2 nanosheets grown on graphene-wrapped electrospun carbon nanofibers as advanced anodes for highly reversible lithium storage. Nanoscale 8, 16387–16394 (2016). https://doi.org/10.1039/C6NR04241D
- T. Stephenson, Z. Li, B. Olsen, D. Mitlin, Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ. Sci. 7, 209–231 (2014). https://doi.org/10.1039/c3ee42591f
- C. Zhao, J. Kong, X. Yao, X. Tang, Y. Dong, S.L. Phua, X. Lu, Thin MoS2 nanoflakes encapsulated in carbon nanofibers as high-performance anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces. 6, 6392–6398 (2014). https://doi.org/10.1021/am4058088
- Z. Wang, M. Liu, G. Wei, P. Han, X. Zhao, J. Liu, Y. Zhou, J. Zhang, Hierarchical self-supported C@TiO2-MoS2 core-shell nanofiber mats as flexible anode for advanced lithium ion batteries. Appl. Surf. Sci. 423, 375–382 (2017). https://doi.org/10.1016/j.apsusc.2017.06.129
- Y. Liu, W. Wang, H. Huang, L. Gu, Y. Wang, X. Peng, The highly enhanced performance of lamellar WS2 nanosheet electrodes upon intercalation of single-walled carbon nanotubes for supercapacitors and lithium ions batteries. Chem. Commun. 50, 4485–4488 (2014). https://doi.org/10.1039/c4cc01622j
- U.K. Sen, S. Mitra, Electrochemical activity of α-MoO3 nano-belts as lithium-ion battery cathode. RSC Adv. 2, 11123–11131 (2012). https://doi.org/10.1039/c2ra21373g
- X.Y. Xue, B. He, S. Yuan, L.L. Xing, Z.H. Chen, C.H. Ma, SnO2/WO3 core-shell nanorods and their high reversible capacity as lithium-ion battery anodes. Nanotechnology 22, 39 (2011). https://doi.org/10.1088/0957-4484/22/39/395702
- D. Su, G. Wang, Single-crystalline bilayered V2O5 nanobelts for high-capacity sodium-ion batteries. ACS Nano 7, 11218–11226 (2013). https://doi.org/10.1021/nn405014d
- K. Ma, X. Liu, Q. Cheng, P. Saha, H. Jiang, C. Li, Flexible textile electrode with high areal capacity from hierarchical V2O5 nanosheet arrays. J. Power Sour. 357, 71–76 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.105
- D. Kong, X. Li, Y. Zhang, X. Hai, B. Wang, X. Qiu, Q. Song, Q. Yang, L. Zhi, Encapsulating V2O5 into carbon nanotubes enables the synthesis of flexible high-performance lithium ion batteries. Energy Environ. Sci. 9, 906–911 (2016). https://doi.org/10.1039/c5ee03345d
References
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). https://doi.org/10.1126/science.1102896
A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007). https://doi.org/10.1038/nmat1849
A.K. Geim, I.V. Grigorieva, Van der waals heterostructures. Nature 499, 419–425 (2013). https://doi.org/10.1038/nature12385
X. Zhang, Z. Lai, C. Tan, H. Zhang, Solution-processed two-dimensional MoS2 nanosheets: preparation, hybridization, and applications. Angew. Chem. Int. Ed. 55, 8816–8838 (2016). https://doi.org/10.1002/anie.201509933
K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. CastroNeto, 2D materials and van der waals heterostructures. Science 353, aac9439 (2016). https://doi.org/10.1126/science.aac9439
A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008). https://doi.org/10.1021/nl0731872
C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008). https://doi.org/10.1126/science.1157996
R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth et al., Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008). https://doi.org/10.1126/science.1156965
X. Li, X. Meng, J. Liu, D. Geng, Y. Zhang et al., Tin oxide with controlled morphology and crystallinity by atomic layer deposition onto graphene nanosheets for enhanced lithium storage. Adv. Funct. Mater. 22, 1647–1654 (2012). https://doi.org/10.1002/adfm.201101068
M. Xu, T. Liang, M. Shi, H. Chen, Graphene-like two-dimensional materials. Chem. Rev. 113, 3766–3798 (2013). https://doi.org/10.1021/cr300263a
M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014). https://doi.org/10.1002/adma.201304138
K. Wang, Z. Lou, L.L. Wang, L.J. Zhao, S.F. Zhao et al., Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors. ACS Nano 13, 9139–9147 (2019). https://doi.org/10.1021/acsnano.9b03454
L.J. Zhao, K. Wang, W. Wei, L.L. Wang, W. Han, High-performance flexible sensing devices based on polyaniline/MXene nanocomposites. InfoMat 1, 407–416 (2019). https://doi.org/10.1002/inf2.12032
X. Duan, C. Wang, A. Pan, R. Yu, X. Duan, Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. Chem. Soc. Rev. 44, 8859–8876 (2015). https://doi.org/10.1039/c5cs00507h
H. Liu, Y. Du, Y. Deng, P.D. Ye, Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44, 2732–2743 (2015). https://doi.org/10.1039/c4cs00257a
C. Chowdhury, A. Datta, Exotic physics and chemistry of two-dimensional phosphorus: phosphorene. J. Phys. Chem. Lett. 8, 2909–2916 (2017). https://doi.org/10.1021/acs.jpclett.7b01290
W. Li, Z. Yang, M. Li, Y. Jiang, X. Wei et al., Amorphous red phosphorus embedded in highly ordered mesoporous carbon with superior lithium and sodium storage capacity. Nano Lett. 16, 1546–1553 (2016). https://doi.org/10.1021/acs.nanolett.5b03903
S. Lin, Y. Li, W. Lu, Y.S. Chui, L. Rogée, Q. Bao, S.P. Lau, In situ observation of the thermal stability of black phosphorus. 2D Mater. 4, 2 (2017). https://doi.org/10.1088/2053-1583/aa55b2
P.W. Bridgman, Two new modifications of phosphorus. J. Am. Chem. Soc. 36, 1344–1363 (1914). https://doi.org/10.1021/ja02184a002
N.A. Piro, J.S. Figueroa, J.T. McKellar, C.C. Cummins, Triple-bond reactivity of diphosphorus molecules. Science 313, 1276–1279 (2006). https://doi.org/10.1126/science.1129630
C.M. Park, H.J. Sohn, Black phosphorus and its composite for lithium rechargeable batteries. Adv. Mater. 19, 2465–2468 (2007). https://doi.org/10.1002/adma.200602592
L.K. Li, Y.J. Yu, G.J. Ye, Q.Q. Ge, X.D. Ou et al., Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014). https://doi.org/10.1038/nnano.2014.35
H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X.F. Xu, D. Tománek, P.D. Ye, Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014). https://doi.org/10.1021/nn501226z
W.Z. Wu, Y.J. Zhou, J. Wang, Y.B. Shao, D.G. Kong, Y.C. Gao, Y.G. Wang, The pump fluence and wavelength-dependent ultrafast carrier dynamics and optical nonlinear absorption in black phosphorus nanosheets. Nanophotonics (2020). https://doi.org/10.1515/nanoph-2020-0025
W.L. Guo, Z. Dong, Y.J. Xu, C.L. Liu, D.C. Wei et al., Terahertz detection and imaging driven by the photothermoelectric effect in ultrashort-channel black phosphorus devices. Adv. Sci. 7, 1902699 (2020). https://doi.org/10.1002/advs.201902699
Y. Wang, M.X. He, S.B. Ma, C.H. Yang, M. Yu, G.P. Yin, P.J. Zuo, Low-temperature solution synthesis of black phosphorus from red phosphorus: crystallization mechanism and lithium ion battery applications. Phys. Chem. Lett. 11(7), 2708–2716 (2020). https://doi.org/10.1021/acs.jpclett.0c00746
D.N. Liu, J.H. Wang, S. Bian, Q. Liu, Y.H. Gao et al., Photoelectrochemical synthesis of ammonia with black phosphorus. Adv. Funct. Mater. 30, 2002731 (2020). https://doi.org/10.1002/adfm.202002731
J. Lu, J. Wu, A. Carvalho, A. Ziletti, H. Liu et al., Bandgap engineering of phosphorene by laser oxidation toward functional 2D materials. ACS Nano 9, 10411–10421 (2015). https://doi.org/10.1021/acsnano.5b04623
W.D. Ma, J.F. Lu, B.S. Wan, D.F. Peng, Q. Xu et al., Piezoelectricity in multilayer black phosphorus for piezotronics and nanogenerators. Adv. Mater. 32, 1905795 (2020). https://doi.org/10.1002/adma.201905795
V. Tran, R. Soklaski, Y.F. Liang, L. Yang, Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B Condens. Matter Mater. Phys. 89, 1–6 (2014). https://doi.org/10.1103/PhysRevB.89.235319
X.J. Zhu, T.M. Zhang, Z.J. Sun, H.L. Chen, J. Guan et al., Black phosphorus revisited: a missing metal-free elemental photocatalyst for visible light hydrogen evolution. Adv. Mater. 29, 1–7 (2017). https://doi.org/10.1002/adma.201605776
M. Qiu, Z.T. Sun, D.K. Sang, X.G. Han, H. Zhang, C.M. Niu, Current progress in black phosphorus materials and their applications in electrochemical energy storage. Nanoscale 9, 13384–13403 (2017). https://doi.org/10.1039/c7nr03318d
M. Batmunkh, M. Bat-Erdene, J.G. Shapter, Phosphorene and phosphorene -based materials-prospects for future applications. Adv. Mater. 28, 8586–8617 (2016). https://doi.org/10.1002/adma.201602254
G.C. Guo, X.L. Wei, D. Wang, Y.P. Luo, L.M. Liu, Pristine and defect-containing phosphorene as promising anode materials for rechargeable Li batteries. J. Mater. Chem. A 3, 11246–11252 (2015). https://doi.org/10.1039/c5ta01661d
S. Balendhran, S. Walia, H. Nili, S. Sriram, M. Bhaskaran, Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene. Small 11, 640–652 (2015). https://doi.org/10.1002/smll.201402041
M. Mehboudi, A.M. Dorio, W.J. Zhu, A.V.D. Zande, H.O.H. Churchill et al., Two-dimensional disorder in black phosphorus and monochalcogenide monolayers. Nano Lett. 16, 1704–1712 (2016). https://doi.org/10.1021/acs.nanolett.5b04613
R. Hultgren, N.S. Gingrich, B.E. Warren, The atomic distribution in red and black phosphorus and the crystal structure of black phosphorus. J. Chem. Phys. 3, 351–355 (1935). https://doi.org/10.1063/1.1749671
R.W. Keyes, The electrical properties of black phosphorus. Phys. Rev. 92, 580–584 (1953). https://doi.org/10.1103/PhysRev.92.580
A. Morita, Semiconducting black phosphorus. Appl. Phys. A Solids Surfaces 39, 227–242 (1986). https://doi.org/10.1007/BF00617267
F.N. Xia, H. Wang, Y.C. Jia, Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 1–6 (2014). https://doi.org/10.1038/ncomms5458
L.F. Gao, J.Y. Xu, Z.Y. Zhu, C.X. Hu, L. Zhang, Q. Wang, H.L. Zhang, Small molecule-assisted fabrication of black phosphorus quantum dots with a broadband nonlinear optical response. Nanoscale 8, 15132–15136 (2016). https://doi.org/10.1039/c6nr04773d
S. Ge, L. Zhang, P. Wang, Y. Fang, Intense, stable and excitation wavelength -independent photoluminescence emission in the blue-violet region from phosphorene quantum dots. Sci. Rep. 26, 1–6 (2016). https://doi.org/10.1038/srep27307
X. Wang, A.M. Jones, K.L. Seyler, V. Tran, Y. Jia et al., Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 10, 517–521 (2015). https://doi.org/10.1038/nnano.2015.71
S.H. Lin, Y.Y. Li, J.S. Qian, S.P. Lau, Emerging opportunities for black phosphorus in energy applications. Mater. Today Energy 12, 1–25 (2019). https://doi.org/10.1016/j.mtener.2018.12.004
A. Jain, A.J.H. McGaughey, Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Sci. Rep. 5, 8501 (2015). https://doi.org/10.1038/srep08501
J. Guan, Z. Zhu, D. Tománek, Phase coexistence and metal-insulator transition in few-layer phosphorene: a computational study. Phys. Rev. Lett. 113, 1–5 (2014). https://doi.org/10.1103/PhysRevLett.113.046804
J. Jia, S.K. Jang, S. Lai, J. Xu, Y.J. Choi, J.H. Park, S. Lee, Plasma-treated thickness-controlled two-dimensional black phosphorus and its electronic transport properties. ACS Nano 9, 8729–8736 (2015). https://doi.org/10.1021/acsnano.5b04265
S. Seo, H.U. Lee, S.C. Lee, Y. Kim, H. Kim et al., Triangular black phosphorus atomic layers by liquid exfoliation. Science 6, 23736 (2016). https://doi.org/10.1038/srep23736
S.H. Lin, Y. Li, W. Lu, Y.S. Chui, L. Rogee, Q.L. Bao, S.P. Lau, In situ observation of the thermal stability of black phosphorus. 2D Mater. 4, 025001 (2017). https://doi.org/10.1088/2053-1583/aa55b2
G. Lee, J.Y. Lee, G.H. Lee, J. Kim, Tuning the thickness of black phosphorus via ion bombardment-free plasma etching for device performance improvement. J. Mater. Chem. A 4, 6234–6239 (2016). https://doi.org/10.1039/C6TC01514J
S. Walia, Y. Sabri, T. Ahmed, M.R. Field, R. Ramanathan et al., Defining the role of humidity in the ambient degradation of few-layer black phosphorus. 2D Mater. 4, 015025 (2017). https://doi.org/10.1088/2053-1583/4/1/015025
A.S. Pawbake, M.B. Erande, S.R. Jadkar, D.J. Late, Temperature dependent Raman spectroscopy of electrochemically exfoliated few layer black phosphorus nanosheets. RSC Adv. 6, 76551 (2016). https://doi.org/10.1039/C6RA15996F
Z. Hou, B. Yang, Y. Wang, B. Ding, X. Zhang et al., Large and anisotropic linear magnetoresistance in single crystals of black phosphorus arising from mobility fluctuations. Sci. Rep. 6, 23807 (2016). https://doi.org/10.1038/srep23807
J.B. Smith, D. Hagaman, H.F. Ji, Growth of 2D black phosphorus film from chemical vapor deposition. Nanotechnology 27, 215602 (2016). https://doi.org/10.1088/0957-4484/27/21/215602
H. Muramatsu, Y.A. Kim, K.S. Yang, R. Cruz-Silva, I. Toda et al., Rice husk-derived graphene with nano-sized domains and clean edges. Small 10, 2766 (2014). https://doi.org/10.1002/small.201400017
Z.X. Gan, L.L. Sun, X.L. Wu, M. Meng, J.C. Shen, P.K. Chu, Tunable photoluminescence from sheet-like black phosphorus crystal by electrochemical oxidation. Appl. Phys. Lett. 107, 021901 (2015). https://doi.org/10.1063/1.4926727
W. Lei, G. Liu, J. Zhang, M. Liu, Black phosphorus nanostructures: recent advances in hybridization, doping and functionalization. Chem. Soc. Rev. 46, 3492–3509 (2017). https://doi.org/10.1039/c7cs00021a
M. Schütz, L. Maschio, A.J. Karttunen, D. Usvyat, Exfoliation energy of black phosphorus revisited: a coupled cluster benchmark. J. Phys. Chem. Lett. 8, 1290–1294 (2017). https://doi.org/10.1021/acs.jpclett.7b00253
L. Sun, Z.H. Zhang, H. Wang, M. Li, Electronic properties of phosphorene nanoribbons with nanoholes. RSC Adv. 8, 7486–7493 (2018). https://doi.org/10.1039/c7ra12351e
G. Schusteritsch, M. Uhrin, C.J. Pickard, Single-layered hittorf’s phosphorus: a wide-bandgap high mobility 2D material. Nano Lett. 16, 2975–2980 (2016). https://doi.org/10.1021/acs.nanolett.5b05068
S.M. Kelso, D.E. Aspnes, C.G. Olson, D.W. Lynch, R.E. Nahory, M.A. Pollack, Band structure and optical properties of In1-xGaxAsyP1-y. J. Appl. Phys. 19, 327–331 (1980). https://doi.org/10.7567/JJAPS.19S3.327
J.H. Lin, H. Zhang, X.L. Cheng, First-principle study on the optical response of phosphorene. Front. Phys. 10, 1–9 (2015). https://doi.org/10.1007/s11467-015-0468-y
R. Fei, L. Yang, Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett. 14, 2884–2889 (2014). https://doi.org/10.1021/nl500935z
L. Sun, Z.H. Zhang, H. Wang, M. Li, Electronic and transport properties of zigzag phosphorene nanoribbons with nonmetallic atom terminations. RSC Adv. 10, 1400–1409 (2020). https://doi.org/10.1039/c9ra06360a
H.B. Ribeiro, M.A. Pimenta, C.J.S. De Matos, R.L. Moreira, A.S. Rodin et al., Unusual angular dependence of the Raman response in black phosphorus. ACS Nano 9, 4270–4276 (2015). https://doi.org/10.1021/acsnano.5b00698
D. ÇakIr, H. Sahin, F.M. Peeters, Tuning of the electronic and optical properties of single-layer black phosphorus by strain. Phys. Rev. B Condens. Matter Mater. Phys. 90, 1–7 (2014). https://doi.org/10.1103/PhysRevB.90.205421
S.C. Dhanabalan, J.S. Ponraj, Z. Guo, S. Li, Q. Bao, H. Zhang, Emerging trends in phosphorene fabrication towards next generation devices. Adv. Sci. 4(6), 1600305 (2017). https://doi.org/10.1002/advs.201600305
L. Liang, J. Wang, W. Lin, B.G. Sumpter, V. Meunier, M. Pan, Electronic bandgap and edge reconstruction in phosphorene materials. Nano Lett. 14, 6400–6406 (2014). https://doi.org/10.1021/nl502892t
C.R. Ryder, J.D. Wood, S.A. Wells, M.C. Hersam, Chemically tailoring semiconducting two-dimensional transition metal dichalcogenides and black phosphorus. ACS Nano 10, 3900–3917 (2016). https://doi.org/10.1021/acsnano.6b01091
J. He, D. He, Y. Wang, Q. Cui, M.Z. Bellus, H.Y. Chiu, H. Zhao, Exceptional and anisotropic transport properties of photocarriers in black phosphorus. ACS Nano 9, 6436–6442 (2015). https://doi.org/10.1021/acsnano.5b02104
T. Hu, H. Wu, H. Zeng, K. Deng, E. Kan, New ferroelectric phase in atomic-thick phosphorene nanoribbons: existence of in-plane electric polarization. Nano Lett. 16, 8015–8020 (2016). https://doi.org/10.1021/acs.nanolett.6b04630
M. Ezawa, Highly anisotropic physics in phosphorene. J. Phys: Conf. Ser. 603, 14–15 (2015). https://doi.org/10.1088/1742-6596/603/1/012006
R. Xu, J. Yang, Y. Zhu, H. Yan, J. Pei et al., Layer-dependent surface potential of phosphorene and anisotropic/layer-dependent charge transfer in phosphorene-gold hybrid systems. Nanoscale 8, 129–135 (2016). https://doi.org/10.1039/c5nr04366b
J. Qiao, X. Kong, Z.X. Hu, F. Yang, W. Ji, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 1–7 (2014). https://doi.org/10.1038/ncomms5475
X. Peng, Q. Wei, A. Copple, Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene. Phys. Rev. B Condens. Matter Mater. Phys. 90, 1–10 (2014). https://doi.org/10.1103/PhysRevB.90.085402
D.B. Shinde, V.K. Pillai, Electrochemical preparation of luminescent graphene quantum dots from multiwalled carbon nanotubes. Chem. A Eur. J. 18, 12522–12528 (2012). https://doi.org/10.1002/chem.201201043
B. Sa, Y.L. Li, J. Qi, R. Ahuja, Z. Sun, Strain engineering for phosphorene: the potential application as a photocatalyst. J. Phys. Chem. C 118, 26560–26568 (2014). https://doi.org/10.1021/jp508618t
G. Zhang, S. Huang, A. Chaves, C. Song, V.O. Özçelik, T. Low, H. Yan, Infrared fingerprints of few-layer black phosphorus. Nat. Commun. 8, 14071 (2017). https://doi.org/10.1038/ncomms14071
Y. Zhang, Z.F. Wu, P.F. Gao, D.Q. Fang, E.H. Zhang, S.L. Zhang, Structural, elastic, electronic, and optical properties of the tricycle-like phosphorene. Phys. Chem. Chem. Phys. 19, 2245–2251 (2017). https://doi.org/10.1039/c6cp07575d
Y. Liu, K.W. Ang, Monolithically integrated flexible black phosphorus complementary inverter circuits. ACS Nano 11, 7416–7423 (2017). https://doi.org/10.1021/acsnano.7b03703
W. Zhu, M.N. Yogeesh, S. Yang, S.H. Aldave, J. Kim et al., Flexible black phosphorus ambipolar transistors, circuits and AM demodulator. Nano Lett. 15, 1883–1890 (2015). https://doi.org/10.1021/nl5047329
X. Li, B. Deng, X. Wang, S. Chen, M. Vaisman et al., Synthesis of thin-film black phosphorus on a flexible substrate. 2D Mater. 2, 3 (2015). https://doi.org/10.1088/2053-1583/2/3/031002
W. Zhu, S. Park, M.N. Yogeesh, K.M. McNicholas, S.R. Bank, D. Akinwande, Black phosphorus flexible thin film transistors at gighertz frequencies. Nano Lett. 16, 2301–2306 (2016). https://doi.org/10.1021/acs.nanolett.5b04768
Q. Wei, X. Peng, Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett. 104, 251915 (2014). https://doi.org/10.1063/1.4885215
Y. Cai, Q. Ke, G. Zhang, Y.P. Feng, V.B. Shenoy, Y.W. Zhang, Giant phononic anisotropy and unusual anharmonicity of phosphorene: interlayer coupling and strain engineering. Adv. Funct. Mater. 25, 2230–2236 (2015). https://doi.org/10.1002/adfm.201404294
Z.Y. Ong, Y. Cai, G. Zhang, Y.W. Zhang, Strong thermal transport anisotropy and strain modulation in single-layer phosphorene. J. Phys. Chem. C 118, 25272–25277 (2014). https://doi.org/10.1021/jp5079357
S. Appalakondaiah, G. Vaitheeswaran, S. Lebègue, N.E. Christensen, A. Svane, Effect of van der waals interactions on the structural and elastic properties of black phosphorus. Phys. Rev. B Condens. Matter Mater. Phys. 86, 1–9 (2012). https://doi.org/10.1103/PhysRevB.86.035105
J.W. Jiang, H.S. Park, Mechanical properties of single-layer black phosphorus. J. Phys. D Appl. Phys. 47, 38 (2014). https://doi.org/10.1088/0022-3727/47/38/385304
X. Liu, J.D. Wood, K.S. Chen, E. Cho, M.C. Hersam, In situ thermal decomposition of exfoliated two-dimensional black phosphorus. J. Phys. Chem. Lett. 6, 773–778 (2015). https://doi.org/10.1021/acs.jpclett.5b00043
L. Zhu, G. Zhang, B. Li, Coexistence of size-dependent and size-independent thermal conductivities in phosphorene. Phys. Rev. B Condens. Matter Mater. Phys. 90, 2–7 (2014). https://doi.org/10.1103/PhysRevB.90.214302
H. Jang, J.D. Wood, C.R. Ryder, M.C. Hersam, D.G. Cahill, Anisotropic thermal conductivity of exfoliated black phosphorus. Adv. Mater. 27, 8017–8022 (2015). https://doi.org/10.1002/adma.201503466
L. Guan, B.R. Xing, X.Y. Niu, D. Wang, Y. Yu et al., Metal-assisted exfoliation of few-layer black phosphorus with high yield. Chem. Commun. 54, 595–598 (2018). https://doi.org/10.1039/C7CC08488A
Y. Song, S. Chang, S. Gradecak, J. Kong, Visibly-transparent organic solar cells on flexible substrates with all-graphene electrodes. Adv. Energy Mater. 6, 1–8 (2016). https://doi.org/10.1002/aenm.201600847
G. Sansone, L. Maschio, D. Usvyat, M. Schütz, A. Karttunen, Toward an accurate estimate of the exfoliation energy of black phosphorus: a periodic quantum chemical approach. J. Phys. Chem. Lett. 7, 131–136 (2016). https://doi.org/10.1021/acs.jpclett.5b02174
L.X. Benedict, N.G. Chopra, M.L. Cohen, A. Zettl, S.G. Louie, V.H. Crespi, Microscopic determination of the interlayer binding energy in graphite. Chem. Phys. Lett. 286, 490–496 (1998). https://doi.org/10.1016/S0009-2614(97)01466-8
S. Bae, H. Kim, Y. Lee, X. Xu, J.S. Park et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010). https://doi.org/10.1038/nnano.2010.132
D. Lee, E. Hwang, Y. Lee, Y. Choi, J.S. Kim, S. Lee, J.H. Cho, Multibit MoS2 photoelectronic memory with ultrahigh sensitivity. Adv. Mater. 28, 9196–9202 (2016). https://doi.org/10.1002/adma.201603571
S. Li, B.N. Peele, C.M. Larson, H. Zhao, R.F. Shepherd, A stretchable multicolor display and touch interface using photopatterning and transfer printing. Adv. Mater. 28, 9770–9775 (2016). https://doi.org/10.1002/adma.201603408
Q. Zhang, Z. Chang, G. Xu, Z. Wang, Y. Zhang et al., Strain relaxation of monolayer WS2 on plastic substrate. Adv. Funct. Mater. 26, 8707–8714 (2016). https://doi.org/10.1002/adfm.201603064
A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H.S.J. VanDerZant, G.A. Steele, Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 1 (2014). https://doi.org/10.1088/2053-1583/1/1/011002
Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012). https://doi.org/10.1038/nnano.2012.193
S. Wu, K.S. Hui, K.N. Hui, 2D black phosphorus: from preparation to applications for electrochemical energy storage. Adv. Sci. 5, 1700491 (2018). https://doi.org/10.1002/advs.201700491
A. Favron, E. Gaufrès, F. Fossard, A.L. Phaneuf-Laheureux, N.Y.W. Tang et al., Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 14, 826–832 (2015). https://doi.org/10.1038/nmat4299
M. Buscema, D.J. Groenendijk, S.I. Blanter, G.A. Steele, H.S.J. VanDerZant, A. Castellanos-Gomez, Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 14, 3347–3352 (2014). https://doi.org/10.1021/nl5008085
Z. Luo, J. Maassen, Y. Deng, Y. Du, R.P. Garrelts et al., Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun. 6, 1–8 (2015). https://doi.org/10.1038/ncomms9572
Z.N. Guo, H. Zhang, S.B. Lu, Z.T. Wang, S.Y. Tang et al., From black phosphorus to phosphorene: basic solvent exfoliation, evolution of raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater. 25(45), 6996–7002 (2015). https://doi.org/10.1002/adfm.201502902
V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Liquid exfoliation of layered materials. Science 340, 72–75 (2013). https://doi.org/10.1126/science.1226419
C. Zhu, F. Xu, L. Zhang, M. Li, J. Chen et al., Ultrafast preparation of black phosphorus quantum dots for efficient humidity sensing. Chem. A Eur. J. 22, 7357–7362 (2016). https://doi.org/10.1002/chem.201600719
A. Gupta, T. Sakthivel, S. Seal, Recent development in 2D materials beyond graphene. Prog. Mater Sci. 73, 44–126 (2015). https://doi.org/10.1016/j.pmatsci.2015.02.002
V. Sresht, A.A.H. Pádua, D. Blankschtein, Liquid-phase exfoliation of phos- phorene: design rules from molecular dynamics simulations. ACS Nano 9, 8255–8268 (2015). https://doi.org/10.1021/acsnano.5b02683
Z. Sun, H. Xie, S. Tang, X.F. Yu et al., Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents. Angew. Chem. Int. Ed. 54, 11526–11530 (2015). https://doi.org/10.1002/anie.201506154
Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang et al., From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater. 25, 6996–7002 (2015). https://doi.org/10.1002/adfm.201502902
J. Kang, J.D. Wood, S.A. Wells, J.H. Lee, X. Liu, K.S. Chen, M.C. Hersam, Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. ACS Nano 9, 3596–3604 (2015). https://doi.org/10.1021/acsnano.5b01143
J.R. Brent, N. Savjani, E.A. Lewis, S.J. Haigh, D.J. Lewis, P. O’Brien, Production of few-layer phosphorene by liquid exfoliation of black phosphorus. Chem. Commun. 50, 13338–13341 (2014). https://doi.org/10.1039/c4cc05752j
D. Hanlon, C. Backes, E. Doherty, C.S. Cucinotta, N.C. Berner et al., Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. 6, 8563 (2015). https://doi.org/10.1038/ncomms9563
P. Yasaei, B. Kumar, T. Foroozan, C. Wang, M. Asadi et al., High-quality black phosphorus atomic layers by liquid-phase exfoliation. Adv. Mater. 27, 1887–1892 (2015). https://doi.org/10.1002/adma.201405150
A.H. Woomer, T.W. Farnsworth, J. Hu, R.A. Wells, C.L. Donley, S.C. Warren, Phosphorene: synthesis, scale-up, and quantitative optical spectroscopy. ACS Nano 9, 8869–8884 (2015). https://doi.org/10.1021/acsnano.5b02599
A. Ciesielski, P. Samorì, Graphene via sonication assisted liquid-phase exfoliation. Chem. Soc. Rev. 43, 381–398 (2014). https://doi.org/10.1039/c3cs60217f
E.A. Lewis, J.R. Brent, B. Derby, S.J. Haigh, D.J. Lewis, Solution processing of two-dimensional black phosphorus. Chem. Commun. 53, 1445–1458 (2017). https://doi.org/10.1039/c6cc09658a
X. Cui, C. Zhang, R. Hao, Y. Hou, Liquid-phase exfoliation, functionalization and applications of graphene. Nanoscale 3, 2118–2126 (2011). https://doi.org/10.1039/c1nr10127g
S. Lin, Y. Chui, Y. Li, S.P. Lau, Liquid-phase exfoliation of black phosphorus and its applications. FlatChem 2, 15–37 (2017). https://doi.org/10.1016/j.flatc.2017.03.001
W. Zhao, Z. Xue, J. Wang, J. Jiang, X. Zhao, T. Mu, Large-scale, highly efficient, and green liquid-exfoliation of black phosphorus in ionic liquids. ACS Appl. Mater. Interfaces. 7, 27608–27612 (2015). https://doi.org/10.1021/acsami.5b10734
Z. Liu, Y. Wang, Z. Wang, Y. Yao, J. Dai, S. Das, L. Hu, Solvo-thermal microwave-powered two-dimensional material exfoliation. Chem. Commun. 52, 5757–5760 (2016). https://doi.org/10.1039/c5cc10546c
M. Matsumoto, Y. Saito, C. Park, T. Fukushima, T. Aida, Ultrahigh-throughput exfoliation of graphite into pristine “single-layer” graphene using microwaves and molecularly engineered ionic liquids. Nat. Chem. 7, 730–736 (2015). https://doi.org/10.1038/nchem.2315
D. Voiry, J. Yang, J. Kupferberg, R. Fullon, C. Lee et al., High-quality graphene via microwave reduction of solution -exfoliated graphene oxide. Science 353, 1413–1416 (2016). https://doi.org/10.1126/science.aah3398
J. Kang, S.A. Wells, J.D. Wood, J.H. Lee, X. Liu et al., Stable aqueous dispersions of optically and electronically active phosphorene. Proc. Natl. Acad. Sci. U.S.A. 113, 11688–11693 (2016). https://doi.org/10.1073/pnas.1602215113
K. Parvez, Z.S. Wu, R. Li, X. Liu, R. Graf, X. Feng, K. Müllen, Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc. 136, 6083–6091 (2014). https://doi.org/10.1021/ja5017156
Z. Zeng, T. Sun, J. Zhu, X. Huang, Z. Yin et al., An effective method for the fabrication of few-layer-thick inorganic nanosheets. Angew. Chem. Int. Ed. 51, 9052–9056 (2012). https://doi.org/10.1002/anie.201204208
M.B. Erande, M.S. Pawar, D.J. Late, Humidity sensing and photodetection behavior of electrochemically exfoliated atomically thin-layered black phosphorus nanosheets. ACS Appl. Mater. Interfaces. 8, 11548–11556 (2016). https://doi.org/10.1021/acsami.5b10247
M.B. Erande, S.R. Suryawanshi, M.A. More, D.J. Late, Electrochemically exfoliated black phosphorus nanosheets-prospective field emitters. Eur. J. Inorg. Chem. 2015, 3102–3107 (2015). https://doi.org/10.1002/ejic.201500145
Z. Huang, H. Hou, Y. Zhang, C. Wang, X. Qiu, X. Ji, Layer-tunable phosphorene modulated by the cation insertion rate as a sodium-storage anode. Adv. Mater. 29, 1–7 (2017). https://doi.org/10.1002/adma.201702372
H. Wang, X. Yang, W. Shao, S. Chen, J. Xie et al., Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation. J. Am. Chem. Soc. 137, 11376–11382 (2015). https://doi.org/10.1021/jacs.5b06025
A. Ambrosi, Z. Sofer, M. Pumera, Electrochemical exfoliation of layered black phosphorus into phosphorene. Angew. Chem. Int. Ed. 129, 10579–10581 (2017). https://doi.org/10.1002/ange.201705071
Z.N. Guo, H. Zhang, S.B. Lu, Z.T. Wang, S.Y. Tang et al., From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater. 25, 7100 (2015). https://doi.org/10.1002/adfm.201570292
S.K. Jang, J. Youn, Y.J. Song, S.J. Lee, Synthesis and characterization of hexagonal boron nitride as a gate dielectric. Sci. Rep. 6, 30449 (2016). https://doi.org/10.1038/srep30449
Y.H. Lee, X.Q. Zhang, W. Zhang, M.T. Chang, C.T. Lin et al., Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012). https://doi.org/10.1002/adma.201104798
L. Chen, G. Zhou, Z. Liu, X. Ma, J. Chen et al., Scalable clean exfoliation of high-quality few-layer black phosphorus for a flexible lithium ion battery. Adv. Mater. 28, 510–517 (2016). https://doi.org/10.1002/adma.201503678
J.B. Smith, D. Hagaman, H.F. Ji, Growth of 2D black phosphorus film from chemical vapor deposition. Nanotechnology 27, 21 (2016). https://doi.org/10.1088/0957-4484/27/21/215602
Y. Guo, S. Zhou, J. Zhang, Y. Bai, J. Zhao, Atomic structures and electronic properties of phosphorene grain boundaries. 2D Mater. 3, 2 (2016). https://doi.org/10.1088/2053-1583/3/2/025008
Y. Yu, J.D. Yao, X.Y. Niu, B.R. Xing, Y.L. Liu et al., Synthesis and electrical properties of single crystalline black phosphorus nanoribbons. CrystEngComm 22, 3824–3830 (2020). https://doi.org/10.1039/D0CE00390E
M. Mehboudi, K. Utt, H. Terrones, E.O. Harriss, A.A.P. SanJuan, S. Barraza-Lopez, Strain and the optoelectronic properties of nonplanar phosphorene monolayers. Proc. Natl. Acad. Sci. U.S.A. 112, 5888–5892 (2015). https://doi.org/10.1073/pnas.1500633112
M. Liu, S. Feng, Y. Hou, S. Zhao, L. Tang et al., High yield growth and doping of black phosphorus with tunable electronic properties. Mater. Today 36, 91–101 (2020). https://doi.org/10.1016/j.mattod.2019.12.027
P. Yasaei, B. Kumar, T. Foroozan, C. Wang, M. Asadi et al., High-quality black phosphorus atomic layers by liquid-phase exfoliation. Adv. Mater. 11, 1887–1892 (2015). https://doi.org/10.1002/adma.201405150
J. Li, Z.S. Gao, X.X. Ke, Y.Y. Lv, H.L. Zhang et al., Growth of black phosphorus nanobelts and microbelts. Small 1, 1702501 (2018). https://doi.org/10.1002/smll.201702501
T. Nilges, M. Kersting, T. Pfeifer, A fast low-pressure transport route to large black phosphorus single crystals. J. Solid State Chem. 181(8), 1707–1711 (2008). https://doi.org/10.1016/j.jssc.2008.03.008
M. Köpf, N. Eckstein, D. Pfister, C. Grotz, I. Krüger et al., Access and in situ growth of phosphorene precursor black phosphorus. J. Cryst. Growth (2014). https://doi.org/10.1016/j.jssc.2008.03.008
S.C. Xu, B.Y. Man, S.Z. Jiang, A.H. Liu, G.D. Hu et al., Direct synthesis of graphene on any nonmetallic substrate based on KrF laser ablation of ordered pyrolytic graphite. Laser Phys. Lett. 11, 096001 (2014). https://doi.org/10.1088/1612-2011/11/9/096001
Y. Bleu, F. Bourquard, T. Tite, A.S. Loir, C. Maddi, C. Donnet, F. Garreli, Review of graphene growth from a solid carbon source by pulsed laser deposition (PLD). Front. Chem. 6, 572 (2018). https://doi.org/10.3389/fchem.2018.00572
Z. Yang, J. Hao, S. Yuan, S. Lin, H.M. Yau, J. Dai, S.P. Lau, Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition. Adv. Mater. 27, 3748–3754 (2015). https://doi.org/10.1002/adma.201500990
C. Li, Y. Wu, B. Deng, Y. Xie, Q. Guo et al., Synthesis of crystalline black phosphorus thin film on sapphire. Adv. Mater. 30, 1–8 (2018). https://doi.org/10.1002/adma.201703748
Y.Y. Zhang, X.H. Rui, Y.X. Tang, Y.Q. Liu, J.Q. Wei et al., Wet-chemical processing of phosphorus composite nanosheets for high-rate and high-capacity lithium-ion batteries. Adv. Energy Mater. 6, 1502409 (2016). https://doi.org/10.1002/aenm.201502409
Y. Du, Z. Yin, J. Zhu, X. Huang, X.J. Wu, Z. Zeng, Q. Yan, H. Zhang, A general method for the large-scale synthesis of uniform ultrathin metal sulphide nanocrystals. Nat. Commun. 3, 1–7 (2012). https://doi.org/10.1038/ncomms2181
D. Yoo, M. Kim, S. Jeong, J. Han, J. Cheon, Chemical synthetic strategy for single-layer transition-metal chalcogenides. J. Am. Chem. Soc. 136, 14670–14673 (2014). https://doi.org/10.1021/ja5079943
J.S. Son, J.H. Yu, S.G. Kwon, J. Lee, J. Joo, T. Hyeon, Colloidal synthesis of ultrathin two-dimensional semiconductor nanocrystals. Adv. Mater. 23, 3214–3219 (2011). https://doi.org/10.1002/adma.201101334
Z. Sun, T. Liao, Y. Dou, S.M. Hwang, M.S. Park et al., Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets. Nat. Commun. 5, 3813 (2014). https://doi.org/10.1038/ncomms4813
M. Choucair, P. Thordarson, J.A. Stride, Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat. Nanotechnol. 4, 30–33 (2009). https://doi.org/10.1038/nnano.2008.365
Y. Xu, Z. Wang, Z. Guo, H. Huang, Q. Xiao, H. Zhang, X.F. Yu, Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots. Adv. Opt. Mater. 4, 1223–1229 (2016). https://doi.org/10.1002/adom.201600214
S.Q. Fan, J.S. Qiao, J.W. Lai, H.C. Hei, Z.H. Feng et al., Wet chemical method for black phosphorus thinning and passivation. ACS Appl. Mater. Interfaces. 11, 9213–9222 (2019). https://doi.org/10.1021/acsami.8b21655
X.X. Shi, Y.P. Pang, B.C. Wang, H. Sun, X.T. Wang et al., In situ forming LiF nano-decorated electrolyte/electrode interfaces for stable all-solid-state batteries. Mater. Today Nano 10, 100079 (2020). https://doi.org/10.1016/j.mtnano.2020.100079
L. Lu, X. Han, J. Li, J. Hua, M. Ouyang, A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sour. 226, 272–288 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.060
M. Armand, J.M. Tarascon, Building better batteries. Nature 451, 652–657 (2008). https://doi.org/10.1038/451652a
J.B. Goodenough, K.S. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013). https://doi.org/10.1021/ja3091438
G.S. Zakharova, C. Jähne, A. Popa, C. Täschner, T. Gemming et al., Anatase nanotubes as an electrode material for lithium-ion batteries. J. Phys. Chem. C 116, 8714–8720 (2012). https://doi.org/10.1021/jp300955r
J. Qian, X. Wu, Y. Cao, X. Ai, H. Yang, High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew. Chem. Int. Ed. 52, 4633–4636 (2013). https://doi.org/10.1002/anie.201209689
H. Jin, H. Wang, Z. Qi, D. Bin, T. Zhang et al., A black phosphorus-graphite composite anode for Li-/Na-/K-ion Batteries. Angew. Chem. Int. Ed. 59(6), 2318–2322 (2020). https://doi.org/10.1002/anie.201913129
M. Winter, J.O. Besenhard, M.E. Spahr, P. Novák, Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 10, 725–763 (1998)
Y. Xue, Q. Zhang, W. Wang, H. Cao, Q. Yang, L. Fu, Opening two-dimensional materials for energy conversion and storage: a concept. Adv. Energy Mater. 7, 1–23 (2017). https://doi.org/10.1002/aenm.201602684
Y. Xue, Q. Zhang, T. Zhang, L. Fu, Black phosphorus: properties, synthesis, and applications in energy conversion and storage. ChemNanoMat 3, 352–361 (2017). https://doi.org/10.1002/cnma.201700030
H.Y. Xu, C.X. Peng, Y.H. Yan, F. Dong, H. Sun, J.H. Yang, S.Y. Zheng, “All-In-One” integrated ultrathin SnS2@3D multichannel carbon matrix power high-areal-capacity lithium battery anode. Carbon Energy 1, 276–288 (2019). https://doi.org/10.1002/cey2.22
N. Nitta, F. Wu, J.T. Lee, G. Yush, Li-ion battery materials: present and future. Mater. Today 18, 252–264 (2015). https://doi.org/10.1016/j.mattod.2014.10.040
Z. Chang, Y. Yang, X. Wang, M. Li, Z. Fu, Y. Wu, R. Holze, Hybrid system for rechargeable magnesium battery with high energy density. Sci. Rep. 5, 1–8 (2015). https://doi.org/10.1038/srep11931
L.E. Marbella, M.L. Evans, M.F. Groh, J. Nelson, K.J. Griffith, A.J. Morris, C.P. Grey, Sodiation and desodiation via helical phosphorus intermediates in high-capacity anodes for sodium-ion batteries. J. Am. Chem. Soc. 140(25), 7994–8004 (2018). https://doi.org/10.1021/jacs.8b04183
S.S. Liang, W.Q. Yan, X. Wu, Y. Zhang, Y.S. Zhu, H.W. Wang, Y.P. Wu, Gel polymer electrolytes for lithium ion batteries: fabrication, characterization and performance. Solid State Ionics 318, 2–18 (2018). https://doi.org/10.1016/j.ssi.2017.12.023
Y. Xue, Q. Zhang, W. Wang, H. Cao, Q. Yang, L. Fu, Opening two -dimensional materials for energy conversion and storage: a concept. Adv. Energy Mater. 7, 1602684 (2017). https://doi.org/10.1002/aenm.201602684
L. Zhang, J. Deng, L. Liu, W. Si, S. Oswald et al., Hierarchically designed SiOx/SiOy bilayer nanomembranes as stable anodes for lithium ion batteries. Adv. Mater. 26, 4527–4532 (2014). https://doi.org/10.1002/adma.201401194
J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001). https://doi.org/10.1038/35104644
J.W. Fergus, Recent developments in cathode materials for lithium ion batteries. J. Power Sour. 195, 939–954 (2020). https://doi.org/10.1016/j.jpowsour.2009.08.089
W. Wang, X. Yue, J. Meng, J. Wang, X. Wang et al., Lithium phosphorus oxynitride as an efficient protective layer on lithium metal anodes for advanced lithium-sulfur batteries. Energy Storage Mater. 18, 414–422 (2019). https://doi.org/10.1016/j.ensm.2018.08.010
X. Wei, X. Wang, Q. An, C. Han, L. Mai, Operando x-ray diffraction characterization for understanding the intrinsic electrochemical mechanism in rechargeable battery materials. Small Methods 1, 1700083 (2017). https://doi.org/10.1002/smtd.201700083
V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243–3262 (2011). https://doi.org/10.1039/C1EE01598B
S. Zhao, W. Kang, J. Xue, The potential application of phosphorene as an anode material in Li-ion batteries. J. Mater. Chem. A 2, 19046–19052 (2014). https://doi.org/10.1039/c4ta04368e
W. Li, Y. Yang, G. Zhang, Y.W. Zhang, Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery. Nano Lett. 15, 1691–1697 (2015). https://doi.org/10.1021/nl504336h
G.C. Guo, D. Wang, X.L. Wei, Q. Zhang, H. Liu, W.M. Lau, L.M. Liu, First-principles study of phosphorene and graphene heterostructure as anode materials for rechargeable Li batteries. J. Phys. Chem. Lett. 6, 5002–5008 (2015). https://doi.org/10.1021/acs.jpclett.5b02513
Y.P. Zhang, L.L. Wang, H. Xu, J.M. Cao, D. Chen, W. Han, 3D chemical cross-linking structure of black phosphorus@ CNTs hybrid as a promising anode material for lithium ion batteries. Adv. Funct. Mater. 30, 1909372 (2020). https://doi.org/10.1002/adfm.201909372
C. Zhang, M. Yu, G. Anderson, R.R. Dharmasena, G. Sumanasekera, The prospects of phosphorene as an anode material for high-performance lithium-ion batteries: a fundamental study. Nanotechnology 28, 7 (2017). https://doi.org/10.1088/1361-6528/aa52ac
Q.F. Li, C.G. Duan, X.G. Wan, J.L. Kuo, Theoretical prediction of anode materials in Li-ion batteries on layered black and blue phosphorus. J. Phys. Chem. C 119, 8662–8670 (2015). https://doi.org/10.1021/jp512411g
Y. Zhang, H. Wang, Z. Luo, H.T. Tan, B. Li et al., An air-stable densely packed phosphorene-graphene composite toward advanced lithium storage properties. Adv. Energy Mater. 6, 1–9 (2016). https://doi.org/10.1002/aenm.201600453
J.O. Island, G.A. Steele, H.S.J. Van Der Zant, A. Castellanos-Gomez, Environmental instability of few-layer black phosphorus. 2D Mater. 2, 1 (2015). https://doi.org/10.1088/2053-1583/2/1/011002
G. Xu, Y.Y. Liu, J.W. Hong, D.N. Fang, Lithium intercalation drives mechanical properties deterioration in bulk and single-layered black phosphorus: a first-principles study. 2D Mater. 7, 025028 (2020). https://doi.org/10.1088/2053-1583/ab6705
A. Ziletti, A. Carvalho, D.K. Campbell, D.F. Coker, A.H. CastroNeto, Oxygen defects in phosphorene. Phys. Rev. Lett. 114, 26–29 (2015). https://doi.org/10.1103/PhysRevLett.114.046801
G. Wang, W.J. Slough, R. Pandey, S.P. Karna, Degradation of phosphorene in air: understanding at atomic level. 2D Mater. 3, 2 (2016). https://doi.org/10.1088/2053-1583/3/2/025011
S. Walia, Y. Sabri, T. Ahmed, M.R. Field, R. Ramanathan et al., Defining the role of humidity in the ambient degradation of few-layer black phosphorus. 2D Mater. 4, 1 (2017). https://doi.org/10.1088/2053-1583/4/1/015025
Q. Zhou, Q. Chen, Y. Tong, J. Wang, Light-induced ambient degradation of few-layer black phosphorus: mechanism and protection. Angew. Chem. Int. Ed. 55, 11437–11441 (2016). https://doi.org/10.1002/anie.201605168
H. Hou, Q. Xu, Y. Pang, L. Li, J. Wang, C. Zhang, C. Sun, Efficient storing energy harvested by triboelectric nanogenerators using a safe and durable all-solid-state sodium-ion battery. Adv. Sci. 4, 1–5 (2017). https://doi.org/10.1002/advs.201700072
X. Xiong, G. Wang, Y. Lin, Y. Wang, X. Ou, F. Zheng, C. Yang, J. Wang, M. Liu, Enhancing sodium ion battery performance by strongly binding nanostructured Sb2S3 on sulfur-doped graphene sheets. ACS Nano 10, 10953–10959 (2016). https://doi.org/10.1021/acsnano.6b05653
M.S. Balogun, Y. Luo, W. Qiu, P. Liu, Y. Tong, A review of carbon materials and their composites with alloy metals for sodium ion battery anodes. Carbon 98, 162–178 (2016). https://doi.org/10.1016/j.carbon.2015.09.091
M. Sheng, F. Zhang, B. Ji, X. Tong, Y. Tang, A novel tin-graphite dual-ion battery based on sodium-ion electrolyte with high energy density. Adv. Energy Mater. 7, 1601963 (2017). https://doi.org/10.1002/aenm.201601963
Y. Jiang, S. Yu, B. Wang, Y. Li, W. Sun et al., Prussian blue@C composite as an ultrahigh-rate and long-life sodium-ion battery cathode. Adv. Funct. Mater. 26, 5315–5321 (2016). https://doi.org/10.1002/adfm.201600747
Y. Xu, Q. Wei, C. Xu, Q. Li, Q. An et al., Layer-by-layer Na3V2(PO4)3 embedded in reduced graphene oxide as superior rate and ultralong-life sodium-ion battery cathode. Adv. Energy Mater. 6, 1–9 (2016). https://doi.org/10.1002/aenm.201600389
E.E.S. Fonsaca, S.H. Domingues, E.S. Orth, A.J.G. Zarbin, A black phosphorus-based cathode for aqueous Na-ion batteries operating under ambient conditions. Chem. Commun. 56, 802–805 (2020). https://doi.org/10.1039/C9CC09279
X. Guo, W.X. Zhang, J.Q. Zhang, D. Zhou, X. Tang et al., Boosting sodium storage in two-dimensional phosphorene/Ti3C2Tx MXene nanoarchitectures with stable fluorinated interphase. ACS Nano 14, 3651–3659 (2020). https://doi.org/10.1021/acsnano.0c00177
J.L. Tang, A.D. Dysart, V.G. Pol, Advancement in sodium-ion rechargeable batteries. Curr. Opin. Chem. Eng. 9, 34–41 (2015). https://doi.org/10.1016/j.coche.2015.08.007
V.V. Kulish, O.I. Malyi, C. Persson, P. Wu, Phosphorene as an anode material for Na-ion batteries: a first-principles study. Phys. Chem. Chem. Phys. 17, 13921–13928 (2015). https://doi.org/10.1039/c5cp01502b
J. Sun, H.W. Lee, M. Pasta, H. Yuan, G. Zheng et al., A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 10, 980–985 (2015). https://doi.org/10.1038/nnano.2015.194
A. Nie, Y. Cheng, S. Ning, T. Foroozan, P. Yasaei et al., Selective ionic transport pathways in phosphorene. Nano Lett. 16, 2240–2247 (2016). https://doi.org/10.1021/acs.nanolett.5b04514
K. Amine, R. Kanno, Y. Tzeng, Rechargeable lithium batteries and beyond: progress, challenges, and future directions. MRS Bull. 39, 395–401 (2014). https://doi.org/10.1557/mrs.2014.62
I. Shterenberg, M. Salama, Y. Gofer, E. Levi, D. Aurbach, The challenge of developing rechargeable magnesium batteries. MRS Bull. 39, 453–460 (2014). https://doi.org/10.1557/mrs.2014.61
X. Ren, P. Lian, D. Xie, Y. Yang, Y. Mei et al., Properties, preparation and application of black phosphorus/phosphorene for energy storage: a review. J. Mater. Sci. 52, 10364–10386 (2017). https://doi.org/10.1007/s10853-017-1194-3
W. Jin, Z. Wang, Y.Q. Fu, Monolayer black phosphorus as potential anode materials for Mg-ion batteries. J. Mater. Sci. 51, 7355–7360 (2016). https://doi.org/10.1007/s10853-016-0023-4
S. Banerjee, S.K. Pati, Anodic performance of black phosphorus in magnesium-ion batteries: the significance of Mg-P bond-synergy. Chem. Commun. 52, 8381–8384 (2016). https://doi.org/10.1039/c6cc04236h
K.P.S.S. Hembram, H. Jung, B.C. Yeo, S.J. Pai, H.J. Lee, K.R. Lee, S.S. Han, A comparative first-principles study of the lithiation, sodiation, and magnesiation of black phosphorus for Li-, Na-, and Mg-ion batteries. Phys. Chem. Chem. Phys. 18, 21391–21397 (2016). https://doi.org/10.1039/c6cp02049f
W.W. Yang, Y.X. Lu, C.X. Zhao, H.L. Liu, First-principles study of black phosphorus as anode material for rechargeable potassium-ion batteries. Electron. Mater. Lett. 16, 89–98 (2020). https://doi.org/10.1007/s13391-019-00178-z
H.C. Jin, H.Y. Wang, Z.K. Qi, D.S. Bin, T.M. Zhang et al., A black phosphorus-graphite composite anode for Li−/Na−/K− ion batteries. Angew. Chem. Int. Ed. 59, 2318–2322 (2020). https://doi.org/10.1002/anie.201913129
C. Song, C. Peng, Z. Bian, F. Dong, H. Xu, J. Yang, S. Zheng, Stable and fast lithium-sulfur battery achieved by rational design of multifunctional separator. Energy Environ. Mater. 2, 216–224 (2019). https://doi.org/10.1002/eem2.12036
S. Zheng, Y. Wen, Y. Zhu, Z. Han, J. Wang, J. Yang, C. Wang, In-situ sulfur reduction and intercalation of graphite oxides for Li–S battery cathode. Adv. Energy Mater. 4(16), 1400482 (2014). https://doi.org/10.1002/aenm.201400482
S. Evers, L.F. Nazar, New approaches for high energy density lithium-sulfur battery cathodes. Acc. Chem. Res. 46, 1135–1143 (2013). https://doi.org/10.1021/ar3001348
P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.M. Tarascon, Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012). https://doi.org/10.1038/nmat3191
L. Ji, P. Meduri, V. Agubra, X. Xiao, M. Alcoutlabi, Graphene-based nanocomposites for energy storage. Adv. Energy Mater. 6, 1502159 (2016). https://doi.org/10.1002/aenm.201502159
S. Rehman, T. Tang, Z. Ali, X. Huang, Y. Hou, Integrated design of MnO2 @carbon hollow nanoboxes to synergistically encapsulate polysulfides for empowering lithium sulfur batteries. Small 13, 1–8 (2017). https://doi.org/10.1002/smll.201700087
L. Oakes, R. Carter, C.L. Pint, Nanoscale defect engineering of lithium-sulfur battery composite cathodes for improved performance. Nanoscale 8, 19368–19375 (2016). https://doi.org/10.1039/c6nr06332b
X. Tao, J. Wan, C. Liu, H. Wang, H. Yao et al., Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design. Nat. Commun. 7, 11203 (2016). https://doi.org/10.1038/ncomms11203
X. Fang, W. Weng, J. Ren, H. Peng, A cable-shaped lithium sulfur battery. Adv. Mater. 28, 491–496 (2016). https://doi.org/10.1002/adma.201504241
L. Qie, C. Zu, A. Manthiram, A high energy lithium-sulfur battery with ultrahigh-loading lithium polysulfide cathode and its failure mechanism. Adv. Energy Mater. 6, 1–7 (2016). https://doi.org/10.1002/aenm.201502459
W. Lv, Z. Li, Y. Deng, Q.H. Yang, F. Kang, Graphene-based materials for electrochemical energy storage devices: opportunities and challenges. Energy Storage Mater. 2, 107–138 (2016). https://doi.org/10.1016/j.ensm.2015.10.002
L. Li, L. Chen, S. Mukherjee, J. Gao, H. Sun et al., Phosphorene as a polysulfide immobilizer and catalyst in high-performance lithium-sulfur batteries. Adv. Mater. 29, 1–8 (2017). https://doi.org/10.1002/adma.201602734
J. Zhao, Y. Yang, R.S. Katiyar, Z. Chen, Phosphorene as a promising anchoring material for lithium-sulfur batteries: a computational study. J. Mater. Chem. A 4, 6124–6130 (2016). https://doi.org/10.1039/c6ta00871b
T. Chen, L. Dai, Flexible supercapacitors based on carbon nanomaterials. J. Mater. Chem. A 2, 10756–10775 (2014). https://doi.org/10.1039/c4ta00567h
X. Wang, Y. Chen, O.G. Schmidt, C. Yan, Engineered nanomembranes for smart energy storage devices. Chem. Soc. Rev. 45, 1308–1330 (2016). https://doi.org/10.1039/c5cs00708a
C.X. Hao, B.C. Yang, F.S. Wen, J.Y. Xiang, L. Li et al., Flexible all-solid-state supercapacitors based on liquid-exfoliated black-phosphorus nanoflakes. Adv. Mater. 28, 3194–3201 (2016). https://doi.org/10.1002/adma.201505730
A. Sajedi-Moghaddam, C.C. Mayorga-Martinez, Z.K. Sofer, D. Bouša, E. Saievar-Iranizad, M. Pumera, Black phosphorus nanoflakes/polyaniline hybrid material for high-performance pseudocapacitors. J. Phys. Chem. C 121, 20532–20538 (2017). https://doi.org/10.1021/acs.jpcc.7b06958
L. Jiang, L. Sheng, C. Long, T. Wei, Z. Fan, Functional pillared graphene frameworks for ultrahigh volumetric performance supercapacitors. Adv. Energy Mater. 5, 1–9 (2015). https://doi.org/10.1002/aenm.201500771
H. Li, Y. Hou, F. Wang, M.R. Lohe, X. Zhuang, L. Niu, X. Feng, Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable MXene and electrochemically exfoliated graphene. Adv. Energy Mater. 7, 2–7 (2017). https://doi.org/10.1002/aenm.201601847
Z.S. Wu, K. Parvez, X. Feng, K. Müllen, Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nat. Commun. 4, 2487 (2013). https://doi.org/10.1038/ncomms3487
M.F. El-kady, R.B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4, 1475 (2013). https://doi.org/10.1038/ncomms2446
H. Xiao, Z.S. Wu, L. Chen, F. Zhou, S. Zheng et al., One-step device fabrication of phosphorene and graphene interdigital micro-supercapacitors with high energy density. ACS Nano 11, 7284–7292 (2017). https://doi.org/10.1021/acsnano.7b03288
B. Mortazavi, O. Rahaman, S. Ahzi, T. Rabczuk, Flat borophene films as anode materials for Mg, Na or Li-ion batteries with ultra high capacities: a first-principles study. Appl. Mater. Today 8, 60–67 (2017). https://doi.org/10.1016/j.apmt.2017.04.010
F.F. Zhu, W.J. Chen, Y. Xu, C.L. Gao, D.D. Guan et al., Epitaxial growth of two-dimensional stanene. Nat. Mater. 14, 1020–1025 (2015). https://doi.org/10.1038/nmat4384
B. Mortazavi, A. Dianat, G. Cuniberti, T. Rabczuk, Application of silicene, germanene and stanene for Na or Li ion storage: a theoretical investigation. Electrochim. Acta 213, 865–870 (2016). https://doi.org/10.1016/j.electacta.2016.08.027
A. Kumar, P. AnnLin, A. Xue, B. Hao, Y. KhinYap, R.M. Sankaran, Formation of nanodiamonds at near-ambient conditions via microplasma dissociation of ethanol vapour. Nat. Commun. 4, 2618 (2013). https://doi.org/10.1038/ncomms3618
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
Y. Chen, M. Wu, P. Tang, S. Chen, J. Du et al., The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator based saturable absorber. Laser Phys. Lett. 11, 5 (2014). https://doi.org/10.1088/1612-2011/11/5/055101
Q. Wu, S. Chen, Y. Wang, L. Wu, X. Jiang et al., MZI-based all-optical modulator using MXene Ti3C2Tx (T = F, O, or OH) deposited microfiber. Adv. Mater. Technol. 4, 1–10 (2019). https://doi.org/10.1002/admt.201800532
X. Jiang, S. Liu, W. Liang, S. Luo, Z. He et al., Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH). Laser Photon. Rev. 12(2), 1700229 (2018). https://doi.org/10.1002/lpor.201700229
Q. Tang, Z. Zhou, P. Shen, Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J. Am. Chem. Soc. 134, 16909–16916 (2012). https://doi.org/10.1021/ja308463r
A. Byeon, M.Q. Zhao, C.E. Ren, J. Halim, S. Kota et al., Two-dimensional titanium carbide MXene as a cathode material for hybrid magnesium/lithium-ion batteries. ACS Appl. Mater. Interfaces. 9, 4296–4300 (2017). https://doi.org/10.1021/acsami.6b04198
D.Q. Zhang, T.T. Liu, J.Y. Cheng, Q. Cao, G.P. Zheng et al., Lightweight and high-performance microwave absorber based on 2D WS2-RGO heterostructures. Nano-Micro Lett. 11, 38 (2019). https://doi.org/10.1007/s40820-019-0270-4
D.Q. Zhang, H.B. Zhang, J.Y. Cheng, H. Raza, T.T. Liu et al., Customizing coaxial stacking VS2 nanosheets for dual-band microwave absorption with superior performance in the C- and Ku-bands. J. Mater. Chem. C 8, 5923 (2020). https://doi.org/10.1002/adom.201701166
D.Q. Zhang, Y.F. Xiong, J.Y. Cheng, J.X. Chai, T.T. Liu et al., Synergetic dielectric loss and magnetic loss towards superior microwave absorption through hybridization of few-layer WS2 nanosheets with NiO nanoparticles. Sci. Bull. 65, 138–146 (2020). https://doi.org/10.1016/j.scib.2019.10.011
L. Zhang, W. Fan, T. Liu, Flexible hierarchical membranes of WS2 nanosheets grown on graphene-wrapped electrospun carbon nanofibers as advanced anodes for highly reversible lithium storage. Nanoscale 8, 16387–16394 (2016). https://doi.org/10.1039/C6NR04241D
T. Stephenson, Z. Li, B. Olsen, D. Mitlin, Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ. Sci. 7, 209–231 (2014). https://doi.org/10.1039/c3ee42591f
C. Zhao, J. Kong, X. Yao, X. Tang, Y. Dong, S.L. Phua, X. Lu, Thin MoS2 nanoflakes encapsulated in carbon nanofibers as high-performance anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces. 6, 6392–6398 (2014). https://doi.org/10.1021/am4058088
Z. Wang, M. Liu, G. Wei, P. Han, X. Zhao, J. Liu, Y. Zhou, J. Zhang, Hierarchical self-supported C@TiO2-MoS2 core-shell nanofiber mats as flexible anode for advanced lithium ion batteries. Appl. Surf. Sci. 423, 375–382 (2017). https://doi.org/10.1016/j.apsusc.2017.06.129
Y. Liu, W. Wang, H. Huang, L. Gu, Y. Wang, X. Peng, The highly enhanced performance of lamellar WS2 nanosheet electrodes upon intercalation of single-walled carbon nanotubes for supercapacitors and lithium ions batteries. Chem. Commun. 50, 4485–4488 (2014). https://doi.org/10.1039/c4cc01622j
U.K. Sen, S. Mitra, Electrochemical activity of α-MoO3 nano-belts as lithium-ion battery cathode. RSC Adv. 2, 11123–11131 (2012). https://doi.org/10.1039/c2ra21373g
X.Y. Xue, B. He, S. Yuan, L.L. Xing, Z.H. Chen, C.H. Ma, SnO2/WO3 core-shell nanorods and their high reversible capacity as lithium-ion battery anodes. Nanotechnology 22, 39 (2011). https://doi.org/10.1088/0957-4484/22/39/395702
D. Su, G. Wang, Single-crystalline bilayered V2O5 nanobelts for high-capacity sodium-ion batteries. ACS Nano 7, 11218–11226 (2013). https://doi.org/10.1021/nn405014d
K. Ma, X. Liu, Q. Cheng, P. Saha, H. Jiang, C. Li, Flexible textile electrode with high areal capacity from hierarchical V2O5 nanosheet arrays. J. Power Sour. 357, 71–76 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.105
D. Kong, X. Li, Y. Zhang, X. Hai, B. Wang, X. Qiu, Q. Song, Q. Yang, L. Zhi, Encapsulating V2O5 into carbon nanotubes enables the synthesis of flexible high-performance lithium ion batteries. Energy Environ. Sci. 9, 906–911 (2016). https://doi.org/10.1039/c5ee03345d