Two-Dimensional Platinum Diselenide: Synthesis, Emerging Applications, and Future Challenges
Corresponding Author: Delong Li
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 174
Abstract
In recent years, emerging two-dimensional (2D) platinum diselenide (PtSe2) has quickly attracted the attention of the research community due to its novel physical and chemical properties. For the past few years, increasing research achievements on 2D PtSe2 have been reported toward the fundamental science and various potential applications of PtSe2. In this review, the properties and structure characteristics of 2D PtSe2 are discussed at first. Then, the recent advances in synthesis of PtSe2 as well as their applications are reviewed. At last, potential perspectives in exploring the application of 2D PtSe2 are reviewed.
Highlights:
1 A comprehensive review of the recent development of two-dimensional (2D) PtSe2 synthesis strategies has been extensively surveyed.
2 The applications of 2D PtSe2 materials in areas, including opto/electric devices, photocatalysis, hydrogen evolution reaction, and sensors, have been reviewed.
3 Current challenges in the development of 2D PtSe2 materials are identified, and outlooks toward unexplored research areas are suggested.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
- C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Graphene: The new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 48(42), 7752–7777 (2009). https://doi.org/10.1002/anie.200901678
- H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, P.D. Ye, Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8(4), 4033–4041 (2014). https://doi.org/10.1021/nn501226z
- K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102(30), 10451–10453 (2005). https://doi.org/10.1073/pnas.0502848102
- A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109–162 (2009). https://doi.org/10.1103/RevModPhys.81.109
- J. Pei, J. Yang, T. Yildirim, H. Zhang, Y. Lu, Many-body complexes in 2D semiconductors. Adv. Mater. 3(2), 1706945 (2019). https://doi.org/10.1002/adma.201706945
- M. Luo, T. Fan, Y. Zhou, H. Zhang, L. Mei, 2D black phosphorus-based biomedical applications. Adv. Funct. Mater. 29(13), 1808306 (2019). https://doi.org/10.1002/adfm.201808306
- S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta et al., Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7(4), 2898–2926 (2013). https://doi.org/10.1021/nn400280c
- Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012). https://doi.org/10.1038/nnano.2012.193
- H. Mu, Z. Wang, J. Yuan, S. Xiao, C. Chen et al., Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation. ACS Photonics 2(7), 832–841 (2015). https://doi.org/10.1021/acsphotonics.5b00193
- Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai et al., Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers. Nanoscale 8(2), 1066–1072 (2016). https://doi.org/10.1039/c5nr06981e
- J. Zheng, H. Zhang, S. Dong, Y. Liu, C.T. Nai et al., High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nat. Commun. 5, 2995 (2014). https://doi.org/10.1038/ncomms3995
- J. Liu, Z. Hu, Y. Zhang, H.-Y. Li, N. Gao et al., MoS2 nanosheets sensitized with quantum dots for room-temperature gas sensors. Nano-Micro Lett. 12(1), 59 (2020). https://doi.org/10.1007/s40820-020-0394-6
- D. Li, Y. Gong, Y. Chen, J. Lin, Q. Khan, Y. Zhang, Y. Li, H. Zhang, H. Xie, Recent progress of two-dimensional thermoelectric materials. Nano-Micro Lett. 12(1), 36 (2020). https://doi.org/10.1007/s40820-020-0374-x
- Z. Kang, Y. Cheng, Z. Zheng, F. Cheng, Z. Chen et al., MoS2-based photodetectors powered by asymmetric contact structure with large work function difference. Nano-Micro Lett. 11(1), 34 (2019). https://doi.org/10.1007/s40820-019-0262-4
- K. Khan, A.K. Tareen, M. Aslam, R. Wang, Y. Zhang et al., Recent developments in emerging two-dimensional materials and their applications. J. Mater. Chem. C 8(2), 387–440 (2020). https://doi.org/10.1039/c9tc04187g
- B. Wen, Y. Zhu, D. Yudistira, A. Boes, L. Zhang et al., Ferroelectric-driven exciton and trion modulation in monolayer molybdenum and tungsten diselenides. ACS Nano 13(5), 5335–5343 (2019). https://doi.org/10.1021/acsnano.8b09800
- C. Tan, H. Zhang, Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 44(9), 2713–2731 (2015). https://doi.org/10.1039/c4cs00182f
- H. Schmidt, F. Giustiniano, G. Eda, Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects. Chem. Soc. Rev. 44(21), 7715–7736 (2015). https://doi.org/10.1039/c5cs00275c
- Y. Shi, H. Li, L.J. Li, Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chem. Soc. Rev. 44(9), 2744–2756 (2015). https://doi.org/10.1039/c4cs00256c
- S. Syama, P.V. Mohanan, Comprehensive application of graphene: emphasis on biomedical concern. Nano-Micro Lett. 11(1), 6 (2019). https://doi.org/10.1007/s40820-019-0237-5
- M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5(4), 263–275 (2013). https://doi.org/10.1038/nchem.1589
- L. Pi, L. Li, K. Liu, Q. Zhang, H. Li, T. Zhai, Recent progress on 2D noble-transition-metal dichalcogenides. Adv. Funct. Mater. 29(51), 1904932 (2019). https://doi.org/10.1002/adfm.201904932
- A.D. Oyedele, S. Yang, L. Liang, A.A. Puretzky, K. Wang et al., PdSe2: pentagonal two-dimensional layers with high air stability for electronics. J. Am. Chem. Soc. 139(40), 14090–14097 (2017). https://doi.org/10.1021/jacs.7b04865
- Y. Wang, L. Li, W. Yao, S. Song, J.T. Sun et al., Monolayer PtSe2, a new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt. Nano Lett. 15(6), 4013–4018 (2015). https://doi.org/10.1021/acs.nanolett.5b00964
- W.L. Chow, P. Yu, F. Liu, J. Hong, X. Wang et al., High mobility 2D palladium diselenide field-effect transistors with tunable ambipolar characteristics. Adv. Mater. 29(21), 1602969 (2017). https://doi.org/10.1002/adma.201602969
- I. Setiyawati, K.R. Chiang, H.M. Ho, Y.H. Tang, Distinct electronic and transport properties between 1T-HfSe2 and 1T-PtSe2. Chin. J. Phys. 62, 151–160 (2019). https://doi.org/10.1016/j.cjph.2019.09.029
- Y.D. Zhao, J.S. Qiao, Z.H. Yu, P. Yu, K. Xu et al., High-electron- mobility and air-stable 2D layered PtSe2 FETs. Adv. Mater. 29(5), 1604230 (2017). https://doi.org/10.1002/adma.201604230
- D. Wu, J. Guo, J. Du, C. Xia, L. Zeng et al., Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano 13(9), 9907–9917 (2019). https://doi.org/10.1021/acsnano.9b03994
- D. Wu, C. Jia, F. Shi, L. Zeng, P. Lin et al., Mixed-dimensional PdSe2/SiNWA heterostructure based photovoltaic detectors for self-driven, broadband photodetection, infrared imaging and humidity sensing. J. Mater. Chem. A 8(7), 3632–3642 (2020). https://doi.org/10.1039/c9ta13611h
- G.Z. Wang, K.P. Wang, N. McEvoy, Z.Y. Bai, C.P. Cullen et al., Ultrafast carrier dynamics and bandgap renormalization in layered PtSe2. Small 15(34), 1902728 (2019). https://doi.org/10.1002/smll.201902728
- C. Yim, N. McEvoy, S. Riazimehr, D.S. Schneider, F. Gity et al., Wide spectral photoresponse of layered platinum diselenide-based photodiodes. Nano Lett. 18(3), 1794–1800 (2018). https://doi.org/10.1021/acs.nanolett.7b05000
- X. Yu, P. Yu, D. Wu, B. Singh, Q. Zeng et al., Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor. Nat. Commun. 9(1), 1545 (2018). https://doi.org/10.1038/s41467-018-03935-0
- H.Q. Huang, S.Y. Zhou, W.H. Duan, Type-II Dirac fermions in the PtSe2 class of transition metal dichalcogenides. Phys. Rev. B 94(12), 121117 (2016). https://doi.org/10.1103/PhysRevB.94.121117
- A. Avsar, A. Ciarrocchi, M. Pizzochero, D. Unuchek, O.V. Yazyev, A. Kis, Defect induced, layer-modulated magnetism in ultrathin metallic PtSe2. Nat. Nanotechnol. 14(7), 674–678 (2019). https://doi.org/10.1038/s41565-019-0467-1
- M.A.U. Absor, I. Santoso, A. Harsojo, K. Abraha, H. Kotaka, F. Ishii, M. Saito, Strong Rashba effect in the localized impurity states of halogen-doped monolayer PtSe2. Phys. Rev. B 97(20), 205138 (2018). https://doi.org/10.1103/PhysRevB.97.205138
- K.N. Zhang, M.Z. Yan, H.X. Zhang, H.Q. Huang, M. Arita et al., Experimental evidence for type-II Dirac semimetal in PtSe2. Phys. Rev. B 96(12), 125102 (2017). https://doi.org/10.1103/PhysRevB.96.125102
- C. Tsai, K. Chan, J.K. Norskov, F. Abild-Pedersen, Theoretical insights into the hydrogen evolution activity of layered transition metal dichalcogenides. Surf. Sci. 640, 133–140 (2015). https://doi.org/10.1016/j.susc.2015.01.019
- M. Zulfiqar, G. Li, Y.C. Zhao, S. Nazir, J. Ni, Versatile electronic and magnetic properties of chemically doped 2D platinum diselenide monolayers: a first-principles study. AIP Adv. 7(12), 125126 (2017). https://doi.org/10.1063/1.5011054
- H.L.L. Zhuang, R.G. Hennig, Computational search for single-layer transition-metal dichalcogenide photocatalysts. J. Phys. Chem. C 117(40), 20440–20445 (2013). https://doi.org/10.1021/jp405808
- C.S. Boland, C.O. Coileain, S. Wagner, J.B. McManus, C.P. Cullen et al., PtSe2 grown directly on polymer foil for use as a robust piezoresistive sensor. 2D Mater. 6(4), 045029 (2019). https://doi.org/10.1088/2053-1583/ab33a1
- A. Ciarrocchi, A. Avsar, D. Ovchinnikov, A. Kis, Thickness-modulated metal-to-semiconductor transformation in a transition metal dichalcogenide. Nat. Commun. 9(1), 919 (2018). https://doi.org/10.1038/s41467-018-03436-0
- M.Z. Yan, E.Y. Wang, X. Zhou, G.Q. Zhang, H.Y. Zhang et al., High quality atomically thin PtSe2 films grown by molecular beam epitaxy. 2D Mater. 4(4), 045015 (2017). https://doi.org/10.1088/2053-1583/aa8919
- S. Wu, K.S. Hui, K.N. Hui, 2D black phosphorus: from preparation to applications for electrochemical energy storage. Adv. Sci. 5(5), 1700491 (2018). https://doi.org/10.1002/advs.201700491
- S. Kuriakose, T. Ahmed, S. Balendhran, V. Bansal, S. Sriram, M. Bhaskaran, S. Walia, Black phosphorus: ambient degradation and strategies for protection. 2D Mater. 5(3), 139–146 (2018). https://doi.org/10.1088/2053-1583/aab810
- V. Eswaraiah, Q. Zeng, Y. Long, Z. Liu, Black phosphorus nanosheets: synthesis, characterization and applications. Small 12(26), 3480–3502 (2016). https://doi.org/10.1002/smll.201600032
- F. Gronvold, E. Rost, On the sulfides, selenides and tellurides of palladium. Acta Chem. Scand. 10(10), 1620–1634 (1956). https://doi.org/10.3891/acta.chem.scand.10-1620
- A. Kjekshus, F. Gronvold, High temperature x-ray study of the thermal expansion of PtS2, PtSe2, PtTe2 and PdTe2. Acta Chem. Scand. 13(9), 1767–1774 (1959). https://doi.org/10.3891/acta.chem.scand.13-1767
- F. Gronvold, H. Haraldsen, A. Kjekshus, On the sulfides, selenides and tellurides of platinum. Acta Chem. Scand. 14(9), 1879–1893 (1960). https://doi.org/10.3891/acta.chem.scand.14-1879
- Y.D. Zhao, J.S. Qiao, P. Yu, Z.X. Hu, Z.Y. Lin et al., Extraordinarily strong interlayer interaction in 2D layered PtS2. Adv. Mater. 28(12), 2399–2407 (2016). https://doi.org/10.1002/adma.201504572
- G. Guo, W. Liang, The electronic structures of platinum dichalcogenides: PtS2, PtSe2 and PtTe2. J. Phys. C 19(7), 995–1008 (1986). https://doi.org/10.1088/0022-3719/19/7/011
- P.F. Li, L. Li, X.C. Zeng, Tuning the electronic properties of monolayer and bilayer PtSe2 via strain engineering. J. Mater. Chem. C 4(15), 3106–3112 (2016). https://doi.org/10.1039/c6tc00130k
- C. Tan, X. Cao, X.J. Wu, Q. He, J. Yang et al., Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117(9), 6225–6331 (2017). https://doi.org/10.1021/acs.chemrev.6b00558
- S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis, 2D transition metal dichalcogenides. Nat. Rev. Mater. 2(8), 17033 (2017). https://doi.org/10.1038/natrevmats.2017.33
- T.Y. Su, H. Medina, Y.Z. Chen, S.W. Wang, S.S. Lee et al., Phase-engineered PtSe2 -Layered films by a plasma-assisted selenization process toward all PtSe2 -Based field effect transistor to highly sensitive, flexible, and wide-spectrum photoresponse photodetectors. Small 14(19), e1800032 (2018). https://doi.org/10.1002/smll.201800032
- W. Yao, E.Y. Wang, H.Q. Huang, K. Deng, M.Z. Yan et al., Direct observation of spin-layer locking by local Rashba effect in monolayer semiconducting PtSe2 film. Nat. Commun. 8, 14216 (2017). https://doi.org/10.1038/ncomms14216
- Y.W. Li, Y.Y.Y. Xia, S.A. Ekahana, N. Kumar, J. Jiang et al., Topological origin of the type-II Dirac fermions in PtSe2. Phys. Rev. Mater. 1(7), 074202 (2017). https://doi.org/10.1103/PhysRevMaterials.1.074202
- W. Zhang, J. Qin, Z. Huang, W. Zhang, The mechanism of layer number and strain dependent bandgap of 2D crystal PtSe2. J. Appl. Phys. 122, 205701 (2017). https://doi.org/10.1063/1.5000419
- A. Jeremías Perea, B. Maria Andrea Andrea, A.M. Llois, Monolayer of PtSe2 on Pt(111): is it metallic or insulating? J. Phys. Condens. Mater. 32(23), 235002 (2020). https://doi.org/10.1088/1361-648X/ab73a5
- Z. Hu, Z. Wu, C. Han, J. He, Z. Ni, W. Chen, Two-dimensional transition metal dichalcogenides: interface and defect engineering. Chem. Soc. Rev. 47(9), 3100–3128 (2018). https://doi.org/10.1039/c8cs00024g
- Q. Liu, L. Li, Y. Li, Z. Gao, Z. Chen, J. Lu, Tuning electronic structure of bilayer MoS2 by vertical electric field: a first-principles investigation. J. Phys. Chem. C 116(40), 21556–21562 (2012). https://doi.org/10.1021/jp307124d
- S. Manzeli, A. Allain, A. Ghadimi, A. Kis, Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2. Nano Lett. 15(8), 5330–5335 (2015). https://doi.org/10.1021/acs.nanolett.5b01689
- Y. Liang, L. Yang, Carrier plasmon induced nonlinear band gap renormalization in two-dimensional semiconductors. Phys. Rev. Lett. 114(6), 063001 (2015). https://doi.org/10.1103/PhysRevLett.114.063001
- A. Bhattacharya, S. Bhattacharya, G.P. Das, Strain-induced band-gap deformation of H/F passivated graphene and h-BN sheet. Phys. Rev. B 84(7), 075454 (2011). https://doi.org/10.1103/PhysRevB.84.075454
- S. Deng, L. Li, Y. Zhang, Strain modulated electronic, mechanical, and optical properties of the monolayer PdS2, PdSe2, and PtSe2 for tunable devices. ACS Appl. Nano Mater. 1(4), 1932–1939 (2018). https://doi.org/10.1021/acsanm.8b00363
- J. Du, P. Song, L. Fang, T. Wang, Z. Wei, J. Li, C. Xia, Elastic, electronic and optical properties of the two-dimensional PtX2 (X = S, Se, and Te) monolayer. Appl. Surf. Sci. 435, 476–482 (2018). https://doi.org/10.1016/j.apsusc.2017.11.106
- S.D. Guo, Biaxial strain tuned thermoelectric properties in monolayer PtSe2. J. Mater. Chem. C 4(39), 9366–9374 (2016). https://doi.org/10.1039/c6tc03074b
- A. Kandemir, B. Akbali, Z. Kahraman, S.V. Badalov, M. Ozcan, F. Iyikanat, H. Sahin, Structural, electronic and phononic properties of PtSe2: from monolayer to bulk. Semicond. Sci. Technol. 33(8), 085002 (2018). https://doi.org/10.1088/1361-6641/aacba2
- M. Kar, R. Sarkar, S. Pal, P. Sarkar, Engineering the magnetic properties of PtSe2 monolayer through transition metal doping. J. Phys. Condens. Mater. 31(14), 145502 (2019). https://doi.org/10.1088/1361-648X/aaff40
- X. Lin, J.C. Lu, Y. Shao, Y.Y. Zhang, X. Wu et al., Intrinsically patterned two-dimensional materials for selective adsorption of molecules and nanoclusters. Nat. Mater. 16(7), 717–721 (2017). https://doi.org/10.1038/nmat4915
- H.-P. Komsa, S. Kurasch, O. Lehtinen, U. Kaiser, A.V.J.P.R.B. Krasheninnikov, From point to extended defects in two-dimensional MoS2: evolution of atomic structure under electron irradiation. Phys. Rev. B 88(3), 035301 (2013). https://doi.org/10.1103/PhysRevB.88.035301
- Y.-C. Lin, D.O. Dumcenco, Y.-S. Huang, K.J.N.N. Suenaga, Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 9(5), 391 (2014). https://doi.org/10.1038/nnano.2014.64
- G.D. Nguyen, L. Liang, Q. Zou, M. Fu, A.D. Oyedele et al., 3D imaging and manipulation of subsurface selenium vacancies in PdSe2. Phys. Rev. Lett. 121(8), 086101 (2018). https://doi.org/10.1103/PhysRevLett.121.086101
- J. Lin, S. Zuluaga, P. Yu, Z. Liu, S.T. Pantelides, K.J.P.R.L. Suenaga, Novel Pd2Se3 two-dimensional phase driven by interlayer fusion in layered PdSe2. Phys. Rev. Lett. 119(1), 016101 (2017). https://doi.org/10.1103/PhysRevLett.119.016101
- G.H. Ryu, J. Chen, Y. Wen, J.H. Warner, In-situ atomic-scale dynamics of thermally driven phase transition of 2D few-layered 1T PtSe2 into ultrathin 2D nonlayered PtSe crystals. Chem. Mater. 31(23), 9895–9903 (2019). https://doi.org/10.1021/acs.chemmater.9b04274
- Y. Yang, S.K. Jang, H. Choi, J. Xu, S. Lee, Homogeneous platinum diselenide metal/semiconductor coplanar structure fabricated by selective thickness control. Nanoscale 11(44), 21068–21073 (2019). https://doi.org/10.1039/c9nr07995e
- M.S. Shawkat, J. Gil, S.S. Han, T.-J. Ko, M. Wang et al., Thickness-independent semiconducting-to-metallic conversion in wafer-scale two-dimensional PtSe2 layers by plasma-driven chalcogen defect engineering. ACS Appl. Mater. Interfaces 12(12), 14341–14351 (2020). https://doi.org/10.1021/acsami.0c00116
- M. O’Brien, N. McEvoy, C. Motta, J.Y. Zheng, N.C. Berner et al., Raman characterization of platinum diselenide thin films. 2D Mater. 3(2), 021004 (2016). https://doi.org/10.1088/2053-1583/3/2/021004
- C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S.J.A.N. Ryu, Anomalous lattice vibrations of single-and few-layer MoS2. ACS Nano 4(5), 2695–2700 (2010). https://doi.org/10.1038/s41598-019-55755-x
- H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, D.J.A.F.M. Baillargeat, From bulk to monolayer MoS2: evolution of Raman scattering. Adv. Funct. Mater. 22(7), 1385–1390 (2012). https://doi.org/10.1002/adfm.201102111
- J. Xie, D. Zhang, X.-Q. Yan, M. Ren, X. Zhao et al., Optical properties of chemical vapor deposition-grown PtSe2 characterized by spectroscopic ellipsometry. 2D Mater. 6(3), 035011 (2019). https://doi.org/10.1088/2053-1583/ab1490
- X. Zhao, F. Liu, D.Q. Liu, X.Q. Yan, C.F. Huo et al., Thickness-dependent ultrafast nonlinear absorption properties of PtSe2 films with both semiconducting and semimetallic phases. Appl. Phys. Lett. 115(26), 263102 (2019). https://doi.org/10.1063/1.5135375
- X. Chen, S.F. Zhang, L. Wang, Y.F. Huang, H.N. Liu et al., Direct observation of interlayer coherent acoustic phonon dynamics in bilayer and few-layer PtSe2. Photonics Res. 7(12), 1416–1424 (2019). https://doi.org/10.1364/prj.7.001416
- L. Wang, S.F. Zhang, N. McEvoy, Y.Y. Sun, J.W. Huang et al., Nonlinear optical signatures of the transition from semiconductor to semimetal in PtSe2. Laser Photonics Rev. 13(8), 1900052 (2019). https://doi.org/10.1002/lpor.201900052
- Y. Ge, Z. Zhu, Y. Xu, Y. Chen, S. Chen et al., Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices. Adv. Opt. Mater. 6(4), 1701166 (2018). https://doi.org/10.1002/adom.201701166
- B. Guo, S.-H. Wang, Z.-X. Wu, Z.-X. Wang, D.-H. Wang et al., Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber. Opt. Exp. 26(18), 22750 (2018). https://doi.org/10.1364/oe.26.022750
- X. Jiang, S. Liu, W. Liang, S. Luo, Z. He et al., Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH). Laser Photonics Rev. 12(2), 1700229–1700239 (2018). https://doi.org/10.1002/lpor.201700229
- X. Jiang, L. Zhang, S. Liu, Y. Zhang, Z. He et al., Ultrathin metal-organic framework: an emerging broadband nonlinear optical material for ultrafast photonics. Adv. Opt. Mater. 6(16), 1800561 (2018). https://doi.org/10.1002/adom.201800561
- M. Zhang, Q. Wu, F. Zhang, L. Chen, X. Jin et al., 2D Black phosphorus saturable absorbers for ultrafast photonics. Adv. Opt. Mater. 7(1), 1800224 (2018). https://doi.org/10.1002/adom.201800224
- C. Ma, C. Wang, B. Gao, J. Adams, G. Wu, H. Zhang, Recent progress in ultrafast lasers based on 2D materials as a saturable absorber. Appl. Phys. Rev. 6(4), 041304 (2019). https://doi.org/10.1063/1.5099188
- T. Jiang, K. Yin, C. Wang, J. You, H. Ouyang et al., Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect. Photonics Res. 8(1), 78 (2019). https://doi.org/10.1364/prj.8.000078
- Y. Song, X. Shi, C. Wu, D. Tang, H. Zhang, Recent progress of study on optical solitons in fiber lasers. Appl. Phys. Rev. 6(2), 021313 (2019). https://doi.org/10.1063/1.5091811
- Y. Fang, Y. Ge, C. Wang, H. Zhang, Mid-infrared photonics using 2D materials: status and challenges. Laser Photonics Rev. 14(1), 1900098 (2019). https://doi.org/10.1002/lpor.201900098
- L.L. Tao, X.W. Huang, J.S. He, Y.J. Lou, L.H. Zeng et al., Vertically standing PtSe2 film: a saturable absorber for a passively mode-locked Nd:LuVO4 laser. Photonics Res. 6(7), 750–755 (2018). https://doi.org/10.1364/Prj.6.000750
- K. Zhang, M. Feng, Y.Y. Ren, F. Liu, X.S. Chen et al., Q-switched and mode-locked Er-doped fiber laser using PtSe2 as a saturable absorber. Photonics Res. 6(9), 893–899 (2018). https://doi.org/10.1364/Prj.6.000893
- J. Guo, J. Zhao, D. Huang, Y. Wang, F. Zhang et al., Two-dimensional tellurium-polymer membrane for ultrafast photonics. Nanoscale 11(13), 6235–6242 (2019). https://doi.org/10.1039/c9nr00736a
- L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song et al., Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability. Laser Photonics Rev. 12(1), 1700221 (2018). https://doi.org/10.1002/lpor.201700221
- W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao et al., Black phosphorus nanosheets as a robust delivery platform for cancer theranostics. Adv. Mater. 29(1), 1603276 (2017). https://doi.org/10.1002/adma.201603276
- S. Park, R.S. Ruoff, Chemical methods for the production of graphenes. Nat. Nanotechnol. 4(4), 217–224 (2009). https://doi.org/10.1038/nnano.2009.58
- B. Huang, L. Du, Q. Yi, L.L. Yang, J. Li et al., Bulk-structured PtSe2 for femtosecond fiber laser mode-locking. Opt. Exp. 27(3), 2604–2611 (2019). https://doi.org/10.1364/oe.27.002604
- J. Sun, C. Lu, Y. Song, Q. Ji, X. Song et al., Recent progress in the tailored growth of two-dimensional hexagonal boron nitride via chemical vapour deposition. Chem. Soc. Rev. 47(12), 4242–4257 (2018). https://doi.org/10.1039/c8cs00167g
- J. Wang, Z. Li, H. Chen, G. Deng, X. Niu, Recent advances in 2D lateral heterostructures. Nano-Micro Lett. 11(1), 45 (2019). https://doi.org/10.1007/s40820-019-0276-y
- C. Yang, M. Zhou, C. He, Y. Gao, S. Li et al., Augmenting intrinsic fenton-like activities of MOF-derived catalysts via n-molecule-assisted self-catalyzed carbonization. Nano-Micro Lett. 11(1), 87 (2019). https://doi.org/10.1007/s40820-019-0319-4
- H. Xu, J. Zhu, G. Zou, W. Liu, X. Li et al., Spatially bandgap-graded MoS2(1−x)Se2x homojunctions for self-powered visible-near-infrared phototransistors. Nano-Micro Lett. 12(1), 26 (2020). https://doi.org/10.1007/s40820-019-0361-2
- W.J. Wang, K.L. Li, Y. Wang, W.X. Jiang, X.Y. Liu, H. Qi, Investigation of the band alignment at MoS2/PtSe2 heterojunctions. Appl. Phys. Lett. 114(20), 201601 (2019). https://doi.org/10.1063/1.5097248
- Z.G. Wang, Q. Li, F. Besenbacher, M.D. Dong, Facile synthesis of single crystal PtSe2 nanosheets for nanoscale electronics. Adv. Mater. 28(46), 10224–10229 (2016). https://doi.org/10.1002/adma.201602889
- H. Xu, H.M. Zhang, Y.W. Liu, S.M. Zhang, Y.Y. Sun et al., Controlled doping of wafer-scale PtSe2 films for device application. Adv. Funct. Mater. 29(4), 1805614 (2019). https://doi.org/10.1002/adfm.201805614
- B. Yan, B. Zhang, H. Nie, G. Li, J. Liu, B. Shi, K. Yang, J. He, Bilayer platinum diselenide saturable absorber for 2.0 mum passively Q-switched bulk lasers. Opt Exp. 26(24), 31657–31663 (2018). https://doi.org/10.1364/OE.26.031657
- R. Gatensby, N. McEvoy, K. Lee, T. Hallam, N.C. Berner et al., Controlled synthesis of transition metal dichalcogenide thin films for electronic applications. Appl. Surf. Sci. 297, 139–146 (2014). https://doi.org/10.1016/j.apsusc.2014.01.103
- R. Gatensby, T. Hallam, K. Lee, N. McEvoy, G.S.J.S.-S.E. Duesberg, Investigations of vapour-phase deposited transition metal dichalcogenide films for future electronic applications. Solid State Electron. 125, 39–51 (2016). https://doi.org/10.1016/j.sse.2016.07.021
- J.B. Mc Manus, G. Cunningham, N. McEvoy, C.P. Cullen, F. Gity et al., Growth of 1T’ MoTe2 by thermally assisted conversion of electrodeposited tellurium films. ACS Appl. Energy Mater. 2(1), 521–530 (2019). https://doi.org/10.1021/acsaem.8b01540
- C. Yim, K. Lee, N. McEvoy, M. O’Brien, S. Riazimehr et al., High-performance hybrid electronic devices from layered PtSe2 films grown at low temperature. ACS Nano 10(10), 9550–9558 (2016). https://doi.org/10.1021/acsnano.6b04898
- C. Yim, V. Passi, M.C. Lemme, G.S. Duesberg, C.O. Coileain et al., Electrical devices from top-down structured platinum diselenide films. NPJ 2D Mater. Appl. 2, 5 (2018). https://doi.org/10.1038/s41699-018-0051-9
- S.S. Han, J.H. Kim, C. Noh, J.H. Kim, E. Ji et al., Horizontal-to-vertical transition of 2D layer orientation in low-temperature chemical vapor deposition-grown PtSe2 and its influences on electrical properties and device applications. ACS Appl. Mater. Interfaces 11(14), 13598–13607 (2019). https://doi.org/10.1021/acsami.9b01078
- M.S. Shawkat, H.S. Chung, D. Dev, S. Das, T. Roy, Y. Jung, Two-dimensional/three-dimensional schottky junction photovoltaic devices realized by the direct CVD growth of vdW 2D PtSe2 layers on silicon. ACS Appl. Mater. Interfaces 11(30), 27251–27258 (2019). https://doi.org/10.1021/acsami.9b09000
- C. Xie, L.H. Zeng, Z.X. Zhang, Y.H. Tsang, L.B. Luo, J.H. Lee, High-performance broadband heterojunction photodetectors based on multilayered PtSe2 directly grown on a Si substrate. Nanoscale 10(32), 15285–15293 (2018). https://doi.org/10.1039/c8nr04004d
- J. Yuan, T. Sun, Z.X. Hu, W.Z. Yu, W.L. Ma et al., Wafer-scale fabrication of two-dimensional PtS2/PtSe2 heterojunctions for efficient and broad band photodetection. ACS Appl. Mater. Interfaces 10(47), 40614–40622 (2018). https://doi.org/10.1021/acsami.8b13620
- L. Wang, J.-J. Li, Q. Fan, Z.-F. Huang, Y.-C. Lu et al., A high-performance near-infrared light photovoltaic detector based on a multilayered PtSe2/Ge heterojunction. J. Mater. Chem. C 7(17), 5019–5027 (2019). https://doi.org/10.1039/c9tc00797k
- L. Ansari, S. Monaghan, N. McEvoy, C.O. Coileain, C.P. Cullen et al., Quantum confinement-induced semimetal-to-semiconductor evolution in large-area ultra-thin PtSe2 films grown at 400 °C. NPJ 2D Mater. Appl. 3, 33 (2019). https://doi.org/10.1038/s41699-019-0116-4
- L.H. Zeng, S.H. Lin, Z.J. Li, Z.X. Zhang, T.F. Zhang et al., Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction. Adv. Funct. Mater. 28(16), 1705970 (2018). https://doi.org/10.1002/adfm.201705970
- D. Wu, Y.E. Wang, L.H. Zeng, C. Jia, E.P. Wu et al., Design of 2D layered PtSe2 heterojunction for the high-performance, room-temperature, broadband, infrared photodetector. ACS Photonics 5(9), 3820–3827 (2018). https://doi.org/10.1021/acsphotonics.8b00853
- S. Wagner, C. Yim, N. McEvoy, S. Kataria, V. Yokaribas et al., Highly sensitive electromechanical piezoresistive pressure sensors based on large-area layered PtSe2 films. Nano Lett. 18(6), 3738–3745 (2018). https://doi.org/10.1021/acs.nanolett.8b00928
- Z.X. Zhang, Z. Long-Hui, X.W. Tong, Y. Gao, C. Xie et al., self-driven, and air-stable photodetectors based on multilayer PtSe2/perovskite heterojunctions. J. Phys. Chem. Lett. 9(6), 1185–1194 (2018). https://doi.org/10.1021/acs.jpclett.8b00266
- L. Li, K.C. Xiong, R.J. Marstell, A. Madjar, N.C. Strandwitz et al., Wafer-scale fabrication of recessed-channel PtSe2 MOSFETs with low contact resistance and improved gate control. IEEE Trans. Electron Dev. 65(10), 4102–4108 (2018). https://doi.org/10.1109/Ted.2018.2856305
- J. He, Y. Li, Y. Lou, G. Zeng, L. Tao, Optical deposition of PtSe2 on fiber end face for Yb-doped mode-locked fiber laser. Optik 198, 163298 (2019). https://doi.org/10.1016/j.ijleo.2019.163298
- Z.Q. Li, R. Li, C. Pang, N.N. Dong, J. Wang, H.H. Yu, F. Chen, 8.8 GHz Q-switched mode-locked waveguide lasers modulated by PtSe2 saturable absorber. Opt. Exp. 27(6), 8727–8737 (2019). https://doi.org/10.1364/oe.27.008727
- X.N. Sun, H.C. Zhang, X.T. Li, Y.Z. Zheng, J.J. Wu et al., An efficient and extremely stable photocatalytic PtSe2/FTO thin film for water splitting. Energy Technol. 8(1), 1900903 (2020). https://doi.org/10.1002/ente.201900903
- S. Lin, Y. Liu, Z. Hu, W. Lu, C.H. Mak et al., Tunable active edge sites in PtSe2 films towards hydrogen evolution reaction. Nano Energy 42, 26–33 (2017). https://doi.org/10.1016/j.nanoen.2017.10.038
- R.R. Zhuo, L.H. Zeng, H.Y. Yuan, D. Wu, Y.G. Wang et al., In-situ fabrication of PtSe2/GaN heterojunction for self-powered deep ultraviolet photodetector with ultrahigh current on/off ratio and detectivity. Nano Res. 12(1), 183–189 (2019). https://doi.org/10.1007/s12274-018-2200-z
- K. Ullah, S. Ye, S.S. Jo, L. Zhu, K.Y. Cho, W.C. Oh, Optical and photocatalytic properties of novel heterogeneous PtSe2-graphene/TiO2 nanocomposites synthesized via ultrasonic assisted techniques. Ultrason. Sonochem. 21(5), 1849–1857 (2014). https://doi.org/10.1016/j.ultsonch.2014.04.016
- K. Ullah, L. Zhu, Z.-D. Meng, S. Ye, S. Sarkar, W.-C. Oh, Synthesis and characterization of novel PtSe2/graphene nanocomposites and its visible light driven catalytic properties. J. Mater. Sci. 49(12), 4139–4147 (2014). https://doi.org/10.1007/s10853-014-8109-3
- K. Ullah, S. Ye, Z. Lei, K.Y. Cho, W.C. Oh, Synergistic effect of PtSe2 and graphene sheets supported by TiO2 as cocatalysts synthesized via microwave techniques for improved photocatalytic activity. Catal. Sci. Technol. 5(1), 184–198 (2015). https://doi.org/10.1039/c4cy00886c
- S. Ye, W.C. Oh, Demonstration of enhanced the photocatalytic effect with PtSe2 and TiO2 treated large area graphene obtained by CVD method. Mater. Sci. Semicond. Proc. 48, 106–114 (2016). https://doi.org/10.1016/j.mssp.2016.03.001
- K. Ullah, S.B. Jo, S. Ye, L. Zhu, W.C. Oh, Visible light driven catalytic properties over methyl orange by novel PtSe2/graphene nanocomposites. Asian J. Chem. 26(6), 1575–1579 (2014). https://doi.org/10.14233/ajchem.2014.17292
- A.A. Umar, S.K.M. Saad, M.M. Salleh, Scalable mesoporous platinum diselenide nanosheet synthesis in water. ACS Omega 2(7), 3325–3332 (2017). https://doi.org/10.1021/acsomega.7b00580
- M.S. Pawar, D.J. Late, Temperature-dependent Raman spectroscopy and sensor applications of PtSe2 nanosheets synthesized by wet chemistry. Beilstein J. Nanotechnol. 10, 467–474 (2019). https://doi.org/10.3762/bjnano.10.46
- K. Klosse, P. Ullersma, Convection in a chemical vapor transport process. J. Cryst. Growth 18(2), 167–174 (1973). https://doi.org/10.1016/0022-0248(73)90195-4
- D. Hu, G. Xu, L. Xing, X. Yan, J. Wang et al., Two-dimensional semiconductors grown by chemical vapor transport. Angew. Chem. Int. Ed. 56(13), 3611–3615 (2017). https://doi.org/10.1002/anie.201700439
- J. Wang, H. Zheng, G. Xu, L. Sun, D. Hu et al., Controlled synthesis of two-dimensional 1T-TiSe2 with charge density wave transition by chemical vapor transport. J. Am. Chem. Soc. 138(50), 16216–16219 (2016). https://doi.org/10.1021/jacs.6b10414
- Z. Du, C. Zhang, M. Wang, X. Zhang, J. Ning et al., Synthesis of WS1.76Te0.24 alloy through chemical vapor transport and its high-performance saturable absorption. Sci. Rep. 9(1), 1–9 (2019). https://doi.org/10.1038/s41598-019-55755-x
- Y. Zhao, S.J.A.M.L. Jin, Controllable water vapor assisted chemical vapor transport synthesis of WS2MoS2 heterostructure. ACS Mater. Lett. 2(1), 42–48 (2019). https://doi.org/10.1103/PhysRevLett.121.086101
- D. Hu, T. Zhao, X. Ping, H. Zheng, L. Xing et al., Unveiling the layer-dependent catalytic activity of PtSe2 atomic crystals for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 58(21), 6977–6981 (2019). https://doi.org/10.1002/anie.201901612
- C.-F. Du, Q. Liang, R. Dangol, J. Zhao, H. Ren, S. Madhavi, Q. Yan, Layered trichalcogenidophosphate: a new catalyst family for water splitting. Nano-Micro Lett. 10(4), 67 (2018). https://doi.org/10.1007/s40820-018-0220-6
- Z. Zhang, D.-H. Xing, J. Li, Q. Yan, Hittorf’s phosphorus: the missing link during transformation of red phosphorus to black phosphorus. CrystEngComm 19(6), 905–909 (2017). https://doi.org/10.1039/c6ce02550a
- H.-A. Chen, H. Sun, C.-R. Wu, Y.-X. Wang, P.-H. Lee, C.-W. Pao, S.-Y. Lin, Single-crystal antimonene films prepared by molecular beam epitaxy: selective growth and contact resistance reduction of the 2D material heterostructure. ACS Appl. Mater. Interfaces 10(17), 15058–15064 (2018). https://doi.org/10.1021/acsami.8b02394
- H.C. Diaz, Y. Ma, R. Chaghi, M. Batzill, High density of (pseudo) periodic twin-grain boundaries in molecular beam epitaxy-grown van der Waals heterostructure: MoTe2/MoS2. Appl. Phys. Lett. 108(19), 191606 (2016). https://doi.org/10.1063/1.4949559
- X. Fan, L. Su, F. Zhang, D. Huang, D.K. Sang et al., Layer-dependent properties of ultrathin GeS nanosheets and application in UV–Vis photodetectors. ACS Appl. Mater. Interfaces 11(50), 47197–47206 (2019). https://doi.org/10.1021/acsami.9b14663
- D. Tyagi, H. Wang, W. Huang, L. Hu, Y. Tang et al., Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications. Nanoscale 12(6), 3535–3559 (2020). https://doi.org/10.1039/c9nr10178k
- D. Ma, R. Wang, J. Zhao, Q. Chen, L. Wu et al., A self-powered photodetector based on two-dimensional boron nanosheets. Nanoscale 12(9), 5313–5323 (2020). https://doi.org/10.1039/d0nr00005a
- Y. Yin, R. Cao, J. Guo, C. Liu, J. Li et al., High-speed and high-responsivity hybrid silicon/black-phosphorus waveguide photodetectors at 2 μm. Laser Photonics Rev. 13(6), 1900032 (2019). https://doi.org/10.1002/lpor.201900032
- R. Cao, H.-D. Wang, Z.-N. Guo, D.K. Sang, L.-Y. Zhang et al., Black phosphorous/indium selenide photoconductive detector for visible and near-infrared light with high sensitivity. Adv. Opt. Mater. 7(12), 1900020 (2019). https://doi.org/10.1002/adom.201900020
- Y. Ding, N. Zhou, L. Gan, X.X. Yan, R.Z. Wu et al., Stacking-mode confined growth of 2H-MoTe2/MoS2 bilayer heterostructures for UV-vis-IR photodetectors. Nano Energy 49, 200–208 (2018). https://doi.org/10.1016/j.nanoen.2018.04.055
- N. Huo, G. Konstantatos, Recent progress and future prospects of 2D-based photodetectors. Adv. Mater. 30(51), e1801164 (2018). https://doi.org/10.1002/adma.201801164
- Y. Ma, Ultrathin SnSe2 flakes: a new member in two-dimensional materials for high-performance photodetector. Sci. Bull. 60(20), 1789–1790 (2015). https://doi.org/10.1007/s11434-015-0907-8
- Y. Zhang, F. Zhang, Y. Xu, W. Huang, L. Wu et al., Self-healable black phosphorus photodetectors. Adv. Funct. Mater. 29(49), 1906610 (2019). https://doi.org/10.1002/adfm.201906610
- E. Wu, D. Wu, C. Jia, Y. Wang, H. Yuan et al., In situ fabrication of 2D WS2/Si type-ii heterojunction for self-powered broadband photodetector with response up to mid-infrared. ACS Photonics 6(2), 565 (2019). https://doi.org/10.1021/acsphotonics.8b01675
- C. Jia, X. Huang, D. Wu, Y. Tian, J. Guo et al., An ultrasensitive self-driven broadband photodetector based on a 2D-WS2/GaAs type-II Zener heterojunction. Nanoscale 12(7), 4435–4444 (2020). https://doi.org/10.1039/c9nr10348a
- Z. Lou, L. Zeng, Y. Wang, D. Wu, T. Xu et al., High-performance MoS2/Si heterojunction broadband photodetectors from deep ultraviolet to near infrared. Opt. Lett. 42(17), 3335–3338 (2017). https://doi.org/10.1364/ol.42.003335
- L.-H. Zeng, D. Wu, S.-H. Lin, C. Xie, H.-Y. Yuan et al., Controlled synthesis of 2D Palladium diselenide for sensitive photodetector applications. Adv. Funct. Mater. 29(1), 1806878 (2019). https://doi.org/10.1002/adfm.201806878
- L.H. Zeng, S.H. Lin, Z.H. Lou, H.Y. Yuan, H. Long et al., Ultrafast and sensitive photodetector based on a PtSe2/silicon nanowire array heterojunction with a multiband spectral response from 200 to 1550 nm. NPG Asia Mater. 10, 352–362 (2018). https://doi.org/10.1038/s41427-018-0035-4
- Y.H. Zhou, Z.B. Zhang, P. Xu, H. Zhang, B. Wang, UV-visible photodetector based on i-type heterostructure of ZnO-QDs/monolayer MoS2. Nanoscale Res. Lett. 14(1), 364 (2019). https://doi.org/10.1186/s11671-019-3183-8
- K. Chen, Y. Wang, J. Liu, J. Kang, Y. Ge et al., In situ preparation of a CsPbBr 3/black phosphorus heterostructure with an optimized interface and photodetector application. Nanoscale 11(36), 16852–16859 (2019). https://doi.org/10.1039/c9nr06488e
- D. Ma, J. Zhao, R. Wang, C. Xing, Z. Li et al., Ultrathin GeSe nanosheets: from systematic synthesis to studies of carrier dynamics and applications for a high-performance UV–Vis photodetector. ACS Appl. Mater. Interfaces 11(4), 4278–4287 (2019). https://doi.org/10.1021/acsami.8b19836
- Y. Chen, X. Wu, Y. Chu, J. Zhou, B. Zhou, J. Huang, Hybrid field-effect transistors and photodetectors based on organic semiconductor and CsPbI3 perovskite nanorods bilayer structure. Nano-Micro Lett. 10(4), 57 (2018). https://doi.org/10.1007/s40820-018-0210-8
- C. Jung, S.M. Kim, H. Moon, G. Han, J. Kwon et al., Highly crystalline CVD-grown multilayer MoSe2 thin film transistor for fast photodetector. Sci. Rep. 5, 15313 (2015). https://doi.org/10.1038/srep15313
- J. Xia, X. Huang, L.-Z. Liu, M. Wang, L. Wang et al., CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors. Nanoscale 6(15), 8949–8955 (2014). https://doi.org/10.1039/c4nr02311k
- S. Yang, C. Wang, C. Ataca, Y. Li, H. Chen et al., Self-driven photodetector and ambipolar transistor in atomically thin GaTe–MoS2 p–n vdW heterostructure. ACS Appl. Mater. Interfaces 8(4), 2533–2539 (2016). https://doi.org/10.1021/acsami.5b10001
- L.-B. Luo, H. Hu, X.-H. Wang, R. Lu, Y.-F. Zou, Y.-Q. Yu, F.-X. Liang, A graphene/GaAs near-infrared photodetector enabled by interfacial passivation with fast response and high sensitivity. J. Mater. Chem. C 3(18), 4723–4728 (2015). https://doi.org/10.1039/c5tc00449g
- M. Buscema, D.J. Groenendijk, S.I. Blanter, G.A. Steele, H.S.J. van der Zant, A. Castellanos-Gomez, Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 14(6), 3347–3352 (2014). https://doi.org/10.1021/nl5008085
- W. Choi, M.Y. Cho, A. Konar, J.H. Lee, G.-B. Cha et al., High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv. Mater. 24(43), 5832–5836 (2012). https://doi.org/10.1002/adma.201201909
- X. Chen, J.S. Ponraj, D. Fan, H. Zhang, An overview of the optical properties and applications of black phosphorus. Nanoscale 12(6), 3513–3534 (2020). https://doi.org/10.1039/c9nr09122j
- Q. Zhang, X. Jiang, M. Zhang, X. Jin, H. Zhang, Z. Zheng, Wideband saturable absorption in metal-organic frameworks (MOFs) for mode-locking Er- and Tm-doped fiber lasers. Nanoscale 12(7), 4586–4590 (2020). https://doi.org/10.1039/c9nr09330c
- B. Lomsadze, K.M. Fradet, R.S. Arnold, Elastic tape behavior of a bi-directional Kerr-lens mode-locked dual-comb ring laser. Opt. Lett. 45(5), 1080–1083 (2020). https://doi.org/10.1364/ol.386160
- L. Li, L. Zhou, T. Li, X. Yang, W. Xie et al., Passive mode-locking operation of a diode-pumped Tm:YAG laser with a MoS2 saturable absorber. Opt. Laser Technol. 124, 355–359 (2020). https://doi.org/10.1016/j.optlastec.2019.105986
- Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D.M. Basko, A.C. Ferrari, Graphene mode-locked ultrafast laser. ACS Nano 4(2), 803–810 (2010). https://doi.org/10.1021/nn901703e
- D.J. Jones, S.A. Diddams, J.K. Ranka, A. Stentz, R.S. Windeler, J.L. Hall, S.T. Cundiff, Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288(5466), 635–639 (2000). https://doi.org/10.1126/science.288.5466.635
- J. Yuan, H. Mu, L. Li, Y. Chen, W. Yu et al., Few-layer platinum diselenide as a new saturable absorber for ultrafast fiber lasers. ACS Appl. Mater. Interfaces 10(25), 21534–21540 (2018). https://doi.org/10.1021/acsami.8b03045
- W. Zhang, Z. Huang, W. Zhang, Y. Li, Two-dimensional semiconductors with possible high room temperature mobility. Nano Res. 7(12), 1731–1737 (2014). https://doi.org/10.1007/s12274-014-0532-x
- S.-L. Li, K. Wakabayashi, Y. Xu, S. Nakaharai, K. Komatsu et al., Thickness-dependent interfacial coulomb scattering in atomically thin field-effect transistors. Nano Lett. 13(8), 3546–3552 (2013). https://doi.org/10.1021/nl4010783
- E. Okogbue, S.S. Han, T.J. Ko, H.S. Chung, J. Ma et al., Multifunctional two-dimensional PtSe2-layer kirigami conductors with 2000% stretchability and metallic-to-semiconducting tunability. Nano Lett. 19(11), 7598–7607 (2019). https://doi.org/10.1021/acs.nanolett.9b01726
- S. Kim, A. Konar, W.-S. Hwang, J.H. Lee, J. Lee et al., High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 3(1), 1011 (2012). https://doi.org/10.1038/ncomms2018
- Z. Yu, Y. Pan, Y. Shen, Z. Wang, Z.-Y. Ong et al., Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat. Commun. 5(1), 5290 (2014). https://doi.org/10.1038/ncomms6290
- Z. Yu, Z.-Y. Ong, Y. Pan, Y. Cui, R. Xin et al., Realization of room-temperature phonon-limited carrier transport in monolayer MoS2 by dielectric and carrier screening. Adv. Mater. 28(3), 547–552 (2016). https://doi.org/10.1002/adma.201503033
- H. Wang, D.K. Sang, Z. Guo, R. Cao, J. Zhao et al., Black phosphorus-based field effect transistor devices for Ag ions detection. Chin. Phys. B 27(8), 087308 (2018). https://doi.org/10.1088/1674-1056/27/8/087308
- J. Zhang, Y. Chen, X. Wang, Two-dimensional covalent carbon nitride nanosheets: synthesis, functionalization, and applications. Energy Environ. Sci. 8(11), 3092–3108 (2015). https://doi.org/10.1039/c5ee01895a
- Q. Lu, Y. Yu, Q. Ma, B. Chen, H. Zhang, 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater. 28(10), 1917–1933 (2016). https://doi.org/10.1002/adma.201503270
- D. Li, W. Wu, Y. Zhang, L. Liu, C. Pan, Preparation of ZnO/graphene heterojunction via high temperature and its photocatalytic property. J. Mater. Sci. 49(4), 1854–1860 (2014). https://doi.org/10.1007/s10853-013-7873-9
- Y.P. Zhang, C.X. Pan, TiO2/graphene oxide and its photocatalytic activity in visible light. J. Mater. Sci. 46(8), 2622–2626 (2011). https://doi.org/10.1007/s10853-010-5116-x
- R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y.J.S. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528), 269–271 (2001). https://doi.org/10.1126/science.1061051
- Y.X. Chen, K.N. Yang, B. Jiang, J.X. Li, M.Q. Zeng, L. Fu, Emerging two-dimensional nanomaterials for electrochemical hydrogen evolution. J. Mater. Chem. A 5(18), 8187–8208 (2017). https://doi.org/10.1039/c7ta00816c
- B. Jo’M, The origin of ideas on a hydrogen economy and its solution to the decay of the environment. Int. J. Hydrogen Energy 27(7–8), 731–740 (2002). https://doi.org/10.1016/S0360-3199(01)00154-9
- B. Ma, T.-T. Chen, Q.-Y. Li, H.-N. Qin, X.-Y. Dong, S.-Q. Zang, Bimetal-organic-framework-derived nanohybrids Cu0.9Co2.1S4@MoS2 for high-performance visible-light-catalytic hydrogen evolution reaction. ACS Appl. Energy Mater. 2(2), 1134–1148 (2019). https://doi.org/10.1021/acsaem.8b01691
- S.R. Kadam, U.V. Kawade, R. Bar-Ziv, S.W. Gosavi, M. Bar-Sadan, B.B. Kale, Porous MoS2 framework and its functionality for electrochemical hydrogen evolution reaction and lithium ion batteries. ACS Appl. Energy Mater. 2(8), 5900–5908 (2019). https://doi.org/10.1021/acsaem.9b01045
- H. Wang, Z. Lu, D. Kong, J. Sun, T.M. Hymel, Y. Cui, Electrochemical tuning of MoS2 nanoparticles on three-dimensional substrate for efficient hydrogen evolution. ACS Nano 8(5), 4940–4947 (2014). https://doi.org/10.1021/nn500959v
- H. Wang, Z. Lu, S. Xu, D. Kong, J.J. Cha et al., Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl. Acad. Sci. USA 110(49), 19701–19706 (2013). https://doi.org/10.1073/pnas.1316792110
- X. Chia, A. Adriano, P. Lazar, Z. Sofer, J. Luxa, M. Pumera, Layered platinum dichalcogenides (PtS2, PtSe2, and PtTe2) electrocatalysis: monotonic dependence on the chalcogen size. Adv. Funct. Mater. 26(24), 4306–4318 (2016). https://doi.org/10.1002/adfm.201505402
- J. Shi, Y. Huan, M. Hong, R. Xu, P. Yang et al., Chemical vapor deposition grown large-scale atomically thin platinum diselenide with semimetal-semiconductor transition. ACS Nano 13(7), 8442–8451 (2019). https://doi.org/10.1021/acsnano.9b04312
- H. Huang, X. Fan, D.J. Singh, W. Zheng, Modulation of hydrogen evolution catalytic activity of basal plane in monolayer platinum and palladium dichalcogenides. ACS Omega 3(8), 10058–10065 (2018). https://doi.org/10.1021/acsomega.8b01414
- M. Sajjad, E. Montes, N. Singh, U. Schwingenschlogl, Superior gas sensing properties of monolayer PtSe2. Adv. Mater. Inter. 4(5), 1600911 (2017). https://doi.org/10.1002/admi.201600911
- D.C. Chen, X.X. Zhang, J. Tang, Z.L. Cui, H. Cui, S.M. Pi, Theoretical study of monolayer PtSe2 as outstanding gas sensor to detect SF6 decompositions. IEEE Electr. Device Lett. 39(9), 1405–1408 (2018). https://doi.org/10.1109/Led.2018.2859258
- J. Zhang, G. Yang, J. Tian, D. Ma, Y. Wang, First-principles study on the gas sensing property of the Ge, As, and Br doped PtSe2. Mater. Res. Exp. 5(3), 05037 (2018). https://doi.org/10.1088/2053-1591/aab4e3
- M.G. Chung, D.H. Kim, H.M. Lee, T. Kim, J.H. Choi et al., Highly sensitive NO2 gas sensor based on ozone treated graphene. Sensor. Actuat. B 166, 172–176 (2012). https://doi.org/10.1016/j.snb.2012.02.036
- B. Liu, L. Chen, G. Liu, A.N. Abbas, M. Fathi, C. Zhou, High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown mono layer MoS2 transistors. ACS Nano 8(5), 5304–5314 (2014). https://doi.org/10.1021/nn5015215
- B. Cho, A.R. Kim, Y. Park, J. Yoon, Y.-J. Lee et al., Bifunctional sensing characteristics of chemical vapor deposition synthesized atomic-layered MoS2. ACS Appl. Mater. Interfaces 7(4), 2952–2959 (2015). https://doi.org/10.1021/am508535x
- Y.H. Kim, S.J. Kim, Y.-J. Kim, Y.-S. Shim, S.Y. Kim, B.H. Hong, H.W. Jang, Self-activated transparent all-graphene gas sensor with endurance to humidity and mechanical bending. ACS Nano 9(10), 10453–10460 (2015). https://doi.org/10.1021/acsnano.5b04680
- Z. Chen, Y. Hu, H. Zhuo, L. Liu, S. Jing, L. Zhong, X. Peng, R.-C. Sun, Compressible, elastic, and pressure-sensitive carbon aerogels derived from 2D Titanium carbide nanosheets and bacterial cellulose for wearable sensors. Chem. Mater. 31(9), 3301–3312 (2019). https://doi.org/10.1021/acs.chemmater.9b00259
- X. Zang, X. Wang, J. Xia, Y. Chai, X. Ma et al., Ab Initio design of graphene block enables ultrasensitivity, multimeter-like range switchable pressure sensor. Adv. Mater. Technol. 4(3), 1800531 (2019). https://doi.org/10.1002/admt.201800531
- T. Yang, H. Xiang, C. Qin, Y. Liu, X. Zhao et al., Highly sensitive 1T-MoS2 pressure sensor with wide linearity based on hierarchical microstructures of leaf vein as spacer. Adv. Electron. Mater. 6(1), 1900916 (2020). https://doi.org/10.1002/aelm.201900916
- W. Qiugu, H. Wei, D. Liang, Graphene “microdrums” on a freestanding perforated thin membrane for high sensitivity MEMS pressure sensors. Nanoscale 8(14), 7663–7671 (2016). https://doi.org/10.1039/c5nr09274d
- S.-E. Zhu, M.K. Ghatkesar, C. Zhang, G.C.A.M. Janssen, Graphene based piezoresistive pressure sensor. Appl. Phys. Lett. 102(16), 161904 (2013). https://doi.org/10.1063/1.4802799
- J. Zheng, X. Tang, Z. Yang, Z. Liang, Y. Chen et al., Few-layer phosphorene-decorated microfiber for all-optical thresholding and optical modulation. Adv. Opt. Mater. 5(9), 1700026 (2017). https://doi.org/10.1002/adom.201700026
- J. Zheng, Z. Yang, C. Si, Z. Liang, X. Chen et al., Black phosphorus based all-optical-signal-processing: toward high performances and enhanced stability. ACS Photonics 4(6), 1466–1476 (2017). https://doi.org/10.1021/acsphotonics.7b00231
- C. Wang, Y. Wang, X. Jiang, J. Xu, W. Huang et al., MXene Ti3C2Tx: a promising photothermal conversion material and application in all-optical modulation and all-optical information loading. Adv. Opt. Mater. 7(8), 1900060 (2019). https://doi.org/10.1002/adom.201900060
- Y. Wang, W. Huang, J. Zhao, H. Huang, C. Wang et al., A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect. J. Mater. Chem. C 7(4), 871–878 (2019). https://doi.org/10.1039/c8tc05513k
- L. Wu, W. Huang, Y. Wang, J. Zhao, D. Ma et al., 2D tellurium based high-performance all-optical nonlinear photonic devices. Adv. Funct. Mater. 29(4), 1806346 (2019). https://doi.org/10.1002/adfm.201806346
- S. Chen, L. Miao, X. Chen, Y. Chen, C. Zhao et al., Few-layer topological insulator for all-optical signal processing using the nonlinear Kerr effect. Adv. Opt. Mater. 3(12), 1769–1778 (2015). https://doi.org/10.1002/adom.201500347
- Y. Song, Y. Chen, X. Jiang, Y. Ge, Y. Wang et al., Nonlinear few-layer MXene-assisted all-optical wavelength conversion at telecommunication band. Adv. Opt. Mater. 7(18), 1801777 (2019). https://doi.org/10.1002/adom.201801777
- Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen et al., All-optical phosphorene phase modulator with enhanced stability under ambient conditions. Laser Photonics Rev. 12(6), 1800016 (2018). https://doi.org/10.1002/lpor.201800016
- L. Wu, K. Chen, W. Huang, Z. Lin, J. Zhao et al., Perovskite CsPbX3: a promising nonlinear optical material and its applications for ambient all-optical switching with enhanced stability. Adv. Opt. Mater. 6(19), 1800400 (2018). https://doi.org/10.1002/adom.201800400
- L. Wu, Y. Dong, J. Zhao, D. Ma, W. Huang et al., Kerr nonlinearity in 2D graphdiyne for passive photonic diodes. Adv. Mater. 31(14), e1807981 (2019). https://doi.org/10.1002/adma.201807981
- L. Wu, X. Jiang, J. Zhao, W. Liang, Z. Li et al., MXene-based nonlinear optical information converter for all-optical modulator and switcher. Laser Photonics Rev. 12(12), 1800215 (2018). https://doi.org/10.1002/lpor.201800215
- L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang et al., Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion. Adv. Opt. Mater. 6(2), 1700985 (2018). https://doi.org/10.1002/adom.201700985
- Q. Wu, S. Chen, Y. Wang, L. Wu, X. Jiang et al., MZI-based all-optical modulator using MXene Ti3C2Tx (T = F, O, or OH) deposited microfiber. Adv. Mater. Technol. 4(4), 1800532 (2019). https://doi.org/10.1002/admt.201800532
- Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang et al., An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator. Laser Photonics Rev. 13(3), 1800313 (2019). https://doi.org/10.1002/lpor.201800313
- H. Moon, J. Bang, S. Hong, G. Kim, J.W. Roh, J. Kim, W. Lee, Strong thermopower enhancement and tunable power factor via semimetal to semiconductor transition in a transition-metal dichalcogenide. ACS Nano 13(11), 13317–13324 (2019). https://doi.org/10.1021/acsnano.9b06523
- H. Usui, K. Kuroki, S. Nakano, K. Kudo, M. Nohara, Pudding-mold-type band as an origin of the large seebeck coefficient coexisting with metallic conductivity in carrier-doped FeAs2 and PtSe2. J. Electron. Mater. 43(6), 1656–1661 (2014). https://doi.org/10.1007/s11664-013-2823-5
- R. Peng, Y. Ma, B. Huang, Y. Dai, Two-dimensional Janus PtSSe for photocatalytic water splitting under the visible or infrared light. J. Mater. Chem. A 7(2), 603–610 (2019). https://doi.org/10.1039/c8ta09177c
- S.-D. Guo, X.-S. Guo, Y. Deng, Tuning the electronic structures and transport coefficients of Janus PtSSe monolayer with biaxial strain. J. Appl. Phys. 126(15), 154301 (2019). https://doi.org/10.1063/1.5124677
- W.-L. Tao, J.-Q. Lan, C.-E. Hu, Y. Cheng, J. Zhu, H.-Y. Geng, Thermoelectric properties of Janus MXY (M = Pd, Pt; X, Y = S, Se, Te) transition-metal dichalcogenide monolayers from first principles. J. Appl. Phys. 127(3), 035101 (2020). https://doi.org/10.1063/1.5130741
References
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Graphene: The new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 48(42), 7752–7777 (2009). https://doi.org/10.1002/anie.200901678
H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, P.D. Ye, Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8(4), 4033–4041 (2014). https://doi.org/10.1021/nn501226z
K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102(30), 10451–10453 (2005). https://doi.org/10.1073/pnas.0502848102
A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109–162 (2009). https://doi.org/10.1103/RevModPhys.81.109
J. Pei, J. Yang, T. Yildirim, H. Zhang, Y. Lu, Many-body complexes in 2D semiconductors. Adv. Mater. 3(2), 1706945 (2019). https://doi.org/10.1002/adma.201706945
M. Luo, T. Fan, Y. Zhou, H. Zhang, L. Mei, 2D black phosphorus-based biomedical applications. Adv. Funct. Mater. 29(13), 1808306 (2019). https://doi.org/10.1002/adfm.201808306
S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta et al., Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7(4), 2898–2926 (2013). https://doi.org/10.1021/nn400280c
Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012). https://doi.org/10.1038/nnano.2012.193
H. Mu, Z. Wang, J. Yuan, S. Xiao, C. Chen et al., Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation. ACS Photonics 2(7), 832–841 (2015). https://doi.org/10.1021/acsphotonics.5b00193
Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai et al., Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers. Nanoscale 8(2), 1066–1072 (2016). https://doi.org/10.1039/c5nr06981e
J. Zheng, H. Zhang, S. Dong, Y. Liu, C.T. Nai et al., High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nat. Commun. 5, 2995 (2014). https://doi.org/10.1038/ncomms3995
J. Liu, Z. Hu, Y. Zhang, H.-Y. Li, N. Gao et al., MoS2 nanosheets sensitized with quantum dots for room-temperature gas sensors. Nano-Micro Lett. 12(1), 59 (2020). https://doi.org/10.1007/s40820-020-0394-6
D. Li, Y. Gong, Y. Chen, J. Lin, Q. Khan, Y. Zhang, Y. Li, H. Zhang, H. Xie, Recent progress of two-dimensional thermoelectric materials. Nano-Micro Lett. 12(1), 36 (2020). https://doi.org/10.1007/s40820-020-0374-x
Z. Kang, Y. Cheng, Z. Zheng, F. Cheng, Z. Chen et al., MoS2-based photodetectors powered by asymmetric contact structure with large work function difference. Nano-Micro Lett. 11(1), 34 (2019). https://doi.org/10.1007/s40820-019-0262-4
K. Khan, A.K. Tareen, M. Aslam, R. Wang, Y. Zhang et al., Recent developments in emerging two-dimensional materials and their applications. J. Mater. Chem. C 8(2), 387–440 (2020). https://doi.org/10.1039/c9tc04187g
B. Wen, Y. Zhu, D. Yudistira, A. Boes, L. Zhang et al., Ferroelectric-driven exciton and trion modulation in monolayer molybdenum and tungsten diselenides. ACS Nano 13(5), 5335–5343 (2019). https://doi.org/10.1021/acsnano.8b09800
C. Tan, H. Zhang, Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 44(9), 2713–2731 (2015). https://doi.org/10.1039/c4cs00182f
H. Schmidt, F. Giustiniano, G. Eda, Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects. Chem. Soc. Rev. 44(21), 7715–7736 (2015). https://doi.org/10.1039/c5cs00275c
Y. Shi, H. Li, L.J. Li, Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chem. Soc. Rev. 44(9), 2744–2756 (2015). https://doi.org/10.1039/c4cs00256c
S. Syama, P.V. Mohanan, Comprehensive application of graphene: emphasis on biomedical concern. Nano-Micro Lett. 11(1), 6 (2019). https://doi.org/10.1007/s40820-019-0237-5
M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5(4), 263–275 (2013). https://doi.org/10.1038/nchem.1589
L. Pi, L. Li, K. Liu, Q. Zhang, H. Li, T. Zhai, Recent progress on 2D noble-transition-metal dichalcogenides. Adv. Funct. Mater. 29(51), 1904932 (2019). https://doi.org/10.1002/adfm.201904932
A.D. Oyedele, S. Yang, L. Liang, A.A. Puretzky, K. Wang et al., PdSe2: pentagonal two-dimensional layers with high air stability for electronics. J. Am. Chem. Soc. 139(40), 14090–14097 (2017). https://doi.org/10.1021/jacs.7b04865
Y. Wang, L. Li, W. Yao, S. Song, J.T. Sun et al., Monolayer PtSe2, a new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt. Nano Lett. 15(6), 4013–4018 (2015). https://doi.org/10.1021/acs.nanolett.5b00964
W.L. Chow, P. Yu, F. Liu, J. Hong, X. Wang et al., High mobility 2D palladium diselenide field-effect transistors with tunable ambipolar characteristics. Adv. Mater. 29(21), 1602969 (2017). https://doi.org/10.1002/adma.201602969
I. Setiyawati, K.R. Chiang, H.M. Ho, Y.H. Tang, Distinct electronic and transport properties between 1T-HfSe2 and 1T-PtSe2. Chin. J. Phys. 62, 151–160 (2019). https://doi.org/10.1016/j.cjph.2019.09.029
Y.D. Zhao, J.S. Qiao, Z.H. Yu, P. Yu, K. Xu et al., High-electron- mobility and air-stable 2D layered PtSe2 FETs. Adv. Mater. 29(5), 1604230 (2017). https://doi.org/10.1002/adma.201604230
D. Wu, J. Guo, J. Du, C. Xia, L. Zeng et al., Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano 13(9), 9907–9917 (2019). https://doi.org/10.1021/acsnano.9b03994
D. Wu, C. Jia, F. Shi, L. Zeng, P. Lin et al., Mixed-dimensional PdSe2/SiNWA heterostructure based photovoltaic detectors for self-driven, broadband photodetection, infrared imaging and humidity sensing. J. Mater. Chem. A 8(7), 3632–3642 (2020). https://doi.org/10.1039/c9ta13611h
G.Z. Wang, K.P. Wang, N. McEvoy, Z.Y. Bai, C.P. Cullen et al., Ultrafast carrier dynamics and bandgap renormalization in layered PtSe2. Small 15(34), 1902728 (2019). https://doi.org/10.1002/smll.201902728
C. Yim, N. McEvoy, S. Riazimehr, D.S. Schneider, F. Gity et al., Wide spectral photoresponse of layered platinum diselenide-based photodiodes. Nano Lett. 18(3), 1794–1800 (2018). https://doi.org/10.1021/acs.nanolett.7b05000
X. Yu, P. Yu, D. Wu, B. Singh, Q. Zeng et al., Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor. Nat. Commun. 9(1), 1545 (2018). https://doi.org/10.1038/s41467-018-03935-0
H.Q. Huang, S.Y. Zhou, W.H. Duan, Type-II Dirac fermions in the PtSe2 class of transition metal dichalcogenides. Phys. Rev. B 94(12), 121117 (2016). https://doi.org/10.1103/PhysRevB.94.121117
A. Avsar, A. Ciarrocchi, M. Pizzochero, D. Unuchek, O.V. Yazyev, A. Kis, Defect induced, layer-modulated magnetism in ultrathin metallic PtSe2. Nat. Nanotechnol. 14(7), 674–678 (2019). https://doi.org/10.1038/s41565-019-0467-1
M.A.U. Absor, I. Santoso, A. Harsojo, K. Abraha, H. Kotaka, F. Ishii, M. Saito, Strong Rashba effect in the localized impurity states of halogen-doped monolayer PtSe2. Phys. Rev. B 97(20), 205138 (2018). https://doi.org/10.1103/PhysRevB.97.205138
K.N. Zhang, M.Z. Yan, H.X. Zhang, H.Q. Huang, M. Arita et al., Experimental evidence for type-II Dirac semimetal in PtSe2. Phys. Rev. B 96(12), 125102 (2017). https://doi.org/10.1103/PhysRevB.96.125102
C. Tsai, K. Chan, J.K. Norskov, F. Abild-Pedersen, Theoretical insights into the hydrogen evolution activity of layered transition metal dichalcogenides. Surf. Sci. 640, 133–140 (2015). https://doi.org/10.1016/j.susc.2015.01.019
M. Zulfiqar, G. Li, Y.C. Zhao, S. Nazir, J. Ni, Versatile electronic and magnetic properties of chemically doped 2D platinum diselenide monolayers: a first-principles study. AIP Adv. 7(12), 125126 (2017). https://doi.org/10.1063/1.5011054
H.L.L. Zhuang, R.G. Hennig, Computational search for single-layer transition-metal dichalcogenide photocatalysts. J. Phys. Chem. C 117(40), 20440–20445 (2013). https://doi.org/10.1021/jp405808
C.S. Boland, C.O. Coileain, S. Wagner, J.B. McManus, C.P. Cullen et al., PtSe2 grown directly on polymer foil for use as a robust piezoresistive sensor. 2D Mater. 6(4), 045029 (2019). https://doi.org/10.1088/2053-1583/ab33a1
A. Ciarrocchi, A. Avsar, D. Ovchinnikov, A. Kis, Thickness-modulated metal-to-semiconductor transformation in a transition metal dichalcogenide. Nat. Commun. 9(1), 919 (2018). https://doi.org/10.1038/s41467-018-03436-0
M.Z. Yan, E.Y. Wang, X. Zhou, G.Q. Zhang, H.Y. Zhang et al., High quality atomically thin PtSe2 films grown by molecular beam epitaxy. 2D Mater. 4(4), 045015 (2017). https://doi.org/10.1088/2053-1583/aa8919
S. Wu, K.S. Hui, K.N. Hui, 2D black phosphorus: from preparation to applications for electrochemical energy storage. Adv. Sci. 5(5), 1700491 (2018). https://doi.org/10.1002/advs.201700491
S. Kuriakose, T. Ahmed, S. Balendhran, V. Bansal, S. Sriram, M. Bhaskaran, S. Walia, Black phosphorus: ambient degradation and strategies for protection. 2D Mater. 5(3), 139–146 (2018). https://doi.org/10.1088/2053-1583/aab810
V. Eswaraiah, Q. Zeng, Y. Long, Z. Liu, Black phosphorus nanosheets: synthesis, characterization and applications. Small 12(26), 3480–3502 (2016). https://doi.org/10.1002/smll.201600032
F. Gronvold, E. Rost, On the sulfides, selenides and tellurides of palladium. Acta Chem. Scand. 10(10), 1620–1634 (1956). https://doi.org/10.3891/acta.chem.scand.10-1620
A. Kjekshus, F. Gronvold, High temperature x-ray study of the thermal expansion of PtS2, PtSe2, PtTe2 and PdTe2. Acta Chem. Scand. 13(9), 1767–1774 (1959). https://doi.org/10.3891/acta.chem.scand.13-1767
F. Gronvold, H. Haraldsen, A. Kjekshus, On the sulfides, selenides and tellurides of platinum. Acta Chem. Scand. 14(9), 1879–1893 (1960). https://doi.org/10.3891/acta.chem.scand.14-1879
Y.D. Zhao, J.S. Qiao, P. Yu, Z.X. Hu, Z.Y. Lin et al., Extraordinarily strong interlayer interaction in 2D layered PtS2. Adv. Mater. 28(12), 2399–2407 (2016). https://doi.org/10.1002/adma.201504572
G. Guo, W. Liang, The electronic structures of platinum dichalcogenides: PtS2, PtSe2 and PtTe2. J. Phys. C 19(7), 995–1008 (1986). https://doi.org/10.1088/0022-3719/19/7/011
P.F. Li, L. Li, X.C. Zeng, Tuning the electronic properties of monolayer and bilayer PtSe2 via strain engineering. J. Mater. Chem. C 4(15), 3106–3112 (2016). https://doi.org/10.1039/c6tc00130k
C. Tan, X. Cao, X.J. Wu, Q. He, J. Yang et al., Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117(9), 6225–6331 (2017). https://doi.org/10.1021/acs.chemrev.6b00558
S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis, 2D transition metal dichalcogenides. Nat. Rev. Mater. 2(8), 17033 (2017). https://doi.org/10.1038/natrevmats.2017.33
T.Y. Su, H. Medina, Y.Z. Chen, S.W. Wang, S.S. Lee et al., Phase-engineered PtSe2 -Layered films by a plasma-assisted selenization process toward all PtSe2 -Based field effect transistor to highly sensitive, flexible, and wide-spectrum photoresponse photodetectors. Small 14(19), e1800032 (2018). https://doi.org/10.1002/smll.201800032
W. Yao, E.Y. Wang, H.Q. Huang, K. Deng, M.Z. Yan et al., Direct observation of spin-layer locking by local Rashba effect in monolayer semiconducting PtSe2 film. Nat. Commun. 8, 14216 (2017). https://doi.org/10.1038/ncomms14216
Y.W. Li, Y.Y.Y. Xia, S.A. Ekahana, N. Kumar, J. Jiang et al., Topological origin of the type-II Dirac fermions in PtSe2. Phys. Rev. Mater. 1(7), 074202 (2017). https://doi.org/10.1103/PhysRevMaterials.1.074202
W. Zhang, J. Qin, Z. Huang, W. Zhang, The mechanism of layer number and strain dependent bandgap of 2D crystal PtSe2. J. Appl. Phys. 122, 205701 (2017). https://doi.org/10.1063/1.5000419
A. Jeremías Perea, B. Maria Andrea Andrea, A.M. Llois, Monolayer of PtSe2 on Pt(111): is it metallic or insulating? J. Phys. Condens. Mater. 32(23), 235002 (2020). https://doi.org/10.1088/1361-648X/ab73a5
Z. Hu, Z. Wu, C. Han, J. He, Z. Ni, W. Chen, Two-dimensional transition metal dichalcogenides: interface and defect engineering. Chem. Soc. Rev. 47(9), 3100–3128 (2018). https://doi.org/10.1039/c8cs00024g
Q. Liu, L. Li, Y. Li, Z. Gao, Z. Chen, J. Lu, Tuning electronic structure of bilayer MoS2 by vertical electric field: a first-principles investigation. J. Phys. Chem. C 116(40), 21556–21562 (2012). https://doi.org/10.1021/jp307124d
S. Manzeli, A. Allain, A. Ghadimi, A. Kis, Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2. Nano Lett. 15(8), 5330–5335 (2015). https://doi.org/10.1021/acs.nanolett.5b01689
Y. Liang, L. Yang, Carrier plasmon induced nonlinear band gap renormalization in two-dimensional semiconductors. Phys. Rev. Lett. 114(6), 063001 (2015). https://doi.org/10.1103/PhysRevLett.114.063001
A. Bhattacharya, S. Bhattacharya, G.P. Das, Strain-induced band-gap deformation of H/F passivated graphene and h-BN sheet. Phys. Rev. B 84(7), 075454 (2011). https://doi.org/10.1103/PhysRevB.84.075454
S. Deng, L. Li, Y. Zhang, Strain modulated electronic, mechanical, and optical properties of the monolayer PdS2, PdSe2, and PtSe2 for tunable devices. ACS Appl. Nano Mater. 1(4), 1932–1939 (2018). https://doi.org/10.1021/acsanm.8b00363
J. Du, P. Song, L. Fang, T. Wang, Z. Wei, J. Li, C. Xia, Elastic, electronic and optical properties of the two-dimensional PtX2 (X = S, Se, and Te) monolayer. Appl. Surf. Sci. 435, 476–482 (2018). https://doi.org/10.1016/j.apsusc.2017.11.106
S.D. Guo, Biaxial strain tuned thermoelectric properties in monolayer PtSe2. J. Mater. Chem. C 4(39), 9366–9374 (2016). https://doi.org/10.1039/c6tc03074b
A. Kandemir, B. Akbali, Z. Kahraman, S.V. Badalov, M. Ozcan, F. Iyikanat, H. Sahin, Structural, electronic and phononic properties of PtSe2: from monolayer to bulk. Semicond. Sci. Technol. 33(8), 085002 (2018). https://doi.org/10.1088/1361-6641/aacba2
M. Kar, R. Sarkar, S. Pal, P. Sarkar, Engineering the magnetic properties of PtSe2 monolayer through transition metal doping. J. Phys. Condens. Mater. 31(14), 145502 (2019). https://doi.org/10.1088/1361-648X/aaff40
X. Lin, J.C. Lu, Y. Shao, Y.Y. Zhang, X. Wu et al., Intrinsically patterned two-dimensional materials for selective adsorption of molecules and nanoclusters. Nat. Mater. 16(7), 717–721 (2017). https://doi.org/10.1038/nmat4915
H.-P. Komsa, S. Kurasch, O. Lehtinen, U. Kaiser, A.V.J.P.R.B. Krasheninnikov, From point to extended defects in two-dimensional MoS2: evolution of atomic structure under electron irradiation. Phys. Rev. B 88(3), 035301 (2013). https://doi.org/10.1103/PhysRevB.88.035301
Y.-C. Lin, D.O. Dumcenco, Y.-S. Huang, K.J.N.N. Suenaga, Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 9(5), 391 (2014). https://doi.org/10.1038/nnano.2014.64
G.D. Nguyen, L. Liang, Q. Zou, M. Fu, A.D. Oyedele et al., 3D imaging and manipulation of subsurface selenium vacancies in PdSe2. Phys. Rev. Lett. 121(8), 086101 (2018). https://doi.org/10.1103/PhysRevLett.121.086101
J. Lin, S. Zuluaga, P. Yu, Z. Liu, S.T. Pantelides, K.J.P.R.L. Suenaga, Novel Pd2Se3 two-dimensional phase driven by interlayer fusion in layered PdSe2. Phys. Rev. Lett. 119(1), 016101 (2017). https://doi.org/10.1103/PhysRevLett.119.016101
G.H. Ryu, J. Chen, Y. Wen, J.H. Warner, In-situ atomic-scale dynamics of thermally driven phase transition of 2D few-layered 1T PtSe2 into ultrathin 2D nonlayered PtSe crystals. Chem. Mater. 31(23), 9895–9903 (2019). https://doi.org/10.1021/acs.chemmater.9b04274
Y. Yang, S.K. Jang, H. Choi, J. Xu, S. Lee, Homogeneous platinum diselenide metal/semiconductor coplanar structure fabricated by selective thickness control. Nanoscale 11(44), 21068–21073 (2019). https://doi.org/10.1039/c9nr07995e
M.S. Shawkat, J. Gil, S.S. Han, T.-J. Ko, M. Wang et al., Thickness-independent semiconducting-to-metallic conversion in wafer-scale two-dimensional PtSe2 layers by plasma-driven chalcogen defect engineering. ACS Appl. Mater. Interfaces 12(12), 14341–14351 (2020). https://doi.org/10.1021/acsami.0c00116
M. O’Brien, N. McEvoy, C. Motta, J.Y. Zheng, N.C. Berner et al., Raman characterization of platinum diselenide thin films. 2D Mater. 3(2), 021004 (2016). https://doi.org/10.1088/2053-1583/3/2/021004
C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S.J.A.N. Ryu, Anomalous lattice vibrations of single-and few-layer MoS2. ACS Nano 4(5), 2695–2700 (2010). https://doi.org/10.1038/s41598-019-55755-x
H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, D.J.A.F.M. Baillargeat, From bulk to monolayer MoS2: evolution of Raman scattering. Adv. Funct. Mater. 22(7), 1385–1390 (2012). https://doi.org/10.1002/adfm.201102111
J. Xie, D. Zhang, X.-Q. Yan, M. Ren, X. Zhao et al., Optical properties of chemical vapor deposition-grown PtSe2 characterized by spectroscopic ellipsometry. 2D Mater. 6(3), 035011 (2019). https://doi.org/10.1088/2053-1583/ab1490
X. Zhao, F. Liu, D.Q. Liu, X.Q. Yan, C.F. Huo et al., Thickness-dependent ultrafast nonlinear absorption properties of PtSe2 films with both semiconducting and semimetallic phases. Appl. Phys. Lett. 115(26), 263102 (2019). https://doi.org/10.1063/1.5135375
X. Chen, S.F. Zhang, L. Wang, Y.F. Huang, H.N. Liu et al., Direct observation of interlayer coherent acoustic phonon dynamics in bilayer and few-layer PtSe2. Photonics Res. 7(12), 1416–1424 (2019). https://doi.org/10.1364/prj.7.001416
L. Wang, S.F. Zhang, N. McEvoy, Y.Y. Sun, J.W. Huang et al., Nonlinear optical signatures of the transition from semiconductor to semimetal in PtSe2. Laser Photonics Rev. 13(8), 1900052 (2019). https://doi.org/10.1002/lpor.201900052
Y. Ge, Z. Zhu, Y. Xu, Y. Chen, S. Chen et al., Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices. Adv. Opt. Mater. 6(4), 1701166 (2018). https://doi.org/10.1002/adom.201701166
B. Guo, S.-H. Wang, Z.-X. Wu, Z.-X. Wang, D.-H. Wang et al., Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber. Opt. Exp. 26(18), 22750 (2018). https://doi.org/10.1364/oe.26.022750
X. Jiang, S. Liu, W. Liang, S. Luo, Z. He et al., Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH). Laser Photonics Rev. 12(2), 1700229–1700239 (2018). https://doi.org/10.1002/lpor.201700229
X. Jiang, L. Zhang, S. Liu, Y. Zhang, Z. He et al., Ultrathin metal-organic framework: an emerging broadband nonlinear optical material for ultrafast photonics. Adv. Opt. Mater. 6(16), 1800561 (2018). https://doi.org/10.1002/adom.201800561
M. Zhang, Q. Wu, F. Zhang, L. Chen, X. Jin et al., 2D Black phosphorus saturable absorbers for ultrafast photonics. Adv. Opt. Mater. 7(1), 1800224 (2018). https://doi.org/10.1002/adom.201800224
C. Ma, C. Wang, B. Gao, J. Adams, G. Wu, H. Zhang, Recent progress in ultrafast lasers based on 2D materials as a saturable absorber. Appl. Phys. Rev. 6(4), 041304 (2019). https://doi.org/10.1063/1.5099188
T. Jiang, K. Yin, C. Wang, J. You, H. Ouyang et al., Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect. Photonics Res. 8(1), 78 (2019). https://doi.org/10.1364/prj.8.000078
Y. Song, X. Shi, C. Wu, D. Tang, H. Zhang, Recent progress of study on optical solitons in fiber lasers. Appl. Phys. Rev. 6(2), 021313 (2019). https://doi.org/10.1063/1.5091811
Y. Fang, Y. Ge, C. Wang, H. Zhang, Mid-infrared photonics using 2D materials: status and challenges. Laser Photonics Rev. 14(1), 1900098 (2019). https://doi.org/10.1002/lpor.201900098
L.L. Tao, X.W. Huang, J.S. He, Y.J. Lou, L.H. Zeng et al., Vertically standing PtSe2 film: a saturable absorber for a passively mode-locked Nd:LuVO4 laser. Photonics Res. 6(7), 750–755 (2018). https://doi.org/10.1364/Prj.6.000750
K. Zhang, M. Feng, Y.Y. Ren, F. Liu, X.S. Chen et al., Q-switched and mode-locked Er-doped fiber laser using PtSe2 as a saturable absorber. Photonics Res. 6(9), 893–899 (2018). https://doi.org/10.1364/Prj.6.000893
J. Guo, J. Zhao, D. Huang, Y. Wang, F. Zhang et al., Two-dimensional tellurium-polymer membrane for ultrafast photonics. Nanoscale 11(13), 6235–6242 (2019). https://doi.org/10.1039/c9nr00736a
L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song et al., Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability. Laser Photonics Rev. 12(1), 1700221 (2018). https://doi.org/10.1002/lpor.201700221
W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao et al., Black phosphorus nanosheets as a robust delivery platform for cancer theranostics. Adv. Mater. 29(1), 1603276 (2017). https://doi.org/10.1002/adma.201603276
S. Park, R.S. Ruoff, Chemical methods for the production of graphenes. Nat. Nanotechnol. 4(4), 217–224 (2009). https://doi.org/10.1038/nnano.2009.58
B. Huang, L. Du, Q. Yi, L.L. Yang, J. Li et al., Bulk-structured PtSe2 for femtosecond fiber laser mode-locking. Opt. Exp. 27(3), 2604–2611 (2019). https://doi.org/10.1364/oe.27.002604
J. Sun, C. Lu, Y. Song, Q. Ji, X. Song et al., Recent progress in the tailored growth of two-dimensional hexagonal boron nitride via chemical vapour deposition. Chem. Soc. Rev. 47(12), 4242–4257 (2018). https://doi.org/10.1039/c8cs00167g
J. Wang, Z. Li, H. Chen, G. Deng, X. Niu, Recent advances in 2D lateral heterostructures. Nano-Micro Lett. 11(1), 45 (2019). https://doi.org/10.1007/s40820-019-0276-y
C. Yang, M. Zhou, C. He, Y. Gao, S. Li et al., Augmenting intrinsic fenton-like activities of MOF-derived catalysts via n-molecule-assisted self-catalyzed carbonization. Nano-Micro Lett. 11(1), 87 (2019). https://doi.org/10.1007/s40820-019-0319-4
H. Xu, J. Zhu, G. Zou, W. Liu, X. Li et al., Spatially bandgap-graded MoS2(1−x)Se2x homojunctions for self-powered visible-near-infrared phototransistors. Nano-Micro Lett. 12(1), 26 (2020). https://doi.org/10.1007/s40820-019-0361-2
W.J. Wang, K.L. Li, Y. Wang, W.X. Jiang, X.Y. Liu, H. Qi, Investigation of the band alignment at MoS2/PtSe2 heterojunctions. Appl. Phys. Lett. 114(20), 201601 (2019). https://doi.org/10.1063/1.5097248
Z.G. Wang, Q. Li, F. Besenbacher, M.D. Dong, Facile synthesis of single crystal PtSe2 nanosheets for nanoscale electronics. Adv. Mater. 28(46), 10224–10229 (2016). https://doi.org/10.1002/adma.201602889
H. Xu, H.M. Zhang, Y.W. Liu, S.M. Zhang, Y.Y. Sun et al., Controlled doping of wafer-scale PtSe2 films for device application. Adv. Funct. Mater. 29(4), 1805614 (2019). https://doi.org/10.1002/adfm.201805614
B. Yan, B. Zhang, H. Nie, G. Li, J. Liu, B. Shi, K. Yang, J. He, Bilayer platinum diselenide saturable absorber for 2.0 mum passively Q-switched bulk lasers. Opt Exp. 26(24), 31657–31663 (2018). https://doi.org/10.1364/OE.26.031657
R. Gatensby, N. McEvoy, K. Lee, T. Hallam, N.C. Berner et al., Controlled synthesis of transition metal dichalcogenide thin films for electronic applications. Appl. Surf. Sci. 297, 139–146 (2014). https://doi.org/10.1016/j.apsusc.2014.01.103
R. Gatensby, T. Hallam, K. Lee, N. McEvoy, G.S.J.S.-S.E. Duesberg, Investigations of vapour-phase deposited transition metal dichalcogenide films for future electronic applications. Solid State Electron. 125, 39–51 (2016). https://doi.org/10.1016/j.sse.2016.07.021
J.B. Mc Manus, G. Cunningham, N. McEvoy, C.P. Cullen, F. Gity et al., Growth of 1T’ MoTe2 by thermally assisted conversion of electrodeposited tellurium films. ACS Appl. Energy Mater. 2(1), 521–530 (2019). https://doi.org/10.1021/acsaem.8b01540
C. Yim, K. Lee, N. McEvoy, M. O’Brien, S. Riazimehr et al., High-performance hybrid electronic devices from layered PtSe2 films grown at low temperature. ACS Nano 10(10), 9550–9558 (2016). https://doi.org/10.1021/acsnano.6b04898
C. Yim, V. Passi, M.C. Lemme, G.S. Duesberg, C.O. Coileain et al., Electrical devices from top-down structured platinum diselenide films. NPJ 2D Mater. Appl. 2, 5 (2018). https://doi.org/10.1038/s41699-018-0051-9
S.S. Han, J.H. Kim, C. Noh, J.H. Kim, E. Ji et al., Horizontal-to-vertical transition of 2D layer orientation in low-temperature chemical vapor deposition-grown PtSe2 and its influences on electrical properties and device applications. ACS Appl. Mater. Interfaces 11(14), 13598–13607 (2019). https://doi.org/10.1021/acsami.9b01078
M.S. Shawkat, H.S. Chung, D. Dev, S. Das, T. Roy, Y. Jung, Two-dimensional/three-dimensional schottky junction photovoltaic devices realized by the direct CVD growth of vdW 2D PtSe2 layers on silicon. ACS Appl. Mater. Interfaces 11(30), 27251–27258 (2019). https://doi.org/10.1021/acsami.9b09000
C. Xie, L.H. Zeng, Z.X. Zhang, Y.H. Tsang, L.B. Luo, J.H. Lee, High-performance broadband heterojunction photodetectors based on multilayered PtSe2 directly grown on a Si substrate. Nanoscale 10(32), 15285–15293 (2018). https://doi.org/10.1039/c8nr04004d
J. Yuan, T. Sun, Z.X. Hu, W.Z. Yu, W.L. Ma et al., Wafer-scale fabrication of two-dimensional PtS2/PtSe2 heterojunctions for efficient and broad band photodetection. ACS Appl. Mater. Interfaces 10(47), 40614–40622 (2018). https://doi.org/10.1021/acsami.8b13620
L. Wang, J.-J. Li, Q. Fan, Z.-F. Huang, Y.-C. Lu et al., A high-performance near-infrared light photovoltaic detector based on a multilayered PtSe2/Ge heterojunction. J. Mater. Chem. C 7(17), 5019–5027 (2019). https://doi.org/10.1039/c9tc00797k
L. Ansari, S. Monaghan, N. McEvoy, C.O. Coileain, C.P. Cullen et al., Quantum confinement-induced semimetal-to-semiconductor evolution in large-area ultra-thin PtSe2 films grown at 400 °C. NPJ 2D Mater. Appl. 3, 33 (2019). https://doi.org/10.1038/s41699-019-0116-4
L.H. Zeng, S.H. Lin, Z.J. Li, Z.X. Zhang, T.F. Zhang et al., Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction. Adv. Funct. Mater. 28(16), 1705970 (2018). https://doi.org/10.1002/adfm.201705970
D. Wu, Y.E. Wang, L.H. Zeng, C. Jia, E.P. Wu et al., Design of 2D layered PtSe2 heterojunction for the high-performance, room-temperature, broadband, infrared photodetector. ACS Photonics 5(9), 3820–3827 (2018). https://doi.org/10.1021/acsphotonics.8b00853
S. Wagner, C. Yim, N. McEvoy, S. Kataria, V. Yokaribas et al., Highly sensitive electromechanical piezoresistive pressure sensors based on large-area layered PtSe2 films. Nano Lett. 18(6), 3738–3745 (2018). https://doi.org/10.1021/acs.nanolett.8b00928
Z.X. Zhang, Z. Long-Hui, X.W. Tong, Y. Gao, C. Xie et al., self-driven, and air-stable photodetectors based on multilayer PtSe2/perovskite heterojunctions. J. Phys. Chem. Lett. 9(6), 1185–1194 (2018). https://doi.org/10.1021/acs.jpclett.8b00266
L. Li, K.C. Xiong, R.J. Marstell, A. Madjar, N.C. Strandwitz et al., Wafer-scale fabrication of recessed-channel PtSe2 MOSFETs with low contact resistance and improved gate control. IEEE Trans. Electron Dev. 65(10), 4102–4108 (2018). https://doi.org/10.1109/Ted.2018.2856305
J. He, Y. Li, Y. Lou, G. Zeng, L. Tao, Optical deposition of PtSe2 on fiber end face for Yb-doped mode-locked fiber laser. Optik 198, 163298 (2019). https://doi.org/10.1016/j.ijleo.2019.163298
Z.Q. Li, R. Li, C. Pang, N.N. Dong, J. Wang, H.H. Yu, F. Chen, 8.8 GHz Q-switched mode-locked waveguide lasers modulated by PtSe2 saturable absorber. Opt. Exp. 27(6), 8727–8737 (2019). https://doi.org/10.1364/oe.27.008727
X.N. Sun, H.C. Zhang, X.T. Li, Y.Z. Zheng, J.J. Wu et al., An efficient and extremely stable photocatalytic PtSe2/FTO thin film for water splitting. Energy Technol. 8(1), 1900903 (2020). https://doi.org/10.1002/ente.201900903
S. Lin, Y. Liu, Z. Hu, W. Lu, C.H. Mak et al., Tunable active edge sites in PtSe2 films towards hydrogen evolution reaction. Nano Energy 42, 26–33 (2017). https://doi.org/10.1016/j.nanoen.2017.10.038
R.R. Zhuo, L.H. Zeng, H.Y. Yuan, D. Wu, Y.G. Wang et al., In-situ fabrication of PtSe2/GaN heterojunction for self-powered deep ultraviolet photodetector with ultrahigh current on/off ratio and detectivity. Nano Res. 12(1), 183–189 (2019). https://doi.org/10.1007/s12274-018-2200-z
K. Ullah, S. Ye, S.S. Jo, L. Zhu, K.Y. Cho, W.C. Oh, Optical and photocatalytic properties of novel heterogeneous PtSe2-graphene/TiO2 nanocomposites synthesized via ultrasonic assisted techniques. Ultrason. Sonochem. 21(5), 1849–1857 (2014). https://doi.org/10.1016/j.ultsonch.2014.04.016
K. Ullah, L. Zhu, Z.-D. Meng, S. Ye, S. Sarkar, W.-C. Oh, Synthesis and characterization of novel PtSe2/graphene nanocomposites and its visible light driven catalytic properties. J. Mater. Sci. 49(12), 4139–4147 (2014). https://doi.org/10.1007/s10853-014-8109-3
K. Ullah, S. Ye, Z. Lei, K.Y. Cho, W.C. Oh, Synergistic effect of PtSe2 and graphene sheets supported by TiO2 as cocatalysts synthesized via microwave techniques for improved photocatalytic activity. Catal. Sci. Technol. 5(1), 184–198 (2015). https://doi.org/10.1039/c4cy00886c
S. Ye, W.C. Oh, Demonstration of enhanced the photocatalytic effect with PtSe2 and TiO2 treated large area graphene obtained by CVD method. Mater. Sci. Semicond. Proc. 48, 106–114 (2016). https://doi.org/10.1016/j.mssp.2016.03.001
K. Ullah, S.B. Jo, S. Ye, L. Zhu, W.C. Oh, Visible light driven catalytic properties over methyl orange by novel PtSe2/graphene nanocomposites. Asian J. Chem. 26(6), 1575–1579 (2014). https://doi.org/10.14233/ajchem.2014.17292
A.A. Umar, S.K.M. Saad, M.M. Salleh, Scalable mesoporous platinum diselenide nanosheet synthesis in water. ACS Omega 2(7), 3325–3332 (2017). https://doi.org/10.1021/acsomega.7b00580
M.S. Pawar, D.J. Late, Temperature-dependent Raman spectroscopy and sensor applications of PtSe2 nanosheets synthesized by wet chemistry. Beilstein J. Nanotechnol. 10, 467–474 (2019). https://doi.org/10.3762/bjnano.10.46
K. Klosse, P. Ullersma, Convection in a chemical vapor transport process. J. Cryst. Growth 18(2), 167–174 (1973). https://doi.org/10.1016/0022-0248(73)90195-4
D. Hu, G. Xu, L. Xing, X. Yan, J. Wang et al., Two-dimensional semiconductors grown by chemical vapor transport. Angew. Chem. Int. Ed. 56(13), 3611–3615 (2017). https://doi.org/10.1002/anie.201700439
J. Wang, H. Zheng, G. Xu, L. Sun, D. Hu et al., Controlled synthesis of two-dimensional 1T-TiSe2 with charge density wave transition by chemical vapor transport. J. Am. Chem. Soc. 138(50), 16216–16219 (2016). https://doi.org/10.1021/jacs.6b10414
Z. Du, C. Zhang, M. Wang, X. Zhang, J. Ning et al., Synthesis of WS1.76Te0.24 alloy through chemical vapor transport and its high-performance saturable absorption. Sci. Rep. 9(1), 1–9 (2019). https://doi.org/10.1038/s41598-019-55755-x
Y. Zhao, S.J.A.M.L. Jin, Controllable water vapor assisted chemical vapor transport synthesis of WS2MoS2 heterostructure. ACS Mater. Lett. 2(1), 42–48 (2019). https://doi.org/10.1103/PhysRevLett.121.086101
D. Hu, T. Zhao, X. Ping, H. Zheng, L. Xing et al., Unveiling the layer-dependent catalytic activity of PtSe2 atomic crystals for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 58(21), 6977–6981 (2019). https://doi.org/10.1002/anie.201901612
C.-F. Du, Q. Liang, R. Dangol, J. Zhao, H. Ren, S. Madhavi, Q. Yan, Layered trichalcogenidophosphate: a new catalyst family for water splitting. Nano-Micro Lett. 10(4), 67 (2018). https://doi.org/10.1007/s40820-018-0220-6
Z. Zhang, D.-H. Xing, J. Li, Q. Yan, Hittorf’s phosphorus: the missing link during transformation of red phosphorus to black phosphorus. CrystEngComm 19(6), 905–909 (2017). https://doi.org/10.1039/c6ce02550a
H.-A. Chen, H. Sun, C.-R. Wu, Y.-X. Wang, P.-H. Lee, C.-W. Pao, S.-Y. Lin, Single-crystal antimonene films prepared by molecular beam epitaxy: selective growth and contact resistance reduction of the 2D material heterostructure. ACS Appl. Mater. Interfaces 10(17), 15058–15064 (2018). https://doi.org/10.1021/acsami.8b02394
H.C. Diaz, Y. Ma, R. Chaghi, M. Batzill, High density of (pseudo) periodic twin-grain boundaries in molecular beam epitaxy-grown van der Waals heterostructure: MoTe2/MoS2. Appl. Phys. Lett. 108(19), 191606 (2016). https://doi.org/10.1063/1.4949559
X. Fan, L. Su, F. Zhang, D. Huang, D.K. Sang et al., Layer-dependent properties of ultrathin GeS nanosheets and application in UV–Vis photodetectors. ACS Appl. Mater. Interfaces 11(50), 47197–47206 (2019). https://doi.org/10.1021/acsami.9b14663
D. Tyagi, H. Wang, W. Huang, L. Hu, Y. Tang et al., Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications. Nanoscale 12(6), 3535–3559 (2020). https://doi.org/10.1039/c9nr10178k
D. Ma, R. Wang, J. Zhao, Q. Chen, L. Wu et al., A self-powered photodetector based on two-dimensional boron nanosheets. Nanoscale 12(9), 5313–5323 (2020). https://doi.org/10.1039/d0nr00005a
Y. Yin, R. Cao, J. Guo, C. Liu, J. Li et al., High-speed and high-responsivity hybrid silicon/black-phosphorus waveguide photodetectors at 2 μm. Laser Photonics Rev. 13(6), 1900032 (2019). https://doi.org/10.1002/lpor.201900032
R. Cao, H.-D. Wang, Z.-N. Guo, D.K. Sang, L.-Y. Zhang et al., Black phosphorous/indium selenide photoconductive detector for visible and near-infrared light with high sensitivity. Adv. Opt. Mater. 7(12), 1900020 (2019). https://doi.org/10.1002/adom.201900020
Y. Ding, N. Zhou, L. Gan, X.X. Yan, R.Z. Wu et al., Stacking-mode confined growth of 2H-MoTe2/MoS2 bilayer heterostructures for UV-vis-IR photodetectors. Nano Energy 49, 200–208 (2018). https://doi.org/10.1016/j.nanoen.2018.04.055
N. Huo, G. Konstantatos, Recent progress and future prospects of 2D-based photodetectors. Adv. Mater. 30(51), e1801164 (2018). https://doi.org/10.1002/adma.201801164
Y. Ma, Ultrathin SnSe2 flakes: a new member in two-dimensional materials for high-performance photodetector. Sci. Bull. 60(20), 1789–1790 (2015). https://doi.org/10.1007/s11434-015-0907-8
Y. Zhang, F. Zhang, Y. Xu, W. Huang, L. Wu et al., Self-healable black phosphorus photodetectors. Adv. Funct. Mater. 29(49), 1906610 (2019). https://doi.org/10.1002/adfm.201906610
E. Wu, D. Wu, C. Jia, Y. Wang, H. Yuan et al., In situ fabrication of 2D WS2/Si type-ii heterojunction for self-powered broadband photodetector with response up to mid-infrared. ACS Photonics 6(2), 565 (2019). https://doi.org/10.1021/acsphotonics.8b01675
C. Jia, X. Huang, D. Wu, Y. Tian, J. Guo et al., An ultrasensitive self-driven broadband photodetector based on a 2D-WS2/GaAs type-II Zener heterojunction. Nanoscale 12(7), 4435–4444 (2020). https://doi.org/10.1039/c9nr10348a
Z. Lou, L. Zeng, Y. Wang, D. Wu, T. Xu et al., High-performance MoS2/Si heterojunction broadband photodetectors from deep ultraviolet to near infrared. Opt. Lett. 42(17), 3335–3338 (2017). https://doi.org/10.1364/ol.42.003335
L.-H. Zeng, D. Wu, S.-H. Lin, C. Xie, H.-Y. Yuan et al., Controlled synthesis of 2D Palladium diselenide for sensitive photodetector applications. Adv. Funct. Mater. 29(1), 1806878 (2019). https://doi.org/10.1002/adfm.201806878
L.H. Zeng, S.H. Lin, Z.H. Lou, H.Y. Yuan, H. Long et al., Ultrafast and sensitive photodetector based on a PtSe2/silicon nanowire array heterojunction with a multiband spectral response from 200 to 1550 nm. NPG Asia Mater. 10, 352–362 (2018). https://doi.org/10.1038/s41427-018-0035-4
Y.H. Zhou, Z.B. Zhang, P. Xu, H. Zhang, B. Wang, UV-visible photodetector based on i-type heterostructure of ZnO-QDs/monolayer MoS2. Nanoscale Res. Lett. 14(1), 364 (2019). https://doi.org/10.1186/s11671-019-3183-8
K. Chen, Y. Wang, J. Liu, J. Kang, Y. Ge et al., In situ preparation of a CsPbBr 3/black phosphorus heterostructure with an optimized interface and photodetector application. Nanoscale 11(36), 16852–16859 (2019). https://doi.org/10.1039/c9nr06488e
D. Ma, J. Zhao, R. Wang, C. Xing, Z. Li et al., Ultrathin GeSe nanosheets: from systematic synthesis to studies of carrier dynamics and applications for a high-performance UV–Vis photodetector. ACS Appl. Mater. Interfaces 11(4), 4278–4287 (2019). https://doi.org/10.1021/acsami.8b19836
Y. Chen, X. Wu, Y. Chu, J. Zhou, B. Zhou, J. Huang, Hybrid field-effect transistors and photodetectors based on organic semiconductor and CsPbI3 perovskite nanorods bilayer structure. Nano-Micro Lett. 10(4), 57 (2018). https://doi.org/10.1007/s40820-018-0210-8
C. Jung, S.M. Kim, H. Moon, G. Han, J. Kwon et al., Highly crystalline CVD-grown multilayer MoSe2 thin film transistor for fast photodetector. Sci. Rep. 5, 15313 (2015). https://doi.org/10.1038/srep15313
J. Xia, X. Huang, L.-Z. Liu, M. Wang, L. Wang et al., CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors. Nanoscale 6(15), 8949–8955 (2014). https://doi.org/10.1039/c4nr02311k
S. Yang, C. Wang, C. Ataca, Y. Li, H. Chen et al., Self-driven photodetector and ambipolar transistor in atomically thin GaTe–MoS2 p–n vdW heterostructure. ACS Appl. Mater. Interfaces 8(4), 2533–2539 (2016). https://doi.org/10.1021/acsami.5b10001
L.-B. Luo, H. Hu, X.-H. Wang, R. Lu, Y.-F. Zou, Y.-Q. Yu, F.-X. Liang, A graphene/GaAs near-infrared photodetector enabled by interfacial passivation with fast response and high sensitivity. J. Mater. Chem. C 3(18), 4723–4728 (2015). https://doi.org/10.1039/c5tc00449g
M. Buscema, D.J. Groenendijk, S.I. Blanter, G.A. Steele, H.S.J. van der Zant, A. Castellanos-Gomez, Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 14(6), 3347–3352 (2014). https://doi.org/10.1021/nl5008085
W. Choi, M.Y. Cho, A. Konar, J.H. Lee, G.-B. Cha et al., High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv. Mater. 24(43), 5832–5836 (2012). https://doi.org/10.1002/adma.201201909
X. Chen, J.S. Ponraj, D. Fan, H. Zhang, An overview of the optical properties and applications of black phosphorus. Nanoscale 12(6), 3513–3534 (2020). https://doi.org/10.1039/c9nr09122j
Q. Zhang, X. Jiang, M. Zhang, X. Jin, H. Zhang, Z. Zheng, Wideband saturable absorption in metal-organic frameworks (MOFs) for mode-locking Er- and Tm-doped fiber lasers. Nanoscale 12(7), 4586–4590 (2020). https://doi.org/10.1039/c9nr09330c
B. Lomsadze, K.M. Fradet, R.S. Arnold, Elastic tape behavior of a bi-directional Kerr-lens mode-locked dual-comb ring laser. Opt. Lett. 45(5), 1080–1083 (2020). https://doi.org/10.1364/ol.386160
L. Li, L. Zhou, T. Li, X. Yang, W. Xie et al., Passive mode-locking operation of a diode-pumped Tm:YAG laser with a MoS2 saturable absorber. Opt. Laser Technol. 124, 355–359 (2020). https://doi.org/10.1016/j.optlastec.2019.105986
Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D.M. Basko, A.C. Ferrari, Graphene mode-locked ultrafast laser. ACS Nano 4(2), 803–810 (2010). https://doi.org/10.1021/nn901703e
D.J. Jones, S.A. Diddams, J.K. Ranka, A. Stentz, R.S. Windeler, J.L. Hall, S.T. Cundiff, Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288(5466), 635–639 (2000). https://doi.org/10.1126/science.288.5466.635
J. Yuan, H. Mu, L. Li, Y. Chen, W. Yu et al., Few-layer platinum diselenide as a new saturable absorber for ultrafast fiber lasers. ACS Appl. Mater. Interfaces 10(25), 21534–21540 (2018). https://doi.org/10.1021/acsami.8b03045
W. Zhang, Z. Huang, W. Zhang, Y. Li, Two-dimensional semiconductors with possible high room temperature mobility. Nano Res. 7(12), 1731–1737 (2014). https://doi.org/10.1007/s12274-014-0532-x
S.-L. Li, K. Wakabayashi, Y. Xu, S. Nakaharai, K. Komatsu et al., Thickness-dependent interfacial coulomb scattering in atomically thin field-effect transistors. Nano Lett. 13(8), 3546–3552 (2013). https://doi.org/10.1021/nl4010783
E. Okogbue, S.S. Han, T.J. Ko, H.S. Chung, J. Ma et al., Multifunctional two-dimensional PtSe2-layer kirigami conductors with 2000% stretchability and metallic-to-semiconducting tunability. Nano Lett. 19(11), 7598–7607 (2019). https://doi.org/10.1021/acs.nanolett.9b01726
S. Kim, A. Konar, W.-S. Hwang, J.H. Lee, J. Lee et al., High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 3(1), 1011 (2012). https://doi.org/10.1038/ncomms2018
Z. Yu, Y. Pan, Y. Shen, Z. Wang, Z.-Y. Ong et al., Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat. Commun. 5(1), 5290 (2014). https://doi.org/10.1038/ncomms6290
Z. Yu, Z.-Y. Ong, Y. Pan, Y. Cui, R. Xin et al., Realization of room-temperature phonon-limited carrier transport in monolayer MoS2 by dielectric and carrier screening. Adv. Mater. 28(3), 547–552 (2016). https://doi.org/10.1002/adma.201503033
H. Wang, D.K. Sang, Z. Guo, R. Cao, J. Zhao et al., Black phosphorus-based field effect transistor devices for Ag ions detection. Chin. Phys. B 27(8), 087308 (2018). https://doi.org/10.1088/1674-1056/27/8/087308
J. Zhang, Y. Chen, X. Wang, Two-dimensional covalent carbon nitride nanosheets: synthesis, functionalization, and applications. Energy Environ. Sci. 8(11), 3092–3108 (2015). https://doi.org/10.1039/c5ee01895a
Q. Lu, Y. Yu, Q. Ma, B. Chen, H. Zhang, 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater. 28(10), 1917–1933 (2016). https://doi.org/10.1002/adma.201503270
D. Li, W. Wu, Y. Zhang, L. Liu, C. Pan, Preparation of ZnO/graphene heterojunction via high temperature and its photocatalytic property. J. Mater. Sci. 49(4), 1854–1860 (2014). https://doi.org/10.1007/s10853-013-7873-9
Y.P. Zhang, C.X. Pan, TiO2/graphene oxide and its photocatalytic activity in visible light. J. Mater. Sci. 46(8), 2622–2626 (2011). https://doi.org/10.1007/s10853-010-5116-x
R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y.J.S. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528), 269–271 (2001). https://doi.org/10.1126/science.1061051
Y.X. Chen, K.N. Yang, B. Jiang, J.X. Li, M.Q. Zeng, L. Fu, Emerging two-dimensional nanomaterials for electrochemical hydrogen evolution. J. Mater. Chem. A 5(18), 8187–8208 (2017). https://doi.org/10.1039/c7ta00816c
B. Jo’M, The origin of ideas on a hydrogen economy and its solution to the decay of the environment. Int. J. Hydrogen Energy 27(7–8), 731–740 (2002). https://doi.org/10.1016/S0360-3199(01)00154-9
B. Ma, T.-T. Chen, Q.-Y. Li, H.-N. Qin, X.-Y. Dong, S.-Q. Zang, Bimetal-organic-framework-derived nanohybrids Cu0.9Co2.1S4@MoS2 for high-performance visible-light-catalytic hydrogen evolution reaction. ACS Appl. Energy Mater. 2(2), 1134–1148 (2019). https://doi.org/10.1021/acsaem.8b01691
S.R. Kadam, U.V. Kawade, R. Bar-Ziv, S.W. Gosavi, M. Bar-Sadan, B.B. Kale, Porous MoS2 framework and its functionality for electrochemical hydrogen evolution reaction and lithium ion batteries. ACS Appl. Energy Mater. 2(8), 5900–5908 (2019). https://doi.org/10.1021/acsaem.9b01045
H. Wang, Z. Lu, D. Kong, J. Sun, T.M. Hymel, Y. Cui, Electrochemical tuning of MoS2 nanoparticles on three-dimensional substrate for efficient hydrogen evolution. ACS Nano 8(5), 4940–4947 (2014). https://doi.org/10.1021/nn500959v
H. Wang, Z. Lu, S. Xu, D. Kong, J.J. Cha et al., Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl. Acad. Sci. USA 110(49), 19701–19706 (2013). https://doi.org/10.1073/pnas.1316792110
X. Chia, A. Adriano, P. Lazar, Z. Sofer, J. Luxa, M. Pumera, Layered platinum dichalcogenides (PtS2, PtSe2, and PtTe2) electrocatalysis: monotonic dependence on the chalcogen size. Adv. Funct. Mater. 26(24), 4306–4318 (2016). https://doi.org/10.1002/adfm.201505402
J. Shi, Y. Huan, M. Hong, R. Xu, P. Yang et al., Chemical vapor deposition grown large-scale atomically thin platinum diselenide with semimetal-semiconductor transition. ACS Nano 13(7), 8442–8451 (2019). https://doi.org/10.1021/acsnano.9b04312
H. Huang, X. Fan, D.J. Singh, W. Zheng, Modulation of hydrogen evolution catalytic activity of basal plane in monolayer platinum and palladium dichalcogenides. ACS Omega 3(8), 10058–10065 (2018). https://doi.org/10.1021/acsomega.8b01414
M. Sajjad, E. Montes, N. Singh, U. Schwingenschlogl, Superior gas sensing properties of monolayer PtSe2. Adv. Mater. Inter. 4(5), 1600911 (2017). https://doi.org/10.1002/admi.201600911
D.C. Chen, X.X. Zhang, J. Tang, Z.L. Cui, H. Cui, S.M. Pi, Theoretical study of monolayer PtSe2 as outstanding gas sensor to detect SF6 decompositions. IEEE Electr. Device Lett. 39(9), 1405–1408 (2018). https://doi.org/10.1109/Led.2018.2859258
J. Zhang, G. Yang, J. Tian, D. Ma, Y. Wang, First-principles study on the gas sensing property of the Ge, As, and Br doped PtSe2. Mater. Res. Exp. 5(3), 05037 (2018). https://doi.org/10.1088/2053-1591/aab4e3
M.G. Chung, D.H. Kim, H.M. Lee, T. Kim, J.H. Choi et al., Highly sensitive NO2 gas sensor based on ozone treated graphene. Sensor. Actuat. B 166, 172–176 (2012). https://doi.org/10.1016/j.snb.2012.02.036
B. Liu, L. Chen, G. Liu, A.N. Abbas, M. Fathi, C. Zhou, High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown mono layer MoS2 transistors. ACS Nano 8(5), 5304–5314 (2014). https://doi.org/10.1021/nn5015215
B. Cho, A.R. Kim, Y. Park, J. Yoon, Y.-J. Lee et al., Bifunctional sensing characteristics of chemical vapor deposition synthesized atomic-layered MoS2. ACS Appl. Mater. Interfaces 7(4), 2952–2959 (2015). https://doi.org/10.1021/am508535x
Y.H. Kim, S.J. Kim, Y.-J. Kim, Y.-S. Shim, S.Y. Kim, B.H. Hong, H.W. Jang, Self-activated transparent all-graphene gas sensor with endurance to humidity and mechanical bending. ACS Nano 9(10), 10453–10460 (2015). https://doi.org/10.1021/acsnano.5b04680
Z. Chen, Y. Hu, H. Zhuo, L. Liu, S. Jing, L. Zhong, X. Peng, R.-C. Sun, Compressible, elastic, and pressure-sensitive carbon aerogels derived from 2D Titanium carbide nanosheets and bacterial cellulose for wearable sensors. Chem. Mater. 31(9), 3301–3312 (2019). https://doi.org/10.1021/acs.chemmater.9b00259
X. Zang, X. Wang, J. Xia, Y. Chai, X. Ma et al., Ab Initio design of graphene block enables ultrasensitivity, multimeter-like range switchable pressure sensor. Adv. Mater. Technol. 4(3), 1800531 (2019). https://doi.org/10.1002/admt.201800531
T. Yang, H. Xiang, C. Qin, Y. Liu, X. Zhao et al., Highly sensitive 1T-MoS2 pressure sensor with wide linearity based on hierarchical microstructures of leaf vein as spacer. Adv. Electron. Mater. 6(1), 1900916 (2020). https://doi.org/10.1002/aelm.201900916
W. Qiugu, H. Wei, D. Liang, Graphene “microdrums” on a freestanding perforated thin membrane for high sensitivity MEMS pressure sensors. Nanoscale 8(14), 7663–7671 (2016). https://doi.org/10.1039/c5nr09274d
S.-E. Zhu, M.K. Ghatkesar, C. Zhang, G.C.A.M. Janssen, Graphene based piezoresistive pressure sensor. Appl. Phys. Lett. 102(16), 161904 (2013). https://doi.org/10.1063/1.4802799
J. Zheng, X. Tang, Z. Yang, Z. Liang, Y. Chen et al., Few-layer phosphorene-decorated microfiber for all-optical thresholding and optical modulation. Adv. Opt. Mater. 5(9), 1700026 (2017). https://doi.org/10.1002/adom.201700026
J. Zheng, Z. Yang, C. Si, Z. Liang, X. Chen et al., Black phosphorus based all-optical-signal-processing: toward high performances and enhanced stability. ACS Photonics 4(6), 1466–1476 (2017). https://doi.org/10.1021/acsphotonics.7b00231
C. Wang, Y. Wang, X. Jiang, J. Xu, W. Huang et al., MXene Ti3C2Tx: a promising photothermal conversion material and application in all-optical modulation and all-optical information loading. Adv. Opt. Mater. 7(8), 1900060 (2019). https://doi.org/10.1002/adom.201900060
Y. Wang, W. Huang, J. Zhao, H. Huang, C. Wang et al., A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect. J. Mater. Chem. C 7(4), 871–878 (2019). https://doi.org/10.1039/c8tc05513k
L. Wu, W. Huang, Y. Wang, J. Zhao, D. Ma et al., 2D tellurium based high-performance all-optical nonlinear photonic devices. Adv. Funct. Mater. 29(4), 1806346 (2019). https://doi.org/10.1002/adfm.201806346
S. Chen, L. Miao, X. Chen, Y. Chen, C. Zhao et al., Few-layer topological insulator for all-optical signal processing using the nonlinear Kerr effect. Adv. Opt. Mater. 3(12), 1769–1778 (2015). https://doi.org/10.1002/adom.201500347
Y. Song, Y. Chen, X. Jiang, Y. Ge, Y. Wang et al., Nonlinear few-layer MXene-assisted all-optical wavelength conversion at telecommunication band. Adv. Opt. Mater. 7(18), 1801777 (2019). https://doi.org/10.1002/adom.201801777
Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen et al., All-optical phosphorene phase modulator with enhanced stability under ambient conditions. Laser Photonics Rev. 12(6), 1800016 (2018). https://doi.org/10.1002/lpor.201800016
L. Wu, K. Chen, W. Huang, Z. Lin, J. Zhao et al., Perovskite CsPbX3: a promising nonlinear optical material and its applications for ambient all-optical switching with enhanced stability. Adv. Opt. Mater. 6(19), 1800400 (2018). https://doi.org/10.1002/adom.201800400
L. Wu, Y. Dong, J. Zhao, D. Ma, W. Huang et al., Kerr nonlinearity in 2D graphdiyne for passive photonic diodes. Adv. Mater. 31(14), e1807981 (2019). https://doi.org/10.1002/adma.201807981
L. Wu, X. Jiang, J. Zhao, W. Liang, Z. Li et al., MXene-based nonlinear optical information converter for all-optical modulator and switcher. Laser Photonics Rev. 12(12), 1800215 (2018). https://doi.org/10.1002/lpor.201800215
L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang et al., Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion. Adv. Opt. Mater. 6(2), 1700985 (2018). https://doi.org/10.1002/adom.201700985
Q. Wu, S. Chen, Y. Wang, L. Wu, X. Jiang et al., MZI-based all-optical modulator using MXene Ti3C2Tx (T = F, O, or OH) deposited microfiber. Adv. Mater. Technol. 4(4), 1800532 (2019). https://doi.org/10.1002/admt.201800532
Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang et al., An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator. Laser Photonics Rev. 13(3), 1800313 (2019). https://doi.org/10.1002/lpor.201800313
H. Moon, J. Bang, S. Hong, G. Kim, J.W. Roh, J. Kim, W. Lee, Strong thermopower enhancement and tunable power factor via semimetal to semiconductor transition in a transition-metal dichalcogenide. ACS Nano 13(11), 13317–13324 (2019). https://doi.org/10.1021/acsnano.9b06523
H. Usui, K. Kuroki, S. Nakano, K. Kudo, M. Nohara, Pudding-mold-type band as an origin of the large seebeck coefficient coexisting with metallic conductivity in carrier-doped FeAs2 and PtSe2. J. Electron. Mater. 43(6), 1656–1661 (2014). https://doi.org/10.1007/s11664-013-2823-5
R. Peng, Y. Ma, B. Huang, Y. Dai, Two-dimensional Janus PtSSe for photocatalytic water splitting under the visible or infrared light. J. Mater. Chem. A 7(2), 603–610 (2019). https://doi.org/10.1039/c8ta09177c
S.-D. Guo, X.-S. Guo, Y. Deng, Tuning the electronic structures and transport coefficients of Janus PtSSe monolayer with biaxial strain. J. Appl. Phys. 126(15), 154301 (2019). https://doi.org/10.1063/1.5124677
W.-L. Tao, J.-Q. Lan, C.-E. Hu, Y. Cheng, J. Zhu, H.-Y. Geng, Thermoelectric properties of Janus MXY (M = Pd, Pt; X, Y = S, Se, Te) transition-metal dichalcogenide monolayers from first principles. J. Appl. Phys. 127(3), 035101 (2020). https://doi.org/10.1063/1.5130741