A Facile Self-assembly Synthesis of Hexagonal ZnO Nanosheet Films and Their Photoelectrochemical Properties
Corresponding Author: Maojun Zheng
Nano-Micro Letters,
Vol. 8 No. 2 (2016), Article Number: 137-142
Abstract
Here, large-scale and uniform hexagonal zinc oxide (ZnO) nanosheet films were deposited onto indium tin oxide (ITO)-coated transparent conducting glass substrates via a facile galvanic displacement deposition process. Compared with other commonly used solution methods, this process avoids high temperature and electric power as well as supporting agents to make it simple and cost-effective. The as-fabricated ZnO nanosheet films have uniform hexagonal wurtzite structure. The photoelectrochemical (PEC) cell based on ZnO nanosheet film/ITO photoelectrode was also fabricated and its performance was improved by optimizing the solution concentration. A higher photocurrent density of ~500 μA cm−2 under AM 1.5 G simulated illumination of 100 mW cm−2 with zero bias potential (vs. Ag/AgCl electrode) was obtained, which may ascribe to the increased surface-to-volume ratio of disordered ZnO nanosheet arrays. Our developed method may be used to deposit other oxide semiconductors, and the ZnO nanosheet film/ITO PEC cell can be used to design low-cost optoelectronic and photoelectrochemical devices.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.T. Kochuveedu, Y.H. Jang, D.H. Kim, A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications. Chem. Soc. Rev. 42(21), 8467–8493 (2013). doi:10.1039/c3cs60043b
- H. Zhou, S.S. Wong, A facile and mild synthesis of 1-D ZnO, CuO, and α-Fe2O3 nanostructures and nanostructured arrays. ACS Nano 2(5), 944–958 (2008). doi:10.1021/nn700428x
- E. Comini, C. Baratto, G. Faglia, M. Ferroni, A. Vomiero, G. Sberveglieri, Quasi-one dimensional metal oxide semiconductors: preparation, characterization and application as chemical sensors. Prog. Mater. Sci. 54(1), 1–67 (2009). doi:10.1016/j.pmatsci.2008.06.003
- M. Lira-Cantu, F.C. Krebs, Hybrid solar cells based on MEH-PPV and thin film semiconductor oxides (TiO2, Nb2O5, ZnO, CeO2 and CeO2–TiO2): performance improvement during long-time irradiation. Sol. Energy Mater. Sol. Cells 90(14), 2076–2086 (2006). doi:10.1016/j.solmat.2006.02.007
- K.T. Park, F. Xia, S.W. Kim, S.B. Kim, T. Song, U. Paik, W.I. Park, Facile synthesis of ultrathin ZnO nanotubes with well-organized hexagonal nanowalls and sealed layouts: applications for lithium ion battery anodes. J. Phys. Chem. C 117(2), 1037–1043 (2013). doi:10.1021/jp310428r
- M. Niu, F. Huang, L. Cui, P. Huang, Y. Yu, Y. Wang, Hydrothermal synthesis, structural characteristics, and enhanced photocatalysis of SnO2/α-Fe2O3 semiconductor nanoheterostructures. ACS Nano 4(2), 681–688 (2010). doi:10.1021/nn901119a
- T. Guo, Y. Luo, Y. Zhang, Y.-H. Lin, C.-W. Nan, Controllable growth of ZnO nanorod arrays on NiO nanowires and their high UV photoresponse current. Cryst. Growth Des. 14(5), 2329–2334 (2014). doi:10.1021/cg500031t
- Z.L. Wang, X.Y. Kong, Y. Ding, P. Gao, W.L. Hughes, R. Yang, Y. Zhang, Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces. Adv. Funct. Mater. 14(10), 943–956 (2004). doi:10.1002/adfm.200400180
- X. Fang, Y. Bando, U.K. Gautam, T. Zhai, H. Zeng, X. Xu, M. Liao, D. Golberg, ZnO and ZnS nanostructures: ultraviolet-light emitters, lasers, and sensors. Crit. Rev. Solid State 34(3–4), 190–223 (2009). doi:10.1080/10408430903245393
- Y.Y. Xi, Y.F. Hsu, A.B. Djurišić, W.K. Chan, Electrochemical synthesis of ZnO nanoporous films at low temperature and their application in dye-sensitized solar cells. J. Electrochem. Soc. 155(9), D595 (2008). doi:10.1149/1.2952519
- Y. Zhang, J. Xu, Q. Xiang, H. Li, Q. Pan, P. Xu, Brush-like hierarchical ZnO nanostructures: synthesis, photoluminescence and gas sensor properties. J. Phys. Chem. C 113(9), 3430–3435 (2009). doi:10.1021/jp8092258
- R. Kumar, O. Al-Dossary, G. Kumar, A. Umar, Zinc oxide nanostructures for NO2 gas–sensor applications: a review. Nano-Micro Lett. 7(2), 97–120 (2014). doi:10.1007/s40820-014-0023-3
- S. Ho-Kimura, S.J.A. Moniz, J. Tang, I.P. Parkin, A method for synthesis of renewable Cu2O junction composite electrodes and their photoelectrochemical properties. ACS Sustain. Chem. Eng. 3(4), 710–717 (2015). doi:10.1021/acssuschemeng.5b00014
- M. Wu, W.J. Chen, Y.H. Shen, F.Z. Huang, C.H. Li, S.K. Li, In situ growth of matchlike ZnO/Au plasmonic heterostructure for enhanced photoelectrochemical water splitting. ACS Appl. Mater. Interf. 6(17), 15052–15060 (2014). doi:10.1021/am503044f
- P. Winget, L.K. Schirra, D. Cornil, H. Li, V. Coropceanu et al., Defect-driven interfacial electronic structures at an organic/metal-oxide semiconductor heterojunction. Adv. Mater. 26(27), 4711–4716 (2014). doi:10.1002/adma.201305351
- M. Biswas, Y.S. Jung, H.K. Kim, K. Kumar, G.J. Hughes, S. Newcomb, M.O. Henry, E. McGlynn, Microscopic origins of the surface exciton photoluminescence peak in ZnO nanostructures. Phys. Rev. B 83(23), 235320 (2011). doi:10.1103/PhysRevB.83.235320
- Z. Chen, Y. Tang, L. Zhang, L. Luo, Electrodeposited nanoporous ZnO films exhibiting enhanced performance in dye-sensitized solar cells. Electrochim. Acta 51(26), 5870–5875 (2006). doi:10.1016/j.electacta.2006.03.026
- Q. Zhang, C.S. Dandeneau, X. Zhou, G. Cao, ZnO nanostructures for dye-sensitized solar cells. Adv. Mater. 21(41), 4087–4108 (2009). doi:10.1002/adma.200803827
- A. Saha, C. Jiang, A.A. Martí, Carbon nanotube networks on different platforms. Carbon 79, 1–18 (2014). doi:10.1016/j.carbon.2014.07.060
- T. Xu, V.A. Davis, Liquid crystalline phase behavior of silica nanorods in dimethyl sulfoxide and water. Langmuir 30(16), 4806–4813 (2014). doi:10.1021/la405013h
- H. Zhang, W. Ding, K. He, M. Li, Synthesis and characterization of crystalline silicon carbide nanoribbons. Nanoscale Res. Lett. 5(8), 1264–1271 (2010). doi:10.1007/s11671-010-9635-9
- K. Zhang, S.J. Kim, Y. Zhang, T. Heeg, D.G. Schlom, W. Shen, X. Pan, Epitaxial growth of ZnO on (1 1 1) Si free of an amorphous interlayer. J. Phys. D-Appl. Phys. 47(10), 105302 (2014). doi:10.1088/0022-3727/47/10/105302
- R. Kumar, N. Khare, V. Kumar, G.L. Bhalla, Effect of intrinsic stress on the optical properties of nanostructured ZnO thin films grown by rf magnetron sputtering. Appl. Surf. Sci. 254(20), 6509–6513 (2008). doi:10.1016/j.apsusc.2008.04.012
- A.-J. Cheng, Y. Tzeng, Y. Zhou, M. Park, T.-H. Wu, C. Shannon, D. Wang, W. Lee, Thermal chemical vapor deposition growth of zinc oxide nanostructures for dye-sensitized solar cell fabrication. Appl. Phys. Lett. 92(9), 092113 (2008). doi:10.1063/1.2889502
- S. Baruah, J. Dutta, Hydrothermal growth of ZnO nanostructures. Sci. Technol. Adv. Mater. 10(1), 013001 (2009). doi:10.1088/1468-6996/10/1/013001
- B. O’Regan, V. Sklover, M. Grätzel, Electrochemical deposition of smooth and homogeneously mesoporous ZnO films from propylene carbonate electrolytes. J. Electrochem. Soc. 148(7), C498 (2001). doi:10.1149/1.1377899
- H.K. Park, S.P. Hong, Y.R. Do, Vertical growth of ZnO nanorods prepared on an ITO-coated glass substrate by hydrothermal-electrochemical deposition. J. Electrochem. Soc. 159(6), D355 (2012). doi:10.1149/2.078206jes
- N.A. Hambali, A.M. Hashim, Synthesis of zinc oxide nanostructures on graphene/glass substrate via electrochemical deposition: effects of potassium chloride and hexamethylenetetramine as supporting reagents. Nano-Micro Lett. 7(4), 317–324 (2015). doi:10.1007/s40820-015-0045-5
- L. Wang, G. Liu, D. Xue, Effects of introduced electrolytes on galvanic deposition of ZnO films. Electrochim. Acta 55(22), 6796–6801 (2010). doi:10.1016/j.electacta.2010.05.088
- S. Nagaya, H. Nishikiori, Preparation of dye-adsorbing ZnO thin films by electroless deposition and their photoelectrochemical properties. ACS Appl. Mater. Interf. 5(18), 8841–8844 (2013). doi:10.1021/am4026483
- S. Emin, M. Fanetti, F.F. Abdi, D. Lisjak, M. Valant, R. van de Krol, B. Dam, Photoelectrochemical properties of cadmium chalcogenide-sensitized textured porous zinc oxide plate electrodes. ACS Appl. Mater. Interf. 5(3), 1113–1121 (2013). doi:10.1021/am3027986
- A. Goux, T. Pauporté, J. Chivot, D. Lincot, Temperature effects on ZnO electrodeposition. Electrochim. Acta 50(11), 2239–2248 (2005). doi:10.1016/j.electacta.2004.10.007
- C. Melis, P. Raiteri, L. Colombo, A. Mattoni, Self-assembling of zinc phthalocyanines on ZnO (1010¯¯¯¯¯
- ) surface through multiple time scales. ACS Nano 5(12), 9639–9647 (2011). doi:10.1021/nn203105w
- X. Chen, X. Jing, J. Wang, J. Liu, D. Song, L. Liu, Self-assembly of ZnO nanoparticles into hollow microspheres via a facile solvothermal route and their application as gas sensor. Cryst. Eng. Comm. 15(36), 7243 (2013). doi:10.1039/c3ce40654g
- U. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho, H. Morkoç, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98(4), 041301 (2005). doi:10.1063/1.1992666
- L. Wang, G. Liu, L. Zou, D. Xue, Galvanic deposition of ZnO using mixed electrolyte and their photoluminescence properties. Thin Solid Films 519(15), 4788–4792 (2011). doi:10.1016/j.tsf.2011.01.073
- Y. Zhang, H. Jia, R. Wang, C. Chen, X. Luo, D. Yu, C. Lee, Low-temperature growth and Raman scattering study of vertically aligned ZnO nanowires on Si substrate. Appl. Phys. Lett. 83(22), 4631 (2003). doi:10.1063/1.1630849
- C. Persson, C. Platzer-Björkman, J. Malmström, T. Törndahl, M. Edoff, Strong valence-band offset bowing of ZnO1−xSx enhances p-type nitrogen doping of ZnO-like alloys. Phys. Rev. Lett. 97(14), 146403 (2006). doi:10.1103/PhysRevLett.97.146403
- T.P. Rao, M.C.S. Kumar, Physical properties of Ga-doped ZnO thin films by spray pyrolysis. J. Alloys Compd. 506(2), 788–793 (2010). doi:10.1016/j.jallcom.2010.07.071
References
S.T. Kochuveedu, Y.H. Jang, D.H. Kim, A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications. Chem. Soc. Rev. 42(21), 8467–8493 (2013). doi:10.1039/c3cs60043b
H. Zhou, S.S. Wong, A facile and mild synthesis of 1-D ZnO, CuO, and α-Fe2O3 nanostructures and nanostructured arrays. ACS Nano 2(5), 944–958 (2008). doi:10.1021/nn700428x
E. Comini, C. Baratto, G. Faglia, M. Ferroni, A. Vomiero, G. Sberveglieri, Quasi-one dimensional metal oxide semiconductors: preparation, characterization and application as chemical sensors. Prog. Mater. Sci. 54(1), 1–67 (2009). doi:10.1016/j.pmatsci.2008.06.003
M. Lira-Cantu, F.C. Krebs, Hybrid solar cells based on MEH-PPV and thin film semiconductor oxides (TiO2, Nb2O5, ZnO, CeO2 and CeO2–TiO2): performance improvement during long-time irradiation. Sol. Energy Mater. Sol. Cells 90(14), 2076–2086 (2006). doi:10.1016/j.solmat.2006.02.007
K.T. Park, F. Xia, S.W. Kim, S.B. Kim, T. Song, U. Paik, W.I. Park, Facile synthesis of ultrathin ZnO nanotubes with well-organized hexagonal nanowalls and sealed layouts: applications for lithium ion battery anodes. J. Phys. Chem. C 117(2), 1037–1043 (2013). doi:10.1021/jp310428r
M. Niu, F. Huang, L. Cui, P. Huang, Y. Yu, Y. Wang, Hydrothermal synthesis, structural characteristics, and enhanced photocatalysis of SnO2/α-Fe2O3 semiconductor nanoheterostructures. ACS Nano 4(2), 681–688 (2010). doi:10.1021/nn901119a
T. Guo, Y. Luo, Y. Zhang, Y.-H. Lin, C.-W. Nan, Controllable growth of ZnO nanorod arrays on NiO nanowires and their high UV photoresponse current. Cryst. Growth Des. 14(5), 2329–2334 (2014). doi:10.1021/cg500031t
Z.L. Wang, X.Y. Kong, Y. Ding, P. Gao, W.L. Hughes, R. Yang, Y. Zhang, Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces. Adv. Funct. Mater. 14(10), 943–956 (2004). doi:10.1002/adfm.200400180
X. Fang, Y. Bando, U.K. Gautam, T. Zhai, H. Zeng, X. Xu, M. Liao, D. Golberg, ZnO and ZnS nanostructures: ultraviolet-light emitters, lasers, and sensors. Crit. Rev. Solid State 34(3–4), 190–223 (2009). doi:10.1080/10408430903245393
Y.Y. Xi, Y.F. Hsu, A.B. Djurišić, W.K. Chan, Electrochemical synthesis of ZnO nanoporous films at low temperature and their application in dye-sensitized solar cells. J. Electrochem. Soc. 155(9), D595 (2008). doi:10.1149/1.2952519
Y. Zhang, J. Xu, Q. Xiang, H. Li, Q. Pan, P. Xu, Brush-like hierarchical ZnO nanostructures: synthesis, photoluminescence and gas sensor properties. J. Phys. Chem. C 113(9), 3430–3435 (2009). doi:10.1021/jp8092258
R. Kumar, O. Al-Dossary, G. Kumar, A. Umar, Zinc oxide nanostructures for NO2 gas–sensor applications: a review. Nano-Micro Lett. 7(2), 97–120 (2014). doi:10.1007/s40820-014-0023-3
S. Ho-Kimura, S.J.A. Moniz, J. Tang, I.P. Parkin, A method for synthesis of renewable Cu2O junction composite electrodes and their photoelectrochemical properties. ACS Sustain. Chem. Eng. 3(4), 710–717 (2015). doi:10.1021/acssuschemeng.5b00014
M. Wu, W.J. Chen, Y.H. Shen, F.Z. Huang, C.H. Li, S.K. Li, In situ growth of matchlike ZnO/Au plasmonic heterostructure for enhanced photoelectrochemical water splitting. ACS Appl. Mater. Interf. 6(17), 15052–15060 (2014). doi:10.1021/am503044f
P. Winget, L.K. Schirra, D. Cornil, H. Li, V. Coropceanu et al., Defect-driven interfacial electronic structures at an organic/metal-oxide semiconductor heterojunction. Adv. Mater. 26(27), 4711–4716 (2014). doi:10.1002/adma.201305351
M. Biswas, Y.S. Jung, H.K. Kim, K. Kumar, G.J. Hughes, S. Newcomb, M.O. Henry, E. McGlynn, Microscopic origins of the surface exciton photoluminescence peak in ZnO nanostructures. Phys. Rev. B 83(23), 235320 (2011). doi:10.1103/PhysRevB.83.235320
Z. Chen, Y. Tang, L. Zhang, L. Luo, Electrodeposited nanoporous ZnO films exhibiting enhanced performance in dye-sensitized solar cells. Electrochim. Acta 51(26), 5870–5875 (2006). doi:10.1016/j.electacta.2006.03.026
Q. Zhang, C.S. Dandeneau, X. Zhou, G. Cao, ZnO nanostructures for dye-sensitized solar cells. Adv. Mater. 21(41), 4087–4108 (2009). doi:10.1002/adma.200803827
A. Saha, C. Jiang, A.A. Martí, Carbon nanotube networks on different platforms. Carbon 79, 1–18 (2014). doi:10.1016/j.carbon.2014.07.060
T. Xu, V.A. Davis, Liquid crystalline phase behavior of silica nanorods in dimethyl sulfoxide and water. Langmuir 30(16), 4806–4813 (2014). doi:10.1021/la405013h
H. Zhang, W. Ding, K. He, M. Li, Synthesis and characterization of crystalline silicon carbide nanoribbons. Nanoscale Res. Lett. 5(8), 1264–1271 (2010). doi:10.1007/s11671-010-9635-9
K. Zhang, S.J. Kim, Y. Zhang, T. Heeg, D.G. Schlom, W. Shen, X. Pan, Epitaxial growth of ZnO on (1 1 1) Si free of an amorphous interlayer. J. Phys. D-Appl. Phys. 47(10), 105302 (2014). doi:10.1088/0022-3727/47/10/105302
R. Kumar, N. Khare, V. Kumar, G.L. Bhalla, Effect of intrinsic stress on the optical properties of nanostructured ZnO thin films grown by rf magnetron sputtering. Appl. Surf. Sci. 254(20), 6509–6513 (2008). doi:10.1016/j.apsusc.2008.04.012
A.-J. Cheng, Y. Tzeng, Y. Zhou, M. Park, T.-H. Wu, C. Shannon, D. Wang, W. Lee, Thermal chemical vapor deposition growth of zinc oxide nanostructures for dye-sensitized solar cell fabrication. Appl. Phys. Lett. 92(9), 092113 (2008). doi:10.1063/1.2889502
S. Baruah, J. Dutta, Hydrothermal growth of ZnO nanostructures. Sci. Technol. Adv. Mater. 10(1), 013001 (2009). doi:10.1088/1468-6996/10/1/013001
B. O’Regan, V. Sklover, M. Grätzel, Electrochemical deposition of smooth and homogeneously mesoporous ZnO films from propylene carbonate electrolytes. J. Electrochem. Soc. 148(7), C498 (2001). doi:10.1149/1.1377899
H.K. Park, S.P. Hong, Y.R. Do, Vertical growth of ZnO nanorods prepared on an ITO-coated glass substrate by hydrothermal-electrochemical deposition. J. Electrochem. Soc. 159(6), D355 (2012). doi:10.1149/2.078206jes
N.A. Hambali, A.M. Hashim, Synthesis of zinc oxide nanostructures on graphene/glass substrate via electrochemical deposition: effects of potassium chloride and hexamethylenetetramine as supporting reagents. Nano-Micro Lett. 7(4), 317–324 (2015). doi:10.1007/s40820-015-0045-5
L. Wang, G. Liu, D. Xue, Effects of introduced electrolytes on galvanic deposition of ZnO films. Electrochim. Acta 55(22), 6796–6801 (2010). doi:10.1016/j.electacta.2010.05.088
S. Nagaya, H. Nishikiori, Preparation of dye-adsorbing ZnO thin films by electroless deposition and their photoelectrochemical properties. ACS Appl. Mater. Interf. 5(18), 8841–8844 (2013). doi:10.1021/am4026483
S. Emin, M. Fanetti, F.F. Abdi, D. Lisjak, M. Valant, R. van de Krol, B. Dam, Photoelectrochemical properties of cadmium chalcogenide-sensitized textured porous zinc oxide plate electrodes. ACS Appl. Mater. Interf. 5(3), 1113–1121 (2013). doi:10.1021/am3027986
A. Goux, T. Pauporté, J. Chivot, D. Lincot, Temperature effects on ZnO electrodeposition. Electrochim. Acta 50(11), 2239–2248 (2005). doi:10.1016/j.electacta.2004.10.007
C. Melis, P. Raiteri, L. Colombo, A. Mattoni, Self-assembling of zinc phthalocyanines on ZnO (1010¯¯¯¯¯
) surface through multiple time scales. ACS Nano 5(12), 9639–9647 (2011). doi:10.1021/nn203105w
X. Chen, X. Jing, J. Wang, J. Liu, D. Song, L. Liu, Self-assembly of ZnO nanoparticles into hollow microspheres via a facile solvothermal route and their application as gas sensor. Cryst. Eng. Comm. 15(36), 7243 (2013). doi:10.1039/c3ce40654g
U. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho, H. Morkoç, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98(4), 041301 (2005). doi:10.1063/1.1992666
L. Wang, G. Liu, L. Zou, D. Xue, Galvanic deposition of ZnO using mixed electrolyte and their photoluminescence properties. Thin Solid Films 519(15), 4788–4792 (2011). doi:10.1016/j.tsf.2011.01.073
Y. Zhang, H. Jia, R. Wang, C. Chen, X. Luo, D. Yu, C. Lee, Low-temperature growth and Raman scattering study of vertically aligned ZnO nanowires on Si substrate. Appl. Phys. Lett. 83(22), 4631 (2003). doi:10.1063/1.1630849
C. Persson, C. Platzer-Björkman, J. Malmström, T. Törndahl, M. Edoff, Strong valence-band offset bowing of ZnO1−xSx enhances p-type nitrogen doping of ZnO-like alloys. Phys. Rev. Lett. 97(14), 146403 (2006). doi:10.1103/PhysRevLett.97.146403
T.P. Rao, M.C.S. Kumar, Physical properties of Ga-doped ZnO thin films by spray pyrolysis. J. Alloys Compd. 506(2), 788–793 (2010). doi:10.1016/j.jallcom.2010.07.071