Layered Foam/Film Polymer Nanocomposites with Highly Efficient EMI Shielding Properties and Ultralow Reflection
Corresponding Author: Chul B. Park
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 19
Abstract
Lightweight, high-efficiency and low reflection electromagnetic interference (EMI) shielding polymer composites are greatly desired for addressing the challenge of ever-increasing electromagnetic pollution. Lightweight layered foam/film PVDF nanocomposites with efficient EMI shielding effectiveness and ultralow reflection power were fabricated by physical foaming. The unique layered foam/film structure was composed of PVDF/SiCnw/MXene (Ti3C2Tx) composite foam as absorption layer and highly conductive PVDF/MWCNT/GnPs composite film as a reflection layer. The foam layer with numerous heterogeneous interfaces developed between the SiC nanowires (SiCnw) and 2D MXene nanosheets imparted superior EM wave attenuation capability. Furthermore, the microcellular structure effectively tuned the impedance matching and prolonged the wave propagating path by internal scattering and multiple reflections. Meanwhile, the highly conductive PVDF/MWCNT/GnPs composite (~ 220 S m−1) exhibited superior reflectivity (R) of 0.95. The tailored structure in the layered foam/film PVDF nanocomposite exhibited an EMI SE of 32.6 dB and a low reflection bandwidth of 4 GHz (R < 0.1) over the Ku-band (12.4 − 18.0 GHz) at a thickness of 1.95 mm. A peak SER of 3.1 × 10–4 dB was obtained which corresponds to only 0.0022% reflection efficiency. In consequence, this study introduces a feasible approach to develop lightweight, high-efficiency EMI shielding materials with ultralow reflection for emerging applications.
Highlights:
1 The successful fabrication of layered foam/film structure via the crystal melting temperature mismatch for two grades of PVDF resin in a batch foaming process.
2 Developing the heterostructure interfaces between SiC nanowires and MXene (Ti3C2Tx) nanosheets.
3 Achieving efficient electromagnetic interference shielding effectiveness with ultralow reflectivity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Who is Going to Use the 12 GHz Band - 5G, Starlink, Both? | IE. (n.d.). Retrieved March 26, 2021 from https://interestingengineering.com/who-is-going-to-use-the-12-ghz-band-5g-starlink-or-both
- Military Radar Market to 2020 - X & KU Band Radars are Expected to Grow Fastest in the Military Radars Market. (n.d.). Retrieved March 26, 2021 from https://www.prnewswire.com/news-releases/military-radar-market-to-2020---x--ku-band-radars-are-expected-to-grow-fastest-in-the-military-radars-market-570914721.html
- P.M. Mariappan, D.R. Raghavan, S.H.E. Abdel Aleem, A.F. Zobaa, Effects of electromagnetic interference on the functional usage of medical equipment by 2G/3G/4G cellular phones: a review. J. Adv. Res. 7, 727–738 (2016). https://doi.org/10.1016/j.jare.2016.04.004
- G.M. Weng, J. Li, M. Alhabeb, C. Karpovich, H. Wang et al., Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding. Adv. Funct. Mater. 28, 1803360 (2018). https://doi.org/10.1002/adfm.201803360
- Z. Chen, C. Xu, C. Ma, W. Ren, H.M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25, 1296–1300 (2013). https://doi.org/10.1002/adma.201204196
- J. Xu, L. Xia, J. Luo, S. Lu, X. Huang et al., High-performance electromagnetic wave absorbing CNT/SiCf composites: synthesis, tuning, and mechanism. ACS Appl. Mater. Interfaces 12, 20775–20784 (2020). https://doi.org/10.1021/acsami.9b19281
- W.T. Cao, F.F. Chen, Y.J. Zhu, Y.G. Zhang, Y.Y. Jiang et al., Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 12, 4583–4593 (2018). https://doi.org/10.1021/acsnano.8b00997
- M.S. Cao, X.X. Wang, M. Zhang, J.C. Shu, W.Q. Cao et al., Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29, 1807398 (2019). https://doi.org/10.1002/adfm.201807398
- H. Xu, X. Yin, X. Li, M. Li, S. Liang et al., Lightweight Ti2CTx MXene/poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl. Mater. Interfaces 11, 10198–10207 (2019). https://doi.org/10.1021/acsami.8b21671
- B. Du, M. Cai, X. Wang, J. Qian, C. He et al., Enhanced electromagnetic wave absorption property of binary ZnO/NiCo2O4 composites. J. Adv. Ceram. 10, 832–842 (2021). https://doi.org/10.1007/s40145-021-0476-z
- W. Zhang, B. Zhao, H. Xiang, F.Z. Dai, S. Wu et al., One-step synthesis and electromagnetic absorption properties of high entropy rare earth hexaborides (HE REB6) and high entropy rare earth hexaborides/borates (HE REB6/HE REBO3) composite powders. J. Adv. Ceram. 10, 62–77 (2021). https://doi.org/10.1007/s40145-020-0417-2
- X. Ye, Z. Chen, S. Ai, B. Hou, J. Zhang et al., Porous SiC/melamine-derived carbon foam frameworks with excellent electromagnetic wave absorbing capacity. J. Adv. Ceram. 8, 479–488 (2019). https://doi.org/10.1007/s40145-019-0328-2
- H. Pang, L. Xu, D.X. Yan, Z.M. Li, Conductive polymer composites with segregated structures. Prog. Polym. Sci. 39, 1908–1933 (2014). https://doi.org/10.1016/j.progpolymsci.2014.07.007
- P. He, M.-S. Cao, W.-Q. Cao, J. Yuan, Developing MXenes from wireless communication to electromagnetic attenuation. Nano-Micro Lett. 13, 131 (2021). https://doi.org/10.1007/S40820-021-00645-Z
- F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
- A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.-K. Kim, J. Kwon, J. Hong, H. Kim, D. Kim, Y. Gogotsi, and C. Min Koo, Anomalous Absorption of Electromagnetic Waves by 2D Transition Metal Carbonitride Ti3CNTx (MXene) (American Association for the Advancement of Science, 2020). https://doi.org/10.1126/science.aba7977
- B. Zhao, C. Zhao, M. Hamidinejad, C. Wang, R. Li et al., Incorporating a microcellular structure into PVDF/graphene-nanoplatelet composites to tune their electrical conductivity and electromagnetic interference shielding properties. J. Mater. Chem. C 6, 10292–10300 (2018). https://doi.org/10.1039/C8TC03714K
- B. Zhao, S. Wang, C. Zhao, R. Li, S.M. Hamidinejad et al., Synergism between carbon materials and Ni chains in flexible poly(vinylidene fluoride) composite films with high heat dissipation to improve electromagnetic shielding properties. Carbon 127, 469–478 (2018). https://doi.org/10.1016/j.carbon.2017.11.032
- M. Hamidinejad, B. Zhao, A. Zandieh, N. Moghimian, T. Filleter et al., Enhanced electrical and electromagnetic interference shielding properties of polymer-graphene nanoplatelet composites fabricated via supercritical-fluid treatment and physical foaming. ACS Appl. Mater. Interfaces 10, 30752–30761 (2018). https://doi.org/10.1021/acsami.8b10745
- M. Hamidinejad, A. Zandieh, J.H. Lee, J. Papillon, B. Zhao et al., Insight into the directional thermal transport of hexagonal boron nitride composites. ACS Appl. Mater. Interfaces 11, 41726–41735 (2019). https://doi.org/10.1021/acsami.9b16070
- C. Liang, M. Hamidinejad, L. Ma, Z. Wang, C.B. Park, Lightweight and flexible graphene/SiC-nanowires/ poly(vinylidene fluoride) composites for electromagnetic interference shielding and thermal management. Carbon 156, 58–66 (2020). https://doi.org/10.1016/j.carbon.2019.09.044
- L. Liang, R. Yang, G. Han, Y. Feng, B. Zhao et al., Enhanced electromagnetic wave-absorbing performance of magnetic nanoparticles-anchored 2D Ti2CTx MXene. ACS Appl. Mater. Interfaces 12, 2644–2654 (2020). https://doi.org/10.1021/acsami.9b18504
- C. Liang, Z. Wang, Controllable fabricating dielectric-dielectric SiC@C core-shell nanowires for high-performance electromagnetic wave attenuation. ACS Appl. Mater. Interfaces 9, 40690–40696 (2017). https://doi.org/10.1021/acsami.7b13063
- J. Wang, Z. Jia, X. Liu, J. Dou, B. Xu et al., Construction of 1D heterostructure NiCo@C/ZnO nanorod with enhanced microwave absorption. Nano-Micro Lett. 13, 175 (2021). https://doi.org/10.1007/S40820-021-00704-5
- F. Pan, Z. Liu, B. Deng, Y. Dong, X. Zhu et al., Lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites with wideband and tunable electromagnetic absorption performance. Nano-Micro Lett. 13, 43 (2021). https://doi.org/10.1007/S40820-020-00568-1
- G. He, Y. Duan, H. Pang, Microwave absorption of crystalline Fe/MnO@C nanocapsules embedded in amorphous carbon. Nano-Micro Lett. 12, 57 (2020). https://doi.org/10.1007/s40820-020-0388-4
- R. Che, L.M. Peng, X. Duan, Q. Chen, X. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16, 401–405 (2004). https://doi.org/10.1002/adma.200306460
- B. Zhao, C. Zhao, R. Li, S.M. Hamidinejad, C.B. Park, Flexible, ultrathin, and high-efficiency electromagnetic shielding properties of poly(vinylidene fluoride)/carbon composite films. ACS Appl. Mater. Interfaces 9, 20873–20884 (2017). https://doi.org/10.1021/acsami.7b04935
- L. Liang, G. Han, Y. Li, B. Zhao, B. Zhou et al., Promising Ti3C2Tx MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity. ACS Appl. Mater. Interfaces 11, 25399–25409 (2019). https://doi.org/10.1021/acsami.9b07294
- P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 3 (2021). https://doi.org/10.1007/s40820-021-00624-4
- Y. Chen, H. Bin Zhang, Y. Yang, M. Wang, A. Cao et al., High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding. Adv. Funct. Mater. 26, 447–455 (2016). https://doi.org/10.1002/adfm.201503782
- Z. Wang, R. Wei, J. Gu, H. Liu, C. Liu et al., Ultralight, highly compressible and fire-retardant graphene aerogel with self-adjustable electromagnetic wave absorption. Carbon 139, 1126–1135 (2018). https://doi.org/10.1016/j.carbon.2018.08.014
- H. Zhao, Y. Cheng, W. Liu, L. Yang, B. Zhang et al., Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Lett. 11, 24 (2019). https://doi.org/10.1007/s40820-019-0255-3
- Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou et al., Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding. Adv. Funct. Mater. 26, 303–310 (2016). https://doi.org/10.1002/adfm.201503579
- C. Liang, Z. Wang, L. Wu, X. Zhang, H. Wang et al., Light and strong hierarchical porous SiC foam for efficient electromagnetic interference shielding and thermal insulation at elevated temperatures. ACS Appl. Mater. Interfaces 9, 29950–29957 (2017). https://doi.org/10.1021/acsami.7b07735
- W.L. Song, M.S. Cao, L.Z. Fan, M.M. Lu, Y. Li et al., Highly ordered porous carbon/wax composites for effective electromagnetic attenuation and shielding. Carbon 77, 130–142 (2014). https://doi.org/10.1016/j.carbon.2014.05.014
- B. Zhao, M. Hamidinejad, S. Wang, P. Bai, R. Che et al., Advances in electromagnetic shielding properties of composite foams. J. Mater. Chem. A 9, 8896–8949 (2021). https://doi.org/10.1039/d1ta00417d
- A. Ameli, P.U. Jung, C.B. Park, Electrical properties and electromagnetic interference shielding effectiveness of polypropylene/carbon fiber composite foams. Carbon 60, 379–391 (2013). https://doi.org/10.1016/j.carbon.2013.04.050
- A. Ameli, M. Nofar, S. Wang, C.B. Park, Lightweight polypropylene/stainless-steel fiber composite foams with low percolation for efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 6, 11091–11100 (2014). https://doi.org/10.1021/am500445g
- R. Li, L. Ding, Q. Gao, H. Zhang, D. Zeng et al., Tuning of anisotropic electrical conductivity and enhancement of EMI shielding of polymer composite foam via CO2-assisted delamination and orientation of MXene. Chem. Eng. J. 415, 128930 (2021). https://doi.org/10.1016/j.cej.2021.128930
- B. Zhao, J. Deng, C. Zhao, C. Wang, Y.G. Chen et al., Achieving wideband microwave absorption properties in PVDF nanocomposite foams with an ultra-low MWCNT content by introducing a microcellular structure. J. Mater. Chem. C 8, 58–70 (2020). https://doi.org/10.1039/c9tc04575a
- B. Zhao, R. Wang, Y. Li, Y. Ren, X. Li et al., Dependence of electromagnetic interference shielding ability of conductive polymer composite foams with hydrophobic properties on cellular structure. J. Mater. Chem. C 8, 7401–7410 (2020). https://doi.org/10.1039/d0tc00987c
- S. Wang, Y. Huang, E. Chang, C. Zhao, A. Ameli et al., Evaluation and modeling of electrical conductivity in conductive polymer nanocomposite foams with multiwalled carbon nanotube networks. Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2020.128382
- S. Wang, Y. Huang, C. Zhao, E. Chang, A. Ameli et al., Theoretical modeling and experimental verification of percolation threshold with MWCNTs’ rotation and translation around a growing bubble in conductive polymer composite foams. Compos. Sci. Technol. 199, 108345 (2020). https://doi.org/10.1016/j.compscitech.2020.108345
- H. Duan, H. Zhu, J. Gao, D.X. Yan, K. Dai et al., Asymmetric conductive polymer composite foam for absorption dominated ultra-efficient electromagnetic interference shielding with extremely low reflection characteristics. J. Mater. Chem. A 8, 9146–9159 (2020). https://doi.org/10.1039/d0ta01393e
- J. Yang, X. Liao, G. Wang, J. Chen, W. Tang et al., Fabrication of lightweight and flexible silicon rubber foams with ultra-efficient electromagnetic interference shielding and adjustable low reflectivity. J. Mater. Chem. C 8, 147–157 (2019). https://doi.org/10.1039/c9tc05152j
- J. Yang, X. Liao, G. Wang, J. Chen, P. Song et al., Heterogeneous silicon rubber composite foam with gradient porous structure for highly absorbed ultra-efficient electromagnetic interference shielding. Compos. Sci. Technol. 206, 108663 (2021). https://doi.org/10.1016/j.compscitech.2021.108663
- L. Ma, M. Hamidinejad, C. Liang, B. Zhao, S. Habibpour et al., Enhanced electromagnetic wave absorption performance of polymer/SiC-nanowire/MXene (Ti3C2Tx) composites. Carbon 179, 408–416 (2021). https://doi.org/10.1016/j.carbon.2021.04.063
- Q. Qi, L. Ma, B. Zhao, S. Wang, X. Liu et al., An effective design strategy for the sandwich structure of PVDF/GNP-Ni-CNT composites with remarkable electromagnetic interference shielding effectiveness. ACS Appl. Mater. Interfaces 12, 36568–36577 (2020). https://doi.org/10.1021/acsami.0c10600
- X. Li, X. Yin, H. Xu, M. Han, M. Li et al., Ultralight MXene-coated, interconnected SiCnws three-dimensional lamellar foams for efficient microwave absorption in the X-band. ACS Appl. Mater. Interfaces 10, 34524–34533 (2018). https://doi.org/10.1021/acsami.8b13658
- M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu et al., Two-dimensional transition metal carbides. ACS Nano 6, 1322–1331 (2012). https://doi.org/10.1021/nn204153h
- M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
- H.P. Iwata, U. Lindefelt, S. Öberg, P.R. Briddon, Stacking faults in silicon carbide. in Physica B: Condensed Matter (North-Holland, 2003), pp. 165–170. https://doi.org/10.1016/j.physb.2003.09.045
- C. Liang, C. Liu, H. Wang, L. Wu, Z. Jiang et al., SiC-Fe3O4 dielectric-magnetic hybrid nanowires: Controllable fabrication, characterization and electromagnetic wave absorption. J. Mater. Chem. A 2, 16397–16402 (2014). https://doi.org/10.1039/c4ta02907k
- S.N. Leung, A. Wong, L.C. Wang, C.B. Park, Mechanism of extensional stress-induced cell formation in polymeric foaming processes with the presence of nucleating agents. J. Supercrit. Fluids 63, 187–198 (2012). https://doi.org/10.1016/j.supflu.2011.12.018
- P. Martins, A.C. Lopes, S. Lanceros-Mendez, Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci. 39, 683–706 (2014). https://doi.org/10.1016/j.progpolymsci.2013.07.006
- M. Mackey, L. Flandin, A. Hiltner, E. Baer, Confined crystallization of PVDF and a PVDF-TFE copolymer in nanolayered films. J. Polym. Sci. Part B Polym. Phys. 49, 1750–1761 (2011). https://doi.org/10.1002/polb.22375
- C. Wang, S.N. Leung, M. Bussmann, W.T. Zhai, C.B. Park, Numerical investigation of nucleating-agent-enhanced heterogeneous nucleation. Ind. Eng. Chem. Res. 49, 12783–12792 (2010). https://doi.org/10.1021/ie1017207
- M. Hamidinejad, R. Chu, B. Zhao, C.B. Park, T. Filleter, Enhanced thermal conductivity of graphene Nanoplatelet-polymer nanocomposites fabricated via supercritical fluid assisted in-situ exfoliation. ACS Appl. Mater. Interfaces 10, 1225–1236 (2018). https://doi.org/10.1021/acsami.7b15170
- X. Wu, T. Tu, Y. Dai, P. Tang, Y. Zhang et al., Direct ink writing of highly conductive MXene frames for tunable electromagnetic interference shielding and electromagnetic wave-induced Thermochromism. Nano-Micro Lett. 13, 1–15 (2021). https://doi.org/10.1007/S40820-021-00665-9
- H.S. Faruque, C. Lacabanne, H.S. Faruquet, Anelastic and dielectric properties of polyether-polyamide copolymer PEBAX studied by a thermally stimulated depolarisation current method. J. Phys. D-Appl. Phys 20, 939–944 (1987). https://doi.org/10.1088/0022-3727/20/7/017
- M. Zhang, C. Han, W.-Q. Cao, M.-S. Cao, H.-J. Yang et al., A nano-micro engineering nanofiber for electromagnetic absorber, green shielding and sensor. Nano Lett. 13, 27 (2020). https://doi.org/10.1007/S40820-020-00552-9
- M. Arjmand, M. Mahmoodi, S. Park, U. Sundararaj, An innovative method to reduce the energy loss of conductive filler/polymer composites for charge storage applications. Compos. Sci. Technol. 78, 24–29 (2013). https://doi.org/10.1016/j.compscitech.2013.01.019
- C.W. Nan, Y. Shen, J. Ma, Physical properties of composites near percolation. Annu. Rev. Mater. Res. 40, 131–151 (2010). https://doi.org/10.1146/annurev-matsci-070909-104529
- J. Yuan, S. Yao, and P. Poulin, Dielectric constant of polymer composites and the routes to high-k or low-k nanocomposite materials. in Polymer Nanocomposites: Electrical and Thermal Properties (Springer International Publishing, Cham, 2016), pp. 3–28.
- M. Mahmoodi, M. Arjmand, U. Sundararaj, S. Park, The electrical conductivity and electromagnetic interference shielding of injection molded multi-walled carbon nanotube/polystyrene composites. Carbon 50, 1455–1464 (2012). https://doi.org/10.1016/j.carbon.2011.11.004
- A. Ameli, S. Wang, Y. Kazemi, C.B. Park, P. Pötschke, A facile method to increase the charge storage capability of polymer nanocomposites. Nano Energy 15, 54–65 (2015). https://doi.org/10.1016/j.nanoen.2015.04.004
- J. Ding, L. Wang, Y. Zhao, L. Xing, X. Yu et al., Boosted interfacial polarization from multishell TiO2@Fe3O4@PPy heterojunction for enhanced microwave absorption. Small 15, 1902885 (2019). https://doi.org/10.1002/smll.201902885
- W.-L. Song, C. Gong, H. Li, X.-D. Cheng, M. Chen et al., Graphene-based sandwich structures for frequency selectable electromagnetic shielding. ACS Appl. Mater. Interfaces 9, 36119–36129 (2017). https://doi.org/10.1021/ACSAMI.7B08229
- W.C. Yu, G.Q. Zhang, Y.H. Liu, L. Xu, D.X. Yan et al., Selective electromagnetic interference shielding performance and superior mechanical strength of conductive polymer composites with oriented segregated conductive networks. Chem. Eng. J. 373, 556–564 (2019). https://doi.org/10.1016/J.CEJ.2019.05.074
- R. Gregorio, Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions. J. Appl. Polym. Sci. 100, 3272–3279 (2006). https://doi.org/10.1002/app.23137
- X. Cai, T. Lei, D. Sun, L. Lin, A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv. 7, 15382–15389 (2017). https://doi.org/10.1039/c7ra01267e
- J.E. Lee, S.N. Leung, Multi-stage crystallization mechanism of electroactive phase polyvinylidene fluoride induced by thermal and supercritical carbon dioxide processing. CrystEngComm 20, 4080–4089 (2018). https://doi.org/10.1039/c8ce00531a
- L. Yan, C. Hong, B. Sun, G. Zhao, Y. Cheng et al., In situ growth of core-sheath heterostructural SiC nanowire arrays on carbon fibers and enhanced electromagnetic wave absorption performance. ACS Appl. Mater. Interfaces 9, 6320–6331 (2017). https://doi.org/10.1021/acsami.6b15795
- Y. Li, X. Liu, X. Nie, W. Yang, Y. Wang et al., Multifunctional organic–inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 29, 1–9 (2019). https://doi.org/10.1002/adfm.201807624
- J. Ren, A. Zhang, X. Wang, The Recent Progress of MXene-based microwave absorption materials. Carbon (2020). https://doi.org/10.1016/j.carbon.2020.12.060
- Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan et al., CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28, 486–490 (2016). https://doi.org/10.1002/adma.201503149
- B. Zhao, G. Shao, B. Fan, W. Zhao, Y. Xie et al., Synthesis of flower-like CuS hollow microspheres based on nanoflakes self-assembly and their microwave absorption properties. J. Mater. Chem. A 3, 10345–10352 (2015). https://doi.org/10.1039/C5TA00086F
- G. Sang, P. Xu, T. Yan, V. Murugadoss, N. Naik et al., Interface engineered microcellular magnetic conductive polyurethane nanocomposite foams for electromagnetic interference shielding. Nano-Micro Lett. 13, 153 (2021). https://doi.org/10.1007/s40820-021-00677-5
- H. Liu, Y. Xu, J.P. Cao, D. Han, Q. Yang et al., Skin structured silver/three-dimensional graphene/polydimethylsiloxane composites with exceptional electromagnetic interference shielding effectiveness. Compos. Part A Appl. Sci. Manuf. 148, 106476 (2021). https://doi.org/10.1016/j.compositesa.2021.106476
- E. Kim, H. Zhang, J.H. Lee, H. Chen, H. Zhang et al., MXene/polyurethane auxetic composite foam for electromagnetic interference shielding and impact attenuation. Compos. Part A Appl. Sci. Manuf. 147, 106430 (2021). https://doi.org/10.1016/j.compositesa.2021.106430
- H. Zhang, G. Zhang, Q. Gao, M. Tang, Z. Ma et al., Multifunctional microcellular PVDF/Ni-chains composite foams with enhanced electromagnetic interference shielding and superior thermal insulation performance. Chem. Eng. J. 379, 122304 (2020). https://doi.org/10.1016/j.cej.2019.122304
- L. Kong, X. Yin, H. Xu, X. Yuan, T. Wang et al., Powerful absorbing and lightweight electromagnetic shielding CNTs/RGO composite. Carbon 145, 61–66 (2019). https://doi.org/10.1016/J.CARBON.2019.01.009
- T. Wang, W.-W. Kong, W.-C. Yu, J.-F. Gao, K. Dai et al., A healable and mechanically enhanced composite with segregated conductive network structure for high-efficient electromagnetic interference shielding. Nano-Micro Lett. 13, 162 (2021). https://doi.org/10.1007/S40820-021-00693-5
References
Who is Going to Use the 12 GHz Band - 5G, Starlink, Both? | IE. (n.d.). Retrieved March 26, 2021 from https://interestingengineering.com/who-is-going-to-use-the-12-ghz-band-5g-starlink-or-both
Military Radar Market to 2020 - X & KU Band Radars are Expected to Grow Fastest in the Military Radars Market. (n.d.). Retrieved March 26, 2021 from https://www.prnewswire.com/news-releases/military-radar-market-to-2020---x--ku-band-radars-are-expected-to-grow-fastest-in-the-military-radars-market-570914721.html
P.M. Mariappan, D.R. Raghavan, S.H.E. Abdel Aleem, A.F. Zobaa, Effects of electromagnetic interference on the functional usage of medical equipment by 2G/3G/4G cellular phones: a review. J. Adv. Res. 7, 727–738 (2016). https://doi.org/10.1016/j.jare.2016.04.004
G.M. Weng, J. Li, M. Alhabeb, C. Karpovich, H. Wang et al., Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding. Adv. Funct. Mater. 28, 1803360 (2018). https://doi.org/10.1002/adfm.201803360
Z. Chen, C. Xu, C. Ma, W. Ren, H.M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25, 1296–1300 (2013). https://doi.org/10.1002/adma.201204196
J. Xu, L. Xia, J. Luo, S. Lu, X. Huang et al., High-performance electromagnetic wave absorbing CNT/SiCf composites: synthesis, tuning, and mechanism. ACS Appl. Mater. Interfaces 12, 20775–20784 (2020). https://doi.org/10.1021/acsami.9b19281
W.T. Cao, F.F. Chen, Y.J. Zhu, Y.G. Zhang, Y.Y. Jiang et al., Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 12, 4583–4593 (2018). https://doi.org/10.1021/acsnano.8b00997
M.S. Cao, X.X. Wang, M. Zhang, J.C. Shu, W.Q. Cao et al., Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29, 1807398 (2019). https://doi.org/10.1002/adfm.201807398
H. Xu, X. Yin, X. Li, M. Li, S. Liang et al., Lightweight Ti2CTx MXene/poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl. Mater. Interfaces 11, 10198–10207 (2019). https://doi.org/10.1021/acsami.8b21671
B. Du, M. Cai, X. Wang, J. Qian, C. He et al., Enhanced electromagnetic wave absorption property of binary ZnO/NiCo2O4 composites. J. Adv. Ceram. 10, 832–842 (2021). https://doi.org/10.1007/s40145-021-0476-z
W. Zhang, B. Zhao, H. Xiang, F.Z. Dai, S. Wu et al., One-step synthesis and electromagnetic absorption properties of high entropy rare earth hexaborides (HE REB6) and high entropy rare earth hexaborides/borates (HE REB6/HE REBO3) composite powders. J. Adv. Ceram. 10, 62–77 (2021). https://doi.org/10.1007/s40145-020-0417-2
X. Ye, Z. Chen, S. Ai, B. Hou, J. Zhang et al., Porous SiC/melamine-derived carbon foam frameworks with excellent electromagnetic wave absorbing capacity. J. Adv. Ceram. 8, 479–488 (2019). https://doi.org/10.1007/s40145-019-0328-2
H. Pang, L. Xu, D.X. Yan, Z.M. Li, Conductive polymer composites with segregated structures. Prog. Polym. Sci. 39, 1908–1933 (2014). https://doi.org/10.1016/j.progpolymsci.2014.07.007
P. He, M.-S. Cao, W.-Q. Cao, J. Yuan, Developing MXenes from wireless communication to electromagnetic attenuation. Nano-Micro Lett. 13, 131 (2021). https://doi.org/10.1007/S40820-021-00645-Z
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.-K. Kim, J. Kwon, J. Hong, H. Kim, D. Kim, Y. Gogotsi, and C. Min Koo, Anomalous Absorption of Electromagnetic Waves by 2D Transition Metal Carbonitride Ti3CNTx (MXene) (American Association for the Advancement of Science, 2020). https://doi.org/10.1126/science.aba7977
B. Zhao, C. Zhao, M. Hamidinejad, C. Wang, R. Li et al., Incorporating a microcellular structure into PVDF/graphene-nanoplatelet composites to tune their electrical conductivity and electromagnetic interference shielding properties. J. Mater. Chem. C 6, 10292–10300 (2018). https://doi.org/10.1039/C8TC03714K
B. Zhao, S. Wang, C. Zhao, R. Li, S.M. Hamidinejad et al., Synergism between carbon materials and Ni chains in flexible poly(vinylidene fluoride) composite films with high heat dissipation to improve electromagnetic shielding properties. Carbon 127, 469–478 (2018). https://doi.org/10.1016/j.carbon.2017.11.032
M. Hamidinejad, B. Zhao, A. Zandieh, N. Moghimian, T. Filleter et al., Enhanced electrical and electromagnetic interference shielding properties of polymer-graphene nanoplatelet composites fabricated via supercritical-fluid treatment and physical foaming. ACS Appl. Mater. Interfaces 10, 30752–30761 (2018). https://doi.org/10.1021/acsami.8b10745
M. Hamidinejad, A. Zandieh, J.H. Lee, J. Papillon, B. Zhao et al., Insight into the directional thermal transport of hexagonal boron nitride composites. ACS Appl. Mater. Interfaces 11, 41726–41735 (2019). https://doi.org/10.1021/acsami.9b16070
C. Liang, M. Hamidinejad, L. Ma, Z. Wang, C.B. Park, Lightweight and flexible graphene/SiC-nanowires/ poly(vinylidene fluoride) composites for electromagnetic interference shielding and thermal management. Carbon 156, 58–66 (2020). https://doi.org/10.1016/j.carbon.2019.09.044
L. Liang, R. Yang, G. Han, Y. Feng, B. Zhao et al., Enhanced electromagnetic wave-absorbing performance of magnetic nanoparticles-anchored 2D Ti2CTx MXene. ACS Appl. Mater. Interfaces 12, 2644–2654 (2020). https://doi.org/10.1021/acsami.9b18504
C. Liang, Z. Wang, Controllable fabricating dielectric-dielectric SiC@C core-shell nanowires for high-performance electromagnetic wave attenuation. ACS Appl. Mater. Interfaces 9, 40690–40696 (2017). https://doi.org/10.1021/acsami.7b13063
J. Wang, Z. Jia, X. Liu, J. Dou, B. Xu et al., Construction of 1D heterostructure NiCo@C/ZnO nanorod with enhanced microwave absorption. Nano-Micro Lett. 13, 175 (2021). https://doi.org/10.1007/S40820-021-00704-5
F. Pan, Z. Liu, B. Deng, Y. Dong, X. Zhu et al., Lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites with wideband and tunable electromagnetic absorption performance. Nano-Micro Lett. 13, 43 (2021). https://doi.org/10.1007/S40820-020-00568-1
G. He, Y. Duan, H. Pang, Microwave absorption of crystalline Fe/MnO@C nanocapsules embedded in amorphous carbon. Nano-Micro Lett. 12, 57 (2020). https://doi.org/10.1007/s40820-020-0388-4
R. Che, L.M. Peng, X. Duan, Q. Chen, X. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16, 401–405 (2004). https://doi.org/10.1002/adma.200306460
B. Zhao, C. Zhao, R. Li, S.M. Hamidinejad, C.B. Park, Flexible, ultrathin, and high-efficiency electromagnetic shielding properties of poly(vinylidene fluoride)/carbon composite films. ACS Appl. Mater. Interfaces 9, 20873–20884 (2017). https://doi.org/10.1021/acsami.7b04935
L. Liang, G. Han, Y. Li, B. Zhao, B. Zhou et al., Promising Ti3C2Tx MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity. ACS Appl. Mater. Interfaces 11, 25399–25409 (2019). https://doi.org/10.1021/acsami.9b07294
P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 3 (2021). https://doi.org/10.1007/s40820-021-00624-4
Y. Chen, H. Bin Zhang, Y. Yang, M. Wang, A. Cao et al., High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding. Adv. Funct. Mater. 26, 447–455 (2016). https://doi.org/10.1002/adfm.201503782
Z. Wang, R. Wei, J. Gu, H. Liu, C. Liu et al., Ultralight, highly compressible and fire-retardant graphene aerogel with self-adjustable electromagnetic wave absorption. Carbon 139, 1126–1135 (2018). https://doi.org/10.1016/j.carbon.2018.08.014
H. Zhao, Y. Cheng, W. Liu, L. Yang, B. Zhang et al., Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Lett. 11, 24 (2019). https://doi.org/10.1007/s40820-019-0255-3
Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou et al., Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding. Adv. Funct. Mater. 26, 303–310 (2016). https://doi.org/10.1002/adfm.201503579
C. Liang, Z. Wang, L. Wu, X. Zhang, H. Wang et al., Light and strong hierarchical porous SiC foam for efficient electromagnetic interference shielding and thermal insulation at elevated temperatures. ACS Appl. Mater. Interfaces 9, 29950–29957 (2017). https://doi.org/10.1021/acsami.7b07735
W.L. Song, M.S. Cao, L.Z. Fan, M.M. Lu, Y. Li et al., Highly ordered porous carbon/wax composites for effective electromagnetic attenuation and shielding. Carbon 77, 130–142 (2014). https://doi.org/10.1016/j.carbon.2014.05.014
B. Zhao, M. Hamidinejad, S. Wang, P. Bai, R. Che et al., Advances in electromagnetic shielding properties of composite foams. J. Mater. Chem. A 9, 8896–8949 (2021). https://doi.org/10.1039/d1ta00417d
A. Ameli, P.U. Jung, C.B. Park, Electrical properties and electromagnetic interference shielding effectiveness of polypropylene/carbon fiber composite foams. Carbon 60, 379–391 (2013). https://doi.org/10.1016/j.carbon.2013.04.050
A. Ameli, M. Nofar, S. Wang, C.B. Park, Lightweight polypropylene/stainless-steel fiber composite foams with low percolation for efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 6, 11091–11100 (2014). https://doi.org/10.1021/am500445g
R. Li, L. Ding, Q. Gao, H. Zhang, D. Zeng et al., Tuning of anisotropic electrical conductivity and enhancement of EMI shielding of polymer composite foam via CO2-assisted delamination and orientation of MXene. Chem. Eng. J. 415, 128930 (2021). https://doi.org/10.1016/j.cej.2021.128930
B. Zhao, J. Deng, C. Zhao, C. Wang, Y.G. Chen et al., Achieving wideband microwave absorption properties in PVDF nanocomposite foams with an ultra-low MWCNT content by introducing a microcellular structure. J. Mater. Chem. C 8, 58–70 (2020). https://doi.org/10.1039/c9tc04575a
B. Zhao, R. Wang, Y. Li, Y. Ren, X. Li et al., Dependence of electromagnetic interference shielding ability of conductive polymer composite foams with hydrophobic properties on cellular structure. J. Mater. Chem. C 8, 7401–7410 (2020). https://doi.org/10.1039/d0tc00987c
S. Wang, Y. Huang, E. Chang, C. Zhao, A. Ameli et al., Evaluation and modeling of electrical conductivity in conductive polymer nanocomposite foams with multiwalled carbon nanotube networks. Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2020.128382
S. Wang, Y. Huang, C. Zhao, E. Chang, A. Ameli et al., Theoretical modeling and experimental verification of percolation threshold with MWCNTs’ rotation and translation around a growing bubble in conductive polymer composite foams. Compos. Sci. Technol. 199, 108345 (2020). https://doi.org/10.1016/j.compscitech.2020.108345
H. Duan, H. Zhu, J. Gao, D.X. Yan, K. Dai et al., Asymmetric conductive polymer composite foam for absorption dominated ultra-efficient electromagnetic interference shielding with extremely low reflection characteristics. J. Mater. Chem. A 8, 9146–9159 (2020). https://doi.org/10.1039/d0ta01393e
J. Yang, X. Liao, G. Wang, J. Chen, W. Tang et al., Fabrication of lightweight and flexible silicon rubber foams with ultra-efficient electromagnetic interference shielding and adjustable low reflectivity. J. Mater. Chem. C 8, 147–157 (2019). https://doi.org/10.1039/c9tc05152j
J. Yang, X. Liao, G. Wang, J. Chen, P. Song et al., Heterogeneous silicon rubber composite foam with gradient porous structure for highly absorbed ultra-efficient electromagnetic interference shielding. Compos. Sci. Technol. 206, 108663 (2021). https://doi.org/10.1016/j.compscitech.2021.108663
L. Ma, M. Hamidinejad, C. Liang, B. Zhao, S. Habibpour et al., Enhanced electromagnetic wave absorption performance of polymer/SiC-nanowire/MXene (Ti3C2Tx) composites. Carbon 179, 408–416 (2021). https://doi.org/10.1016/j.carbon.2021.04.063
Q. Qi, L. Ma, B. Zhao, S. Wang, X. Liu et al., An effective design strategy for the sandwich structure of PVDF/GNP-Ni-CNT composites with remarkable electromagnetic interference shielding effectiveness. ACS Appl. Mater. Interfaces 12, 36568–36577 (2020). https://doi.org/10.1021/acsami.0c10600
X. Li, X. Yin, H. Xu, M. Han, M. Li et al., Ultralight MXene-coated, interconnected SiCnws three-dimensional lamellar foams for efficient microwave absorption in the X-band. ACS Appl. Mater. Interfaces 10, 34524–34533 (2018). https://doi.org/10.1021/acsami.8b13658
M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu et al., Two-dimensional transition metal carbides. ACS Nano 6, 1322–1331 (2012). https://doi.org/10.1021/nn204153h
M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
H.P. Iwata, U. Lindefelt, S. Öberg, P.R. Briddon, Stacking faults in silicon carbide. in Physica B: Condensed Matter (North-Holland, 2003), pp. 165–170. https://doi.org/10.1016/j.physb.2003.09.045
C. Liang, C. Liu, H. Wang, L. Wu, Z. Jiang et al., SiC-Fe3O4 dielectric-magnetic hybrid nanowires: Controllable fabrication, characterization and electromagnetic wave absorption. J. Mater. Chem. A 2, 16397–16402 (2014). https://doi.org/10.1039/c4ta02907k
S.N. Leung, A. Wong, L.C. Wang, C.B. Park, Mechanism of extensional stress-induced cell formation in polymeric foaming processes with the presence of nucleating agents. J. Supercrit. Fluids 63, 187–198 (2012). https://doi.org/10.1016/j.supflu.2011.12.018
P. Martins, A.C. Lopes, S. Lanceros-Mendez, Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci. 39, 683–706 (2014). https://doi.org/10.1016/j.progpolymsci.2013.07.006
M. Mackey, L. Flandin, A. Hiltner, E. Baer, Confined crystallization of PVDF and a PVDF-TFE copolymer in nanolayered films. J. Polym. Sci. Part B Polym. Phys. 49, 1750–1761 (2011). https://doi.org/10.1002/polb.22375
C. Wang, S.N. Leung, M. Bussmann, W.T. Zhai, C.B. Park, Numerical investigation of nucleating-agent-enhanced heterogeneous nucleation. Ind. Eng. Chem. Res. 49, 12783–12792 (2010). https://doi.org/10.1021/ie1017207
M. Hamidinejad, R. Chu, B. Zhao, C.B. Park, T. Filleter, Enhanced thermal conductivity of graphene Nanoplatelet-polymer nanocomposites fabricated via supercritical fluid assisted in-situ exfoliation. ACS Appl. Mater. Interfaces 10, 1225–1236 (2018). https://doi.org/10.1021/acsami.7b15170
X. Wu, T. Tu, Y. Dai, P. Tang, Y. Zhang et al., Direct ink writing of highly conductive MXene frames for tunable electromagnetic interference shielding and electromagnetic wave-induced Thermochromism. Nano-Micro Lett. 13, 1–15 (2021). https://doi.org/10.1007/S40820-021-00665-9
H.S. Faruque, C. Lacabanne, H.S. Faruquet, Anelastic and dielectric properties of polyether-polyamide copolymer PEBAX studied by a thermally stimulated depolarisation current method. J. Phys. D-Appl. Phys 20, 939–944 (1987). https://doi.org/10.1088/0022-3727/20/7/017
M. Zhang, C. Han, W.-Q. Cao, M.-S. Cao, H.-J. Yang et al., A nano-micro engineering nanofiber for electromagnetic absorber, green shielding and sensor. Nano Lett. 13, 27 (2020). https://doi.org/10.1007/S40820-020-00552-9
M. Arjmand, M. Mahmoodi, S. Park, U. Sundararaj, An innovative method to reduce the energy loss of conductive filler/polymer composites for charge storage applications. Compos. Sci. Technol. 78, 24–29 (2013). https://doi.org/10.1016/j.compscitech.2013.01.019
C.W. Nan, Y. Shen, J. Ma, Physical properties of composites near percolation. Annu. Rev. Mater. Res. 40, 131–151 (2010). https://doi.org/10.1146/annurev-matsci-070909-104529
J. Yuan, S. Yao, and P. Poulin, Dielectric constant of polymer composites and the routes to high-k or low-k nanocomposite materials. in Polymer Nanocomposites: Electrical and Thermal Properties (Springer International Publishing, Cham, 2016), pp. 3–28.
M. Mahmoodi, M. Arjmand, U. Sundararaj, S. Park, The electrical conductivity and electromagnetic interference shielding of injection molded multi-walled carbon nanotube/polystyrene composites. Carbon 50, 1455–1464 (2012). https://doi.org/10.1016/j.carbon.2011.11.004
A. Ameli, S. Wang, Y. Kazemi, C.B. Park, P. Pötschke, A facile method to increase the charge storage capability of polymer nanocomposites. Nano Energy 15, 54–65 (2015). https://doi.org/10.1016/j.nanoen.2015.04.004
J. Ding, L. Wang, Y. Zhao, L. Xing, X. Yu et al., Boosted interfacial polarization from multishell TiO2@Fe3O4@PPy heterojunction for enhanced microwave absorption. Small 15, 1902885 (2019). https://doi.org/10.1002/smll.201902885
W.-L. Song, C. Gong, H. Li, X.-D. Cheng, M. Chen et al., Graphene-based sandwich structures for frequency selectable electromagnetic shielding. ACS Appl. Mater. Interfaces 9, 36119–36129 (2017). https://doi.org/10.1021/ACSAMI.7B08229
W.C. Yu, G.Q. Zhang, Y.H. Liu, L. Xu, D.X. Yan et al., Selective electromagnetic interference shielding performance and superior mechanical strength of conductive polymer composites with oriented segregated conductive networks. Chem. Eng. J. 373, 556–564 (2019). https://doi.org/10.1016/J.CEJ.2019.05.074
R. Gregorio, Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions. J. Appl. Polym. Sci. 100, 3272–3279 (2006). https://doi.org/10.1002/app.23137
X. Cai, T. Lei, D. Sun, L. Lin, A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv. 7, 15382–15389 (2017). https://doi.org/10.1039/c7ra01267e
J.E. Lee, S.N. Leung, Multi-stage crystallization mechanism of electroactive phase polyvinylidene fluoride induced by thermal and supercritical carbon dioxide processing. CrystEngComm 20, 4080–4089 (2018). https://doi.org/10.1039/c8ce00531a
L. Yan, C. Hong, B. Sun, G. Zhao, Y. Cheng et al., In situ growth of core-sheath heterostructural SiC nanowire arrays on carbon fibers and enhanced electromagnetic wave absorption performance. ACS Appl. Mater. Interfaces 9, 6320–6331 (2017). https://doi.org/10.1021/acsami.6b15795
Y. Li, X. Liu, X. Nie, W. Yang, Y. Wang et al., Multifunctional organic–inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 29, 1–9 (2019). https://doi.org/10.1002/adfm.201807624
J. Ren, A. Zhang, X. Wang, The Recent Progress of MXene-based microwave absorption materials. Carbon (2020). https://doi.org/10.1016/j.carbon.2020.12.060
Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan et al., CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28, 486–490 (2016). https://doi.org/10.1002/adma.201503149
B. Zhao, G. Shao, B. Fan, W. Zhao, Y. Xie et al., Synthesis of flower-like CuS hollow microspheres based on nanoflakes self-assembly and their microwave absorption properties. J. Mater. Chem. A 3, 10345–10352 (2015). https://doi.org/10.1039/C5TA00086F
G. Sang, P. Xu, T. Yan, V. Murugadoss, N. Naik et al., Interface engineered microcellular magnetic conductive polyurethane nanocomposite foams for electromagnetic interference shielding. Nano-Micro Lett. 13, 153 (2021). https://doi.org/10.1007/s40820-021-00677-5
H. Liu, Y. Xu, J.P. Cao, D. Han, Q. Yang et al., Skin structured silver/three-dimensional graphene/polydimethylsiloxane composites with exceptional electromagnetic interference shielding effectiveness. Compos. Part A Appl. Sci. Manuf. 148, 106476 (2021). https://doi.org/10.1016/j.compositesa.2021.106476
E. Kim, H. Zhang, J.H. Lee, H. Chen, H. Zhang et al., MXene/polyurethane auxetic composite foam for electromagnetic interference shielding and impact attenuation. Compos. Part A Appl. Sci. Manuf. 147, 106430 (2021). https://doi.org/10.1016/j.compositesa.2021.106430
H. Zhang, G. Zhang, Q. Gao, M. Tang, Z. Ma et al., Multifunctional microcellular PVDF/Ni-chains composite foams with enhanced electromagnetic interference shielding and superior thermal insulation performance. Chem. Eng. J. 379, 122304 (2020). https://doi.org/10.1016/j.cej.2019.122304
L. Kong, X. Yin, H. Xu, X. Yuan, T. Wang et al., Powerful absorbing and lightweight electromagnetic shielding CNTs/RGO composite. Carbon 145, 61–66 (2019). https://doi.org/10.1016/J.CARBON.2019.01.009
T. Wang, W.-W. Kong, W.-C. Yu, J.-F. Gao, K. Dai et al., A healable and mechanically enhanced composite with segregated conductive network structure for high-efficient electromagnetic interference shielding. Nano-Micro Lett. 13, 162 (2021). https://doi.org/10.1007/S40820-021-00693-5