Efficient Electromagnetic Wave Absorption and Thermal Infrared Stealth in PVTMS@MWCNT Nano-Aerogel via Abundant Nano-Sized Cavities and Attenuation Interfaces
Corresponding Author: Chul B. Park
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 20
Abstract
Pre-polymerized vinyl trimethoxy silane (PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization, sol–gel transition and supercritical CO2 drying. The fabricated organic–inorganic hybrid PVTMS@MWCNT aerogel structure shows nano-pore size (30–40 nm), high specific surface area (559 m2 g−1), high void fraction (91.7%) and enhanced mechanical property: (1) the nano-pore size is beneficial for efficiently blocking thermal conduction and thermal convection via Knudsen effect (beneficial for infrared (IR) stealth); (2) the heterogeneous interface was beneficial for IR reflection (beneficial for IR stealth) and MWCNT polarization loss (beneficial for electromagnetic wave (EMW) attenuation); (3) the high void fraction was beneficial for enhancing thermal insulation (beneficial for IR stealth) and EMW impedance match (beneficial for EMW attenuation). Guided by the above theoretical design strategy, PVTMS@MWCNT nano-aerogel shows superior EMW absorption property (cover all Ku-band) and thermal IR stealth property (ΔT reached 60.7 °C). Followed by a facial combination of the above nano-aerogel with graphene film of high electrical conductivity, an extremely high electromagnetic interference shielding material (66.5 dB, 2.06 mm thickness) with superior absorption performance of an average absorption-to-reflection (A/R) coefficient ratio of 25.4 and a low reflection bandwidth of 4.1 GHz (A/R ratio more than 10) was experimentally obtained in this work.
Highlights:
1 PVTMS@MWCNT nano-aerogel with nano-pore size and abundant heterogeneous interface was fabricated via radical polymerization, sol–gel transition and CO2 drying.
2 The nano-aerogel shows superior electromagnetic wave absorption property (RLmin = −36.1 dB and cover all Ku-band) and thermal infrared stealth property (ΔT reached 60.7 °C).
3 Layered nano-aerogel/graphene film with high EMI shielding and absorption properties was obtained;
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Wu, Y. Zhao, M. Zhou, S. Tan, R. Peymanfar et al., Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@RGO lightweight aerogels. Nano-Micro Lett. 14, 171 (2022). https://doi.org/10.1007/s40820-022-00906-5
- Z. Liu, J. Lyu, Y. Ding, Y. Bao, Z. Sheng et al., Nanoscale kevlar liquid crystal aerogel fibers. ACS Nano 16, 15237–15248 (2022). https://doi.org/10.1021/acsnano.2c06591
- W. Gu, S.J.H. Ong, Y. Shen, W. Guo, Y. Fang et al., A lightweight, elastic, and thermally insulating stealth foam with high infrared-radar compatibility. Adv. Sci. 9, 2204165 (2022). https://doi.org/10.1002/advs.202204165
- C. Song, X. Yin, M. Han, X. Li, Z. Hou et al., Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties. Carbon 116, 50–58 (2017). https://doi.org/10.1016/j.carbon.2017.01.077
- X. Liu, X. Nie, R. Yu, H. Feng, Design of dual-frequency electromagnetic wave absorption by interface modulation strategy. Chem. Eng. J. 334, 153–161 (2018). https://doi.org/10.1016/j.cej.2017.10.012
- H. Ma, X. Zhang, L. Yang, L. Ma, C.B. Park et al., Electromagnetic wave absorption in graphene nanoribbon nanocomposite foam by multiscale electron dissipation of atomic defects, interfacial polarization and impedance match. Carbon 205, 159–170 (2023). https://doi.org/10.1016/j.carbon.2023.01.028
- M. Xu, L. Wei, L. Ma, J. Lu, T. Liu et al., Microcellular foamed polyamide 6/carbon nanotube composites with superior electromagnetic wave absorption. J. Mater. Sci. Technol. 117, 215–224 (2022). https://doi.org/10.1016/j.jmst.2022.01.002
- Y. Xu, Z. Lin, Y. Yang, H. Duan, G. Zhao et al., Integration of efficient microwave absorption and shielding in a multistage composite foam with progressive conductivity modular design. Mater. Horiz. 9, 708–719 (2022). https://doi.org/10.1039/D1MH01346G
- Z. Zhou, Q. Zhu, Y. Liu, Y. Zhang, Z. Jia et al., Construction of self-assembly based tunable absorber: lightweight, hydrophobic and self-cleaning properties. Nano-Micro Lett. 15, 137 (2023). https://doi.org/10.1007/s40820-023-01108-3
- Y. Zhang, J. Kong, J. Gu, New generation electromagnetic materials: harvesting instead of dissipation solo. Sci. Bull. 67, 1413–1415 (2022). https://doi.org/10.1016/j.scib.2022.06.017
- J. Hu, Y. Hu, Y. Ye, R. Shen, Unique applications of carbon materials in infrared stealth: a review. Chem. Eng. J. 452, 139147 (2023). https://doi.org/10.1016/j.cej.2022.139147
- K.-H. Wu, W.-C. Huang, J.-C. Wang, W.-C. Hung, Infrared stealth and microwave absorption properties of reduced graphene oxide functionalized with Fe3O4. Mater. Sci. Eng. B 276, 115575 (2022). https://doi.org/10.1016/j.mseb.2021.115575
- J. Li, F. Li, X. Zhao, W. Zhang, S. Li et al., Jelly-inspired construction of the three-dimensional interconnected BN network for lightweight, thermally conductive, and electrically insulating rubber composites. ACS Appl. Electron. Mater. 2, 1661–1669 (2020). https://doi.org/10.1021/acsaelm.0c00227
- G. Zu, T. Shimizu, K. Kanamori, Y. Zhu, A. Maeno et al., Transparent, superflexible doubly cross-linked polyvinylpolymethylsiloxane aerogel superinsulators via ambient pressure drying. ACS Nano 12, 521–532 (2018). https://doi.org/10.1021/acsnano.7b07117
- G. Zu, K. Kanamori, K. Nakanishi, J. Huang, Superhydrophobic ultraflexible triple-network graphene/polyorganosiloxane aerogels for a high-performance multifunctional temperature/strain/pressure sensing array. Chem. Mater. 31, 6276–6285 (2019). https://doi.org/10.1021/acs.chemmater.9b02437
- P. Gong, P. Buahom, M.-P. Tran, M. Saniei, C.B. Park et al., Heat transfer in microcellular polystyrene/multi-walled carbon nanotube nanocomposite foams. Carbon 93, 819–829 (2015). https://doi.org/10.1016/j.carbon.2015.06.003
- H. Ma, P. Gong, S. Zhai, Y. Huang, Y. Niu et al., Multi-dimensional analysis of micro-/nano-polymeric foams by confocal laser scanning microscopy and foam simulations. Chem. Eng. Sci. 207, 892–902 (2019). https://doi.org/10.1016/j.ces.2019.07.007
- P. Buahom, C. Wang, M. Alshrah, G. Wang, P. Gong et al., Wrong expectation of superinsulation behavior from largely-expanded nanocellular foams. Nanoscale 12, 13064–13085 (2020). https://doi.org/10.1039/d0nr01927e
- S. Rezaei, A. Jalali, A.M. Zolali, M. Alshrah, S. Karamikamkar et al., Robust, ultra-insulative and transparent polyethylene-based hybrid silica aerogel with a novel non-particulate structure. J. Colloid Interface Sci. 548, 206–216 (2019). https://doi.org/10.1016/j.jcis.2019.04.028
- M. Fashandi, S. Karamikamkar, S.N. Leung, H.E. Naguib, J. Hong et al., Synthesis, structures and properties of hydrophobic alkyltrimethoxysilane-polyvinyltrimethoxysilane hybrid aerogels with different alkyl chain lengths. J. Colloid Interface Sci. 608, 720–734 (2022). https://doi.org/10.1016/j.jcis.2021.09.128
- H. Peng, X. Ming, K. Pang, Y. Chen, J. Zhou et al., Highly electrically conductive graphene papers via catalytic graphitization. Nano Res. 15, 4902–4908 (2022). https://doi.org/10.1007/s12274-022-4130-z
- L. Peng, Z. Xu, Z. Liu, Y. Guo, P. Li et al., Ultrahigh thermal conductive yet superflexible graphene films. Adv. Mater. 29, 1700589 (2017). https://doi.org/10.1002/adma.201700589
- F. Wang, W. Fang, X. Ming, Y. Liu, Z. Xu et al., A review on graphene oxide: 2d colloidal molecule, fluid physics, and macroscopic materials. Appl. Phys. Rev. 10, 128899 (2023). https://doi.org/10.1063/5.0128899
- P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
- Z. Ma, X. Xiang, L. Shao, Y. Zhang, J. Gu, Multifunctional wearable silver nanowire decorated leather nanocomposites for Joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem. Int. Ed. 61, e202200705 (2022). https://doi.org/10.1002/anie.202200705
- W. Huang, Q. Qiu, X. Yang, S. Zuo, J. Bai et al., Ultrahigh density of atomic CoFe-electron synergy in noncontinuous carbon matrix for highly efficient magnetic wave adsorption. Nano-Micro Lett. 14, 96 (2022). https://doi.org/10.1007/s40820-022-00830-8
- J. Wang, Z. Jia, X. Liu, J. Dou, B. Xu et al., Construction of 1d heterostructure nico@c/ZnO nanorod with enhanced microwave absorption. Nano-Micro Lett. 13, 175 (2021). https://doi.org/10.1007/s40820-021-00704-5
- F. Deng, J. Wei, Y. Xu, Z. Lin, X. Lu et al., Regulating the electrical and mechanical properties of TaS2 films via van der waals and electrostatic interaction for high performance electromagnetic interference shielding. Nano-Micro Lett. 15, 106 (2023). https://doi.org/10.1007/s40820-023-01061-1
- B. Zhao, Z. Bai, H. Lv, Z. Yan, Y. Du et al., Self-healing liquid metal magnetic hydrogels for smart feedback sensors and high-performance electromagnetic shielding. Nano-Micro Lett. 15, 79 (2023). https://doi.org/10.1007/s40820-023-01043-3
- G. Zu, K. Kanamori, T. Shimizu, Y. Zhu, A. Maeno et al., Versatile double-cross-linking approach to transparent, machinable, supercompressible, highly bendable aerogel thermal superinsulators. Chem. Mater. 30, 2759–2770 (2018). https://doi.org/10.1021/acs.chemmater.8b00563
- G. Zu, K. Kanamori, A. Maeno, H. Kaji, K. Nakanishi, Superflexible multifunctional polyvinylpolydimethylsiloxane-based aerogels as efficient absorbents, thermal superinsulators, and strain sensors. Angew. Chem. Int. Ed. 57, 9722–9727 (2018). https://doi.org/10.1002/anie.201804559
- S. Rezaei, A.M. Zolali, A. Jalali, C.B. Park, Novel and simple design of nanostructured, super-insulative and flexible hybrid silica aerogel with a new macromolecular polyether-based precursor. J. Colloid Interface Sci. 561, 890–901 (2020). https://doi.org/10.1016/j.jcis.2019.11.072
- S. Rezaei, A.M. Zolali, A. Jalali, C.B. Park, Strong, highly hydrophobic, transparent, and super-insulative polyorganosiloxane-based aerogel. Chem. Eng. J. 413, 127488 (2021). https://doi.org/10.1016/j.cej.2020.127488
- H. Ma, Z. Xie, Y. Liu, Q. Zhang, P. Gong et al., Improved dielectric and electromagnetic interference shielding performance of materials by hybrid filler network design in three-dimensional nanocomposite films. Mater. Design. 226, 111666 (2023). https://doi.org/10.1016/j.matdes.2023.111666
- B. Lan, P. Li, X. Luo, H. Luo, Q. Yang et al., Hydrogen bonding and topological network effects on optimizing thermoplastic polyurethane/organic montmorillonite nanocomposite foam. Polymer 212, 123159 (2021). https://doi.org/10.1016/j.polymer.2020.123159
- Y. Hong, Y. Li, F. Wang, B. Zuo, X. Wang et al., Enhanced thermal stability of polystyrene by interfacial noncovalent interactions. Macromolecules 51, 5620–5627 (2018). https://doi.org/10.1021/acs.macromol.8b01012
- H. Ma, C. Qin, B. Jin, P. Gong, B. Lan et al., Using a supercritical fluid-assisted thin cell wall stretching–defoaming method to enhance the nanofiller dispersion, emi shielding, and thermal conduction property of CNF/PVDF nanocomposites. Ind. Eng. Chem. Res. 61, 3647–3659 (2022). https://doi.org/10.1021/acs.iecr.1c05052
- B. Jin, B. Zhang, H. Ma, X. Zhang, P. Gong et al., Optimization of electrical, dielectric, and electromagnetic response in nanocomposite foam by balancing carbon nanotube restricted orientation and selective distribution. Ind. Eng. Chem. Res. 61, 17499–17511 (2022). https://doi.org/10.1021/acs.iecr.2c03246
- D. Jiang, V. Murugadoss, Y. Wang, J. Lin, T. Ding et al., Electromagnetic interference shielding polymers and nanocomposites-a review. Polym. Rev. 59, 280–337 (2019). https://doi.org/10.1080/15583724.2018.1546737
- Y. Li, X. Liu, X. Nie, W. Yang, Y. Wang et al., Multifunctional organic–inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 29, 1807624 (2019). https://doi.org/10.1002/adfm.201807624
- M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso et al., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl. Chem. 87, 1051–1069 (2015). https://doi.org/10.1515/pac-2014-1117
- H. Cheng, Y. Pan, X. Wang, C. Liu, C. Shen et al., Ni flower/MXene-melamine foam derived 3d magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth. Nano-Micro Lett. 14, 63 (2022). https://doi.org/10.1007/s40820-022-00812-w
- C. Liu, J. Lyu, N. Shi, Q. Cheng, Z. Liu et al., Kevlar nanofibrous aerogel-based 3-layer tandem cloak enables highly efficient and long-lasting infrared stealth. Chem. Eng. J. 462, 142249 (2023). https://doi.org/10.1016/j.cej.2023.142249
- Y.-C. Zhou, J. Yang, L. Bai, R.-Y. Bao, M.-B. Yang et al., Flexible phase change hydrogels for mid-/low-temperature infrared stealth. Chem. Eng. J. 446, 137463 (2022). https://doi.org/10.1016/j.cej.2022.137463
- J. Lyu, Z. Liu, X. Wu, G. Li, D. Fang et al., Nanofibrous kevlar aerogel films and their phase-change composites for highly efficient infrared stealth. ACS Nano 13, 2236–2245 (2019). https://doi.org/10.1021/acsnano.8b08913
- F. Ye, Q. Song, Z. Zhang, W. Li, S. Zhang et al., Direct growth of edge-rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high-performance microwave absorption. Adv. Funct. Mater. 28, 1707205 (2018). https://doi.org/10.1002/adfm.201707205
- P. Xie, H. Li, B. He, F. Dang, J. Lin et al., Bio-gel derived nickel/carbon nanocomposites with enhanced microwave absorption. J. Mater. Chem. C 6, 8812–8822 (2018). https://doi.org/10.1039/C8TC02127A
- S. Xiao, H. Mei, D. Han, K.G. Dassios, L. Cheng, Ultralight lamellar amorphous carbon foam nanostructured by sic nanowires for tunable electromagnetic wave absorption. Carbon 122, 718–725 (2017). https://doi.org/10.1016/j.carbon.2017.07.023
- M. Han, X. Yin, Z. Hou, C. Song, X. Li et al., Flexible and thermostable graphene/sic nanowire foam composites with tunable electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 9, 11803–11810 (2017). https://doi.org/10.1021/acsami.7b00951
- Z. Mu, G. Wei, H. Zhang, L. Gao, Y. Zhao et al., The dielectric behavior and efficient microwave absorption of doped nanoscale LaMnO3 at elevated temperature. Nano Res. 15, 7731–7741 (2022). https://doi.org/10.1007/s12274-022-4500-6
- L. Wang, X. Li, Q. Li, X. Yu, Y. Zhao et al., Oriented polarization tuning broadband absorption from flexible hierarchical ZnO arrays vertically supported on carbon cloth. Small 15, 1900900 (2019). https://doi.org/10.1002/smll.201900900
- L. Liang, G. Han, Y. Li, B. Zhao, B. Zhou et al., Promising Ti3C2Tx MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity. ACS Appl. Mater. Interfaces 11, 25399–25409 (2019). https://doi.org/10.1021/acsami.9b07294
- F. Pan, Y. Rao, D. Batalu, L. Cai, Y. Dong et al., Macroscopic electromagnetic cooperative network-enhanced MXene/Ni chains aerogel-based microwave absorber with ultra-low matching thickness. Nano-Micro Lett. 14, 140 (2022). https://doi.org/10.1007/s40820-022-00869-7
- X. Huang, J. Wei, Y. Zhang, B. Qian, Q. Jia et al., Ultralight magnetic and dielectric aerogels achieved by metal–organic framework initiated gelation of graphene oxide for enhanced microwave absorption. Nano-Micro Lett. 14, 107 (2022). https://doi.org/10.1007/s40820-022-00851-3
- H. Duan, H. Zhu, J. Gao, D.-X. Yan, K. Dai et al., Asymmetric conductive polymer composite foam for absorption dominated ultra-efficient electromagnetic interference shielding with extremely low reflection characteristics. J. Mater. Chem. A 8, 9146–9159 (2020). https://doi.org/10.1039/D0TA01393E
- L. Ma, M. Hamidinejad, B. Zhao, C. Liang, C.B. Park, Layered foam/film polymer nanocomposites with highly efficient EMI shielding properties and ultralow reflection. Nano-Micro Lett. 14, 19 (2021). https://doi.org/10.1007/s40820-021-00759-4
- Y. Zhang, H. Wu, S. Guo, Sandwich-structured surface coating of a silver-decorated electrospun thermoplastic polyurethane fibrous film for excellent electromagnetic interference shielding with low reflectivity and favorable durability. ACS Appl. Mater. Interfaces 14, 40351–40360 (2022). https://doi.org/10.1021/acsami.2c11971
- L. Han, Q. Song, K. Li, X. Yin, J. Sun et al., Hierarchical, seamless, edge-rich nanocarbon hybrid foams for highly efficient electromagnetic-interference shielding. J. Mater. Sci. Technol. 72, 154–161 (2021). https://doi.org/10.1016/j.jmst.2020.07.020
- Z. Zong, P. Ren, Z. Guo, J. Wang, Z. Chen et al., Three-dimensional macroporous hybrid carbon aerogel with heterogeneous structure derived from MXene/cellulose aerogel for absorption-dominant electromagnetic interference shielding and excellent thermal insulation performance. J. Colloid Interface Sci. 619, 96–105 (2022). https://doi.org/10.1016/j.jcis.2022.03.136
- J. Li, Y. Ding, N. Yu, Q. Gao, X. Fan et al., Lightweight and stiff carbon foams derived from rigid thermosetting polyimide foam with superior electromagnetic interference shielding performance. Carbon 158, 45–54 (2020). https://doi.org/10.1016/j.carbon.2019.11.075
- Q. Qi, L. Ma, B. Zhao, S. Wang, X. Liu et al., An effective design strategy for the sandwich structure of PVDF/GNP-Ni-CNT composites with remarkable electromagnetic interference shielding effectiveness. ACS Appl. Mater. Interfaces 12, 36568–36577 (2020). https://doi.org/10.1021/acsami.0c10600
- G. Wang, G. Zhao, S. Wang, L. Zhang, C.B. Park, Injection-molded microcellular PLA/graphite nanocomposites with dramatically enhanced mechanical and electrical properties for ultra-efficient EMI shielding applications. J. Mater. Chem. C 6, 6847–6859 (2018). https://doi.org/10.1039/C8TC01326H
- J. Yang, X. Liao, J. Li, G. He, Y. Zhang et al., Light-weight and flexible silicone rubber/MWCNTS/Fe3O4 nanocomposite foams for efficient electromagnetic interference shielding and microwave absorption. Compos. Sci. Technol. 181, 107670 (2019). https://doi.org/10.1016/j.compscitech.2019.05.027
References
Y. Wu, Y. Zhao, M. Zhou, S. Tan, R. Peymanfar et al., Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@RGO lightweight aerogels. Nano-Micro Lett. 14, 171 (2022). https://doi.org/10.1007/s40820-022-00906-5
Z. Liu, J. Lyu, Y. Ding, Y. Bao, Z. Sheng et al., Nanoscale kevlar liquid crystal aerogel fibers. ACS Nano 16, 15237–15248 (2022). https://doi.org/10.1021/acsnano.2c06591
W. Gu, S.J.H. Ong, Y. Shen, W. Guo, Y. Fang et al., A lightweight, elastic, and thermally insulating stealth foam with high infrared-radar compatibility. Adv. Sci. 9, 2204165 (2022). https://doi.org/10.1002/advs.202204165
C. Song, X. Yin, M. Han, X. Li, Z. Hou et al., Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties. Carbon 116, 50–58 (2017). https://doi.org/10.1016/j.carbon.2017.01.077
X. Liu, X. Nie, R. Yu, H. Feng, Design of dual-frequency electromagnetic wave absorption by interface modulation strategy. Chem. Eng. J. 334, 153–161 (2018). https://doi.org/10.1016/j.cej.2017.10.012
H. Ma, X. Zhang, L. Yang, L. Ma, C.B. Park et al., Electromagnetic wave absorption in graphene nanoribbon nanocomposite foam by multiscale electron dissipation of atomic defects, interfacial polarization and impedance match. Carbon 205, 159–170 (2023). https://doi.org/10.1016/j.carbon.2023.01.028
M. Xu, L. Wei, L. Ma, J. Lu, T. Liu et al., Microcellular foamed polyamide 6/carbon nanotube composites with superior electromagnetic wave absorption. J. Mater. Sci. Technol. 117, 215–224 (2022). https://doi.org/10.1016/j.jmst.2022.01.002
Y. Xu, Z. Lin, Y. Yang, H. Duan, G. Zhao et al., Integration of efficient microwave absorption and shielding in a multistage composite foam with progressive conductivity modular design. Mater. Horiz. 9, 708–719 (2022). https://doi.org/10.1039/D1MH01346G
Z. Zhou, Q. Zhu, Y. Liu, Y. Zhang, Z. Jia et al., Construction of self-assembly based tunable absorber: lightweight, hydrophobic and self-cleaning properties. Nano-Micro Lett. 15, 137 (2023). https://doi.org/10.1007/s40820-023-01108-3
Y. Zhang, J. Kong, J. Gu, New generation electromagnetic materials: harvesting instead of dissipation solo. Sci. Bull. 67, 1413–1415 (2022). https://doi.org/10.1016/j.scib.2022.06.017
J. Hu, Y. Hu, Y. Ye, R. Shen, Unique applications of carbon materials in infrared stealth: a review. Chem. Eng. J. 452, 139147 (2023). https://doi.org/10.1016/j.cej.2022.139147
K.-H. Wu, W.-C. Huang, J.-C. Wang, W.-C. Hung, Infrared stealth and microwave absorption properties of reduced graphene oxide functionalized with Fe3O4. Mater. Sci. Eng. B 276, 115575 (2022). https://doi.org/10.1016/j.mseb.2021.115575
J. Li, F. Li, X. Zhao, W. Zhang, S. Li et al., Jelly-inspired construction of the three-dimensional interconnected BN network for lightweight, thermally conductive, and electrically insulating rubber composites. ACS Appl. Electron. Mater. 2, 1661–1669 (2020). https://doi.org/10.1021/acsaelm.0c00227
G. Zu, T. Shimizu, K. Kanamori, Y. Zhu, A. Maeno et al., Transparent, superflexible doubly cross-linked polyvinylpolymethylsiloxane aerogel superinsulators via ambient pressure drying. ACS Nano 12, 521–532 (2018). https://doi.org/10.1021/acsnano.7b07117
G. Zu, K. Kanamori, K. Nakanishi, J. Huang, Superhydrophobic ultraflexible triple-network graphene/polyorganosiloxane aerogels for a high-performance multifunctional temperature/strain/pressure sensing array. Chem. Mater. 31, 6276–6285 (2019). https://doi.org/10.1021/acs.chemmater.9b02437
P. Gong, P. Buahom, M.-P. Tran, M. Saniei, C.B. Park et al., Heat transfer in microcellular polystyrene/multi-walled carbon nanotube nanocomposite foams. Carbon 93, 819–829 (2015). https://doi.org/10.1016/j.carbon.2015.06.003
H. Ma, P. Gong, S. Zhai, Y. Huang, Y. Niu et al., Multi-dimensional analysis of micro-/nano-polymeric foams by confocal laser scanning microscopy and foam simulations. Chem. Eng. Sci. 207, 892–902 (2019). https://doi.org/10.1016/j.ces.2019.07.007
P. Buahom, C. Wang, M. Alshrah, G. Wang, P. Gong et al., Wrong expectation of superinsulation behavior from largely-expanded nanocellular foams. Nanoscale 12, 13064–13085 (2020). https://doi.org/10.1039/d0nr01927e
S. Rezaei, A. Jalali, A.M. Zolali, M. Alshrah, S. Karamikamkar et al., Robust, ultra-insulative and transparent polyethylene-based hybrid silica aerogel with a novel non-particulate structure. J. Colloid Interface Sci. 548, 206–216 (2019). https://doi.org/10.1016/j.jcis.2019.04.028
M. Fashandi, S. Karamikamkar, S.N. Leung, H.E. Naguib, J. Hong et al., Synthesis, structures and properties of hydrophobic alkyltrimethoxysilane-polyvinyltrimethoxysilane hybrid aerogels with different alkyl chain lengths. J. Colloid Interface Sci. 608, 720–734 (2022). https://doi.org/10.1016/j.jcis.2021.09.128
H. Peng, X. Ming, K. Pang, Y. Chen, J. Zhou et al., Highly electrically conductive graphene papers via catalytic graphitization. Nano Res. 15, 4902–4908 (2022). https://doi.org/10.1007/s12274-022-4130-z
L. Peng, Z. Xu, Z. Liu, Y. Guo, P. Li et al., Ultrahigh thermal conductive yet superflexible graphene films. Adv. Mater. 29, 1700589 (2017). https://doi.org/10.1002/adma.201700589
F. Wang, W. Fang, X. Ming, Y. Liu, Z. Xu et al., A review on graphene oxide: 2d colloidal molecule, fluid physics, and macroscopic materials. Appl. Phys. Rev. 10, 128899 (2023). https://doi.org/10.1063/5.0128899
P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
Z. Ma, X. Xiang, L. Shao, Y. Zhang, J. Gu, Multifunctional wearable silver nanowire decorated leather nanocomposites for Joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem. Int. Ed. 61, e202200705 (2022). https://doi.org/10.1002/anie.202200705
W. Huang, Q. Qiu, X. Yang, S. Zuo, J. Bai et al., Ultrahigh density of atomic CoFe-electron synergy in noncontinuous carbon matrix for highly efficient magnetic wave adsorption. Nano-Micro Lett. 14, 96 (2022). https://doi.org/10.1007/s40820-022-00830-8
J. Wang, Z. Jia, X. Liu, J. Dou, B. Xu et al., Construction of 1d heterostructure nico@c/ZnO nanorod with enhanced microwave absorption. Nano-Micro Lett. 13, 175 (2021). https://doi.org/10.1007/s40820-021-00704-5
F. Deng, J. Wei, Y. Xu, Z. Lin, X. Lu et al., Regulating the electrical and mechanical properties of TaS2 films via van der waals and electrostatic interaction for high performance electromagnetic interference shielding. Nano-Micro Lett. 15, 106 (2023). https://doi.org/10.1007/s40820-023-01061-1
B. Zhao, Z. Bai, H. Lv, Z. Yan, Y. Du et al., Self-healing liquid metal magnetic hydrogels for smart feedback sensors and high-performance electromagnetic shielding. Nano-Micro Lett. 15, 79 (2023). https://doi.org/10.1007/s40820-023-01043-3
G. Zu, K. Kanamori, T. Shimizu, Y. Zhu, A. Maeno et al., Versatile double-cross-linking approach to transparent, machinable, supercompressible, highly bendable aerogel thermal superinsulators. Chem. Mater. 30, 2759–2770 (2018). https://doi.org/10.1021/acs.chemmater.8b00563
G. Zu, K. Kanamori, A. Maeno, H. Kaji, K. Nakanishi, Superflexible multifunctional polyvinylpolydimethylsiloxane-based aerogels as efficient absorbents, thermal superinsulators, and strain sensors. Angew. Chem. Int. Ed. 57, 9722–9727 (2018). https://doi.org/10.1002/anie.201804559
S. Rezaei, A.M. Zolali, A. Jalali, C.B. Park, Novel and simple design of nanostructured, super-insulative and flexible hybrid silica aerogel with a new macromolecular polyether-based precursor. J. Colloid Interface Sci. 561, 890–901 (2020). https://doi.org/10.1016/j.jcis.2019.11.072
S. Rezaei, A.M. Zolali, A. Jalali, C.B. Park, Strong, highly hydrophobic, transparent, and super-insulative polyorganosiloxane-based aerogel. Chem. Eng. J. 413, 127488 (2021). https://doi.org/10.1016/j.cej.2020.127488
H. Ma, Z. Xie, Y. Liu, Q. Zhang, P. Gong et al., Improved dielectric and electromagnetic interference shielding performance of materials by hybrid filler network design in three-dimensional nanocomposite films. Mater. Design. 226, 111666 (2023). https://doi.org/10.1016/j.matdes.2023.111666
B. Lan, P. Li, X. Luo, H. Luo, Q. Yang et al., Hydrogen bonding and topological network effects on optimizing thermoplastic polyurethane/organic montmorillonite nanocomposite foam. Polymer 212, 123159 (2021). https://doi.org/10.1016/j.polymer.2020.123159
Y. Hong, Y. Li, F. Wang, B. Zuo, X. Wang et al., Enhanced thermal stability of polystyrene by interfacial noncovalent interactions. Macromolecules 51, 5620–5627 (2018). https://doi.org/10.1021/acs.macromol.8b01012
H. Ma, C. Qin, B. Jin, P. Gong, B. Lan et al., Using a supercritical fluid-assisted thin cell wall stretching–defoaming method to enhance the nanofiller dispersion, emi shielding, and thermal conduction property of CNF/PVDF nanocomposites. Ind. Eng. Chem. Res. 61, 3647–3659 (2022). https://doi.org/10.1021/acs.iecr.1c05052
B. Jin, B. Zhang, H. Ma, X. Zhang, P. Gong et al., Optimization of electrical, dielectric, and electromagnetic response in nanocomposite foam by balancing carbon nanotube restricted orientation and selective distribution. Ind. Eng. Chem. Res. 61, 17499–17511 (2022). https://doi.org/10.1021/acs.iecr.2c03246
D. Jiang, V. Murugadoss, Y. Wang, J. Lin, T. Ding et al., Electromagnetic interference shielding polymers and nanocomposites-a review. Polym. Rev. 59, 280–337 (2019). https://doi.org/10.1080/15583724.2018.1546737
Y. Li, X. Liu, X. Nie, W. Yang, Y. Wang et al., Multifunctional organic–inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 29, 1807624 (2019). https://doi.org/10.1002/adfm.201807624
M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso et al., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl. Chem. 87, 1051–1069 (2015). https://doi.org/10.1515/pac-2014-1117
H. Cheng, Y. Pan, X. Wang, C. Liu, C. Shen et al., Ni flower/MXene-melamine foam derived 3d magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth. Nano-Micro Lett. 14, 63 (2022). https://doi.org/10.1007/s40820-022-00812-w
C. Liu, J. Lyu, N. Shi, Q. Cheng, Z. Liu et al., Kevlar nanofibrous aerogel-based 3-layer tandem cloak enables highly efficient and long-lasting infrared stealth. Chem. Eng. J. 462, 142249 (2023). https://doi.org/10.1016/j.cej.2023.142249
Y.-C. Zhou, J. Yang, L. Bai, R.-Y. Bao, M.-B. Yang et al., Flexible phase change hydrogels for mid-/low-temperature infrared stealth. Chem. Eng. J. 446, 137463 (2022). https://doi.org/10.1016/j.cej.2022.137463
J. Lyu, Z. Liu, X. Wu, G. Li, D. Fang et al., Nanofibrous kevlar aerogel films and their phase-change composites for highly efficient infrared stealth. ACS Nano 13, 2236–2245 (2019). https://doi.org/10.1021/acsnano.8b08913
F. Ye, Q. Song, Z. Zhang, W. Li, S. Zhang et al., Direct growth of edge-rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high-performance microwave absorption. Adv. Funct. Mater. 28, 1707205 (2018). https://doi.org/10.1002/adfm.201707205
P. Xie, H. Li, B. He, F. Dang, J. Lin et al., Bio-gel derived nickel/carbon nanocomposites with enhanced microwave absorption. J. Mater. Chem. C 6, 8812–8822 (2018). https://doi.org/10.1039/C8TC02127A
S. Xiao, H. Mei, D. Han, K.G. Dassios, L. Cheng, Ultralight lamellar amorphous carbon foam nanostructured by sic nanowires for tunable electromagnetic wave absorption. Carbon 122, 718–725 (2017). https://doi.org/10.1016/j.carbon.2017.07.023
M. Han, X. Yin, Z. Hou, C. Song, X. Li et al., Flexible and thermostable graphene/sic nanowire foam composites with tunable electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 9, 11803–11810 (2017). https://doi.org/10.1021/acsami.7b00951
Z. Mu, G. Wei, H. Zhang, L. Gao, Y. Zhao et al., The dielectric behavior and efficient microwave absorption of doped nanoscale LaMnO3 at elevated temperature. Nano Res. 15, 7731–7741 (2022). https://doi.org/10.1007/s12274-022-4500-6
L. Wang, X. Li, Q. Li, X. Yu, Y. Zhao et al., Oriented polarization tuning broadband absorption from flexible hierarchical ZnO arrays vertically supported on carbon cloth. Small 15, 1900900 (2019). https://doi.org/10.1002/smll.201900900
L. Liang, G. Han, Y. Li, B. Zhao, B. Zhou et al., Promising Ti3C2Tx MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity. ACS Appl. Mater. Interfaces 11, 25399–25409 (2019). https://doi.org/10.1021/acsami.9b07294
F. Pan, Y. Rao, D. Batalu, L. Cai, Y. Dong et al., Macroscopic electromagnetic cooperative network-enhanced MXene/Ni chains aerogel-based microwave absorber with ultra-low matching thickness. Nano-Micro Lett. 14, 140 (2022). https://doi.org/10.1007/s40820-022-00869-7
X. Huang, J. Wei, Y. Zhang, B. Qian, Q. Jia et al., Ultralight magnetic and dielectric aerogels achieved by metal–organic framework initiated gelation of graphene oxide for enhanced microwave absorption. Nano-Micro Lett. 14, 107 (2022). https://doi.org/10.1007/s40820-022-00851-3
H. Duan, H. Zhu, J. Gao, D.-X. Yan, K. Dai et al., Asymmetric conductive polymer composite foam for absorption dominated ultra-efficient electromagnetic interference shielding with extremely low reflection characteristics. J. Mater. Chem. A 8, 9146–9159 (2020). https://doi.org/10.1039/D0TA01393E
L. Ma, M. Hamidinejad, B. Zhao, C. Liang, C.B. Park, Layered foam/film polymer nanocomposites with highly efficient EMI shielding properties and ultralow reflection. Nano-Micro Lett. 14, 19 (2021). https://doi.org/10.1007/s40820-021-00759-4
Y. Zhang, H. Wu, S. Guo, Sandwich-structured surface coating of a silver-decorated electrospun thermoplastic polyurethane fibrous film for excellent electromagnetic interference shielding with low reflectivity and favorable durability. ACS Appl. Mater. Interfaces 14, 40351–40360 (2022). https://doi.org/10.1021/acsami.2c11971
L. Han, Q. Song, K. Li, X. Yin, J. Sun et al., Hierarchical, seamless, edge-rich nanocarbon hybrid foams for highly efficient electromagnetic-interference shielding. J. Mater. Sci. Technol. 72, 154–161 (2021). https://doi.org/10.1016/j.jmst.2020.07.020
Z. Zong, P. Ren, Z. Guo, J. Wang, Z. Chen et al., Three-dimensional macroporous hybrid carbon aerogel with heterogeneous structure derived from MXene/cellulose aerogel for absorption-dominant electromagnetic interference shielding and excellent thermal insulation performance. J. Colloid Interface Sci. 619, 96–105 (2022). https://doi.org/10.1016/j.jcis.2022.03.136
J. Li, Y. Ding, N. Yu, Q. Gao, X. Fan et al., Lightweight and stiff carbon foams derived from rigid thermosetting polyimide foam with superior electromagnetic interference shielding performance. Carbon 158, 45–54 (2020). https://doi.org/10.1016/j.carbon.2019.11.075
Q. Qi, L. Ma, B. Zhao, S. Wang, X. Liu et al., An effective design strategy for the sandwich structure of PVDF/GNP-Ni-CNT composites with remarkable electromagnetic interference shielding effectiveness. ACS Appl. Mater. Interfaces 12, 36568–36577 (2020). https://doi.org/10.1021/acsami.0c10600
G. Wang, G. Zhao, S. Wang, L. Zhang, C.B. Park, Injection-molded microcellular PLA/graphite nanocomposites with dramatically enhanced mechanical and electrical properties for ultra-efficient EMI shielding applications. J. Mater. Chem. C 6, 6847–6859 (2018). https://doi.org/10.1039/C8TC01326H
J. Yang, X. Liao, J. Li, G. He, Y. Zhang et al., Light-weight and flexible silicone rubber/MWCNTS/Fe3O4 nanocomposite foams for efficient electromagnetic interference shielding and microwave absorption. Compos. Sci. Technol. 181, 107670 (2019). https://doi.org/10.1016/j.compscitech.2019.05.027