Catalysis-Induced Highly-Stable Interface on Porous Silicon for High-Rate Lithium-Ion Batteries
Corresponding Author: Yingying Lv
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 200
Abstract
Silicon stands as a key anode material in lithium-ion battery ascribing to its high energy density. Nevertheless, the poor rate performance and limited cycling life remain unresolved through conventional approaches that involve carbon composites or nanostructures, primarily due to the un-controllable effects arising from the substantial formation of a solid electrolyte interphase (SEI) during the cycling. Here, an ultra-thin and homogeneous Ti doping alumina oxide catalytic interface is meticulously applied on the porous Si through a synergistic etching and hydrolysis process. This defect-rich oxide interface promotes a selective adsorption of fluoroethylene carbonate, leading to a catalytic reaction that can be aptly described as “molecular concentration-in situ conversion”. The resultant inorganic-rich SEI layer is electrochemical stable and favors ion-transport, particularly at high-rate cycling and high temperature. The robustly shielded porous Si, with a large surface area, achieves a high initial Coulombic efficiency of 84.7% and delivers exceptional high-rate performance at 25 A g−1 (692 mAh g−1) and a high Coulombic efficiency of 99.7% over 1000 cycles. The robust SEI constructed through a precious catalytic layer promises significant advantages for the fast development of silicon-based anode in fast-charging batteries.
Highlights:
1 In situ etching and co-growth of ultra thin defect-rich oxide layers on porous silicon.
2 Through the construction of nano-sized catalytic interface, the electrolyte addition FEC would decompose to a LiF-rich solid electrolyte interphase (SEI).
3 The robust SEI on porous structured silicon performs high-rate stability at varied temperatures.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. He, L. Jiang, T. Chen, Y. Xu, H. Jia et al., Progressive growth of the solid-electrolyte interphase towards the Si anode interior causes capacity fading. Nat. Nanotechnol. 16, 1113–1120 (2021). https://doi.org/10.1038/s41565-021-00947-8
- N. Kim, Y. Kim, J. Sung, J. Cho, Issues impeding the commercialization of laboratory innovations for energy-dense Si-containing lithium-ion batteries. Nat. Energy 8, 921–933 (2023). https://doi.org/10.1038/s41560-023-01333-5
- S. Malmgren, K. Ciosek, M. Hahlin, T. Gustafsson, M. Gorgoi et al., Comparing anode and cathode electrode/electrolyte interface composition and morphology using soft and hard X-ray photoelectron spectroscopy. Electrochim. Acta 97, 23–32 (2013). https://doi.org/10.1016/j.electacta.2013.03.010
- B. Jagger, M. Pasta, Solid electrolyte interphases in lithium metal batteries. Joule 7, 2228–2244 (2023). https://doi.org/10.1016/j.joule.2023.08.007
- R. Yu, Y. Pan, Y. Jiang, L. Zhou, D. Zhao et al., Regulating lithium transfer pathway to avoid capacity fading of nano Si through sub-nano scale interfused SiOx/C coating. Adv. Mater. 35, 2306504 (2023). https://doi.org/10.1002/adma.202306504
- X.-B. Cheng, S.-J. Yang, Z. Liu, J.-X. Guo, F.-N. Jiang et al., Electrochemically and thermally stable inorganics-rich solid electrolyte interphase for robust lithium metal batteries. Adv. Mater. 36, e2307370 (2024). https://doi.org/10.1002/adma.202307370
- S.-J. Yang, N. Yao, F.-N. Jiang, J. Xie, S.-Y. Sun et al., Thermally stable polymer-rich solid electrolyte interphase for safe lithium metal pouch cells. Angew. Chem. Int. Ed. 61, e202214545 (2022). https://doi.org/10.1002/anie.202214545
- Y. Li, M. Liu, X. Feng, Y. Li, F. Wu et al., How can the electrode influence the formation of the solid electrolyte interface? ACS Energy Lett. 6, 3307–3320 (2021). https://doi.org/10.1021/acsenergylett.1c01359
- H. Wei, G. Qu, X. Zhang, B. Ren, S. Li et al., Boosting aqueous non-flow zinc–bromine batteries with a two-dimensional metal–organic framework host: an adsorption-catalysis approach. Energy Environ. Sci. 16, 4073–4083 (2023). https://doi.org/10.1039/D3EE01639K
- H. Fan, X.-W. Gao, H. Xu, Y. Ding, S.-X. Dou et al., Catalytic effect in lithium metal batteries: From heterogeneous catalyst to homogenous catalyst. J. Energy Chem. 90, 305–326 (2024). https://doi.org/10.1016/j.jechem.2023.11.025
- P. Liang, S. Di, Y. Zhu, Z. Li, S. Wang et al., Realization of long-life proton battery by layer intercalatable electrolyte. Angew. Chem. Int. Ed. 63, e202409871 (2024). https://doi.org/10.1002/anie.202409871
- C.M. Efaw, Q. Wu, N. Gao, Y. Zhang, H. Zhu et al., Localized high-concentration electrolytes get more localized through micelle-like structures. Nat. Mater. 22, 1531–1539 (2023). https://doi.org/10.1038/s41563-023-01700-3
- Y.S. Meng, V. Srinivasan, K. Xu, Designing better electrolytes. Science 378, eabq3750 (2022). https://doi.org/10.1126/science.abq3750
- T. Jaumann, J. Balach, U. Langklotz, V. Sauchuk, M. Fritsch et al., Lifetime vs. rate capability: Understanding the role of FEC and VC in high-energy Li-ion batteries with nano-silicon anodes. Energy Storage Mater. 6, 26–35 (2017). https://doi.org/10.1016/j.ensm.2016.08.002
- Y. Jin, N.H. Kneusels, L.E. Marbella, E. Castillo-Martínez, P.C.M.M. Magusin et al., Understanding fluoroethylene carbonate and vinylene carbonate based electrolytes for Si anodes in lithium ion batteries with NMR spectroscopy. J. Am. Chem. Soc. 140, 9854–9867 (2018). https://doi.org/10.1021/jacs.8b03408
- J. Chen, X. Fan, Q. Li, H. Yang, M.R. Khoshi et al., Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 5, 386–397 (2020). https://doi.org/10.1038/s41560-020-0601-1
- M. Tian, Z. Jin, Z. Song, R. Qiao, Y. Yan et al., Domino reactions enabling sulfur-mediated gradient interphases for high-energy lithium batteries. J. Am. Chem. Soc. 145, 21600–21611 (2023). https://doi.org/10.1021/jacs.3c07908
- S.J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure et al., The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 105, 52–76 (2016). https://doi.org/10.1016/j.carbon.2016.04.008
- B. Han, Y. Zou, G. Xu, S. Hu, Y. Kang et al., Additive stabilization of SEI on graphite observed using cryo-electron microscopy. Energy Environ. Sci. 14, 4882–4889 (2021). https://doi.org/10.1039/d1ee01678d
- H. Wan, J. Xu, C. Wang, Designing electrolytes and interphases for high-energy lithium batteries. Nat. Rev. Chem. 8, 30–44 (2024). https://doi.org/10.1038/s41570-023-00557-z
- J. Wang, Z. Yang, B. Mao, Y. Wang, Y. Jiang et al., Transgenic engineering on silicon surfaces enables robust interface chemistry. ACS Energy Lett. 7, 2781–2791 (2022). https://doi.org/10.1021/acsenergylett.2c01202
- S. Tan, Z. Shadike, J. Li, X. Wang, Y. Yang et al., Additive engineering for robust interphases to stabilize high-Ni layered structures at ultra-high voltage of 4.8 V. Nat. Energy 7, 484–494 (2022). https://doi.org/10.1038/s41560-022-01020-x
- M. Liu, F. Wu, Y. Gong, Y. Li, Y. Li et al., Interfacial-catalysis-enabled layered and inorganic-rich SEI on hard carbon anodes in ester electrolytes for sodium-ion batteries. Adv. Mater. 35, e2300002 (2023). https://doi.org/10.1002/adma.202300002
- Z. Lu, J. Wang, W. Feng, X. Yin, X. Feng et al., Zinc single-atom-regulated hard carbons for high-rate and low-temperature sodium-ion batteries. Adv. Mater. 35, 2211461 (2023). https://doi.org/10.1002/adma.202211461
- J. Ge, C. Ma, Y. Wan, G. Tang, H. Dai et al., Electrocatalysis of Fe-N-C bonds driving reliable interphase and fast kinetics for phosphorus anode in sodium-ion batteries. Adv. Funct. Mater. 33, 2305803 (2023). https://doi.org/10.1002/adfm.202305803
- C. Yan, H.-R. Li, X. Chen, X.-Q. Zhang, X.-B. Cheng et al., Regulating the inner Helmholtz plane for stable solid electrolyte interphase on lithium metal anodes. J. Am. Chem. Soc. 141, 9422–9429 (2019). https://doi.org/10.1021/jacs.9b05029
- S. Mao, J. Mao, Z. Shen, Q. Wu, S. Zhang et al., Specific adsorption-oxidation strategy in cathode inner Helmholtz plane enabling 4.6 V practical lithium-ion full cells. Nano Lett. 23, 7014–7022 (2023). https://doi.org/10.1021/acs.nanolett.3c01700
- Y. Wang, H. Li, S. Di, B. Zhai, P. Niu et al., Constructing long-cycling crystalline C3N4-based carbonaceous anodes for sodium-ion battery via N configuration control. Carbon Energy 6, e388 (2024). https://doi.org/10.1002/cey2.388
- Y.-F. Tian, S.-J. Tan, C. Yang, Y.-M. Zhao, D.-X. Xu et al., Tailoring chemical composition of solid electrolyte interphase by selective dissolution for long-life micron-sized silicon anode. Nat. Commun. 14, 7247 (2023). https://doi.org/10.1038/s41467-023-43093-6
- X. Liu, J. Liu, L. Li, R. Guo, X. Zhang et al., Hydrodesulfurization of dibenzothiophene on TiO2–x-modified Fe-based catalysts: electron transfer behavior between TiO2–x and Fe species. ACS Catal. 10, 9019–9033 (2020). https://doi.org/10.1021/acscatal.0c01068
- X. Hu, J. Song, S. Zheng, Z. Sun, C. Li, Insight into the defective sites of TiO2/sepiolite composite on formaldehyde removal and H2 evolution. Mater. Today Energy 24, 100932 (2022). https://doi.org/10.1016/j.mtener.2021.100932
- W. Wang, C.-H. Lu, Y.-R. Ni, J.-B. Song, M.-X. Su et al., Enhanced visible-light photoactivity of {001}facets dominated TiO2 nanosheets with even distributed bulk oxygen vacancy and Ti3+. Catal. Commun. 22, 19–23 (2012). https://doi.org/10.1016/j.catcom.2012.02.011
- H. Zhang, L. Wu, R. Feng, S. Wang, C.-S. Hsu et al., Oxygen vacancies unfold the catalytic potential of NiFe-layered double hydroxides by promoting their electronic transport for oxygen evolution reaction. ACS Catal. 13, 6000–6012 (2023). https://doi.org/10.1021/acscatal.2c05783
- Y. Tang, Y. Zhang, O.I. Malyi, N. Bucher, H. Xia et al., Identifying the origin and contribution of surface storage in TiO2(B) nanotube electrode by in situ dynamic valence state monitoring. Adv. Mater. 30, 1802200 (2018). https://doi.org/10.1002/adma.201802200
- Y. Jiang, D. Baimanov, S. Jin, J. Cheuk-Fung Law, P. Zhao et al., In situ turning defects of exfoliated Ti3C2 MXene into Fenton-like catalytic active sites. Proc. Natl. Acad. Sci. U.S.A. 120, e2210211120 (2023). https://doi.org/10.1073/pnas.2210211120
- W. Yoon, S. Lee, Y. Noh, S. Park, Y. Kim et al., Highly selective catalytic dechlorination of dichloromethane to chloromethane over Al−Ti mixed oxide catalysts. ChemCatChem 12, 5098–5108 (2020). https://doi.org/10.1002/cctc.202000879
- J. Cheng, J. Xie, Y. Xi, X. Wu, R. Zhang et al., Selective upcycling of polyethylene terephthalate towards high-valued oxygenated chemical methyl p-methyl benzoate using a Cu/ZrO2 catalyst. Angew. Chem. Int. Ed. 63, e202319896 (2024). https://doi.org/10.1002/anie.202319896
- P. Sudarsanam, H. Li, T.V. Sagar, TiO2-based water-tolerant acid catalysis for biomass-based fuels and chemicals. ACS Catal. 10, 9555–9584 (2020). https://doi.org/10.1021/acscatal.0c01680
- K.S. Han, M.-S. Lee, N. Kim, D. Choi, S. Chae et al., Lithium-ion hopping weakens thermal stability of LiPF6 carbonate electrolytes. Cell Rep. Phys. Sci. 5, 101768 (2024). https://doi.org/10.1016/j.xcrp.2023.101768
- L. Lv, Y. Wang, W. Huang, Y. Wang, X. Li et al., Mechanism study on the cycling stability of silicon-based lithium ion batteries as a function of temperature. Electrochim. Acta 437, 141518 (2023). https://doi.org/10.1016/j.electacta.2022.141518
- D. Wang, Y. Ma, W. Xu, S. Zhang, B. Wang et al., Controlled isotropic canalization of microsized silicon enabling stable high-rate and high-loading lithium storage. Adv. Mater. 35, e2212157 (2023). https://doi.org/10.1002/adma.202212157
- X. Zhang, D. Wang, X. Qiu, Y. Ma, D. Kong et al., Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation. Nat. Commun. 11, 3826 (2020). https://doi.org/10.1038/s41467-020-17686-4
- W. An, B. Gao, S. Mei, B. Xiang, J. Fu et al., Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes. Nat. Commun. 10, 1447 (2019). https://doi.org/10.1038/s41467-019-09510-5
- A.-M. Li, Z. Wang, T.P. Pollard, W. Zhang, S. Tan et al., High voltage electrolytes for lithium-ion batteries with micro-sized silicon anodes. Nat. Commun. 15, 1206 (2024). https://doi.org/10.1038/s41467-024-45374-0
- Q. Wang, M. Zhu, G. Chen, N. Dudko, Y. Li et al., High-performance microsized Si anodes for lithium-ion batteries: insights into the polymer configuration conversion mechanism. Adv. Mater. 34, e2109658 (2022). https://doi.org/10.1002/adma.202109658
- X. Chen, L. Li, M. Liu, T. Huang, A. Yu, Detection of lithium plating in lithium-ion batteries by distribution of relaxation times. J. Power Sources 496, 229867 (2021). https://doi.org/10.1016/j.jpowsour.2021.229867
- K. Pan, F. Zou, M. Canova, Y. Zhu, J.-H. Kim, Comprehensive electrochemical impedance spectroscopy study of Si-based anodes using distribution of relaxation times analysis. J. Power Sources 479, 229083 (2020). https://doi.org/10.1016/j.jpowsour.2020.229083
- Y. Qian, Y. Liang, W. Zhang, B. Xi, N. Lin, Thermal polymerization of ion-modified carbon dots into multi-functional LiF-carbon interface for stabilizing SiO anode. Energy Storage Mater. 63, 102996 (2023). https://doi.org/10.1016/j.ensm.2023.102996
- P. Mu, S. Zhang, H. Zhang, J. Li, Z. Liu et al., A spidroin-inspired hierarchical-structure binder achieves highly integrated silicon-based electrodes. Adv. Mater. 35, 2303312 (2023). https://doi.org/10.1002/adma.202303312
- L. Wang, A. Menakath, F. Han, Y. Wang, P.Y. Zavalij et al., Identifying the components of the solid–electrolyte interphase in Li-ion batteries. Nat. Chem. 11, 789–796 (2019). https://doi.org/10.1038/s41557-019-0304-z
- C.-Y. Li, Y. Yu, C. Wang, Y. Zhang, S.-Y. Zheng et al., Surface changes of LiNixMnyCo1–x–yO2 in Li-ion batteries using in situ surface-enhanced Raman spectroscopy. J. Phys. Chem. C 124, 4024–4031 (2020). https://doi.org/10.1021/acs.jpcc.9b11677
- A. Krause, O. Tkacheva, A. Omar, U. Langklotz, L. Giebeler et al., In situ Raman spectroscopy on silicon nanowire anodes integrated in lithium ion batteries. J. Electrochem. Soc. 166, A5378–A5385 (2019). https://doi.org/10.1149/2.0541903jes
- S. Mei, B. Xiang, S. Guo, J. Deng, J. Fu et al., Design and electrochemical mechanism of the MgF2 coating as a highly stable and conductive interlayer on the Si anode for high-performance Li-ion batteries. Adv. Funct. Mater. 34, 2301217 (2024). https://doi.org/10.1002/adfm.202301217
- Y. Li, Z. Cao, Y. Wang, L. Lv, J. Sun et al., New insight into the role of fluoro-ethylene carbonate in suppressing Li-trapping for Si anodes in lithium-ion batteries. ACS Energy Lett. 8, 4193–4203 (2023). https://doi.org/10.1021/acsenergylett.3c01328
- B. Han, Z. Zhang, Y. Zou, K. Xu, G. Xu et al., Poor stability of Li2CO3 in the solid electrolyte interphase of a lithium-metal anode revealed by cryo-electron microscopy. Adv. Mater. 33, 2100404 (2021). https://doi.org/10.1002/adma.202100404
- W. Huang, Y. Wang, L. Lv, Y. Wang, X. Li et al., In situ construction of a multifunctional interface regulator with amino-modified conjugated diene toward high-rate and long-cycle silicon anodes. ACS Appl. Mater. Interfaces 14, 13317–13325 (2022). https://doi.org/10.1021/acsami.1c24578
- J. Huang, X. Guo, X. Du, X. Lin, J.-Q. Huang et al., Nanostructures of solid electrolyte interphases and their consequences for microsized Sn anodes in sodium ion batteries. Energy Environ. Sci. 12, 1550–1557 (2019). https://doi.org/10.1039/C8EE03632B
- H. Liu, X. Cai, X. Zhi, S. Di, B. Zhai et al., An amorphous anode for proton battery. Nano-Micro Lett. 15, 24 (2022). https://doi.org/10.1007/s40820-022-00987-2
References
Y. He, L. Jiang, T. Chen, Y. Xu, H. Jia et al., Progressive growth of the solid-electrolyte interphase towards the Si anode interior causes capacity fading. Nat. Nanotechnol. 16, 1113–1120 (2021). https://doi.org/10.1038/s41565-021-00947-8
N. Kim, Y. Kim, J. Sung, J. Cho, Issues impeding the commercialization of laboratory innovations for energy-dense Si-containing lithium-ion batteries. Nat. Energy 8, 921–933 (2023). https://doi.org/10.1038/s41560-023-01333-5
S. Malmgren, K. Ciosek, M. Hahlin, T. Gustafsson, M. Gorgoi et al., Comparing anode and cathode electrode/electrolyte interface composition and morphology using soft and hard X-ray photoelectron spectroscopy. Electrochim. Acta 97, 23–32 (2013). https://doi.org/10.1016/j.electacta.2013.03.010
B. Jagger, M. Pasta, Solid electrolyte interphases in lithium metal batteries. Joule 7, 2228–2244 (2023). https://doi.org/10.1016/j.joule.2023.08.007
R. Yu, Y. Pan, Y. Jiang, L. Zhou, D. Zhao et al., Regulating lithium transfer pathway to avoid capacity fading of nano Si through sub-nano scale interfused SiOx/C coating. Adv. Mater. 35, 2306504 (2023). https://doi.org/10.1002/adma.202306504
X.-B. Cheng, S.-J. Yang, Z. Liu, J.-X. Guo, F.-N. Jiang et al., Electrochemically and thermally stable inorganics-rich solid electrolyte interphase for robust lithium metal batteries. Adv. Mater. 36, e2307370 (2024). https://doi.org/10.1002/adma.202307370
S.-J. Yang, N. Yao, F.-N. Jiang, J. Xie, S.-Y. Sun et al., Thermally stable polymer-rich solid electrolyte interphase for safe lithium metal pouch cells. Angew. Chem. Int. Ed. 61, e202214545 (2022). https://doi.org/10.1002/anie.202214545
Y. Li, M. Liu, X. Feng, Y. Li, F. Wu et al., How can the electrode influence the formation of the solid electrolyte interface? ACS Energy Lett. 6, 3307–3320 (2021). https://doi.org/10.1021/acsenergylett.1c01359
H. Wei, G. Qu, X. Zhang, B. Ren, S. Li et al., Boosting aqueous non-flow zinc–bromine batteries with a two-dimensional metal–organic framework host: an adsorption-catalysis approach. Energy Environ. Sci. 16, 4073–4083 (2023). https://doi.org/10.1039/D3EE01639K
H. Fan, X.-W. Gao, H. Xu, Y. Ding, S.-X. Dou et al., Catalytic effect in lithium metal batteries: From heterogeneous catalyst to homogenous catalyst. J. Energy Chem. 90, 305–326 (2024). https://doi.org/10.1016/j.jechem.2023.11.025
P. Liang, S. Di, Y. Zhu, Z. Li, S. Wang et al., Realization of long-life proton battery by layer intercalatable electrolyte. Angew. Chem. Int. Ed. 63, e202409871 (2024). https://doi.org/10.1002/anie.202409871
C.M. Efaw, Q. Wu, N. Gao, Y. Zhang, H. Zhu et al., Localized high-concentration electrolytes get more localized through micelle-like structures. Nat. Mater. 22, 1531–1539 (2023). https://doi.org/10.1038/s41563-023-01700-3
Y.S. Meng, V. Srinivasan, K. Xu, Designing better electrolytes. Science 378, eabq3750 (2022). https://doi.org/10.1126/science.abq3750
T. Jaumann, J. Balach, U. Langklotz, V. Sauchuk, M. Fritsch et al., Lifetime vs. rate capability: Understanding the role of FEC and VC in high-energy Li-ion batteries with nano-silicon anodes. Energy Storage Mater. 6, 26–35 (2017). https://doi.org/10.1016/j.ensm.2016.08.002
Y. Jin, N.H. Kneusels, L.E. Marbella, E. Castillo-Martínez, P.C.M.M. Magusin et al., Understanding fluoroethylene carbonate and vinylene carbonate based electrolytes for Si anodes in lithium ion batteries with NMR spectroscopy. J. Am. Chem. Soc. 140, 9854–9867 (2018). https://doi.org/10.1021/jacs.8b03408
J. Chen, X. Fan, Q. Li, H. Yang, M.R. Khoshi et al., Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 5, 386–397 (2020). https://doi.org/10.1038/s41560-020-0601-1
M. Tian, Z. Jin, Z. Song, R. Qiao, Y. Yan et al., Domino reactions enabling sulfur-mediated gradient interphases for high-energy lithium batteries. J. Am. Chem. Soc. 145, 21600–21611 (2023). https://doi.org/10.1021/jacs.3c07908
S.J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure et al., The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 105, 52–76 (2016). https://doi.org/10.1016/j.carbon.2016.04.008
B. Han, Y. Zou, G. Xu, S. Hu, Y. Kang et al., Additive stabilization of SEI on graphite observed using cryo-electron microscopy. Energy Environ. Sci. 14, 4882–4889 (2021). https://doi.org/10.1039/d1ee01678d
H. Wan, J. Xu, C. Wang, Designing electrolytes and interphases for high-energy lithium batteries. Nat. Rev. Chem. 8, 30–44 (2024). https://doi.org/10.1038/s41570-023-00557-z
J. Wang, Z. Yang, B. Mao, Y. Wang, Y. Jiang et al., Transgenic engineering on silicon surfaces enables robust interface chemistry. ACS Energy Lett. 7, 2781–2791 (2022). https://doi.org/10.1021/acsenergylett.2c01202
S. Tan, Z. Shadike, J. Li, X. Wang, Y. Yang et al., Additive engineering for robust interphases to stabilize high-Ni layered structures at ultra-high voltage of 4.8 V. Nat. Energy 7, 484–494 (2022). https://doi.org/10.1038/s41560-022-01020-x
M. Liu, F. Wu, Y. Gong, Y. Li, Y. Li et al., Interfacial-catalysis-enabled layered and inorganic-rich SEI on hard carbon anodes in ester electrolytes for sodium-ion batteries. Adv. Mater. 35, e2300002 (2023). https://doi.org/10.1002/adma.202300002
Z. Lu, J. Wang, W. Feng, X. Yin, X. Feng et al., Zinc single-atom-regulated hard carbons for high-rate and low-temperature sodium-ion batteries. Adv. Mater. 35, 2211461 (2023). https://doi.org/10.1002/adma.202211461
J. Ge, C. Ma, Y. Wan, G. Tang, H. Dai et al., Electrocatalysis of Fe-N-C bonds driving reliable interphase and fast kinetics for phosphorus anode in sodium-ion batteries. Adv. Funct. Mater. 33, 2305803 (2023). https://doi.org/10.1002/adfm.202305803
C. Yan, H.-R. Li, X. Chen, X.-Q. Zhang, X.-B. Cheng et al., Regulating the inner Helmholtz plane for stable solid electrolyte interphase on lithium metal anodes. J. Am. Chem. Soc. 141, 9422–9429 (2019). https://doi.org/10.1021/jacs.9b05029
S. Mao, J. Mao, Z. Shen, Q. Wu, S. Zhang et al., Specific adsorption-oxidation strategy in cathode inner Helmholtz plane enabling 4.6 V practical lithium-ion full cells. Nano Lett. 23, 7014–7022 (2023). https://doi.org/10.1021/acs.nanolett.3c01700
Y. Wang, H. Li, S. Di, B. Zhai, P. Niu et al., Constructing long-cycling crystalline C3N4-based carbonaceous anodes for sodium-ion battery via N configuration control. Carbon Energy 6, e388 (2024). https://doi.org/10.1002/cey2.388
Y.-F. Tian, S.-J. Tan, C. Yang, Y.-M. Zhao, D.-X. Xu et al., Tailoring chemical composition of solid electrolyte interphase by selective dissolution for long-life micron-sized silicon anode. Nat. Commun. 14, 7247 (2023). https://doi.org/10.1038/s41467-023-43093-6
X. Liu, J. Liu, L. Li, R. Guo, X. Zhang et al., Hydrodesulfurization of dibenzothiophene on TiO2–x-modified Fe-based catalysts: electron transfer behavior between TiO2–x and Fe species. ACS Catal. 10, 9019–9033 (2020). https://doi.org/10.1021/acscatal.0c01068
X. Hu, J. Song, S. Zheng, Z. Sun, C. Li, Insight into the defective sites of TiO2/sepiolite composite on formaldehyde removal and H2 evolution. Mater. Today Energy 24, 100932 (2022). https://doi.org/10.1016/j.mtener.2021.100932
W. Wang, C.-H. Lu, Y.-R. Ni, J.-B. Song, M.-X. Su et al., Enhanced visible-light photoactivity of {001}facets dominated TiO2 nanosheets with even distributed bulk oxygen vacancy and Ti3+. Catal. Commun. 22, 19–23 (2012). https://doi.org/10.1016/j.catcom.2012.02.011
H. Zhang, L. Wu, R. Feng, S. Wang, C.-S. Hsu et al., Oxygen vacancies unfold the catalytic potential of NiFe-layered double hydroxides by promoting their electronic transport for oxygen evolution reaction. ACS Catal. 13, 6000–6012 (2023). https://doi.org/10.1021/acscatal.2c05783
Y. Tang, Y. Zhang, O.I. Malyi, N. Bucher, H. Xia et al., Identifying the origin and contribution of surface storage in TiO2(B) nanotube electrode by in situ dynamic valence state monitoring. Adv. Mater. 30, 1802200 (2018). https://doi.org/10.1002/adma.201802200
Y. Jiang, D. Baimanov, S. Jin, J. Cheuk-Fung Law, P. Zhao et al., In situ turning defects of exfoliated Ti3C2 MXene into Fenton-like catalytic active sites. Proc. Natl. Acad. Sci. U.S.A. 120, e2210211120 (2023). https://doi.org/10.1073/pnas.2210211120
W. Yoon, S. Lee, Y. Noh, S. Park, Y. Kim et al., Highly selective catalytic dechlorination of dichloromethane to chloromethane over Al−Ti mixed oxide catalysts. ChemCatChem 12, 5098–5108 (2020). https://doi.org/10.1002/cctc.202000879
J. Cheng, J. Xie, Y. Xi, X. Wu, R. Zhang et al., Selective upcycling of polyethylene terephthalate towards high-valued oxygenated chemical methyl p-methyl benzoate using a Cu/ZrO2 catalyst. Angew. Chem. Int. Ed. 63, e202319896 (2024). https://doi.org/10.1002/anie.202319896
P. Sudarsanam, H. Li, T.V. Sagar, TiO2-based water-tolerant acid catalysis for biomass-based fuels and chemicals. ACS Catal. 10, 9555–9584 (2020). https://doi.org/10.1021/acscatal.0c01680
K.S. Han, M.-S. Lee, N. Kim, D. Choi, S. Chae et al., Lithium-ion hopping weakens thermal stability of LiPF6 carbonate electrolytes. Cell Rep. Phys. Sci. 5, 101768 (2024). https://doi.org/10.1016/j.xcrp.2023.101768
L. Lv, Y. Wang, W. Huang, Y. Wang, X. Li et al., Mechanism study on the cycling stability of silicon-based lithium ion batteries as a function of temperature. Electrochim. Acta 437, 141518 (2023). https://doi.org/10.1016/j.electacta.2022.141518
D. Wang, Y. Ma, W. Xu, S. Zhang, B. Wang et al., Controlled isotropic canalization of microsized silicon enabling stable high-rate and high-loading lithium storage. Adv. Mater. 35, e2212157 (2023). https://doi.org/10.1002/adma.202212157
X. Zhang, D. Wang, X. Qiu, Y. Ma, D. Kong et al., Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation. Nat. Commun. 11, 3826 (2020). https://doi.org/10.1038/s41467-020-17686-4
W. An, B. Gao, S. Mei, B. Xiang, J. Fu et al., Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes. Nat. Commun. 10, 1447 (2019). https://doi.org/10.1038/s41467-019-09510-5
A.-M. Li, Z. Wang, T.P. Pollard, W. Zhang, S. Tan et al., High voltage electrolytes for lithium-ion batteries with micro-sized silicon anodes. Nat. Commun. 15, 1206 (2024). https://doi.org/10.1038/s41467-024-45374-0
Q. Wang, M. Zhu, G. Chen, N. Dudko, Y. Li et al., High-performance microsized Si anodes for lithium-ion batteries: insights into the polymer configuration conversion mechanism. Adv. Mater. 34, e2109658 (2022). https://doi.org/10.1002/adma.202109658
X. Chen, L. Li, M. Liu, T. Huang, A. Yu, Detection of lithium plating in lithium-ion batteries by distribution of relaxation times. J. Power Sources 496, 229867 (2021). https://doi.org/10.1016/j.jpowsour.2021.229867
K. Pan, F. Zou, M. Canova, Y. Zhu, J.-H. Kim, Comprehensive electrochemical impedance spectroscopy study of Si-based anodes using distribution of relaxation times analysis. J. Power Sources 479, 229083 (2020). https://doi.org/10.1016/j.jpowsour.2020.229083
Y. Qian, Y. Liang, W. Zhang, B. Xi, N. Lin, Thermal polymerization of ion-modified carbon dots into multi-functional LiF-carbon interface for stabilizing SiO anode. Energy Storage Mater. 63, 102996 (2023). https://doi.org/10.1016/j.ensm.2023.102996
P. Mu, S. Zhang, H. Zhang, J. Li, Z. Liu et al., A spidroin-inspired hierarchical-structure binder achieves highly integrated silicon-based electrodes. Adv. Mater. 35, 2303312 (2023). https://doi.org/10.1002/adma.202303312
L. Wang, A. Menakath, F. Han, Y. Wang, P.Y. Zavalij et al., Identifying the components of the solid–electrolyte interphase in Li-ion batteries. Nat. Chem. 11, 789–796 (2019). https://doi.org/10.1038/s41557-019-0304-z
C.-Y. Li, Y. Yu, C. Wang, Y. Zhang, S.-Y. Zheng et al., Surface changes of LiNixMnyCo1–x–yO2 in Li-ion batteries using in situ surface-enhanced Raman spectroscopy. J. Phys. Chem. C 124, 4024–4031 (2020). https://doi.org/10.1021/acs.jpcc.9b11677
A. Krause, O. Tkacheva, A. Omar, U. Langklotz, L. Giebeler et al., In situ Raman spectroscopy on silicon nanowire anodes integrated in lithium ion batteries. J. Electrochem. Soc. 166, A5378–A5385 (2019). https://doi.org/10.1149/2.0541903jes
S. Mei, B. Xiang, S. Guo, J. Deng, J. Fu et al., Design and electrochemical mechanism of the MgF2 coating as a highly stable and conductive interlayer on the Si anode for high-performance Li-ion batteries. Adv. Funct. Mater. 34, 2301217 (2024). https://doi.org/10.1002/adfm.202301217
Y. Li, Z. Cao, Y. Wang, L. Lv, J. Sun et al., New insight into the role of fluoro-ethylene carbonate in suppressing Li-trapping for Si anodes in lithium-ion batteries. ACS Energy Lett. 8, 4193–4203 (2023). https://doi.org/10.1021/acsenergylett.3c01328
B. Han, Z. Zhang, Y. Zou, K. Xu, G. Xu et al., Poor stability of Li2CO3 in the solid electrolyte interphase of a lithium-metal anode revealed by cryo-electron microscopy. Adv. Mater. 33, 2100404 (2021). https://doi.org/10.1002/adma.202100404
W. Huang, Y. Wang, L. Lv, Y. Wang, X. Li et al., In situ construction of a multifunctional interface regulator with amino-modified conjugated diene toward high-rate and long-cycle silicon anodes. ACS Appl. Mater. Interfaces 14, 13317–13325 (2022). https://doi.org/10.1021/acsami.1c24578
J. Huang, X. Guo, X. Du, X. Lin, J.-Q. Huang et al., Nanostructures of solid electrolyte interphases and their consequences for microsized Sn anodes in sodium ion batteries. Energy Environ. Sci. 12, 1550–1557 (2019). https://doi.org/10.1039/C8EE03632B
H. Liu, X. Cai, X. Zhi, S. Di, B. Zhai et al., An amorphous anode for proton battery. Nano-Micro Lett. 15, 24 (2022). https://doi.org/10.1007/s40820-022-00987-2