Ultra-Stable Sodium-Ion Battery Enabled by All-Solid-State Ferroelectric-Engineered Composite Electrolytes
Corresponding Author: Li Lu
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 254
Abstract
Symmetric Na-ion cells using the NASICON-structured electrodes could simplify the manufacturing process, reduce the cost, facilitate the recycling post-process, and thus attractive in the field of large-scale stationary energy storage. However, the long-term cycling performance of such batteries is usually poor. This investigation reveals the unavoidable side reactions between the NASICON-type Na3V2(PO4)3 (NVP) anode and the commercial liquid electrolyte, leading to serious capacity fading in the symmetric NVP//NVP cells. To resolve this issue, an all-solid-state composite electrolyte is used to replace the liquid electrolyte so that to overcome the side reaction and achieve high anode/electrolyte interfacial stability. The ferroelectric engineering could further improve the interfacial ion conduction, effectively reducing the electrode/electrolyte interfacial resistances. The NVP//NVP cell using the ferroelectric-engineered composite electrolyte can achieve a capacity retention of 86.4% after 650 cycles. Furthermore, the electrolyte can also be used to match the Prussian-blue cathode NaxFeyFe(CN)6−z·nH2O (NFFCN). Outstanding long-term cycling stability has been obtained in the all-solid-state NVP//NFFCN cell over 9000 cycles at a current density of 500 mA g−1, with a fading rate as low as 0.005% per cycle.
Highlights:
1 The capacity fading mechanism of the conventional Na3V2(PO4)3//Na3V2(PO4)3 (NVP//NVP) cell has been investigated.
2 All-solid-state ferroelectric-engineered composite electrolyte could improve the electrolyte–electrode interfacial stability as well as the interfacial ion conduction of the Na-ion battery using the NVP anode.
3 Outstanding cyclic stability has been achieved in the all-solid-state Na-ion battery using the NVP anode, with a capacity fading rate as low as 0.005% per cycle.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Pan, Y.-S. Hu, L. Chen, Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 6, 2338 (2013). https://doi.org/10.1039/c3ee40847g
- Y. Gao, Z. Pan, J. Sun, Z. Liu, J. Wang, High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14, 94 (2022). https://doi.org/10.1007/s40820-022-00844-2
- M. Wu, W. Ni, J. Hu, J. Ma, NASICON-structured NaTi2(PO4)3 for sustainable energy storage. Nano-Micro Lett. 11, 44 (2019). https://doi.org/10.1007/s40820-019-0273-1
- M.-Y. Wang, X.-X. Zhao, J.-Z. Guo, X.-J. Nie, Z.-Y. Gu et al., Enhanced electrode kinetics and properties via anionic regulation in polyanionic Na3+xV2(PO4)3–x(P2O7)x cathode material. Green Energy Environ. 7, 763–771 (2022). https://doi.org/10.1016/j.gee.2020.11.026
- J.-Z. Guo, Z.-Y. Gu, M. Du, X.-X. Zhao, X.-T. Wang et al., Emerging characterization techniques for delving polyanion-type cathode materials of sodium-ion batteries. Mater. Today 66, 221–244 (2023). https://doi.org/10.1016/j.mattod.2023.03.020
- Q.-M. Yin, Z.-Y. Gu, Y. Liu, H.-Y. Lü, Y.-T. Liu et al., Mn-rich phosphate cathode for sodium-ion batteries: anion-regulated solid solution behavior and long-term cycle life. Adv. Funct. Mater. 33, 2370224 (2023). https://doi.org/10.1002/adfm.202370224
- G. Chen, Q. Huang, T. Wu, L. Lu, Polyanion sodium vanadium phosphate for next generation of sodium-ion batteries—a review. Adv. Funct. Mater. 30, 2001289 (2020). https://doi.org/10.1002/adfm.202001289
- S. Chen, C. Wu, L. Shen, C. Zhu, Y. Huang et al., Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries. Adv. Mater. 29, 1700431 (2017). https://doi.org/10.1002/adma.201700431
- Z. Jian, Y.-S. Hu, X. Ji, W. Chen, NASICON-structured materials for energy storage. Adv. Mater. 29, 1601925 (2017). https://doi.org/10.1002/adma.201601925
- H. Gao, J.B. Goodenough, An aqueous symmetric sodium-ion battery with NASICON-structured Na3MnTi(PO4)3. Angew. Chem. Int. Ed. 55, 12768–12772 (2016). https://doi.org/10.1002/anie.201606508
- B. Moossa, J. James Abraham, R. Kahraman, S. Al-Qaradawi, T.M. Al Tahtamouni et al., Utilization of symmetric electrode materials in energy storage application: a review. Int. J. Energy Res. 46, 8590–8624 (2022). https://doi.org/10.1002/er.7771
- A. Kumar, Nagmani, S. Puravankara, Symmetric sodium-ion batteries—materials, mechanisms, and prospects. Mater. Today Energy 29, 101115 (2022). https://doi.org/10.1016/j.mtener.2022.101115
- L.S. Plashnitsa, E. Kobayashi, Y. Noguchi, S. Okada, J.-I. Yamaki, Performance of NASICON symmetric cell with ionic liquid electrolyte. J. Electrochem. Soc. 157, A536 (2010). https://doi.org/10.1149/1.3298903
- S. Li, Y. Dong, L. Xu, X. Xu, L. He et al., Effect of carbon matrix dimensions on the electrochemical properties of Na3V2(PO4)3 nanograins for high-performance symmetric sodium-ion batteries. Adv. Mater. 26, 3545–3553 (2014). https://doi.org/10.1002/adma.201305522
- W. Duan, Z. Zhu, H. Li, Z. Hu, K. Zhang et al., Na3V2(PO4)3@C core–shell nanocomposites for rechargeable sodium-ion batteries. J. Mater. Chem. A 2, 8668–8675 (2014). https://doi.org/10.1039/C4TA00106K
- C. Zhu, P. Kopold, P.A. van Aken, J. Maier, Y. Yu, High power-high energy sodium battery based on threefold interpenetrating network. Adv. Mater. 28, 2409–2416 (2016). https://doi.org/10.1002/adma.201505943
- Y. Zhang, H. Zhao, Y. Du, Symmetric full cells assembled by using self-supporting Na3V2(PO4)3 bipolar electrodes for superior sodium energy storage. J. Mater. Chem. A 4, 7155–7159 (2016). https://doi.org/10.1039/C6TA02218A
- D. Wang, X. Bie, Q. Fu, D. Dixon, N. Bramnik et al., Sodium vanadium titanium phosphate electrode for symmetric sodium-ion batteries with high power and long lifespan. Nat. Commun. 8, 15888 (2017). https://doi.org/10.1038/ncomms15888
- H. Wang, C. Chen, C. Qian, C. Liang, Z. Lin, Symmetric sodium-ion batteries based on the phosphate material of NASICON-structured Na3Co0.5Mn0.5Ti(PO4)3. RSC Adv. 7, 33273–33277 (2017). https://doi.org/10.1039/C7RA05214F
- W. Wang, Q. Xu, H. Liu, Y. Wang, Y. Xia, A flexible symmetric sodium full cell constructed using the bipolar material Na3V2(PO4)3. J. Mater. Chem. A 5, 8440–8450 (2017). https://doi.org/10.1039/C7TA01477E
- Y. Yao, L. Zhang, Y. Gao, G. Chen, C. Wang et al., Assembly of Na3V2(PO4)2F3@C nanops in reduced graphene oxide enabling superior Na+ storage for symmetric sodium batteries. RSC Adv. 8, 2958–2962 (2018). https://doi.org/10.1039/c7ra13441j
- X. Yao, Z. Zhu, Q. Li, X. Wang, X. Xu et al., 3.0 V high energy density symmetric sodium-ion battery: Na4V2(PO4)3∥Na3V2(PO4)3. ACS Appl. Mater. Interfaces 10, 10022–10028 (2018). https://doi.org/10.1021/acsami.7b16901
- R. Ling, S. Cai, D. Xie, X. Li, M. Wang et al., Three-dimensional hierarchical porous Na3V2(PO4)3/C structure with high rate capability and cycling stability for sodium-ion batteries. Chem. Eng. J. 353, 264–272 (2018). https://doi.org/10.1016/j.cej.2018.07.118
- M. Li, Z. Zuo, J. Deng, Q. Yao, Z. Wang et al., A high rate capability and long lifespan symmetric sodium-ion battery system based on a bipolar material Na2LiV2(PO4)3/C. J. Mater. Chem. A 6, 9962–9970 (2018). https://doi.org/10.1039/C8TA01314D
- N. Voronina, J.H. Jo, J.U. Choi, C.-H. Jo, J. Kim et al., Nb-Doped titanium phosphate for sodium storage: electrochemical performance and structural insights. J. Mater. Chem. A 7, 5748–5759 (2019). https://doi.org/10.1039/C8TA11517F
- P.N. Didwal, R. Verma, C.-W. Min, C.-J. Park, Synthesis of 3-dimensional interconnected porous Na3V2(PO4)3@C composite as a high-performance dual electrode for Na-ion batteries. J. Power. Sources 413, 1–10 (2019). https://doi.org/10.1016/j.jpowsour.2018.12.018
- Y. Zhao, X. Gao, H. Gao, H. Jin, J.B. Goodenough, Three electron reversible redox reaction in sodium vanadium chromium phosphate as a high-energy-density cathode for sodium-ion batteries. Adv. Funct. Mater. 30, 1908680 (2020). https://doi.org/10.1002/adfm.201908680
- Y. Zhou, X. Shao, K.-H. Lam, Y. Zheng, L. Zhao et al., Symmetric sodium-ion battery based on dual-electron reactions of NASICON-structured Na3MnTi(PO4)3 material. ACS Appl. Mater. Interfaces 12, 30328–30335 (2020). https://doi.org/10.1021/acsami.0c05784
- R. Ling, B. Cao, W. Qi, C. Yang, K. Shen et al., Three-dimensional Na3V2(PO4)3@carbon/N-doped graphene aerogel: a versatile cathode and anode host material with high-rate and ultralong-life for sodium storage. J. Alloy. Compd. 869, 159307 (2021). https://doi.org/10.1016/j.jallcom.2021.159307
- Q. Zhou, L. Wang, W. Li, S. Zeng, K. Zhao et al., Carbon-decorated Na3V2(PO4)3 as ultralong lifespan cathodes for high-energy-density symmetric sodium-ion batteries. ACS Appl. Mater. Interfaces 13, 25036–25043 (2021). https://doi.org/10.1021/acsami.1c06160
- A. Gilankar, A. Mitra, J. Singh, S. Das, S.B. Majumder, Investigations on different strategies towards improving the electrochemical properties of Na2VTi (PO4)3 for symmetrical sodium-ion batteries. J. Alloy. Compd. 851, 156813 (2021). https://doi.org/10.1016/j.jallcom.2020.156813
- H. Li, W. Zhang, Z. Han, K. Sun, C. Gao et al., Pseudocapacitance enhanced by N-defects in Na3MnTi(PO4)3/N-doped carbon composite for symmetric full sodium-ion batteries. Mater. Today Energy 21, 100754 (2021). https://doi.org/10.1016/j.mtener.2021.100754
- J. Cheng, Y. Chen, S. Sun, Z. Tian, C. Wang et al., Boosting the rate capability and cycle life of Zr-substituted Na3V2(PO4)3/C enwrapped on carbon nanotubes for symmetric Na-ion batteries. Electrochim. Acta 385, 138427 (2021). https://doi.org/10.1016/j.electacta.2021.138427
- R. Thangavel, D. Han, B. Moorthy, B.K. Ganesan, M. Moorthy et al., Understanding the structural phase transitions in Na3V2(PO4)3 symmetrical sodium-ion batteries using synchrotron-based X-ray techniques. Small Methods 6, e2100888 (2022). https://doi.org/10.1002/smtd.202100888
- Q. Ma, C.-L. Tsai, X.-K. Wei, M. Heggen, F. Tietz et al., Room temperature demonstration of a sodium superionic conductor with grain conductivity in excess of 0.01 S cm−1 and its primary applications in symmetric battery cells. J. Mater. Chem. A 7, 7766–7776 (2019). https://doi.org/10.1039/C9TA00048H
- S. Bag, C. Zhou, S. Reid, S. Butler, V. Thangadurai, Electrochemical studies on symmetric solid-state Na-ion full cell using Na3V2(PO4)3 electrodes and polymer composite electrolyte. J. Power. Sources 454, 227954 (2020). https://doi.org/10.1016/j.jpowsour.2020.227954
- Y. Wang, Z. Wang, J. Sun, F. Zheng, M. Kotobuki et al., Flexible, stable, fast-ion-conducting composite electrolyte composed of nanostructured Na-super-ion-conductor framework and continuous Poly(ethylene oxide) for all-solid-state Na battery. J. Power. Sources 454, 227949 (2020). https://doi.org/10.1016/j.jpowsour.2020.227949
- X. Xu, Y. Wang, Q. Yi, X. Wang, R.A. Paredes, Camacho et al., Ion conduction in composite polymer electrolytes: potential electrolytes for sodium-ion batteries. Chemsuschem 16, e202202152 (2023). https://doi.org/10.1002/cssc.202202152
- Y. Wang, Z. Wang, F. Zheng, J. Sun, J.A.S. Oh et al., Ferroelectric engineered electrode-composite polymer electrolyte interfaces for all-solid-state sodium metal battery. Adv. Sci. 9, e2105849 (2022). https://doi.org/10.1002/advs.202105849
- P.A.M. Dirac, Note on exchange phenomena in the Thomas atom. Math. Proc. Camb. Philos. Soc. 26, 376–385 (1930). https://doi.org/10.1017/s0305004100016108
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 54, 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
- J.A.S. Oh, H. He, J. Sun, X. Cao, B. Chua et al., Dual-nitrogen-doped carbon decorated on Na3V2(PO4)3 to stabilize the intercalation of three sodium ions. ACS Appl. Energy Mater. 3, 6870–6879 (2020). https://doi.org/10.1021/acsaem.0c00973
- J. Sun, H. Ye, J.A.S. Oh, A. Plewa, Y. Sun et al., Elevating the discharge plateau of Prussian blue analogs through low-spin Fe redox induced intercalation pseudocapacitance. Energy Storage Mater. 43, 182–189 (2021). https://doi.org/10.1016/j.ensm.2021.09.004
- M. Li, G. Lu, W. Zheng, Q. Zhao, Z. Li et al., Multifunctionalized safe separator toward practical sodium-metal batteries with high-performance under high mass loading. Adv. Funct. Mater. 33, 2214759 (2023). https://doi.org/10.1002/adfm.202214759
- Z. Jian, C. Yuan, W. Han, X. Lu, L. Gu et al., Atomic structure and kinetics of NASICON NaxV2(PO4)3 cathode for sodium-ion batteries. Adv. Funct. Mater. 24, 4265–4272 (2014). https://doi.org/10.1002/adfm.201400173
- J. Illig, M. Ender, T. Chrobak, J.P. Schmidt, D. Klotz et al., Separation of charge transfer and contact resistance in LiFePO4-cathodes by impedance modeling. J. Electrochem. Soc. 159, A952–A960 (2012). https://doi.org/10.1149/2.030207jes
- Z. Cheng, M. Liu, S. Ganapathy, C. Li, Z. Li et al., Revealing the impact of space-charge layers on the Li-ion transport in all-solid-state batteries. Joule 4, 1311–1323 (2020). https://doi.org/10.1016/j.joule.2020.04.002
- L. Wang, R. Xie, B. Chen, X. Yu, J. Ma et al., In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries. Nat. Commun. 11, 5889 (2020). https://doi.org/10.1038/s41467-020-19726-5
- O. Vendik, I. Vendik, Electromechanical coupling coefficient of isotropic sample with a marked electrostriction. J. Eur. Ceram. Soc. 27, 2949–2952 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.11.068
- X. Lu, Y. Wang, X. Xu, B. Yan, T. Wu et al., Polymer-based solid-state electrolytes for high-energy-density lithium-ion batteries–review. Adv. Energy Mater. 13, 2301746 (2023). https://doi.org/10.1002/aenm.202301746
References
H. Pan, Y.-S. Hu, L. Chen, Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 6, 2338 (2013). https://doi.org/10.1039/c3ee40847g
Y. Gao, Z. Pan, J. Sun, Z. Liu, J. Wang, High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14, 94 (2022). https://doi.org/10.1007/s40820-022-00844-2
M. Wu, W. Ni, J. Hu, J. Ma, NASICON-structured NaTi2(PO4)3 for sustainable energy storage. Nano-Micro Lett. 11, 44 (2019). https://doi.org/10.1007/s40820-019-0273-1
M.-Y. Wang, X.-X. Zhao, J.-Z. Guo, X.-J. Nie, Z.-Y. Gu et al., Enhanced electrode kinetics and properties via anionic regulation in polyanionic Na3+xV2(PO4)3–x(P2O7)x cathode material. Green Energy Environ. 7, 763–771 (2022). https://doi.org/10.1016/j.gee.2020.11.026
J.-Z. Guo, Z.-Y. Gu, M. Du, X.-X. Zhao, X.-T. Wang et al., Emerging characterization techniques for delving polyanion-type cathode materials of sodium-ion batteries. Mater. Today 66, 221–244 (2023). https://doi.org/10.1016/j.mattod.2023.03.020
Q.-M. Yin, Z.-Y. Gu, Y. Liu, H.-Y. Lü, Y.-T. Liu et al., Mn-rich phosphate cathode for sodium-ion batteries: anion-regulated solid solution behavior and long-term cycle life. Adv. Funct. Mater. 33, 2370224 (2023). https://doi.org/10.1002/adfm.202370224
G. Chen, Q. Huang, T. Wu, L. Lu, Polyanion sodium vanadium phosphate for next generation of sodium-ion batteries—a review. Adv. Funct. Mater. 30, 2001289 (2020). https://doi.org/10.1002/adfm.202001289
S. Chen, C. Wu, L. Shen, C. Zhu, Y. Huang et al., Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries. Adv. Mater. 29, 1700431 (2017). https://doi.org/10.1002/adma.201700431
Z. Jian, Y.-S. Hu, X. Ji, W. Chen, NASICON-structured materials for energy storage. Adv. Mater. 29, 1601925 (2017). https://doi.org/10.1002/adma.201601925
H. Gao, J.B. Goodenough, An aqueous symmetric sodium-ion battery with NASICON-structured Na3MnTi(PO4)3. Angew. Chem. Int. Ed. 55, 12768–12772 (2016). https://doi.org/10.1002/anie.201606508
B. Moossa, J. James Abraham, R. Kahraman, S. Al-Qaradawi, T.M. Al Tahtamouni et al., Utilization of symmetric electrode materials in energy storage application: a review. Int. J. Energy Res. 46, 8590–8624 (2022). https://doi.org/10.1002/er.7771
A. Kumar, Nagmani, S. Puravankara, Symmetric sodium-ion batteries—materials, mechanisms, and prospects. Mater. Today Energy 29, 101115 (2022). https://doi.org/10.1016/j.mtener.2022.101115
L.S. Plashnitsa, E. Kobayashi, Y. Noguchi, S. Okada, J.-I. Yamaki, Performance of NASICON symmetric cell with ionic liquid electrolyte. J. Electrochem. Soc. 157, A536 (2010). https://doi.org/10.1149/1.3298903
S. Li, Y. Dong, L. Xu, X. Xu, L. He et al., Effect of carbon matrix dimensions on the electrochemical properties of Na3V2(PO4)3 nanograins for high-performance symmetric sodium-ion batteries. Adv. Mater. 26, 3545–3553 (2014). https://doi.org/10.1002/adma.201305522
W. Duan, Z. Zhu, H. Li, Z. Hu, K. Zhang et al., Na3V2(PO4)3@C core–shell nanocomposites for rechargeable sodium-ion batteries. J. Mater. Chem. A 2, 8668–8675 (2014). https://doi.org/10.1039/C4TA00106K
C. Zhu, P. Kopold, P.A. van Aken, J. Maier, Y. Yu, High power-high energy sodium battery based on threefold interpenetrating network. Adv. Mater. 28, 2409–2416 (2016). https://doi.org/10.1002/adma.201505943
Y. Zhang, H. Zhao, Y. Du, Symmetric full cells assembled by using self-supporting Na3V2(PO4)3 bipolar electrodes for superior sodium energy storage. J. Mater. Chem. A 4, 7155–7159 (2016). https://doi.org/10.1039/C6TA02218A
D. Wang, X. Bie, Q. Fu, D. Dixon, N. Bramnik et al., Sodium vanadium titanium phosphate electrode for symmetric sodium-ion batteries with high power and long lifespan. Nat. Commun. 8, 15888 (2017). https://doi.org/10.1038/ncomms15888
H. Wang, C. Chen, C. Qian, C. Liang, Z. Lin, Symmetric sodium-ion batteries based on the phosphate material of NASICON-structured Na3Co0.5Mn0.5Ti(PO4)3. RSC Adv. 7, 33273–33277 (2017). https://doi.org/10.1039/C7RA05214F
W. Wang, Q. Xu, H. Liu, Y. Wang, Y. Xia, A flexible symmetric sodium full cell constructed using the bipolar material Na3V2(PO4)3. J. Mater. Chem. A 5, 8440–8450 (2017). https://doi.org/10.1039/C7TA01477E
Y. Yao, L. Zhang, Y. Gao, G. Chen, C. Wang et al., Assembly of Na3V2(PO4)2F3@C nanops in reduced graphene oxide enabling superior Na+ storage for symmetric sodium batteries. RSC Adv. 8, 2958–2962 (2018). https://doi.org/10.1039/c7ra13441j
X. Yao, Z. Zhu, Q. Li, X. Wang, X. Xu et al., 3.0 V high energy density symmetric sodium-ion battery: Na4V2(PO4)3∥Na3V2(PO4)3. ACS Appl. Mater. Interfaces 10, 10022–10028 (2018). https://doi.org/10.1021/acsami.7b16901
R. Ling, S. Cai, D. Xie, X. Li, M. Wang et al., Three-dimensional hierarchical porous Na3V2(PO4)3/C structure with high rate capability and cycling stability for sodium-ion batteries. Chem. Eng. J. 353, 264–272 (2018). https://doi.org/10.1016/j.cej.2018.07.118
M. Li, Z. Zuo, J. Deng, Q. Yao, Z. Wang et al., A high rate capability and long lifespan symmetric sodium-ion battery system based on a bipolar material Na2LiV2(PO4)3/C. J. Mater. Chem. A 6, 9962–9970 (2018). https://doi.org/10.1039/C8TA01314D
N. Voronina, J.H. Jo, J.U. Choi, C.-H. Jo, J. Kim et al., Nb-Doped titanium phosphate for sodium storage: electrochemical performance and structural insights. J. Mater. Chem. A 7, 5748–5759 (2019). https://doi.org/10.1039/C8TA11517F
P.N. Didwal, R. Verma, C.-W. Min, C.-J. Park, Synthesis of 3-dimensional interconnected porous Na3V2(PO4)3@C composite as a high-performance dual electrode for Na-ion batteries. J. Power. Sources 413, 1–10 (2019). https://doi.org/10.1016/j.jpowsour.2018.12.018
Y. Zhao, X. Gao, H. Gao, H. Jin, J.B. Goodenough, Three electron reversible redox reaction in sodium vanadium chromium phosphate as a high-energy-density cathode for sodium-ion batteries. Adv. Funct. Mater. 30, 1908680 (2020). https://doi.org/10.1002/adfm.201908680
Y. Zhou, X. Shao, K.-H. Lam, Y. Zheng, L. Zhao et al., Symmetric sodium-ion battery based on dual-electron reactions of NASICON-structured Na3MnTi(PO4)3 material. ACS Appl. Mater. Interfaces 12, 30328–30335 (2020). https://doi.org/10.1021/acsami.0c05784
R. Ling, B. Cao, W. Qi, C. Yang, K. Shen et al., Three-dimensional Na3V2(PO4)3@carbon/N-doped graphene aerogel: a versatile cathode and anode host material with high-rate and ultralong-life for sodium storage. J. Alloy. Compd. 869, 159307 (2021). https://doi.org/10.1016/j.jallcom.2021.159307
Q. Zhou, L. Wang, W. Li, S. Zeng, K. Zhao et al., Carbon-decorated Na3V2(PO4)3 as ultralong lifespan cathodes for high-energy-density symmetric sodium-ion batteries. ACS Appl. Mater. Interfaces 13, 25036–25043 (2021). https://doi.org/10.1021/acsami.1c06160
A. Gilankar, A. Mitra, J. Singh, S. Das, S.B. Majumder, Investigations on different strategies towards improving the electrochemical properties of Na2VTi (PO4)3 for symmetrical sodium-ion batteries. J. Alloy. Compd. 851, 156813 (2021). https://doi.org/10.1016/j.jallcom.2020.156813
H. Li, W. Zhang, Z. Han, K. Sun, C. Gao et al., Pseudocapacitance enhanced by N-defects in Na3MnTi(PO4)3/N-doped carbon composite for symmetric full sodium-ion batteries. Mater. Today Energy 21, 100754 (2021). https://doi.org/10.1016/j.mtener.2021.100754
J. Cheng, Y. Chen, S. Sun, Z. Tian, C. Wang et al., Boosting the rate capability and cycle life of Zr-substituted Na3V2(PO4)3/C enwrapped on carbon nanotubes for symmetric Na-ion batteries. Electrochim. Acta 385, 138427 (2021). https://doi.org/10.1016/j.electacta.2021.138427
R. Thangavel, D. Han, B. Moorthy, B.K. Ganesan, M. Moorthy et al., Understanding the structural phase transitions in Na3V2(PO4)3 symmetrical sodium-ion batteries using synchrotron-based X-ray techniques. Small Methods 6, e2100888 (2022). https://doi.org/10.1002/smtd.202100888
Q. Ma, C.-L. Tsai, X.-K. Wei, M. Heggen, F. Tietz et al., Room temperature demonstration of a sodium superionic conductor with grain conductivity in excess of 0.01 S cm−1 and its primary applications in symmetric battery cells. J. Mater. Chem. A 7, 7766–7776 (2019). https://doi.org/10.1039/C9TA00048H
S. Bag, C. Zhou, S. Reid, S. Butler, V. Thangadurai, Electrochemical studies on symmetric solid-state Na-ion full cell using Na3V2(PO4)3 electrodes and polymer composite electrolyte. J. Power. Sources 454, 227954 (2020). https://doi.org/10.1016/j.jpowsour.2020.227954
Y. Wang, Z. Wang, J. Sun, F. Zheng, M. Kotobuki et al., Flexible, stable, fast-ion-conducting composite electrolyte composed of nanostructured Na-super-ion-conductor framework and continuous Poly(ethylene oxide) for all-solid-state Na battery. J. Power. Sources 454, 227949 (2020). https://doi.org/10.1016/j.jpowsour.2020.227949
X. Xu, Y. Wang, Q. Yi, X. Wang, R.A. Paredes, Camacho et al., Ion conduction in composite polymer electrolytes: potential electrolytes for sodium-ion batteries. Chemsuschem 16, e202202152 (2023). https://doi.org/10.1002/cssc.202202152
Y. Wang, Z. Wang, F. Zheng, J. Sun, J.A.S. Oh et al., Ferroelectric engineered electrode-composite polymer electrolyte interfaces for all-solid-state sodium metal battery. Adv. Sci. 9, e2105849 (2022). https://doi.org/10.1002/advs.202105849
P.A.M. Dirac, Note on exchange phenomena in the Thomas atom. Math. Proc. Camb. Philos. Soc. 26, 376–385 (1930). https://doi.org/10.1017/s0305004100016108
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 54, 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
J.A.S. Oh, H. He, J. Sun, X. Cao, B. Chua et al., Dual-nitrogen-doped carbon decorated on Na3V2(PO4)3 to stabilize the intercalation of three sodium ions. ACS Appl. Energy Mater. 3, 6870–6879 (2020). https://doi.org/10.1021/acsaem.0c00973
J. Sun, H. Ye, J.A.S. Oh, A. Plewa, Y. Sun et al., Elevating the discharge plateau of Prussian blue analogs through low-spin Fe redox induced intercalation pseudocapacitance. Energy Storage Mater. 43, 182–189 (2021). https://doi.org/10.1016/j.ensm.2021.09.004
M. Li, G. Lu, W. Zheng, Q. Zhao, Z. Li et al., Multifunctionalized safe separator toward practical sodium-metal batteries with high-performance under high mass loading. Adv. Funct. Mater. 33, 2214759 (2023). https://doi.org/10.1002/adfm.202214759
Z. Jian, C. Yuan, W. Han, X. Lu, L. Gu et al., Atomic structure and kinetics of NASICON NaxV2(PO4)3 cathode for sodium-ion batteries. Adv. Funct. Mater. 24, 4265–4272 (2014). https://doi.org/10.1002/adfm.201400173
J. Illig, M. Ender, T. Chrobak, J.P. Schmidt, D. Klotz et al., Separation of charge transfer and contact resistance in LiFePO4-cathodes by impedance modeling. J. Electrochem. Soc. 159, A952–A960 (2012). https://doi.org/10.1149/2.030207jes
Z. Cheng, M. Liu, S. Ganapathy, C. Li, Z. Li et al., Revealing the impact of space-charge layers on the Li-ion transport in all-solid-state batteries. Joule 4, 1311–1323 (2020). https://doi.org/10.1016/j.joule.2020.04.002
L. Wang, R. Xie, B. Chen, X. Yu, J. Ma et al., In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries. Nat. Commun. 11, 5889 (2020). https://doi.org/10.1038/s41467-020-19726-5
O. Vendik, I. Vendik, Electromechanical coupling coefficient of isotropic sample with a marked electrostriction. J. Eur. Ceram. Soc. 27, 2949–2952 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.11.068
X. Lu, Y. Wang, X. Xu, B. Yan, T. Wu et al., Polymer-based solid-state electrolytes for high-energy-density lithium-ion batteries–review. Adv. Energy Mater. 13, 2301746 (2023). https://doi.org/10.1002/aenm.202301746