Wide-Temperature Electrolytes for Aqueous Alkali Metal-Ion Batteries: Challenges, Progress, and Prospects
Corresponding Author: Kaifu Huo
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 27
Abstract
Aqueous alkali metal-ion batteries (AAMIBs) have been recognized as emerging electrochemical energy storage technologies for grid-scale applications owning to their intrinsic safety, cost-effectiveness, and environmental sustainability. However, the practical application of AAMIBs is still severely constrained by the tendency of aqueous electrolytes to freeze at low temperatures and decompose at high temperatures, limiting their operational temperature range. Considering the urgent need for energy systems with higher adaptability and resilience at various application scenarios, designing novel electrolytes via structure modulation has increasingly emerged as a feasible and economical strategy for the performance optimization of wide-temperature AAMIBs. In this review, the latest advancement of wide-temperature electrolytes for AAMIBs is systematically and comprehensively summarized. Specifically, the key challenges, failure mechanisms, correlations between hydrogen bond behaviors and physicochemical properties, and thermodynamic and kinetic interpretations in aqueous electrolytes are discussed firstly. Additionally, we offer forward-looking insights and innovative design principles for developing aqueous electrolytes capable of operating across a broad temperature range. This review is expected to provide some guidance and reference for the rational design and regulation of wide-temperature electrolytes for AAMIBs and promote their future development.
Highlights:
1 The key challenges and fundamental principles of wide-temperature aqueous electrolytes for alkali metal ion batteries were analyzed.
2 The design strategies for aqueous electrolytes with broad operating temperature ranges were summarized. The future research directions for high-performance wide-temperature aqueous alkali metal ion batteries were proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Jin, X. Ji, P.-F. Wang, K. Zhu, J. Zhang et al., High-energy aqueous sodium-ion batteries. Angew. Chem. Int. Ed. 60(21), 11943–11948 (2021). https://doi.org/10.1002/anie.202017167
- W. He, H. Xu, Z. Chen, J. Long, J. Zhang et al., Regulating the solvation structure of Li+ enables chemical prelithiation of silicon-based anodes toward high-energy lithium-ion batteries. Nano-Micro Lett. 15(1), 107 (2023). https://doi.org/10.1007/s40820-023-01068-8
- D. Ji, J. Kim, Trend of developing aqueous liquid and gel electrolytes for sustainable, safe, and high-performance Li-ion batteries. Nano-Micro Lett. 16(1), 2 (2023). https://doi.org/10.1007/s40820-023-01220-4
- Y. Yang, W. Yang, H. Yang, H. Zhou, Electrolyte design principles for low-temperature lithium-ion batteries. eScience 3(6), 100170 (2023). https://doi.org/10.1016/j.esci.2023.100170
- R. Luo, Q. Guo, Z. Tang, M. Zhang, X. Li et al., Boosting redox kinetics of sulfur electrochemistry by manipulating interfacial charge redistribution and multiple spatial confinement in Mott-Schottky electrocatalysts. Adv. Funct. Mater. 33(48), 2306115 (2023). https://doi.org/10.1002/adfm.202306115
- S. Zhang, J. Hong, X. Zeng, J. Hao, Y. Zheng et al., Constructing layered nanostructures from non-layered sulfide crystals via surface charge manipulation strategy. Adv. Funct. Mater. 31(32), 2101676 (2021). https://doi.org/10.1002/adfm.202101676
- Q. Guo, R. Luo, Z. Tang, X. Li, X. Feng et al., Bidirectional interphase modulation of phosphate electrolyte enables intrinsic safety and superior stability for high-voltage lithium-metal batteries. ACS Nano 17(23), 24227–24241 (2023). https://doi.org/10.1021/acsnano.3c09643
- T. Shao, C. Liu, W. Deng, C. Li, X. Wang et al., Recent research on strategies to improve ion conduction in alkali metal-ion batteries. Batter. Supercaps 2(5), 403–427 (2019). https://doi.org/10.1002/batt.201800147
- X. Yi, H. Fu, A.M. Rao, Y. Zhang, J. Zhou et al., Safe electrolyte for long-cycling alkali-ion batteries. Nat. Sustain. 7(3), 326–337 (2024). https://doi.org/10.1038/s41893-024-01275-0
- C. Deng, Y. Li, J. Huang, Building smarter aqueous batteries. Small Methods 8(6), 2470033 (2024). https://doi.org/10.1002/smtd.202470033
- Y. Liang, Y. Yao, Designing modern aqueous batteries. Nat. Rev. Mater. 8(2), 109–122 (2023). https://doi.org/10.1038/s41578-022-00511-3
- H. Wang, Z. Chen, Z. Ji, P. Wang, J. Wang et al., Temperature adaptability issue of aqueous rechargeable batteries. Mater. Today Energy 19, 100577 (2021). https://doi.org/10.1016/j.mtener.2020.100577
- T. Liu, H. Wu, H. Wang, Y. Jiao, X. Du et al., A molecular-sieving interphase towards low-concentrated aqueous sodium-ion batteries. Nano-Micro Lett. 16(1), 144 (2024). https://doi.org/10.1007/s40820-024-01340-5
- M. Li, R. Li, H. Ma, M. Yang, Y. Dai et al., An ultra-stable, high-energy and wide-temperature-range aqueous alkaline sodium-ion battery with the microporous C4N/rGO anode. Nano-Micro Lett. 17(1), 158 (2025). https://doi.org/10.1007/s40820-024-01589-w
- Y. Xia, R. Tong, J. Zhang, M. Xu, G. Shao et al., Polarizable additive with intermediate chelation strength for stable aqueous zinc-ion batteries. Nano-Micro Lett. 16(1), 82 (2024). https://doi.org/10.1007/s40820-023-01305-0
- L. Sun, Z. Song, C. Deng, Q. Wang, F. Mo et al., Electrolytes for aqueous Zn-ion batteries working in wide-temperature range: progress and perspective. Batteries 9(7), 386 (2023). https://doi.org/10.3390/batteries9070386
- A. Ejigu, L.W. Le Fevre, A. Elgendy, B.F. Spencer, C. Bawn et al., Optimization of electrolytes for high-performance aqueous aluminum-ion batteries. ACS Appl. Mater. Interfaces 14(22), 25232–25245 (2022). https://doi.org/10.1021/acsami.1c23278
- R. Wang, M. Shi, L. Li, Y. Zhao, L. Zhao et al., In-situ investigation and application of cyano-substituted organic electrode for rechargeable aqueous Na-ion batteries. Chem. Eng. J. 451, 138652 (2023). https://doi.org/10.1016/j.cej.2022.138652
- D. Sui, R. Luo, S. Xie, H. Zhang, T. Ma et al., Atomic ruthenium doping in collaboration with oxygen vacancy engineering boosts the hydrogen evolution reaction by optimizing H absorption. Chem. Eng. J. 480, 148007 (2024). https://doi.org/10.1016/j.cej.2023.148007
- Y. You, Z. Sang, J. Liu, Recent developments on aqueous sodium-ion batteries. Mater. Technol. 31(9), 501–509 (2016). https://doi.org/10.1080/10667857.2016.1189709
- K. Kubota, M. Dahbi, T. Hosaka, S. Kumakura, S. Komaba, Towards K-ion and Na-ion batteries as “beyond Li-ion.” Chem. Rec. 18(4), 459–479 (2018). https://doi.org/10.1002/tcr.201700057
- P. Nakhanivej, H.H. Rana, H. Kim, B.Y. Xia, H.S. Park, Transport and durability of energy storage materials operating at high temperatures. ACS Nano 14(7), 7696–7703 (2020). https://doi.org/10.1021/acsnano.0c04402
- X. Lin, M. Salari, L.M.R. Arava, P.M. Ajayan, M.W. Grinstaff, High temperature electrical energy storage: advances, challenges, and frontiers. Chem. Soc. Rev. 45(21), 5848–5887 (2016). https://doi.org/10.1039/C6CS00012F
- Y. Feng, L. Zhou, H. Ma, Z. Wu, Q. Zhao et al., Challenges and advances in wide-temperature rechargeable lithium batteries. Energy Environ. Sci. 15(5), 1711–1759 (2022). https://doi.org/10.1039/d1ee03292e
- M.F. Rodrigues, G. Babu, H. Gullapalli, K. Kalaga, F.N. Sayed et al., A materials perspective on Li-ion batteries at extreme temperatures. Nat. Energy 2(8), 17108 (2017). https://doi.org/10.1038/nenergy.2017.108
- Q. Zhang, K. Xia, Y. Ma, Y. Lu, L. Li et al., Chaotropic anion and fast-kinetics cathode enabling low-temperature aqueous Zn batteries. ACS Energy Lett. 6(8), 2704–2712 (2021). https://doi.org/10.1021/acsenergylett.1c01054
- Y. Wang, H. Wei, Z. Li, X. Zhang, Z. Wei et al., Optimization strategies of electrolytes for low-temperature aqueous batteries. Chem. Rec. 22(10), e202200132 (2022). https://doi.org/10.1002/tcr.202200132
- T. Sun, S. Zheng, H. Du, Z. Tao, Synergistic effect of cation and anion for low-temperature aqueous zinc-ion battery. Nano-Micro Lett. 13(1), 204 (2021). https://doi.org/10.1007/s40820-021-00733-0
- J. Wang, Y. Yang, Y. Wang, S. Dong, L. Cheng et al., Working aqueous Zn metal batteries at 100 °C. ACS Nano 16(10), 15770–15778 (2022). https://doi.org/10.1021/acsnano.2c04114
- Y. Zhao, Z. Chen, F. Mo, D. Wang, Y. Guo et al., Aqueous rechargeable metal-ion batteries working at subzero temperatures. Adv. Sci. 8(1), 2002590 (2020). https://doi.org/10.1002/advs.202002590
- K. Zhu, Z. Sun, Z. Li, P. Liu, H. Li et al., Design strategies and recent advancements for low-temperature aqueous rechargeable energy storage. Adv. Energy Mater. 13(8), 2203708 (2023). https://doi.org/10.1002/aenm.202203708
- C. You, W. Fan, X. Xiong, H. Yang, L. Fu et al., Design strategies for anti-freeze electrolytes in aqueous energy storage devices at low temperatures. Adv. Funct. Mater. 34(40), 2403616 (2024). https://doi.org/10.1002/adfm.202403616
- L. Yue, M. Yu, X. Li, Y. Shen, Y. Wu et al., Wide temperature electrolytes for lithium batteries: solvation chemistry and interfacial reactions. Small Meth. 8(11), 2400183 (2024). https://doi.org/10.1002/smtd.202400183
- J. Yue, L. Suo, Progress in rechargeable aqueous alkali-ion batteries in China. Energy Fuels 35(11), 9228–9239 (2021). https://doi.org/10.1021/acs.energyfuels.1c00817
- C. Chen, Y. Zhao, Y. Li, J. Liu, Research progress of high-voltage/wide-temperature-range aqueous alkali metal-ion batteries. Acta Phys. Chim. Sin. (2023). https://doi.org/10.3866/pku.whxb202211005
- L. He, C. Lin, P. Xiong, H. Lin, W. Lai et al., Progress in electrolyte engineering of aqueous batteries in a wide temperature range. Trans. Tianjin Univ. 29(5), 321–346 (2023). https://doi.org/10.1007/s12209-023-00366-x
- M. Wang, L. Yin, M. Zheng, X. Liu, C. Yang et al., Temperature-responsive solvation enabled by dipole-dipole interactions towards wide-temperature sodium-ion batteries. Nat. Commun. 15(1), 8866 (2024). https://doi.org/10.1038/s41467-024-53259-5
- S. Emamian, T. Lu, H. Kruse, H. Emamian, Exploring nature and predicting strength of hydrogen bonds: a correlation analysis between atoms-in-molecules descriptors, binding energies, and energy components of symmetry-adapted perturbation theory. J. Comput. Chem. 40(32), 2868–2881 (2019). https://doi.org/10.1002/jcc.26068
- K. Zhu, Z. Li, Z. Sun, P. Liu, T. Jin et al., Inorganic electrolyte for low-temperature aqueous sodium ion batteries. Small 18(14), 2107662 (2022). https://doi.org/10.1002/smll.202107662
- E.B. Moore, V. Molinero, Structural transformation in supercooled water controls the crystallization rate of ice. Nature 479(7374), 506–508 (2011). https://doi.org/10.1038/nature10586
- Y. Liu, W. Li, L. Cheng, Q. Liu, J. Wei et al., Anti-freezing strategies of electrolyte and their application in electrochemical energy devices. Chem. Rec. 22(10), e202200068 (2022). https://doi.org/10.1002/tcr.202200068
- M. Matsumoto, S. Saito, I. Ohmine, Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing. Nature 416(6879), 409–413 (2002). https://doi.org/10.1038/416409a
- Q. Zhang, Y. Ma, Y. Lu, L. Li, F. Wan et al., Modulating electrolyte structure for ultralow temperature aqueous zinc batteries. Nat. Commun. 11(1), 4463 (2020). https://doi.org/10.1038/s41467-020-18284-0
- P. Jungwirth, P.S. Cremer, Beyond hofmeister. Nat. Chem. 6(4), 261–263 (2014). https://doi.org/10.1038/nchem.1899
- S. Ranallo, A. Amodio, A. Idili, A. Porchetta, F. Ricci, Electronic control of DNA-based nanoswitches and nanodevices. Chem. Sci. 7(1), 66–71 (2016). https://doi.org/10.1039/c5sc03694a
- S. Azmi, A. Klimek, E. Frackowiak, Why electrochemical capacitor electrolytes should not be ignored? Electrochim. Acta 452, 142347 (2023). https://doi.org/10.1016/j.electacta.2023.142347
- B. Hribar, N.T. Southall, V. Vlachy, K.A. Dill, How ions affect the structure of water. J. Am. Chem. Soc. 124(41), 12302–12311 (2002). https://doi.org/10.1021/ja026014h
- C. Yan, Y. Wang, X. Deng, Y. Xu, Cooperative chloride hydrogel electrolytes enabling ultralow-temperature aqueous zinc ion batteries by the hofmeister effect. Nano-Micro Lett. 14(1), 98 (2022). https://doi.org/10.1007/s40820-022-00836-2
- R. Hou, S. Guo, H. Zhou, Atomic insights into advances and issues in low-temperature electrolytes. Adv. Energy Mater. 13(14), 2300053 (2023). https://doi.org/10.1002/aenm.202300053
- K.D. Collins, M.W. Washabaugh, The Hofmeister effect and the behaviour of water at interfaces. Q. Rev. Biophys. 18(4), 323–422 (1985). https://doi.org/10.1017/s0033583500005369
- B. Kang, H. Tang, Z. Zhao, S. Song, Hofmeister series: insights of ion specificity from amphiphilic assembly and interface property. ACS Omega 5(12), 6229–6239 (2020). https://doi.org/10.1021/acsomega.0c00237
- Y. Zhang, P.S. Cremer, Interactions between macromolecules and ions: the hofmeister series. Curr. Opin. Chem. Biol. 10(6), 658–663 (2006). https://doi.org/10.1016/j.cbpa.2006.09.020
- M. Qiu, P. Sun, K. Han, Z. Pang, J. Du et al., Tailoring water structure with high-tetrahedral-entropy for antifreezing electrolytes and energy storage at − 80 °C. Nat. Commun. 14(1), 601 (2023). https://doi.org/10.1038/s41467-023-36198-5
- L. Jiang, D. Dong, Y.-C. Lu, Design strategies for low temperature aqueous electrolytes. Nano Res. Energy 1, e9120003 (2022). https://doi.org/10.26599/nre.2022.9120003
- C. Yang, J. Xia, C. Cui, T.P. Pollard, J. Vatamanu et al., All-temperature zinc batteries with high-entropy aqueous electrolyte. Nat. Sustain. 6(3), 325–335 (2023). https://doi.org/10.1038/s41893-022-01028-x
- X. Fan, X. Ji, L. Chen, J. Chen, T. Deng et al., All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat. Energy 4(10), 882–890 (2019). https://doi.org/10.1038/s41560-019-0474-3
- X. Dong, Y. Lin, P. Li, Y. Ma, J. Huang et al., High-energy rechargeable metallic lithium battery at − 70 °C enabled by a cosolvent electrolyte. Angew. Chem. Int. Ed. 58(17), 5623–5627 (2019). https://doi.org/10.1002/anie.201900266
- C. You, W. Wu, W. Yuan, P. Han, Q. Zhang et al., Brine refrigerants for low-cost, safe aqueous supercapacitors with ultra-long stable operation at low temperatures. Adv. Funct. Mater. 33(2), 2208206 (2023). https://doi.org/10.1002/adfm.202208206
- H. Gao, K. Tang, J. Xiao, X. Guo, W. Chen et al., Recent advances in “water in salt” electrolytes for aqueous rechargeable monovalent-ion (Li+, Na+, K+) batteries. J. Energy Chem. 69, 84–99 (2022). https://doi.org/10.1016/j.jechem.2021.12.025
- J.P.A. Santos, M.J. Pinzón, É.A. Santos, R. Vicentini, C.J.B. Pagan et al., Boosting energy-storage capability in carbon-based supercapacitors using low-temperature water-in-salt electrolytes. J. Energy Chem. 70, 521–530 (2022). https://doi.org/10.1016/j.jechem.2022.02.055
- J. Xu, J. Zhang, T.P. Pollard, Q. Li, S. Tan et al., Electrolyte design for Li-ion batteries under extreme operating conditions. Nature 614(7949), 694–700 (2023). https://doi.org/10.1038/s41586-022-05627-8
- L. Yu, J. Huang, S. Wang, L. Qi, S. Wang et al., Ionic liquid “water pocket” for stable and environment-adaptable aqueous zinc metal batteries. Adv. Mater. 35(21), 2210789 (2023). https://doi.org/10.1002/adma.202210789
- Q. Li, H. Hong, X. Guo, J. Zhu, Y. Hou et al., Distinct chemistry between Zn and Li at varied temperature. Sci. Bull. 68(10), 998–1007 (2023). https://doi.org/10.1016/j.scib.2023.04.020
- L.E. Blanc, D. Kundu, L.F. Nazar, Scientific challenges for the implementation of Zn-ion batteries. Joule 4(4), 771–799 (2020). https://doi.org/10.1016/j.joule.2020.03.002
- G. Qu, H. Wei, S. Zhao, Y. Yang, X. Zhang et al., A temperature self-adaptive electrolyte for wide-temperature aqueous zinc-ion batteries. Adv. Mater. 36(29), 2400370 (2024). https://doi.org/10.1002/adma.202400370
- M. Chen, S. Xie, X. Zhao, W. Zhou, Y. Li et al., Aqueous zinc-ion batteries at extreme temperature: mechanisms, challenges, and strategies. Energy Storage Mater. 51, 683–718 (2022). https://doi.org/10.1016/j.ensm.2022.06.052
- Y. Shi, Y. Liu, R. Chang, G. Zhang, Y. Rang et al., Aspartame endowed ZnO-based self-healing solid electrolyte interface film for long-cycling and wide-temperature aqueous Zn-ion batteries. Nano-Micro Lett. 17(1), 254 (2025). https://doi.org/10.1007/s40820-025-01765-6
- J. Xie, Z. Liang, Y.-C. Lu, Molecular crowding electrolytes for high-voltage aqueous batteries. Nat. Mater. 19(9), 1006–1011 (2020). https://doi.org/10.1038/s41563-020-0667-y
- H. Jiang, L. Tang, Y. Fu, S. Wang, S.K. Sandstrom et al., Chloride electrolyte enabled practical zinc metal battery with a near-unity Coulombic efficiency. Nat. Sustain. 6(7), 806–815 (2023). https://doi.org/10.1038/s41893-023-01092-x
- D. Dong, T. Wang, Y. Sun, J. Fan, Y.-C. Lu, Hydrotropic solubilization of zinc acetates for sustainable aqueous battery electrolytes. Nat. Sustain. 6(11), 1474–1484 (2023). https://doi.org/10.1038/s41893-023-01172-y
- Z. Pan, Z. Zhang, W. Li, X. Huo, Y. Liu et al., Development of a high-performance ammonium formate fuel cell. ACS Energy Lett. 8(9), 3742–3749 (2023). https://doi.org/10.1021/acsenergylett.3c01165
- Y. Wang, L.-E. Mo, X. Zhang, Y. Ren, T. Wei et al., Regulating water activity for all-climate aqueous zinc-ion batteries. Adv. Energy Mater. 14(33), 2402041 (2024). https://doi.org/10.1002/aenm.202402041
- Q. Rong, W. Lei, J. Huang, M. Liu, Low temperature tolerant organohydrogel electrolytes for flexible solid-state supercapacitors. Adv. Energy Mater. 8(31), 1801967 (2018). https://doi.org/10.1002/aenm.201801967
- F. Tao, L. Qin, Z. Wang, Q. Pan, Self-healable and cold-resistant supercapacitor based on a multifunctional hydrogel electrolyte. ACS Appl. Mater. Interfaces 9(18), 15541–15548 (2017). https://doi.org/10.1021/acsami.7b03223
- S. Wang, Y. Ying, S. Chen, H. Wang, K.K.K. Cheung et al., Highly reversible zinc metal anode enabled by zinc fluoroborate salt-based Hydrous organic electrolyte. Energy Storage Mater. 63, 102971 (2023). https://doi.org/10.1016/j.ensm.2023.102971
- T. Liang, R. Hou, Q. Dou, H. Zhang, X. Yan, The applications of water-in-salt electrolytes in electrochemical energy storage devices. Adv. Funct. Mater. 31(3), 2006749 (2021). https://doi.org/10.1002/adfm.202006749
- J. Chen, Y. Zhang, H. Lu, J. Ding, X. Wang et al., Electrolyte solvation chemistry to construct an anion-tuned interphase for stable high-temperature lithium metal batteries. eScience 3(4), 100135 (2023). https://doi.org/10.1016/j.esci.2023.100135
- R. Zhang, W.K. Pang, J. Vongsvivut, J.A. Yuwono, G. Li et al., Weakly solvating aqueous-based electrolyte facilitated by a soft co-solvent for extreme temperature operations of zinc-ion batteries. Energy Environ. Sci. 17(13), 4569–4581 (2024). https://doi.org/10.1039/D4EE00942H
- H. Dou, X. Wu, M. Xu, R. Feng, Q. Ma et al., Steric-hindrance effect tuned ion solvation enabling high performance aqueous zinc ion batteries. Angew. Chem. Int. Ed. 63(21), e202401974 (2024). https://doi.org/10.1002/anie.202401974
- S. Han, Q.-B. Guo, Y.-X. Lu, L.-Q. Chen, Y.-S. Hu, Recent progress in aqueous akali-metal-ion batteries at low temperatures. Acta Phys. Sin. 72(7), 070702 (2023). https://doi.org/10.7498/aps.72.20230024
- J. Yue, J. Zhang, Y. Tong, M. Chen, L. Liu et al., Aqueous interphase formed by CO2 brings electrolytes back to salt-in-water regime. Nat. Chem. 13(11), 1061–1069 (2021). https://doi.org/10.1038/s41557-021-00787-y
- C. Li, R. Kingsbury, A.S. Thind, A. Shyamsunder, T.T. Fister et al., Enabling selective zinc-ion intercalation by a eutectic electrolyte for practical anodeless zinc batteries. Nat. Commun. 14(1), 3067 (2023). https://doi.org/10.1038/s41467-023-38460-2
- Y. Yang, S. Liang, B. Lu, J. Zhou, Eutectic electrolyte based on N-methylacetamide for highly reversible zinc–iodine battery. Energy Environ. Sci. 15(3), 1192–1200 (2022). https://doi.org/10.1039/d1ee03268b
- Y. Wang, Z. Wang, W. Pang, W. Lie, J.A. Yuwono et al., Solvent control of water O-H bonds for highly reversible zinc ion batteries. Nat. Commun. 14(1), 2720 (2023). https://doi.org/10.1038/s41467-023-38384-x
- Y. Wang, Z. Wang, F. Yang, S. Liu, S. Zhang et al., Electrolyte engineering enables high performance zinc-ion batteries. Small 18(43), 2107033 (2022). https://doi.org/10.1002/smll.202107033
- Q. Dong, H. Ao, Z. Qin, Z. Xu, J. Ye et al., Synergistic chaotropic effect and cathode interface thermal release effect enabling ultralow temperature aqueous zinc battery. Small 18(44), 2203347 (2022). https://doi.org/10.1002/smll.202203347
- H. Gao, Z. Zhao, Y. Cai, J. Zhou, W. Hua et al., Adaptive and freeze-tolerant heteronetwork organohydrogels with enhanced mechanical stability over a wide temperature range. Nat. Commun. 8, 15911 (2017). https://doi.org/10.1038/ncomms15911
- W. Zhang, P. Feng, J. Chen, Z. Sun, B. Zhao, Electrically conductive hydrogels for flexible energy storage systems. Prog. Polym. Sci. 88, 220–240 (2019). https://doi.org/10.1016/j.progpolymsci.2018.09.001
- X. Tian, Q. Zhu, B. Xu, “Water-in-salt” electrolytes for supercapacitors: a review. Chemsuschem 14(12), 2501–2515 (2021). https://doi.org/10.1002/cssc.202100230
- Y. Shen, B. Liu, X. Liu, J. Liu, J. Ding et al., Water-in-salt electrolyte for safe and high-energy aqueous battery. Energy Storage Mater. 34, 461–474 (2021). https://doi.org/10.1016/j.ensm.2020.10.011
- B. Niu, Z. Li, D. Luo, X. Ma, Q. Yang et al., Nano-scaled hydrophobic confinement of aqueous electrolyte by a nonionic amphiphilic polymer for long-lasting and wide-temperature Zn-based energy storage. Energy Environ. Sci. 16(4), 1662–1675 (2023). https://doi.org/10.1039/D2EE04023A
- Q. Fu, X. Wu, X. Luo, S. Indris, A. Sarapulova et al., High-voltage aqueous Mg-ion batteries enabled by solvation structure reorganization. Adv. Funct. Mater. 32(16), 2110674 (2022). https://doi.org/10.1002/adfm.202110674
- C. Sun, H. Wang, F. Yang, A. Tang, G. Huang et al., Layered buserite Mg–Mn oxide cathode for aqueous rechargeable Mg-ion battery. J. Magn. Alloys 11(3), 840–850 (2023). https://doi.org/10.1016/j.jma.2022.11.005
- M. Wang, T. Li, Y. Yin, J. Yan, H. Zhang et al., A − 60 °C low-temperature aqueous lithium ion-bromine battery with high power density enabled by electrolyte design. Adv. Energy Mater. 12(25), 2200728 (2022). https://doi.org/10.1002/aenm.202200728
- H. Zhu, L. Peng, F. Kang, C. Zhi, C. Yang, Bismuth: an epitaxy-like conversion mechanism enabled by intercalation-conversion chemistry for stable aqueous chloride-ion storage. J. Am. Chem. Soc. 146(34), 23786–23796 (2024). https://doi.org/10.1021/jacs.4c05337
- H. Wu, J. Hao, Y. Jiang, Y. Jiao, J. Liu et al., Alkaline-based aqueous sodium-ion batteries for large-scale energy storage. Nat. Commun. 15(1), 575 (2024). https://doi.org/10.1038/s41467-024-44855-6
- L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho et al., “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Sci. 350(6263), 938–943 (2015). https://doi.org/10.1126/science.aab1595
- R. Malik, A. Abdellahi, G. Ceder, A critical review of the Li insertion mechanisms in LiFePO4Electrodes. J. Electrochem. Soc. 160(5), A3179–A3197 (2013). https://doi.org/10.1149/2.029305jes
- A.V. Cresce, S.M. Russell, D.R. Baker, K.J. Gaskell, K. Xu, In situ and quantitative characterization of solid electrolyte interphases. Nano Lett. 14(3), 1405–1412 (2014). https://doi.org/10.1021/nl404471v
- H. Wang, H. Zhang, Y. Cheng, K. Feng, X. Li et al., All-NASICON LVP-LTP aqueous lithium ion battery with excellent stability and low-temperature performance. Electrochim. Acta 278, 279–289 (2018). https://doi.org/10.1016/j.electacta.2018.05.047
- H.-I. Kim, E. Shin, S.-H. Kim, K.M. Lee, J. Park et al., Aqueous eutectic lithium-ion electrolytes for wide-temperature operation. Energy Storage Mater. 36, 222–228 (2021). https://doi.org/10.1016/j.ensm.2020.12.024
- A. Ramanujapuram, G. Yushin, Understanding the exceptional performance of lithium-ion battery cathodes in aqueous electrolytes at subzero temperatures. Adv. Energy Mater. 8(35), 1802624 (2018). https://doi.org/10.1002/aenm.201802624
- Z. Liang, F. Tian, G. Yang, C. Wang, Enabling long-cycling aqueous sodium-ion batteries via Mn dissolution inhibition using sodium ferrocyanide electrolyte additive. Nat. Commun. 14(1), 3591 (2023). https://doi.org/10.1038/s41467-023-39385-6
- M.H. Lee, S.J. Kim, D. Chang, J. Kim, S. Moon et al., Toward a low-cost high-voltage sodium aqueous rechargeable battery. Mater. Today 29, 26–36 (2019). https://doi.org/10.1016/j.mattod.2019.02.004
- Q. Nian, S. Liu, J. Liu, Q. Zhang, J. Shi et al., All-climate aqueous dual-ion hybrid battery with ultrahigh rate and ultralong life performance. ACS Appl. Energy Mater. 2(6), 4370–4378 (2019). https://doi.org/10.1021/acsaem.9b00566
- X. Wang, H. Huang, F. Zhou, P. Das, P. Wen et al., High-voltage aqueous planar symmetric sodium ion micro-batteries with superior performance at low-temperature of −40 ºC. Nano Energy 82, 105688 (2021). https://doi.org/10.1016/j.nanoen.2020.105688
- M. Becker, R.-S. Kühnel, C. Battaglia, Water-in-salt electrolytes for aqueous lithium-ion batteries with liquidus temperatures below − 10 °C. Chem. Commun. 55(80), 12032–12035 (2019). https://doi.org/10.1039/c9cc04495g
- J. Han, H. Zhang, A. Varzi, S. Passerini, Fluorine-free water-in-salt electrolyte for green and low-cost aqueous sodium-ion batteries. Chemsuschem 11(21), 3704–3707 (2018). https://doi.org/10.1002/cssc.201801930
- L. Jiang, S. Han, Y.-C. Hu, Y. Yang, Y. Lu et al., Rational design of anti-freezing electrolytes for extremely low-temperature aqueous batteries. Nat. Energy 9(7), 839–848 (2024). https://doi.org/10.1038/s41560-024-01527-5
- X. Zhang, T. Xiong, B. He, S. Feng, X. Wang et al., Recent advances and perspectives in aqueous potassium-ion batteries. Energy Environ. Sci. 15(9), 3750–3774 (2022). https://doi.org/10.1039/D2EE01573K
- D.P. Leonard, Z. Wei, G. Chen, F. Du, X. Ji, Water-in-salt electrolyte for potassium-ion batteries. ACS Energy Lett. 3(2), 373–374 (2018). https://doi.org/10.1021/acsenergylett.8b00009
- M.R. Lukatskaya, J.I. Feldblyum, D.G. Mackanic, F. Lissel, D.L. Michels et al., Concentrated mixed cation acetate “water-in-salt” solutions as green and low-cost high voltage electrolytes for aqueous batteries. Energy Environ. Sci. 11(10), 2876–2883 (2018). https://doi.org/10.1039/C8EE00833G
- M.C. Masiker, C.L. Mayne, B.J. Boone, A.M. Orendt, E.M. Eyring, 7Li NMR chemical shift titration and theoretical DFT calculation studies: solvent and anion effects on second-order complexation of 12-crown-4 and 1-aza-12-crown-4 with Lithium cation in several aprotic solvents. Magn. Reson. Chem. 48(2), 94–100 (2010). https://doi.org/10.1002/mrc.2542
- J. Liu, C. Yang, X. Chi, B. Wen, W. Wang et al., Water/sulfolane hybrid electrolyte achieves ultralow-temperature operation for high-voltage aqueous lithium-ion batteries. Adv. Funct. Mater. 32(1), 2106811 (2022). https://doi.org/10.1002/adfm.202106811
- Z. Ma, Z. Xie, J. Liu, J. Vatamanu, L. Xing et al., Distinct roles: co-solvent and additive synergy for expansive electrochemical range and low-temperature aqueous batteries. Energy Storage Mater. 66, 103203 (2024). https://doi.org/10.1016/j.ensm.2024.103203
- L. Suo, O. Borodin, W. Sun, X. Fan, C. Yang et al., Advanced high-voltage aqueous lithium-ion battery enabled by “water-in-bisalt” electrolyte. Angew. Chem. Int. Ed. 55(25), 7136–7141 (2016). https://doi.org/10.1002/anie.201602397
- S. Wang, S. Chen, Y. Ying, G. Li, H. Wang et al., Fast reaction kinetics and commendable low-temperature adaptability of zinc batteries enabled by aprotic water-acetamide symbiotic solvation sheath. Angew. Chem. Int. Ed. 63(8), e202316841 (2024). https://doi.org/10.1002/anie.202316841
- Q. Dou, S. Lei, D.-W. Wang, Q. Zhang, D. Xiao et al., Safe and high-rate supercapacitors based on an “acetonitrile/water in salt” hybrid electrolyte. Energy Environ. Sci. 11(11), 3212–3219 (2018). https://doi.org/10.1039/C8EE01040D
- A. Tron, S. Jeong, Y.D. Park, J. Mun, Aqueous lithium-ion battery of nano-LiFePO4 with antifreezing agent of ethyleneglycol for low-temperature operation. ACS Sustain. Chem. Eng. 7(17), 14531–14538 (2019). https://doi.org/10.1021/acssuschemeng.9b02042
- J. Chen, J. Vatamanu, L. Xing, O. Borodin, H. Chen et al., Improving electrochemical stability and low-temperature performance with water/acetonitrile hybrid electrolytes. Adv. Energy Mater. 10(3), 1902654 (2020). https://doi.org/10.1002/aenm.201902654
- Z. Ma, J. Chen, J. Vatamanu, O. Borodin, D. Bedrov et al., Expanding the low-temperature and high-voltage limits of aqueous lithium-ion battery. Energy Storage Mater. 45, 903–910 (2022). https://doi.org/10.1016/j.ensm.2021.12.045
- J.E. Lovelock, M.W.H. Bishop, Prevention of freezing damage to living cells by dimethyl sulphoxide. Nature 183(4672), 1394–1395 (1959). https://doi.org/10.1038/1831394a0
- C. Tang, M. Li, J. Du, Y. Wang, Y. Zhang et al., Supramolecular-induced 2.40 V 130 °C working-temperature-range supercapacitor aqueous electrolyte of lithium bis(trifluoromethanesulfonyl) imide in dimethyl sulfoxide-water. J. Colloid Interface Sci. 608(Pt 2), 1162–1172 (2022). https://doi.org/10.1016/j.jcis.2021.10.090
- R.N. Havemeyer, Freezing point curve of dimethyl sulfoxide: water solutions. J. Pharm. Sci. 55(8), 851–853 (1966). https://doi.org/10.1002/jps.2600550822
- Q. Nian, J. Wang, S. Liu, T. Sun, S. Zheng et al., Aqueous batteries operated at − 50 °C. Angew. Chem. Int. Ed. 58(47), 16994–16999 (2019). https://doi.org/10.1002/anie.201908913
- K. Zhu, Z. Sun, Z. Li, P. Liu, X. Chen et al., Aqueous sodium ion hybrid batteries with ultra-long cycle life at − 50 °C. Energy Storage Mater. 53, 523–531 (2022). https://doi.org/10.1016/j.ensm.2022.09.019
- M. Nagaraju, G. Narahari Sastry, Comparative study on formamide–water complex. Int. J. Quantum Chem. 110(10), 1994–2003 (2010). https://doi.org/10.1002/qua.22368
- Y. Sun, Y. Zhang, Z. Xu, W. Gou, X. Han et al., Dilute hybrid electrolyte for low-temperature aqueous sodium-ion batteries. Chemsuschem 15(23), e202201362 (2022). https://doi.org/10.1002/cssc.202201362
- G. Zeng, U. Ali, M. Sun, Y. Zhang, L. Fu et al., Intercalation pseudocapacitance mechanism realizes high-performance cathode for aqueous potassium ion batteries. J. Colloid Interface Sci. 653(Pt A), 46–55 (2024). https://doi.org/10.1016/j.jcis.2023.09.061
- D. Reber, O. Borodin, M. Becker, D. Rentsch, J.H. Thienenkamp et al., Water/ionic liquid/succinonitrile hybrid electrolytes for aqueous batteries. Adv. Funct. Mater. 32(20), 2112138 (2022). https://doi.org/10.1002/adfm.202112138
- L. Ma, S. Chen, D. Wang, Q. Yang, F. Mo et al., Super-stretchable zinc–air batteries based on an alkaline-tolerant dual-network hydrogel electrolyte. Adv. Energy Mater. 9(12), 1803046 (2019). https://doi.org/10.1002/aenm.201803046
- D. Wang, H. Li, Z. Liu, Z. Tang, G. Liang et al., A nanofibrillated cellulose/polyacrylamide electrolyte-based flexible and sewable high-performance Zn–MnO2 battery with superior shear resistance. Small 14(51), 1803978 (2018). https://doi.org/10.1002/smll.201803978
- X. Sui, H. Guo, P. Chen, Y. Zhu, C. Wen et al., Zwitterionic osmolyte-based hydrogels with antifreezing property, high conductivity, and stable flexibility at subzero temperature. Adv. Funct. Mater. 30(7), 1907986 (2020). https://doi.org/10.1002/adfm.201907986
- F. Mo, G. Liang, Q. Meng, Z. Liu, H. Li et al., A flexible rechargeable aqueous zinc manganese-dioxide battery working at − 20 °C. Energy Environ. Sci. 12(2), 706–715 (2019). https://doi.org/10.1039/c8ee02892c
- J. Yang, Z. Xu, J. Wang, L. Gai, X. Ji et al., Antifreezing zwitterionic hydrogel electrolyte with high conductivity of 12.6 mS cm−1 at − 40 °C through hydrated lithium ion hopping migration. Adv. Funct. Mater. 31(18), 2009438 (2021). https://doi.org/10.1002/adfm.202009438
- Y. Hu, R. Shi, Y. Ren, W. Peng, C. Feng et al., A “two-in-one” strategy for flexible aqueous batteries operated at − 80 °C. Adv. Funct. Mater. 32(27), 2203081 (2022). https://doi.org/10.1002/adfm.202203081
- Q. Nian, T. Sun, Y. Li, S. Jin, S. Liu et al., Regulating frozen electrolyte structure with colloidal dispersion for low temperature aqueous batteries. Angew. Chem. Int. Ed. 135(9), e202217671 (2023). https://doi.org/10.1002/ange.202217671
- Y. Cao, T. Chang, C. Fang, Y. Zhang, H. Liu et al., Inhibition effect of Ti3C2Tx MXene on ice crystals combined with laser-mediated heating facilitates high-performance cryopreservation. ACS Nano 16(6), 8837–8850 (2022). https://doi.org/10.1021/acsnano.1c10221
- G. Bai, Z. Song, H. Geng, D. Gao, K. Liu et al., Oxidized quasi-carbon nitride quantum dots inhibit ice growth. Adv. Mater. 29(28), 1606843 (2017). https://doi.org/10.1002/adma.201606843
- J.A. Raymond, A.L. DeVries, Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc. Natl. Acad. Sci. U.S.A. 74(6), 2589–2593 (1977). https://doi.org/10.1073/pnas.74.6.2589
- B. Zhao, H. Hao, H. Lei, J. Yang, L. Tang et al. An anti-freezing pure inorganic electrolyte for long cycle life aqueous sodium-ion batteries at −40 ℃. Energy Storage Mater. 71, 103562 (2024). https://doi.org/10.1016/j.ensm.2024.103562
- L. Jiang, Y. Lu, C. Zhao, L. Liu, J. Zhang et al., Building aqueous K-ion batteries for energy storage. Nat. Energy 4(6), 495–503 (2019). https://doi.org/10.1038/s41560-019-0388-0
- J. Wei, P. Zhang, Y. Liu, M. Zhu, T. Dai et al., Wide-voltage-window amphiphilic supramolecule excluded-volume electrolytes for ultra-durable full-cell aqueous potassium-ion batteries. Chem. Eng. J. 459, 141623 (2023). https://doi.org/10.1016/j.cej.2023.141623
- J.-Z. Rong, T.-X. Cai, Y.-Z. Bai, X. Zhao, T. Wu et al., A free-sealed high-voltage aqueous polymeric sodium battery enabling operation at −25 ℃. Cell Reports Physical Sci. 3(3), 100805 (2022). https://doi.org/10.1016/j.xcrp.2022.100805
- F. Chen, J. Wang, J. Liao, S. Wang, Z. Wen et al. A hydrogel-enabled free-standing polypyrrole cathode film for potassium ion batteries with high mass loading and low-temperature stability. J. Mater. Chem. A 9(26), 15045–15050 (2021). https://doi.org/10.1039/d1ta02209a
- X. Yun, Y. Chen, H. Gao, D. Li, L. Zuo et al., Regulation of dipolar-dipolar and ion-dipolar interactions simultaneously in strong solvating electrolytes for all-temperature zinc-ion batteries. Adv. Engery Mater. 14(25), 2304341 (2024). https://doi.org/10.1002/aenm.202304341
- T.-C. Duan, S.-J. Yan, Y. Zhao, T.-Y. Sun, Y.-M. Li et al., Relationship between hydrogen bond network dynamics of water and its terahertz spectrum. Acta Phys. Sin. 70(24), 248702 (2021). https://doi.org/10.7498/aps.70.20211731
- F. Zeng, C. Mebrahtu, L. Liao, A. K. Beine, R. Palkovits, Stability and deactivation of OER electrocatalysts: A review. J. Energy Chem. 69, 301–329 (2022). https://doi.org/10.1016/j.jechem.2022.01.025
- X. Xie, H. Fu, Y. Fang, B. Lu, J. Zhou et al., Manipulating ion concentration to boost two-electron Mn4+/Mn2+ redox kinetics through a colloid electrolyte for high-capacity zinc batteries. Adv. Energy Mater. 12(5), 2102393 (2022). https://doi.org/10.1002/aenm.202102393
- X. Zhou, X. Chen, Z. Yang, X. Liu, Z. Hao et al., Anion receptor weakens ClO4− solvation for high-temperature sodium-ion batteries. Adv. Funct. Mater. 34(5), 2302281 (2024). https://doi.org/10.1002/adfm.202302281
- R. Chen, X. Xu, S. Peng, J. Chen, D. Yu et al., A flexible and safe aqueous zinc-air battery with a wide operating temperature range from −20 to 70 ℃. ACS Sustain. Chem. Eng. 8(31), 11501–11511 (2020). https://doi.org/10.1021/acssuschemeng.0c01111
- R.M. Wittman, M.L. Perry, T.N. Lambert, B.R. Chalamala, Y. Preger, Perspective—On the need for reliability and safety studies of grid-scale aqueous batteries. Electrochem. Soc. 167(9), 090545 (2020). https://doi.org/10.1149/1945-7111/ab9406
- C. Echeverria, S. Fernandes, M. Godinho, J. Borges, P. Soares, Functional stimuli-responsive gels: hydrogels and microgels. Gels 4(2), 54 (2018). https://doi.org/10.3390/gels4020054
- S. Municoy, M.I. Álvarez Echazú, P.E. Antezana, J.M. Galdopórpora, C. Olivetti et al., Stimuli-responsive materials for tissue engineering and drug delivery. Int. J. Mol. Sci. 21(13), 4724 (2020). https://doi.org/10.3390/ijms21134724
- P. Chakma, L.H.R. Possarle, Z.A. Digby, B. Zhang, J.L. Sparks et al., Dual stimuli responsive self-healing and malleable materials based on dynamic thiol-Michael chemistry. Polym. Chem. 8(42), 6534–6543 (2017). https://doi.org/10.1039/c7py01356f
- Y. Yang, Z. Bai, S. Liu, Y. Zhu, J. Zheng et al., Self-protecting aqueous lithium-ion batteries. Small 18(38), 2203035 (2022). https://doi.org/10.1002/smll.202203035
- T. Sun, C. Liu, J. Wang, Q. Nian, Y. Feng et al., A phenazine anode for high-performance aqueous rechargeable batteries in a wide temperature range. Nano Res. 13(3), 676–683 (2020). https://doi.org/10.1007/s12274-020-2674-3
- X. Wang, Y. Ying, S. Chen, Q. Meng, H. Huang et al., Lean-water electrolyte to stabilize zinc anode and suppress manganese dissolution of cathode for ampere-hour zinc batteries. Nano Energy 119, 109099 (2024). https://doi.org/10.1016/j.nanoen.2023.109099
- Z. Hou, X. Zhang, H. Ao, M. Liu, Y. Zhu et al., Passivation effect for current collectors enables high-voltage aqueous sodium ion batteries. Mater. Today Energy 14, 100337 (2019). https://doi.org/10.1016/j.mtener.2019.06.012
- W. Luo, J. Hayden, S.-H. Jang, Y. Wang, Y. Zhang et al., Highly conductive, light weight, robust, corrosion-resistant, scalable, all-fiber based current collectors for aqueous acidic batteries. Adv. Energy Mater. 8(9), 1702615 (2018). https://doi.org/10.1002/aenm.201702615
- T. Qin, H. Yang, L. Wang, W. Xue, N. Yao et al., Molecule design for non-aqueous wide-temperature electrolytes via the intelligentized screening method. Angew. Chem. Int. Ed. 63(37), e202408902 (2024). https://doi.org/10.1002/anie.202408902
- J. Zhang, D. Sarker, M. Beltran, Y. Xiang, C. Toher et al., Dual-objective optimization of lithium metal battery electrolytes via machine learning. Mater. Today Energy 51, 101909 (2025). https://doi.org/10.1016/j.mtener.2025.101909
- X. Dong, L. Chen, J. Liu, S. Haller, Y. Wang et al. Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life. Sci. Adv. 2, e1501038 (2016). https://doi.org/10.1126/sciadv.1501038
- Y. Liang, Y. Jing, S. Gheytani, K.-Y. Lee, P. Liu et al., Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat. Mater. 16(8), 841 (2017). https://doi.org/10.1038/nmat4919
- Y. Zhang, J. Xu, Z. Li, Y. Wang, S. Wang et al., All-climate aqueous Na-ion batteries using “water-in-salt” electrolyte. Sci. Bull. 67(2), 161–170 (2022). https://doi.org/10.1016/j.scib.2021.08.010
- T. Sun, X. Yuan, K. Wang, S. Zheng, J. Shi et al., An ultralow-temperature aqueous zinc-ion battery. J. Mater. Chem. A 9(11), 7042–7047 (2021). https://doi.org/10.1039/d0ta12409e
- C. Wu, Y. Zhou, X. Zhu, M Zhan, H. Yang et al., Research progress on high concentration electrolytes for Li metal batteries. Acta Phys.-Chim. Sin. 37(2), 2008044 (2021). https://doi.org/10.3866/pku.whxb202008044
- S. Lin, H. Hua, P. Lai, J. Zhao, A multifunctional dual-salt localized high-concentration electrolyte for fast dynamic high-voltage lithium battery in wide temperature range. Adv. Energy Mater. 11(36), 2101775 (2021). https://doi.org/10.1002/aenm.202101775
- L.-D. Xing, Q.-M. Xie, W.-S. Li, Research progress on electrochemical properties of electrolyte and its interphase. Acta Phys. Sin. 69(22), 228205 (2020). https://doi.org/10.7498/aps.69.20201553
- C. Xu, H. Wang, C. Lei, J. Li, W. Ma, et al., Fast single metal cation conduction in ionwater aggregated aqueous battery electrolytes. Nat. Commun. 16, 4574 (2025). https://doi.org/10.1038/s41467-025-59958-x
- T. Liu, K.-T. Liu, J. Wang, X. Ji, P. Lan et al., Achievement of a polymer-free KAc gel electrolyte for advanced aqueous K-ion battery. Energy Storage Mater. 41, 133–140 (2021). https://doi.org/10.1016/j.ensm.2021.06.001
- Y. Li, Z. Zhou, W. Deng, C. Li, X. Yuan et al., A superconcentrated water-in-salt hydrogel electrolyte for high-voltage aqueous K-ion batteries. Chemelectrochem 8(8), 1451–1454 (2021). https://doi.org/10.1002/celc.202001509
References
T. Jin, X. Ji, P.-F. Wang, K. Zhu, J. Zhang et al., High-energy aqueous sodium-ion batteries. Angew. Chem. Int. Ed. 60(21), 11943–11948 (2021). https://doi.org/10.1002/anie.202017167
W. He, H. Xu, Z. Chen, J. Long, J. Zhang et al., Regulating the solvation structure of Li+ enables chemical prelithiation of silicon-based anodes toward high-energy lithium-ion batteries. Nano-Micro Lett. 15(1), 107 (2023). https://doi.org/10.1007/s40820-023-01068-8
D. Ji, J. Kim, Trend of developing aqueous liquid and gel electrolytes for sustainable, safe, and high-performance Li-ion batteries. Nano-Micro Lett. 16(1), 2 (2023). https://doi.org/10.1007/s40820-023-01220-4
Y. Yang, W. Yang, H. Yang, H. Zhou, Electrolyte design principles for low-temperature lithium-ion batteries. eScience 3(6), 100170 (2023). https://doi.org/10.1016/j.esci.2023.100170
R. Luo, Q. Guo, Z. Tang, M. Zhang, X. Li et al., Boosting redox kinetics of sulfur electrochemistry by manipulating interfacial charge redistribution and multiple spatial confinement in Mott-Schottky electrocatalysts. Adv. Funct. Mater. 33(48), 2306115 (2023). https://doi.org/10.1002/adfm.202306115
S. Zhang, J. Hong, X. Zeng, J. Hao, Y. Zheng et al., Constructing layered nanostructures from non-layered sulfide crystals via surface charge manipulation strategy. Adv. Funct. Mater. 31(32), 2101676 (2021). https://doi.org/10.1002/adfm.202101676
Q. Guo, R. Luo, Z. Tang, X. Li, X. Feng et al., Bidirectional interphase modulation of phosphate electrolyte enables intrinsic safety and superior stability for high-voltage lithium-metal batteries. ACS Nano 17(23), 24227–24241 (2023). https://doi.org/10.1021/acsnano.3c09643
T. Shao, C. Liu, W. Deng, C. Li, X. Wang et al., Recent research on strategies to improve ion conduction in alkali metal-ion batteries. Batter. Supercaps 2(5), 403–427 (2019). https://doi.org/10.1002/batt.201800147
X. Yi, H. Fu, A.M. Rao, Y. Zhang, J. Zhou et al., Safe electrolyte for long-cycling alkali-ion batteries. Nat. Sustain. 7(3), 326–337 (2024). https://doi.org/10.1038/s41893-024-01275-0
C. Deng, Y. Li, J. Huang, Building smarter aqueous batteries. Small Methods 8(6), 2470033 (2024). https://doi.org/10.1002/smtd.202470033
Y. Liang, Y. Yao, Designing modern aqueous batteries. Nat. Rev. Mater. 8(2), 109–122 (2023). https://doi.org/10.1038/s41578-022-00511-3
H. Wang, Z. Chen, Z. Ji, P. Wang, J. Wang et al., Temperature adaptability issue of aqueous rechargeable batteries. Mater. Today Energy 19, 100577 (2021). https://doi.org/10.1016/j.mtener.2020.100577
T. Liu, H. Wu, H. Wang, Y. Jiao, X. Du et al., A molecular-sieving interphase towards low-concentrated aqueous sodium-ion batteries. Nano-Micro Lett. 16(1), 144 (2024). https://doi.org/10.1007/s40820-024-01340-5
M. Li, R. Li, H. Ma, M. Yang, Y. Dai et al., An ultra-stable, high-energy and wide-temperature-range aqueous alkaline sodium-ion battery with the microporous C4N/rGO anode. Nano-Micro Lett. 17(1), 158 (2025). https://doi.org/10.1007/s40820-024-01589-w
Y. Xia, R. Tong, J. Zhang, M. Xu, G. Shao et al., Polarizable additive with intermediate chelation strength for stable aqueous zinc-ion batteries. Nano-Micro Lett. 16(1), 82 (2024). https://doi.org/10.1007/s40820-023-01305-0
L. Sun, Z. Song, C. Deng, Q. Wang, F. Mo et al., Electrolytes for aqueous Zn-ion batteries working in wide-temperature range: progress and perspective. Batteries 9(7), 386 (2023). https://doi.org/10.3390/batteries9070386
A. Ejigu, L.W. Le Fevre, A. Elgendy, B.F. Spencer, C. Bawn et al., Optimization of electrolytes for high-performance aqueous aluminum-ion batteries. ACS Appl. Mater. Interfaces 14(22), 25232–25245 (2022). https://doi.org/10.1021/acsami.1c23278
R. Wang, M. Shi, L. Li, Y. Zhao, L. Zhao et al., In-situ investigation and application of cyano-substituted organic electrode for rechargeable aqueous Na-ion batteries. Chem. Eng. J. 451, 138652 (2023). https://doi.org/10.1016/j.cej.2022.138652
D. Sui, R. Luo, S. Xie, H. Zhang, T. Ma et al., Atomic ruthenium doping in collaboration with oxygen vacancy engineering boosts the hydrogen evolution reaction by optimizing H absorption. Chem. Eng. J. 480, 148007 (2024). https://doi.org/10.1016/j.cej.2023.148007
Y. You, Z. Sang, J. Liu, Recent developments on aqueous sodium-ion batteries. Mater. Technol. 31(9), 501–509 (2016). https://doi.org/10.1080/10667857.2016.1189709
K. Kubota, M. Dahbi, T. Hosaka, S. Kumakura, S. Komaba, Towards K-ion and Na-ion batteries as “beyond Li-ion.” Chem. Rec. 18(4), 459–479 (2018). https://doi.org/10.1002/tcr.201700057
P. Nakhanivej, H.H. Rana, H. Kim, B.Y. Xia, H.S. Park, Transport and durability of energy storage materials operating at high temperatures. ACS Nano 14(7), 7696–7703 (2020). https://doi.org/10.1021/acsnano.0c04402
X. Lin, M. Salari, L.M.R. Arava, P.M. Ajayan, M.W. Grinstaff, High temperature electrical energy storage: advances, challenges, and frontiers. Chem. Soc. Rev. 45(21), 5848–5887 (2016). https://doi.org/10.1039/C6CS00012F
Y. Feng, L. Zhou, H. Ma, Z. Wu, Q. Zhao et al., Challenges and advances in wide-temperature rechargeable lithium batteries. Energy Environ. Sci. 15(5), 1711–1759 (2022). https://doi.org/10.1039/d1ee03292e
M.F. Rodrigues, G. Babu, H. Gullapalli, K. Kalaga, F.N. Sayed et al., A materials perspective on Li-ion batteries at extreme temperatures. Nat. Energy 2(8), 17108 (2017). https://doi.org/10.1038/nenergy.2017.108
Q. Zhang, K. Xia, Y. Ma, Y. Lu, L. Li et al., Chaotropic anion and fast-kinetics cathode enabling low-temperature aqueous Zn batteries. ACS Energy Lett. 6(8), 2704–2712 (2021). https://doi.org/10.1021/acsenergylett.1c01054
Y. Wang, H. Wei, Z. Li, X. Zhang, Z. Wei et al., Optimization strategies of electrolytes for low-temperature aqueous batteries. Chem. Rec. 22(10), e202200132 (2022). https://doi.org/10.1002/tcr.202200132
T. Sun, S. Zheng, H. Du, Z. Tao, Synergistic effect of cation and anion for low-temperature aqueous zinc-ion battery. Nano-Micro Lett. 13(1), 204 (2021). https://doi.org/10.1007/s40820-021-00733-0
J. Wang, Y. Yang, Y. Wang, S. Dong, L. Cheng et al., Working aqueous Zn metal batteries at 100 °C. ACS Nano 16(10), 15770–15778 (2022). https://doi.org/10.1021/acsnano.2c04114
Y. Zhao, Z. Chen, F. Mo, D. Wang, Y. Guo et al., Aqueous rechargeable metal-ion batteries working at subzero temperatures. Adv. Sci. 8(1), 2002590 (2020). https://doi.org/10.1002/advs.202002590
K. Zhu, Z. Sun, Z. Li, P. Liu, H. Li et al., Design strategies and recent advancements for low-temperature aqueous rechargeable energy storage. Adv. Energy Mater. 13(8), 2203708 (2023). https://doi.org/10.1002/aenm.202203708
C. You, W. Fan, X. Xiong, H. Yang, L. Fu et al., Design strategies for anti-freeze electrolytes in aqueous energy storage devices at low temperatures. Adv. Funct. Mater. 34(40), 2403616 (2024). https://doi.org/10.1002/adfm.202403616
L. Yue, M. Yu, X. Li, Y. Shen, Y. Wu et al., Wide temperature electrolytes for lithium batteries: solvation chemistry and interfacial reactions. Small Meth. 8(11), 2400183 (2024). https://doi.org/10.1002/smtd.202400183
J. Yue, L. Suo, Progress in rechargeable aqueous alkali-ion batteries in China. Energy Fuels 35(11), 9228–9239 (2021). https://doi.org/10.1021/acs.energyfuels.1c00817
C. Chen, Y. Zhao, Y. Li, J. Liu, Research progress of high-voltage/wide-temperature-range aqueous alkali metal-ion batteries. Acta Phys. Chim. Sin. (2023). https://doi.org/10.3866/pku.whxb202211005
L. He, C. Lin, P. Xiong, H. Lin, W. Lai et al., Progress in electrolyte engineering of aqueous batteries in a wide temperature range. Trans. Tianjin Univ. 29(5), 321–346 (2023). https://doi.org/10.1007/s12209-023-00366-x
M. Wang, L. Yin, M. Zheng, X. Liu, C. Yang et al., Temperature-responsive solvation enabled by dipole-dipole interactions towards wide-temperature sodium-ion batteries. Nat. Commun. 15(1), 8866 (2024). https://doi.org/10.1038/s41467-024-53259-5
S. Emamian, T. Lu, H. Kruse, H. Emamian, Exploring nature and predicting strength of hydrogen bonds: a correlation analysis between atoms-in-molecules descriptors, binding energies, and energy components of symmetry-adapted perturbation theory. J. Comput. Chem. 40(32), 2868–2881 (2019). https://doi.org/10.1002/jcc.26068
K. Zhu, Z. Li, Z. Sun, P. Liu, T. Jin et al., Inorganic electrolyte for low-temperature aqueous sodium ion batteries. Small 18(14), 2107662 (2022). https://doi.org/10.1002/smll.202107662
E.B. Moore, V. Molinero, Structural transformation in supercooled water controls the crystallization rate of ice. Nature 479(7374), 506–508 (2011). https://doi.org/10.1038/nature10586
Y. Liu, W. Li, L. Cheng, Q. Liu, J. Wei et al., Anti-freezing strategies of electrolyte and their application in electrochemical energy devices. Chem. Rec. 22(10), e202200068 (2022). https://doi.org/10.1002/tcr.202200068
M. Matsumoto, S. Saito, I. Ohmine, Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing. Nature 416(6879), 409–413 (2002). https://doi.org/10.1038/416409a
Q. Zhang, Y. Ma, Y. Lu, L. Li, F. Wan et al., Modulating electrolyte structure for ultralow temperature aqueous zinc batteries. Nat. Commun. 11(1), 4463 (2020). https://doi.org/10.1038/s41467-020-18284-0
P. Jungwirth, P.S. Cremer, Beyond hofmeister. Nat. Chem. 6(4), 261–263 (2014). https://doi.org/10.1038/nchem.1899
S. Ranallo, A. Amodio, A. Idili, A. Porchetta, F. Ricci, Electronic control of DNA-based nanoswitches and nanodevices. Chem. Sci. 7(1), 66–71 (2016). https://doi.org/10.1039/c5sc03694a
S. Azmi, A. Klimek, E. Frackowiak, Why electrochemical capacitor electrolytes should not be ignored? Electrochim. Acta 452, 142347 (2023). https://doi.org/10.1016/j.electacta.2023.142347
B. Hribar, N.T. Southall, V. Vlachy, K.A. Dill, How ions affect the structure of water. J. Am. Chem. Soc. 124(41), 12302–12311 (2002). https://doi.org/10.1021/ja026014h
C. Yan, Y. Wang, X. Deng, Y. Xu, Cooperative chloride hydrogel electrolytes enabling ultralow-temperature aqueous zinc ion batteries by the hofmeister effect. Nano-Micro Lett. 14(1), 98 (2022). https://doi.org/10.1007/s40820-022-00836-2
R. Hou, S. Guo, H. Zhou, Atomic insights into advances and issues in low-temperature electrolytes. Adv. Energy Mater. 13(14), 2300053 (2023). https://doi.org/10.1002/aenm.202300053
K.D. Collins, M.W. Washabaugh, The Hofmeister effect and the behaviour of water at interfaces. Q. Rev. Biophys. 18(4), 323–422 (1985). https://doi.org/10.1017/s0033583500005369
B. Kang, H. Tang, Z. Zhao, S. Song, Hofmeister series: insights of ion specificity from amphiphilic assembly and interface property. ACS Omega 5(12), 6229–6239 (2020). https://doi.org/10.1021/acsomega.0c00237
Y. Zhang, P.S. Cremer, Interactions between macromolecules and ions: the hofmeister series. Curr. Opin. Chem. Biol. 10(6), 658–663 (2006). https://doi.org/10.1016/j.cbpa.2006.09.020
M. Qiu, P. Sun, K. Han, Z. Pang, J. Du et al., Tailoring water structure with high-tetrahedral-entropy for antifreezing electrolytes and energy storage at − 80 °C. Nat. Commun. 14(1), 601 (2023). https://doi.org/10.1038/s41467-023-36198-5
L. Jiang, D. Dong, Y.-C. Lu, Design strategies for low temperature aqueous electrolytes. Nano Res. Energy 1, e9120003 (2022). https://doi.org/10.26599/nre.2022.9120003
C. Yang, J. Xia, C. Cui, T.P. Pollard, J. Vatamanu et al., All-temperature zinc batteries with high-entropy aqueous electrolyte. Nat. Sustain. 6(3), 325–335 (2023). https://doi.org/10.1038/s41893-022-01028-x
X. Fan, X. Ji, L. Chen, J. Chen, T. Deng et al., All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat. Energy 4(10), 882–890 (2019). https://doi.org/10.1038/s41560-019-0474-3
X. Dong, Y. Lin, P. Li, Y. Ma, J. Huang et al., High-energy rechargeable metallic lithium battery at − 70 °C enabled by a cosolvent electrolyte. Angew. Chem. Int. Ed. 58(17), 5623–5627 (2019). https://doi.org/10.1002/anie.201900266
C. You, W. Wu, W. Yuan, P. Han, Q. Zhang et al., Brine refrigerants for low-cost, safe aqueous supercapacitors with ultra-long stable operation at low temperatures. Adv. Funct. Mater. 33(2), 2208206 (2023). https://doi.org/10.1002/adfm.202208206
H. Gao, K. Tang, J. Xiao, X. Guo, W. Chen et al., Recent advances in “water in salt” electrolytes for aqueous rechargeable monovalent-ion (Li+, Na+, K+) batteries. J. Energy Chem. 69, 84–99 (2022). https://doi.org/10.1016/j.jechem.2021.12.025
J.P.A. Santos, M.J. Pinzón, É.A. Santos, R. Vicentini, C.J.B. Pagan et al., Boosting energy-storage capability in carbon-based supercapacitors using low-temperature water-in-salt electrolytes. J. Energy Chem. 70, 521–530 (2022). https://doi.org/10.1016/j.jechem.2022.02.055
J. Xu, J. Zhang, T.P. Pollard, Q. Li, S. Tan et al., Electrolyte design for Li-ion batteries under extreme operating conditions. Nature 614(7949), 694–700 (2023). https://doi.org/10.1038/s41586-022-05627-8
L. Yu, J. Huang, S. Wang, L. Qi, S. Wang et al., Ionic liquid “water pocket” for stable and environment-adaptable aqueous zinc metal batteries. Adv. Mater. 35(21), 2210789 (2023). https://doi.org/10.1002/adma.202210789
Q. Li, H. Hong, X. Guo, J. Zhu, Y. Hou et al., Distinct chemistry between Zn and Li at varied temperature. Sci. Bull. 68(10), 998–1007 (2023). https://doi.org/10.1016/j.scib.2023.04.020
L.E. Blanc, D. Kundu, L.F. Nazar, Scientific challenges for the implementation of Zn-ion batteries. Joule 4(4), 771–799 (2020). https://doi.org/10.1016/j.joule.2020.03.002
G. Qu, H. Wei, S. Zhao, Y. Yang, X. Zhang et al., A temperature self-adaptive electrolyte for wide-temperature aqueous zinc-ion batteries. Adv. Mater. 36(29), 2400370 (2024). https://doi.org/10.1002/adma.202400370
M. Chen, S. Xie, X. Zhao, W. Zhou, Y. Li et al., Aqueous zinc-ion batteries at extreme temperature: mechanisms, challenges, and strategies. Energy Storage Mater. 51, 683–718 (2022). https://doi.org/10.1016/j.ensm.2022.06.052
Y. Shi, Y. Liu, R. Chang, G. Zhang, Y. Rang et al., Aspartame endowed ZnO-based self-healing solid electrolyte interface film for long-cycling and wide-temperature aqueous Zn-ion batteries. Nano-Micro Lett. 17(1), 254 (2025). https://doi.org/10.1007/s40820-025-01765-6
J. Xie, Z. Liang, Y.-C. Lu, Molecular crowding electrolytes for high-voltage aqueous batteries. Nat. Mater. 19(9), 1006–1011 (2020). https://doi.org/10.1038/s41563-020-0667-y
H. Jiang, L. Tang, Y. Fu, S. Wang, S.K. Sandstrom et al., Chloride electrolyte enabled practical zinc metal battery with a near-unity Coulombic efficiency. Nat. Sustain. 6(7), 806–815 (2023). https://doi.org/10.1038/s41893-023-01092-x
D. Dong, T. Wang, Y. Sun, J. Fan, Y.-C. Lu, Hydrotropic solubilization of zinc acetates for sustainable aqueous battery electrolytes. Nat. Sustain. 6(11), 1474–1484 (2023). https://doi.org/10.1038/s41893-023-01172-y
Z. Pan, Z. Zhang, W. Li, X. Huo, Y. Liu et al., Development of a high-performance ammonium formate fuel cell. ACS Energy Lett. 8(9), 3742–3749 (2023). https://doi.org/10.1021/acsenergylett.3c01165
Y. Wang, L.-E. Mo, X. Zhang, Y. Ren, T. Wei et al., Regulating water activity for all-climate aqueous zinc-ion batteries. Adv. Energy Mater. 14(33), 2402041 (2024). https://doi.org/10.1002/aenm.202402041
Q. Rong, W. Lei, J. Huang, M. Liu, Low temperature tolerant organohydrogel electrolytes for flexible solid-state supercapacitors. Adv. Energy Mater. 8(31), 1801967 (2018). https://doi.org/10.1002/aenm.201801967
F. Tao, L. Qin, Z. Wang, Q. Pan, Self-healable and cold-resistant supercapacitor based on a multifunctional hydrogel electrolyte. ACS Appl. Mater. Interfaces 9(18), 15541–15548 (2017). https://doi.org/10.1021/acsami.7b03223
S. Wang, Y. Ying, S. Chen, H. Wang, K.K.K. Cheung et al., Highly reversible zinc metal anode enabled by zinc fluoroborate salt-based Hydrous organic electrolyte. Energy Storage Mater. 63, 102971 (2023). https://doi.org/10.1016/j.ensm.2023.102971
T. Liang, R. Hou, Q. Dou, H. Zhang, X. Yan, The applications of water-in-salt electrolytes in electrochemical energy storage devices. Adv. Funct. Mater. 31(3), 2006749 (2021). https://doi.org/10.1002/adfm.202006749
J. Chen, Y. Zhang, H. Lu, J. Ding, X. Wang et al., Electrolyte solvation chemistry to construct an anion-tuned interphase for stable high-temperature lithium metal batteries. eScience 3(4), 100135 (2023). https://doi.org/10.1016/j.esci.2023.100135
R. Zhang, W.K. Pang, J. Vongsvivut, J.A. Yuwono, G. Li et al., Weakly solvating aqueous-based electrolyte facilitated by a soft co-solvent for extreme temperature operations of zinc-ion batteries. Energy Environ. Sci. 17(13), 4569–4581 (2024). https://doi.org/10.1039/D4EE00942H
H. Dou, X. Wu, M. Xu, R. Feng, Q. Ma et al., Steric-hindrance effect tuned ion solvation enabling high performance aqueous zinc ion batteries. Angew. Chem. Int. Ed. 63(21), e202401974 (2024). https://doi.org/10.1002/anie.202401974
S. Han, Q.-B. Guo, Y.-X. Lu, L.-Q. Chen, Y.-S. Hu, Recent progress in aqueous akali-metal-ion batteries at low temperatures. Acta Phys. Sin. 72(7), 070702 (2023). https://doi.org/10.7498/aps.72.20230024
J. Yue, J. Zhang, Y. Tong, M. Chen, L. Liu et al., Aqueous interphase formed by CO2 brings electrolytes back to salt-in-water regime. Nat. Chem. 13(11), 1061–1069 (2021). https://doi.org/10.1038/s41557-021-00787-y
C. Li, R. Kingsbury, A.S. Thind, A. Shyamsunder, T.T. Fister et al., Enabling selective zinc-ion intercalation by a eutectic electrolyte for practical anodeless zinc batteries. Nat. Commun. 14(1), 3067 (2023). https://doi.org/10.1038/s41467-023-38460-2
Y. Yang, S. Liang, B. Lu, J. Zhou, Eutectic electrolyte based on N-methylacetamide for highly reversible zinc–iodine battery. Energy Environ. Sci. 15(3), 1192–1200 (2022). https://doi.org/10.1039/d1ee03268b
Y. Wang, Z. Wang, W. Pang, W. Lie, J.A. Yuwono et al., Solvent control of water O-H bonds for highly reversible zinc ion batteries. Nat. Commun. 14(1), 2720 (2023). https://doi.org/10.1038/s41467-023-38384-x
Y. Wang, Z. Wang, F. Yang, S. Liu, S. Zhang et al., Electrolyte engineering enables high performance zinc-ion batteries. Small 18(43), 2107033 (2022). https://doi.org/10.1002/smll.202107033
Q. Dong, H. Ao, Z. Qin, Z. Xu, J. Ye et al., Synergistic chaotropic effect and cathode interface thermal release effect enabling ultralow temperature aqueous zinc battery. Small 18(44), 2203347 (2022). https://doi.org/10.1002/smll.202203347
H. Gao, Z. Zhao, Y. Cai, J. Zhou, W. Hua et al., Adaptive and freeze-tolerant heteronetwork organohydrogels with enhanced mechanical stability over a wide temperature range. Nat. Commun. 8, 15911 (2017). https://doi.org/10.1038/ncomms15911
W. Zhang, P. Feng, J. Chen, Z. Sun, B. Zhao, Electrically conductive hydrogels for flexible energy storage systems. Prog. Polym. Sci. 88, 220–240 (2019). https://doi.org/10.1016/j.progpolymsci.2018.09.001
X. Tian, Q. Zhu, B. Xu, “Water-in-salt” electrolytes for supercapacitors: a review. Chemsuschem 14(12), 2501–2515 (2021). https://doi.org/10.1002/cssc.202100230
Y. Shen, B. Liu, X. Liu, J. Liu, J. Ding et al., Water-in-salt electrolyte for safe and high-energy aqueous battery. Energy Storage Mater. 34, 461–474 (2021). https://doi.org/10.1016/j.ensm.2020.10.011
B. Niu, Z. Li, D. Luo, X. Ma, Q. Yang et al., Nano-scaled hydrophobic confinement of aqueous electrolyte by a nonionic amphiphilic polymer for long-lasting and wide-temperature Zn-based energy storage. Energy Environ. Sci. 16(4), 1662–1675 (2023). https://doi.org/10.1039/D2EE04023A
Q. Fu, X. Wu, X. Luo, S. Indris, A. Sarapulova et al., High-voltage aqueous Mg-ion batteries enabled by solvation structure reorganization. Adv. Funct. Mater. 32(16), 2110674 (2022). https://doi.org/10.1002/adfm.202110674
C. Sun, H. Wang, F. Yang, A. Tang, G. Huang et al., Layered buserite Mg–Mn oxide cathode for aqueous rechargeable Mg-ion battery. J. Magn. Alloys 11(3), 840–850 (2023). https://doi.org/10.1016/j.jma.2022.11.005
M. Wang, T. Li, Y. Yin, J. Yan, H. Zhang et al., A − 60 °C low-temperature aqueous lithium ion-bromine battery with high power density enabled by electrolyte design. Adv. Energy Mater. 12(25), 2200728 (2022). https://doi.org/10.1002/aenm.202200728
H. Zhu, L. Peng, F. Kang, C. Zhi, C. Yang, Bismuth: an epitaxy-like conversion mechanism enabled by intercalation-conversion chemistry for stable aqueous chloride-ion storage. J. Am. Chem. Soc. 146(34), 23786–23796 (2024). https://doi.org/10.1021/jacs.4c05337
H. Wu, J. Hao, Y. Jiang, Y. Jiao, J. Liu et al., Alkaline-based aqueous sodium-ion batteries for large-scale energy storage. Nat. Commun. 15(1), 575 (2024). https://doi.org/10.1038/s41467-024-44855-6
L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho et al., “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Sci. 350(6263), 938–943 (2015). https://doi.org/10.1126/science.aab1595
R. Malik, A. Abdellahi, G. Ceder, A critical review of the Li insertion mechanisms in LiFePO4Electrodes. J. Electrochem. Soc. 160(5), A3179–A3197 (2013). https://doi.org/10.1149/2.029305jes
A.V. Cresce, S.M. Russell, D.R. Baker, K.J. Gaskell, K. Xu, In situ and quantitative characterization of solid electrolyte interphases. Nano Lett. 14(3), 1405–1412 (2014). https://doi.org/10.1021/nl404471v
H. Wang, H. Zhang, Y. Cheng, K. Feng, X. Li et al., All-NASICON LVP-LTP aqueous lithium ion battery with excellent stability and low-temperature performance. Electrochim. Acta 278, 279–289 (2018). https://doi.org/10.1016/j.electacta.2018.05.047
H.-I. Kim, E. Shin, S.-H. Kim, K.M. Lee, J. Park et al., Aqueous eutectic lithium-ion electrolytes for wide-temperature operation. Energy Storage Mater. 36, 222–228 (2021). https://doi.org/10.1016/j.ensm.2020.12.024
A. Ramanujapuram, G. Yushin, Understanding the exceptional performance of lithium-ion battery cathodes in aqueous electrolytes at subzero temperatures. Adv. Energy Mater. 8(35), 1802624 (2018). https://doi.org/10.1002/aenm.201802624
Z. Liang, F. Tian, G. Yang, C. Wang, Enabling long-cycling aqueous sodium-ion batteries via Mn dissolution inhibition using sodium ferrocyanide electrolyte additive. Nat. Commun. 14(1), 3591 (2023). https://doi.org/10.1038/s41467-023-39385-6
M.H. Lee, S.J. Kim, D. Chang, J. Kim, S. Moon et al., Toward a low-cost high-voltage sodium aqueous rechargeable battery. Mater. Today 29, 26–36 (2019). https://doi.org/10.1016/j.mattod.2019.02.004
Q. Nian, S. Liu, J. Liu, Q. Zhang, J. Shi et al., All-climate aqueous dual-ion hybrid battery with ultrahigh rate and ultralong life performance. ACS Appl. Energy Mater. 2(6), 4370–4378 (2019). https://doi.org/10.1021/acsaem.9b00566
X. Wang, H. Huang, F. Zhou, P. Das, P. Wen et al., High-voltage aqueous planar symmetric sodium ion micro-batteries with superior performance at low-temperature of −40 ºC. Nano Energy 82, 105688 (2021). https://doi.org/10.1016/j.nanoen.2020.105688
M. Becker, R.-S. Kühnel, C. Battaglia, Water-in-salt electrolytes for aqueous lithium-ion batteries with liquidus temperatures below − 10 °C. Chem. Commun. 55(80), 12032–12035 (2019). https://doi.org/10.1039/c9cc04495g
J. Han, H. Zhang, A. Varzi, S. Passerini, Fluorine-free water-in-salt electrolyte for green and low-cost aqueous sodium-ion batteries. Chemsuschem 11(21), 3704–3707 (2018). https://doi.org/10.1002/cssc.201801930
L. Jiang, S. Han, Y.-C. Hu, Y. Yang, Y. Lu et al., Rational design of anti-freezing electrolytes for extremely low-temperature aqueous batteries. Nat. Energy 9(7), 839–848 (2024). https://doi.org/10.1038/s41560-024-01527-5
X. Zhang, T. Xiong, B. He, S. Feng, X. Wang et al., Recent advances and perspectives in aqueous potassium-ion batteries. Energy Environ. Sci. 15(9), 3750–3774 (2022). https://doi.org/10.1039/D2EE01573K
D.P. Leonard, Z. Wei, G. Chen, F. Du, X. Ji, Water-in-salt electrolyte for potassium-ion batteries. ACS Energy Lett. 3(2), 373–374 (2018). https://doi.org/10.1021/acsenergylett.8b00009
M.R. Lukatskaya, J.I. Feldblyum, D.G. Mackanic, F. Lissel, D.L. Michels et al., Concentrated mixed cation acetate “water-in-salt” solutions as green and low-cost high voltage electrolytes for aqueous batteries. Energy Environ. Sci. 11(10), 2876–2883 (2018). https://doi.org/10.1039/C8EE00833G
M.C. Masiker, C.L. Mayne, B.J. Boone, A.M. Orendt, E.M. Eyring, 7Li NMR chemical shift titration and theoretical DFT calculation studies: solvent and anion effects on second-order complexation of 12-crown-4 and 1-aza-12-crown-4 with Lithium cation in several aprotic solvents. Magn. Reson. Chem. 48(2), 94–100 (2010). https://doi.org/10.1002/mrc.2542
J. Liu, C. Yang, X. Chi, B. Wen, W. Wang et al., Water/sulfolane hybrid electrolyte achieves ultralow-temperature operation for high-voltage aqueous lithium-ion batteries. Adv. Funct. Mater. 32(1), 2106811 (2022). https://doi.org/10.1002/adfm.202106811
Z. Ma, Z. Xie, J. Liu, J. Vatamanu, L. Xing et al., Distinct roles: co-solvent and additive synergy for expansive electrochemical range and low-temperature aqueous batteries. Energy Storage Mater. 66, 103203 (2024). https://doi.org/10.1016/j.ensm.2024.103203
L. Suo, O. Borodin, W. Sun, X. Fan, C. Yang et al., Advanced high-voltage aqueous lithium-ion battery enabled by “water-in-bisalt” electrolyte. Angew. Chem. Int. Ed. 55(25), 7136–7141 (2016). https://doi.org/10.1002/anie.201602397
S. Wang, S. Chen, Y. Ying, G. Li, H. Wang et al., Fast reaction kinetics and commendable low-temperature adaptability of zinc batteries enabled by aprotic water-acetamide symbiotic solvation sheath. Angew. Chem. Int. Ed. 63(8), e202316841 (2024). https://doi.org/10.1002/anie.202316841
Q. Dou, S. Lei, D.-W. Wang, Q. Zhang, D. Xiao et al., Safe and high-rate supercapacitors based on an “acetonitrile/water in salt” hybrid electrolyte. Energy Environ. Sci. 11(11), 3212–3219 (2018). https://doi.org/10.1039/C8EE01040D
A. Tron, S. Jeong, Y.D. Park, J. Mun, Aqueous lithium-ion battery of nano-LiFePO4 with antifreezing agent of ethyleneglycol for low-temperature operation. ACS Sustain. Chem. Eng. 7(17), 14531–14538 (2019). https://doi.org/10.1021/acssuschemeng.9b02042
J. Chen, J. Vatamanu, L. Xing, O. Borodin, H. Chen et al., Improving electrochemical stability and low-temperature performance with water/acetonitrile hybrid electrolytes. Adv. Energy Mater. 10(3), 1902654 (2020). https://doi.org/10.1002/aenm.201902654
Z. Ma, J. Chen, J. Vatamanu, O. Borodin, D. Bedrov et al., Expanding the low-temperature and high-voltage limits of aqueous lithium-ion battery. Energy Storage Mater. 45, 903–910 (2022). https://doi.org/10.1016/j.ensm.2021.12.045
J.E. Lovelock, M.W.H. Bishop, Prevention of freezing damage to living cells by dimethyl sulphoxide. Nature 183(4672), 1394–1395 (1959). https://doi.org/10.1038/1831394a0
C. Tang, M. Li, J. Du, Y. Wang, Y. Zhang et al., Supramolecular-induced 2.40 V 130 °C working-temperature-range supercapacitor aqueous electrolyte of lithium bis(trifluoromethanesulfonyl) imide in dimethyl sulfoxide-water. J. Colloid Interface Sci. 608(Pt 2), 1162–1172 (2022). https://doi.org/10.1016/j.jcis.2021.10.090
R.N. Havemeyer, Freezing point curve of dimethyl sulfoxide: water solutions. J. Pharm. Sci. 55(8), 851–853 (1966). https://doi.org/10.1002/jps.2600550822
Q. Nian, J. Wang, S. Liu, T. Sun, S. Zheng et al., Aqueous batteries operated at − 50 °C. Angew. Chem. Int. Ed. 58(47), 16994–16999 (2019). https://doi.org/10.1002/anie.201908913
K. Zhu, Z. Sun, Z. Li, P. Liu, X. Chen et al., Aqueous sodium ion hybrid batteries with ultra-long cycle life at − 50 °C. Energy Storage Mater. 53, 523–531 (2022). https://doi.org/10.1016/j.ensm.2022.09.019
M. Nagaraju, G. Narahari Sastry, Comparative study on formamide–water complex. Int. J. Quantum Chem. 110(10), 1994–2003 (2010). https://doi.org/10.1002/qua.22368
Y. Sun, Y. Zhang, Z. Xu, W. Gou, X. Han et al., Dilute hybrid electrolyte for low-temperature aqueous sodium-ion batteries. Chemsuschem 15(23), e202201362 (2022). https://doi.org/10.1002/cssc.202201362
G. Zeng, U. Ali, M. Sun, Y. Zhang, L. Fu et al., Intercalation pseudocapacitance mechanism realizes high-performance cathode for aqueous potassium ion batteries. J. Colloid Interface Sci. 653(Pt A), 46–55 (2024). https://doi.org/10.1016/j.jcis.2023.09.061
D. Reber, O. Borodin, M. Becker, D. Rentsch, J.H. Thienenkamp et al., Water/ionic liquid/succinonitrile hybrid electrolytes for aqueous batteries. Adv. Funct. Mater. 32(20), 2112138 (2022). https://doi.org/10.1002/adfm.202112138
L. Ma, S. Chen, D. Wang, Q. Yang, F. Mo et al., Super-stretchable zinc–air batteries based on an alkaline-tolerant dual-network hydrogel electrolyte. Adv. Energy Mater. 9(12), 1803046 (2019). https://doi.org/10.1002/aenm.201803046
D. Wang, H. Li, Z. Liu, Z. Tang, G. Liang et al., A nanofibrillated cellulose/polyacrylamide electrolyte-based flexible and sewable high-performance Zn–MnO2 battery with superior shear resistance. Small 14(51), 1803978 (2018). https://doi.org/10.1002/smll.201803978
X. Sui, H. Guo, P. Chen, Y. Zhu, C. Wen et al., Zwitterionic osmolyte-based hydrogels with antifreezing property, high conductivity, and stable flexibility at subzero temperature. Adv. Funct. Mater. 30(7), 1907986 (2020). https://doi.org/10.1002/adfm.201907986
F. Mo, G. Liang, Q. Meng, Z. Liu, H. Li et al., A flexible rechargeable aqueous zinc manganese-dioxide battery working at − 20 °C. Energy Environ. Sci. 12(2), 706–715 (2019). https://doi.org/10.1039/c8ee02892c
J. Yang, Z. Xu, J. Wang, L. Gai, X. Ji et al., Antifreezing zwitterionic hydrogel electrolyte with high conductivity of 12.6 mS cm−1 at − 40 °C through hydrated lithium ion hopping migration. Adv. Funct. Mater. 31(18), 2009438 (2021). https://doi.org/10.1002/adfm.202009438
Y. Hu, R. Shi, Y. Ren, W. Peng, C. Feng et al., A “two-in-one” strategy for flexible aqueous batteries operated at − 80 °C. Adv. Funct. Mater. 32(27), 2203081 (2022). https://doi.org/10.1002/adfm.202203081
Q. Nian, T. Sun, Y. Li, S. Jin, S. Liu et al., Regulating frozen electrolyte structure with colloidal dispersion for low temperature aqueous batteries. Angew. Chem. Int. Ed. 135(9), e202217671 (2023). https://doi.org/10.1002/ange.202217671
Y. Cao, T. Chang, C. Fang, Y. Zhang, H. Liu et al., Inhibition effect of Ti3C2Tx MXene on ice crystals combined with laser-mediated heating facilitates high-performance cryopreservation. ACS Nano 16(6), 8837–8850 (2022). https://doi.org/10.1021/acsnano.1c10221
G. Bai, Z. Song, H. Geng, D. Gao, K. Liu et al., Oxidized quasi-carbon nitride quantum dots inhibit ice growth. Adv. Mater. 29(28), 1606843 (2017). https://doi.org/10.1002/adma.201606843
J.A. Raymond, A.L. DeVries, Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc. Natl. Acad. Sci. U.S.A. 74(6), 2589–2593 (1977). https://doi.org/10.1073/pnas.74.6.2589
B. Zhao, H. Hao, H. Lei, J. Yang, L. Tang et al. An anti-freezing pure inorganic electrolyte for long cycle life aqueous sodium-ion batteries at −40 ℃. Energy Storage Mater. 71, 103562 (2024). https://doi.org/10.1016/j.ensm.2024.103562
L. Jiang, Y. Lu, C. Zhao, L. Liu, J. Zhang et al., Building aqueous K-ion batteries for energy storage. Nat. Energy 4(6), 495–503 (2019). https://doi.org/10.1038/s41560-019-0388-0
J. Wei, P. Zhang, Y. Liu, M. Zhu, T. Dai et al., Wide-voltage-window amphiphilic supramolecule excluded-volume electrolytes for ultra-durable full-cell aqueous potassium-ion batteries. Chem. Eng. J. 459, 141623 (2023). https://doi.org/10.1016/j.cej.2023.141623
J.-Z. Rong, T.-X. Cai, Y.-Z. Bai, X. Zhao, T. Wu et al., A free-sealed high-voltage aqueous polymeric sodium battery enabling operation at −25 ℃. Cell Reports Physical Sci. 3(3), 100805 (2022). https://doi.org/10.1016/j.xcrp.2022.100805
F. Chen, J. Wang, J. Liao, S. Wang, Z. Wen et al. A hydrogel-enabled free-standing polypyrrole cathode film for potassium ion batteries with high mass loading and low-temperature stability. J. Mater. Chem. A 9(26), 15045–15050 (2021). https://doi.org/10.1039/d1ta02209a
X. Yun, Y. Chen, H. Gao, D. Li, L. Zuo et al., Regulation of dipolar-dipolar and ion-dipolar interactions simultaneously in strong solvating electrolytes for all-temperature zinc-ion batteries. Adv. Engery Mater. 14(25), 2304341 (2024). https://doi.org/10.1002/aenm.202304341
T.-C. Duan, S.-J. Yan, Y. Zhao, T.-Y. Sun, Y.-M. Li et al., Relationship between hydrogen bond network dynamics of water and its terahertz spectrum. Acta Phys. Sin. 70(24), 248702 (2021). https://doi.org/10.7498/aps.70.20211731
F. Zeng, C. Mebrahtu, L. Liao, A. K. Beine, R. Palkovits, Stability and deactivation of OER electrocatalysts: A review. J. Energy Chem. 69, 301–329 (2022). https://doi.org/10.1016/j.jechem.2022.01.025
X. Xie, H. Fu, Y. Fang, B. Lu, J. Zhou et al., Manipulating ion concentration to boost two-electron Mn4+/Mn2+ redox kinetics through a colloid electrolyte for high-capacity zinc batteries. Adv. Energy Mater. 12(5), 2102393 (2022). https://doi.org/10.1002/aenm.202102393
X. Zhou, X. Chen, Z. Yang, X. Liu, Z. Hao et al., Anion receptor weakens ClO4− solvation for high-temperature sodium-ion batteries. Adv. Funct. Mater. 34(5), 2302281 (2024). https://doi.org/10.1002/adfm.202302281
R. Chen, X. Xu, S. Peng, J. Chen, D. Yu et al., A flexible and safe aqueous zinc-air battery with a wide operating temperature range from −20 to 70 ℃. ACS Sustain. Chem. Eng. 8(31), 11501–11511 (2020). https://doi.org/10.1021/acssuschemeng.0c01111
R.M. Wittman, M.L. Perry, T.N. Lambert, B.R. Chalamala, Y. Preger, Perspective—On the need for reliability and safety studies of grid-scale aqueous batteries. Electrochem. Soc. 167(9), 090545 (2020). https://doi.org/10.1149/1945-7111/ab9406
C. Echeverria, S. Fernandes, M. Godinho, J. Borges, P. Soares, Functional stimuli-responsive gels: hydrogels and microgels. Gels 4(2), 54 (2018). https://doi.org/10.3390/gels4020054
S. Municoy, M.I. Álvarez Echazú, P.E. Antezana, J.M. Galdopórpora, C. Olivetti et al., Stimuli-responsive materials for tissue engineering and drug delivery. Int. J. Mol. Sci. 21(13), 4724 (2020). https://doi.org/10.3390/ijms21134724
P. Chakma, L.H.R. Possarle, Z.A. Digby, B. Zhang, J.L. Sparks et al., Dual stimuli responsive self-healing and malleable materials based on dynamic thiol-Michael chemistry. Polym. Chem. 8(42), 6534–6543 (2017). https://doi.org/10.1039/c7py01356f
Y. Yang, Z. Bai, S. Liu, Y. Zhu, J. Zheng et al., Self-protecting aqueous lithium-ion batteries. Small 18(38), 2203035 (2022). https://doi.org/10.1002/smll.202203035
T. Sun, C. Liu, J. Wang, Q. Nian, Y. Feng et al., A phenazine anode for high-performance aqueous rechargeable batteries in a wide temperature range. Nano Res. 13(3), 676–683 (2020). https://doi.org/10.1007/s12274-020-2674-3
X. Wang, Y. Ying, S. Chen, Q. Meng, H. Huang et al., Lean-water electrolyte to stabilize zinc anode and suppress manganese dissolution of cathode for ampere-hour zinc batteries. Nano Energy 119, 109099 (2024). https://doi.org/10.1016/j.nanoen.2023.109099
Z. Hou, X. Zhang, H. Ao, M. Liu, Y. Zhu et al., Passivation effect for current collectors enables high-voltage aqueous sodium ion batteries. Mater. Today Energy 14, 100337 (2019). https://doi.org/10.1016/j.mtener.2019.06.012
W. Luo, J. Hayden, S.-H. Jang, Y. Wang, Y. Zhang et al., Highly conductive, light weight, robust, corrosion-resistant, scalable, all-fiber based current collectors for aqueous acidic batteries. Adv. Energy Mater. 8(9), 1702615 (2018). https://doi.org/10.1002/aenm.201702615
T. Qin, H. Yang, L. Wang, W. Xue, N. Yao et al., Molecule design for non-aqueous wide-temperature electrolytes via the intelligentized screening method. Angew. Chem. Int. Ed. 63(37), e202408902 (2024). https://doi.org/10.1002/anie.202408902
J. Zhang, D. Sarker, M. Beltran, Y. Xiang, C. Toher et al., Dual-objective optimization of lithium metal battery electrolytes via machine learning. Mater. Today Energy 51, 101909 (2025). https://doi.org/10.1016/j.mtener.2025.101909
X. Dong, L. Chen, J. Liu, S. Haller, Y. Wang et al. Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life. Sci. Adv. 2, e1501038 (2016). https://doi.org/10.1126/sciadv.1501038
Y. Liang, Y. Jing, S. Gheytani, K.-Y. Lee, P. Liu et al., Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat. Mater. 16(8), 841 (2017). https://doi.org/10.1038/nmat4919
Y. Zhang, J. Xu, Z. Li, Y. Wang, S. Wang et al., All-climate aqueous Na-ion batteries using “water-in-salt” electrolyte. Sci. Bull. 67(2), 161–170 (2022). https://doi.org/10.1016/j.scib.2021.08.010
T. Sun, X. Yuan, K. Wang, S. Zheng, J. Shi et al., An ultralow-temperature aqueous zinc-ion battery. J. Mater. Chem. A 9(11), 7042–7047 (2021). https://doi.org/10.1039/d0ta12409e
C. Wu, Y. Zhou, X. Zhu, M Zhan, H. Yang et al., Research progress on high concentration electrolytes for Li metal batteries. Acta Phys.-Chim. Sin. 37(2), 2008044 (2021). https://doi.org/10.3866/pku.whxb202008044
S. Lin, H. Hua, P. Lai, J. Zhao, A multifunctional dual-salt localized high-concentration electrolyte for fast dynamic high-voltage lithium battery in wide temperature range. Adv. Energy Mater. 11(36), 2101775 (2021). https://doi.org/10.1002/aenm.202101775
L.-D. Xing, Q.-M. Xie, W.-S. Li, Research progress on electrochemical properties of electrolyte and its interphase. Acta Phys. Sin. 69(22), 228205 (2020). https://doi.org/10.7498/aps.69.20201553
C. Xu, H. Wang, C. Lei, J. Li, W. Ma, et al., Fast single metal cation conduction in ionwater aggregated aqueous battery electrolytes. Nat. Commun. 16, 4574 (2025). https://doi.org/10.1038/s41467-025-59958-x
T. Liu, K.-T. Liu, J. Wang, X. Ji, P. Lan et al., Achievement of a polymer-free KAc gel electrolyte for advanced aqueous K-ion battery. Energy Storage Mater. 41, 133–140 (2021). https://doi.org/10.1016/j.ensm.2021.06.001
Y. Li, Z. Zhou, W. Deng, C. Li, X. Yuan et al., A superconcentrated water-in-salt hydrogel electrolyte for high-voltage aqueous K-ion batteries. Chemelectrochem 8(8), 1451–1454 (2021). https://doi.org/10.1002/celc.202001509