Advances in Mn-Based Electrode Materials for Aqueous Sodium-Ion Batteries
Corresponding Author: Yanfeng Gao
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 192
Abstract
Aqueous sodium-ion batteries have attracted extensive attention for large-scale energy storage applications, due to abundant sodium resources, low cost, intrinsic safety of aqueous electrolytes and eco-friendliness. The electrochemical performance of aqueous sodium-ion batteries is affected by the properties of electrode materials and electrolytes. Among various electrode materials, Mn-based electrode materials have attracted tremendous attention because of the abundance of Mn, low cost, nontoxicity, eco-friendliness and interesting electrochemical performance. Aqueous electrolytes having narrow electrochemical window also affect the electrochemical performance of Mn-based electrode materials. In this review, we introduce systematically Mn-based electrode materials for aqueous sodium-ion batteries from cathode and anode materials and offer a comprehensive overview about their recent development. These Mn-based materials include oxides, Prussian blue analogues and polyanion compounds. We summarize and discuss the composition, crystal structure, morphology and electrochemical properties of Mn-based electrode materials. The improvement methods based on electrolyte optimization, element doping or substitution, optimization of morphology and carbon modification are highlighted. The perspectives of Mn-based electrode materials for future studies are also provided. We believe this review is important and helpful to explore and apply Mn-based electrode materials in aqueous sodium-ion batteries.
Highlights:
1 Mn-based electrode materials, including oxides, Prussian blue analogues and polyanion compounds, are introduced systematically for aqueous sodium-ion batteries.
2 The composition, crystal structure, morphology and electrochemical performance of Mn-based electrode materials are reviewed.
3 The improvement methods of electrochemical performance, such as electrolyte optimization, element doping or substitution, morphology optimization and carbon modification, are discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W.A. Braff, J.M. Mueller, J.E. Trancik, Value of storage technologies for wind and solar energy. Nat. Clim. Change 6(10), 964–969 (2016). https://doi.org/10.1038/Nclimate3045
- O.J. Guerra, J.Z. Zhang, J. Eichman, P. Denholm, J. Kurtz et al., The value of seasonal energy storage technologies for the integration of wind and solar power. Energy Environ. Sci. 13(7), 1909–1922 (2020). https://doi.org/10.1039/d0ee00771d
- K.C. Divya, J. Ostergaard, Battery energy storage technology for power systems-an overview. Electr. Power Syst. Res. 79(4), 511–520 (2009). https://doi.org/10.1016/j.epsr.2008.09.017
- B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
- H. Kim, H. Kim, Z. Ding, M.H. Lee, K. Lim et al., Recent progress in electrode materials for sodium-ion batteries. Adv. Energy Mater. 6(19), 1600943 (2016). https://doi.org/10.1002/aenm.201600943
- Y.Q. Yang, S. Bremner, C. Menictas, M. Kay, Battery energy storage system size determination in renewable energy systems: a review. Renew. Sust. Energy Rev. 91, 109–125 (2018). https://doi.org/10.1016/j.rser.2018.03.047
- Y.G. Wang, J. Yi, Y.Y. Xia, Recent progress in aqueous lithium-ion batteries. Adv. Energy Mater. 2(7), 830–840 (2012). https://doi.org/10.1002/aenm.201200065
- H. Kim, J. Hong, K.Y. Park, H. Kim, S.W. Kim et al., Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114(23), 11788–11827 (2014). https://doi.org/10.1021/cr500232y
- J. Lamb, J.A. Jeevarajan, New developments in battery safety for large-scale systems. MRS Bull. 46(5), 395–401 (2021). https://doi.org/10.1557/s43577-021-00098-0
- J.Y. Hwang, S.T. Myung, Y.K. Sun, Sodium-ion batteries: present and future. Chem. Soc. Rev. 46(12), 3529–3614 (2017). https://doi.org/10.1039/c6cs00776g
- K. Chayambuka, G. Mulder, D.L. Danilov, P.H.L. Notten, Sodium-ion battery materials and electrochemical properties reviewed. Adv. Energy Mater. 8(16), 1800079 (2018). https://doi.org/10.1002/aenm.201800079
- T. Perveen, M. Siddiq, N. Shahzad, R. Ihsan, A. Ahmad et al., Prospects in anode materials for sodium ion batteries—a review. Renew. Sustain. Energy Rev. 119, 109549 (2020). https://doi.org/10.1016/j.rser.2019.109549
- P. Barpanda, L. Lander, S. Nishimura, A. Yamada, Polyanionic insertion materials for sodium-ion batteries. Adv. Energy Mater. 8(17), 1703055 (2018). https://doi.org/10.1002/aenm.201703055
- J. Peng, W. Zhang, Q.N. Liu, J.Z. Wang, S.L. Chou et al., Prussian blue analogues for sodium-ion batteries: past, present, and future. Adv. Mater. 34(15), 2108384 (2022). https://doi.org/10.1002/adma.202108384
- A. Ponrouch, D. Monti, A. Boschin, B. Steen, P. Johansson et al., Non-aqueous electrolytes for sodium-ion batteries. J. Mater. Chem. A 3(1), 22–42 (2015). https://doi.org/10.1039/c4ta04428b
- H. Hijazi, P. Desai, S. Mariyappan, Non-aqueous electrolytes for sodium-ion batteries: challenges and prospects towards commercialization. Batter. Supercaps. 4(6), 881–896 (2021). https://doi.org/10.1002/batt.202000277
- W. Tang, Y.S. Zhu, Y.Y. Hou, L.L. Liu, Y.P. Wu et al., Aqueous rechargeable lithium batteries as an energy storage system of superfast charging. Energy Environ. Sci. 6(7), 2093–2104 (2013). https://doi.org/10.1039/c3ee24249h
- M. Liu, H. Ao, Y. Jin, Z. Hou, X. Zhang et al., Aqueous rechargeable sodium ion batteries: developments and prospects. Mater. Today Energy 17, 100432 (2020). https://doi.org/10.1016/j.mtener.2020.100432
- H.X. Yang, J.F. Qian, Recent development of aqueous sodium ion batteries and their key materials. J. Inorg. Mater. 28(11), 1165–1171 (2013). https://doi.org/10.3724/SP.J.1077.2013.13388
- D. Bin, F. Wang, A.G. Tamirat, L.M. Suo, Y.G. Wang et al., Progress in aqueous rechargeable sodium-ion batteries. Adv. Energy Mater. 8(17), 1703008 (2018). https://doi.org/10.1002/aenm.201703008
- H. Ma, H.R. Zhang, M.Q. Xue, Research progress and practical challenges of aqueous sodium-ion batteries. Acta. Chim. Sin. 79(4), 388–405 (2021). https://doi.org/10.6023/A20100492
- Z.G. Hou, X.Q. Zhang, X.N. Li, Y.C. Zhu, J.W. Liang et al., Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery. J. Mater. Chem. A 5(2), 730–738 (2017). https://doi.org/10.1039/c6ta08736a
- H. Tomiyasu, H. Shikata, K. Takao, N. Asanuma, S. Taruta et al., An aqueous electrolyte of the widest potential window and its superior capability for capacitors. Sci. Rep. 7, 45048 (2017). https://doi.org/10.1038/srep45048
- H. Gao, K.K. Tang, J. Xiao, X. Guo, W.H. Chen et al., Recent advances in “water in salt” electrolytes for aqueous rechargeable monovalent-ion (Li+, Na+, K+) batteries. J. Energy Chem. 69, 84–99 (2022). https://doi.org/10.1016/j.jechem.2021.12.025
- Y.H. Shen, B. Liu, X.R. Liu, J. Liu, J. Ding et al., Water-in-salt electrolyte for safe and high-energy aqueous battery. Energy Storage Mater. 34, 461–474 (2021). https://doi.org/10.1016/j.ensm.2020.10.011
- J.H. Huang, X.L. Dong, Z.W. Guo, Y.G. Wang, Progress of organic electrodes in aqueous electrolyte for energy storage and conversion. Angew. Chem. Int. Ed. 59(42), 18322–18333 (2020). https://doi.org/10.1002/anie.202003198
- Y.N. Gao, H.Y. Yang, Y. Bai, C. Wu, Mn-based oxides for aqueous rechargeable metal ion batteries. J. Mater. Chem. A 9(19), 11472–11500 (2021). https://doi.org/10.1039/d1ta01951a
- Y.Y. Wang, D. Liu, M.L. Sun, J.P. Liu, Recent progress in electrode materials for aqueous sodium and potassium ion batteries. Mater. Chem. Front. 5(20), 7384–7402 (2021). https://doi.org/10.1039/d1qm01011e
- H.X. Li, W. Zhang, K.N. Sun, J. Guo, K. Yuan et al., Manganese-based materials for rechargeable batteries beyond lithium-ion. Adv. Energy Mater. 11(25), 2100867 (2021). https://doi.org/10.1002/aenm.202100867
- Y.G. Cao, M.J. Xiao, X.Z. Sun, W.J. Dong, F.Q. Huang, Recent advances on high-capacity sodium manganese-based oxide cathodes for sodium-ion batteries. Chem. Eur. J. 29, e202202997 (2023). https://doi.org/10.1002/chem.202202997
- A. Zhou, R. Chi, Y. Shi, X. Zhao, X. Li et al., Manganese-based cathode materials for aqueous rechargeable zinc-ion batteries: recent advance and future prospects. Mater. Today Chem. 27, 101294 (2023). https://doi.org/10.1016/j.mtchem.2022.101294
- Y.X. Chang, L.Z. Yu, X.X. Xing, Y.J. Guo, Z.Y. Xie et al., Ion substitution strategy of manganese-based layered oxide cathodes for advanced and low-cost sodium ion batteries. Chem. Rec. 22(10), e202200122 (2022). https://doi.org/10.1002/tcr.202200122
- J. Chen, W.L. Xu, H.Y. Wang, X.H. Ren, F.Y. Zhan et al., Emerging two-dimensional nanostructured manganese-based materials for electrochemical energy storage: recent advances, mechanisms, challenges, and prospects. J. Mater. Chem. A 10(40), 21197–21250 (2022). https://doi.org/10.1039/d2ta05309h
- L.Y. Liu, Y.C. Wu, L. Huang, K.S. Liu, B. Duployer et al., Alkali ions pre-intercalated layered MnO2 nanosheet for zinc-ions storage. Adv. Energy Mater. 11(31), 2101287 (2021). https://doi.org/10.1002/aenm.202101287
- G.G. Yadav, J.W. Gallaway, D.E. Turney, M. Nyce, J.C. Huang et al., Regenerable Cu-intercalated MnO2 layered cathode for highly cyclable energy dense batteries. Nat. Commun. 8, 14424 (2017). https://doi.org/10.1038/ncomms14424
- D.G.G.J.M. Tarascon, B. Wilkens, W.R. Mc Kinnon, P. Barboux, Chemical and electrochemical insertion of na into the spinel λ-MnO2 phase. Solid State Ionics 57, 113–120 (1992). https://doi.org/10.1016/0167-2738(92)90072-W
- J.F. Whitacre, T. Wiley, S. Shanbhag, Y. Wenzhuo, A. Mohamed et al., An aqueous electrolyte, sodium ion functional, large format energy storage device for stationary applications. J. Power Sources 213, 255–264 (2012). https://doi.org/10.1016/j.jpowsour.2012.04.018
- M. Minakshi, Looking beyond lithium-ion technology - aqueous NaOH battery. Mater. Sci. Eng. B-Adv. 177(20), 1788–1792 (2012). https://doi.org/10.1016/j.mseb.2012.09.003
- X.Q. Zhang, J.W. Chen, J.J. Ye, T.W. Zhang, Z.G. Hou, Revealing the competitive intercalation between Na+ and H+ into Na0.44MnO2 in aqueous sodium ion batteries. Adv. Energy Mater. 13(17), 2204413 (2023). https://doi.org/10.1002/aenm.202204413
- D.J. Kim, R. Ponraj, A.G. Kannan, H.W. Lee, R. Fathi et al., Diffusion behavior of sodium ions in Na0.44MnO2 in aqueous and non-aqueous electrolytes. J. Power Sources 244, 758–763 (2013). https://doi.org/10.1016/j.jpowsour.2013.02.090
- H. Lim, J.H. Jung, Y.M. Park, H.N. Lee, H.J. Kim, High-performance aqueous rechargeable sulfate- and sodium-ion battery based on polypyrrole-mwcnt core-shell nanowires and Na0.44MnO2 nanorods. Appl. Surf. Sci. 446, 131–138 (2018). https://doi.org/10.1016/j.apsusc.2018.02.021
- J.Z. Sun, Y. Dong, C.Y. Kong, Synthesis of Na2MnFe(CN)6 and its application as cathode material for aqueous rechargeable sodium-ion battery. J. New Mater. Electrochem. Syst. 19(3), 117–119 (2016). https://doi.org/10.14447/jnmes.v19i3.306
- H.C. Gao, J.B. Goodenough, An aqueous symmetric sodium-ion battery with NASICON-structured Na3MnTi(PO4)3. Angew. Chem. Int. Ed. 55(41), 12768–12772 (2016). https://doi.org/10.1002/anie.201606508
- Z.X. Liu, G. Pang, S.Y. Dong, Y.D. Zhang, C.H. Mi et al., An aqueous rechargeable sodium-magnesium mixed ion battery based on NaTi2(PO4)3-MnO2 system. Electrochim. Acta 311, 1–7 (2019). https://doi.org/10.1016/j.electacta.2019.04.130
- M.S. Chae, A. Chakraborty, S. Kunnikuruvan, R. Attias, S. Maddukuri et al., Vacancy-driven high rate capabilities in calcium-doped Na0.4MnO2 cathodes for aqueous sodium-ion batteries. Adv. Energy Mater. 10(37), 2002077 (2020). https://doi.org/10.1002/aenm.202002077
- M.Q. Zhang, T.B. Dong, D.G. Li, K. Wang, X.Z. Wei et al., High-performance aqueous sodium-ion battery based on graphene-doped Na2MnFe(CN)6-zinc with a highly stable discharge platform and wide electrochemical stability. Energy Fuels 35(13), 10860–10868 (2021). https://doi.org/10.1021/acs.energyfuels.1c01095
- H. Kanoh, W.P. Tang, Y. Makita, K. Ooi, Electrochemical intercalation of alkali-metal ions into birnessite-type manganese oxide in aqueous solution. Langmuir 13(25), 6845–6849 (1997). https://doi.org/10.1021/la970767d
- S. Devaraj, N. Munichandraiah, Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J. Phys. Chem. C 112(11), 4406–4417 (2008). https://doi.org/10.1021/jp7108785
- Y. Zhang, C.L. Yuan, K. Ye, X. Jiang, J.L. Yin et al., An aqueous capacitor battery hybrid device based on Na-ion insertion-deinsertion in lambda-MnO2 positive electrode. Electrochim. Acta 148, 237–243 (2014). https://doi.org/10.1016/j.electacta.2014.10.052
- M. Minakshi, D. Meyrick, Electrochemical energy storage device for securing future renewable energy. Electrochim. Acta 101, 66–70 (2013). https://doi.org/10.1016/j.electacta.2013.02.075
- P.Y. Wang, X.B. Yan, Recent advances in Mg-Li and Mg-Na hybrid batteries. Energy Storage Mater. 45, 142–181 (2022). https://doi.org/10.1016/j.ensm.2021.11.027
- Y. Liu, Y. Qiao, W.X. Zhang, H. Wang, K.Y. Chen et al., Nanostructured alkali cation incorporated delta-MnO2 cathode materials for aqueous sodium-ion batteries. J. Mater. Chem. A 3(15), 7780–7785 (2015). https://doi.org/10.1039/c5ta00396b
- Y. Liu, Y. Qiao, W.X. Zhang, H.H. Xu, Z. Li et al., High-performance aqueous sodium-ion batteries with K0.27MnO2 cathode and their sodium storage mechanism. Nano Energy 5, 97–104 (2014). https://doi.org/10.1016/j.nanoen.2014.02.010
- Y. Liu, Y. Qiao, X.D. Lou, X.H. Zhang, W.X. Zhang et al., Hollow K0.27MnO2 nanospheres as cathode for high-performance aqueous sodium ion batteries. ACS Appl. Mater. Interfaces 8(23), 14564–14571 (2016). https://doi.org/10.1021/acsami.6b03089
- X.Q. Shan, F.H. Guo, K. Page, J.C. Neuefeind, B. Ravel et al., Framework doping of ni enhances pseudocapacitive Na-ion storage of (Ni)MnO2 layered birnessite. Chem. Mater. 31(21), 8774–8786 (2019). https://doi.org/10.1021/acs.chemmater.9b02568
- Q.L. Wei, X.Q. Chang, D. Butts, R. DeBlock, K. Lan et al., Surface-redox sodium-ion storage in anatase titanium oxide. Nat. Commun. 14(1), 7 (2023). https://doi.org/10.1038/s41467-022-35617-3
- J. Yu, X. Huang, Y. He, D. Tang, T. Huang, L. Liu, H. Wu, D.L. Peng, D. Zhao, K. Lan, Q. Wei, Compacted mesoporous titania nanosheets anode for pseudocapacitance-dominated, high-rate, and high-volumetric sodium-ion storage. SmartMat (2023). https://doi.org/10.1002/smm2.1192
- Q. Wei, T. Huang, X. Huang, B. Wang, Y. Jiang et al., High-rate sodium-ion storage of vanadium nitride via surface-redox pseudocapacitance. Interdiscip. Mater. 2(3), 434–442 (2023). https://doi.org/10.1002/idm2.12080
- X.Q. Shan, D.S. Charles, W.Q. Xu, M. Feygenson, D. Su et al., Biphase cobalt-manganese oxide with high capacity and rate performance for aqueous sodium-ion electrochemical energy storage. Adv. Funct. Mater. 28(3), 1703266 (2018). https://doi.org/10.1002/adfm.201703266
- H. Usui, S. Suzuki, Y. Domi, H. Sakaguchi, Impacts of MnO2 crystal structures and Fe doping in those on photoelectrochemical charge-discharge properties of TiO2/MnO2 composite electrodes. ACS Sustain. Chem. Eng. 8(24), 9165–9173 (2020). https://doi.org/10.1021/acssuschemeng.0c02964
- M. Ren, H.Y. Fang, C.C. Wang, H.X. Li, F.J. Li, Advances on manganese-oxide-based cathodes for Na-ion batteries. Energy Fuels 34(11), 13412–13426 (2020). https://doi.org/10.1021/acs.energyfuels.0c02897
- N. Jabeen, A. Hussain, Q.Y. Xia, S. Sun, J.W. Zhu et al., High-performance 2.6 V aqueous asymmetric supercapacitors based on in situ formed Na0.5MnO2 nanosheet assembled nanowall arrays. Adv. Mater. 29(32), 1700804 (2017). https://doi.org/10.1002/adma.201700804
- W.H. Zuo, Y. Yang, Synthesis, structure, electrochemical mechanisms, and atmospheric stability of Mn-based layered oxide cathodes for sodium ion batteries. Acc. Mater. Res. 3(7), 709–720 (2022). https://doi.org/10.1021/accountsmr.2c00058
- X.Q. Shan, F.H. Guo, D.S. Charles, Z. Lebens-Higgins, S.A. Razek et al., Structural water and disordered structure promote aqueous sodium-ion energy storage in sodium-birnessite. Nat. Commun. 10, 4975 (2019). https://doi.org/10.1038/s41467-019-12939-3
- B.H. Zhang, Y. Liu, Z. Chang, Y.Q. Yang, Z.B. Wen et al., Nanowire Na0.35MnO2 from a hydrothermal method as a cathode material for aqueous asymmetric supercapacitors. J. Power Sources 253, 98–103 (2014). https://doi.org/10.1016/j.jpowsour.2013.12.011
- Y. Liu, B.H. Zhang, S.Y. Xiao, L.L. Liu, Z.B. Wen et al., A nanocomposite of MoO3 coated with PPy as an anode material for aqueous sodium rechargeable batteries with excellent electrochemical performance. Electrochim. Acta 116, 512–517 (2014). https://doi.org/10.1016/j.electacta.2013.11.077
- X. Zhou, A.L. Zhao, Z.X. Chen, Y.L. Cao, Research progress of tunnel-structural Na0.44MnO2 cathode for sodium-ion batteries: a mini review. Electrochem. Commun. 122, 106897 (2021). https://doi.org/10.1016/j.elecom.2020.106897
- M.S. Chae, Y. Elias, D. Aurbach, Tunnel-type sodium manganese oxide cathodes for sodium-ion batteries. ChemElectroChem 8(5), 798–811 (2021). https://doi.org/10.1002/celc.202001323
- B. Tekin, S. Sevinc, M. Morcrette, R. Demir-Cakan, A new sodium-based aqueous rechargeable battery system: the special case of Na0.44MnO2/dissolved sodium polysulfide. Energy Technol. 5(12), 2182–2188 (2017). https://doi.org/10.1002/ente.201700245
- H. Li, S.Y. Liu, T.C. Yuan, B. Wang, P. Sheng et al., Electrochemical mechanism of Na0.44MnO2 in alkaline aqueous solution. Acta Phys. Chim. Sin. 36(5), 1905027 (2020). https://doi.org/10.3866/PKU.WHXB201905027
- T.J. Sun, C. Liu, J.Y. Wang, Q.S. Nian, Y.Z. Feng et al., A phenazine anode for high-performance aqueous rechargeable batteries in a wide temperature range. Nano Res. 13(3), 676–683 (2020). https://doi.org/10.1007/s12274-020-2674-3
- Z.W. Guo, Y. Zhao, Y.X. Ding, X.L. Dong, L. Chen et al., Multi-functional flexible aqueous sodium-ion batteries with high safety. Chem 3(2), 348–362 (2017). https://doi.org/10.1016/j.chempr.2017.05.004
- Z. Li, D. Young, K. Xiang, W.C. Carter, Y.M. Chiang, Towards high power high energy aqueous sodium-ion batteries: The NaTi2(PO4)3/Na0.44MnO2 system. Adv. Energy Mater. 3(3), 290–294 (2013). https://doi.org/10.1002/aenm.201200598
- W. Wu, A. Mohamed, J.F. Whitacre, Microwave synthesized NaTi2(PO4)3 as an aqueous sodium-ion negative electrode. J. Electrochem. Soc. 160(3), A497–A504 (2013). https://doi.org/10.1149/2.054303jes
- B.D. Zhao, Q.Y. Wang, S. Zhang, C. Deng, Self-assembled wafer-like porous NaTi2(PO4)3 decorated with hierarchical carbon as a high-rate anode for aqueous rechargeable sodium batteries. J. Mater. Chem. A 3(22), 12089–12096 (2015). https://doi.org/10.1039/c5ta02568k
- B.D. Zhao, B. Lin, S. Zhang, C. Deng, A frogspawn-inspired hierarchical porous NaTi2(PO4)3-C array for high-rate and long-life aqueous rechargeable sodium batteries. Nanoscale 7(44), 18552–18560 (2015). https://doi.org/10.1039/c5nr06505d
- G. Pang, P. Nie, C.Z. Yuan, L.F. Shen, X.G. Zhang et al., Enhanced performance of aqueous sodium-ion batteries using electrodes based on the NaTi2(PO4)3/MWNTs–Na0.44MnO2 system. Energy Technol. 2(8), 705–712 (2014). https://doi.org/10.1002/ente.201402045
- L.L. Ke, J. Dong, B. Lin, T.T. Yu, H.F. Wang et al., A NaV3(PO4)3@C hierarchical nanofiber in high alignment: exploring a novel high-performance anode for aqueous rechargeable sodium batteries. Nanoscale 9(12), 4183–4190 (2017). https://doi.org/10.1039/c7nr00793k
- C. Deng, S. Zhang, Z. Dong, Y. Shang, 1D nanostructured sodium vanadium oxide as a novel anode material for aqueous sodium ion batteries. Nano Energy 4, 49–55 (2014). https://doi.org/10.1016/j.nanoen.2013.12.014
- T.T. Gu, M. Zhou, M.Y. Liu, K.L. Wang, S.J. Cheng et al., A polyimide-MWCNTs composite as high performance anode for aqueous Na-ion batteries. RSC Adv. 6(58), 53319–53323 (2016). https://doi.org/10.1039/c6ra09075c
- Y. Wang, Z. Feng, D. Laul, W. Zhu, M. Provencher et al., Ultra-low cost and highly stable hydrated FePO4 anodes for aqueous sodium-ion battery. J. Power Sources 374, 211–216 (2018). https://doi.org/10.1016/j.jpowsour.2017.10.088
- G. Yee, S. Shanbhag, W. Wu, K. Carlisle, J. Chang et al., TiP2O7 exhibiting reversible interaction with sodium ions in aqueous electrolytes. Electrochem. commun. 86, 104–107 (2018). https://doi.org/10.1016/j.elecom.2017.11.013
- X.Q. Zhang, Z.G. Hou, X.N. Li, J.W. Liang, Y.C. Zhu et al., Na-birnessite with high capacity and long cycle life for rechargeable aqueous sodium-ion battery cathode electrodes. J. Mater. Chem. A 4(3), 856–860 (2016). https://doi.org/10.1039/c5ta08857g
- L. Rakocevic, S. Strbac, J. Potocnik, M. Popovic, D. Jugovic et al., The NaxMnO2 materials prepared by a glycine-nitrate method as advanced cathode materials for aqueous sodium-ion rechargeable batteries. Ceram Int. 47(4), 4595–4603 (2021). https://doi.org/10.1016/j.ceramint.2020.10.025
- F.P. Gu, X.L. Yao, T.J. Sun, M.H. Fang, M. Shui et al., Studies on micron-sized Na0.7MnO2.05 with excellent cycling performance as a cathode material for aqueous rechargeable sodium-ion batteries. Appl. Phys. A Mater. 126(8), 658 (2020). https://doi.org/10.1007/s00339-020-03799-6
- B.H. Zhang, Y. Liu, X.W. Wu, Y.Q. Yang, Z. Chang et al., An aqueous rechargeable battery based on zinc anode and Na0.95MnO2. Chem. Commun. 50(10), 1209–1211 (2014). https://doi.org/10.1039/c3cc48382g
- S. Liu, T. Lei, Q.Q. Song, J. Zhu, C.B. Zhu, High energy, long cycle, and superior low temperature performance aqueous Na-Zn hybrid batteries enabled by a low-cost and protective interphase film-forming electrolyte. ACS Appl. Mater. Interfaces 14(9), 11425–11434 (2022). https://doi.org/10.1021/acsami.1c23806
- Z.G. Hou, X.N. Li, J.W. Liang, Y.C. Zhu, Y.T. Qian, An aqueous rechargeable sodium ion battery based on a NaMnO2-NaTi2(PO4)3 hybrid system for stationary energy storage. J. Mater. Chem. A 3(4), 1400–1404 (2015). https://doi.org/10.1039/c4ta06018k
- W. Wu, S. Shabhag, J. Chang, A. Rutt, J.F. Whitacre, Relating electrolyte concentration to performance and stability for NaTi2(PO4)3/Na0.44MnO2 aqueous sodium-ion batteries. J. Electrochem. Soc. 162(6), A803–A808 (2015). https://doi.org/10.1149/2.0121506jes
- S. Maddukuri, A. Nimkar, M.S. Chae, T.R. Penki, S. Luski et al., Na0.44MnO2/polyimide aqueous Na-ion batteries for large energy storage applications. Front. Energy Res. 8, 615677 (2021). https://doi.org/10.3389/fenrg.2020.615677
- H. Li, S.Y. Liu, T.C. Yuan, B. Wang, P. Sheng et al., Influence of NaOH concentration on sodium storage performance of Na0.44MnO2. Acta Phys. Chim. Sin. 37(3), 1907049 (2021). https://doi.org/10.3866/PKU.WHXB201907049
- L.M. Suo, O. Borodin, Y.S. Wang, X.H. Rong, W. Sun et al., Water-in-salt electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting. Adv. Energy Mater. 7(21), 1701189 (2017). https://doi.org/10.1002/aenm.201701189
- S.L. Bai, J.L. Song, Y.H. Wen, J. Cheng, G.P. Cao et al., Effects of zinc and manganese ions in aqueous electrolytes on structure and electrochemical performance of Na0.44MnO2 cathode material. RSC Adv. 6(47), 40793–40798 (2016). https://doi.org/10.1039/c6ra01768a
- M.S. Chae, H.J. Kim, J. Lyoo, R. Attias, Y. Elias et al., Boosting tunnel-type manganese oxide cathodes by lithium nitrate for practical aqueous Na-ion batteries. ACS Appl. Energy Mater. 3(11), 10744–10751 (2020). https://doi.org/10.1021/acsaem.0c01781
- H.Z. Guo, Z.P. Shao, Y.X. Zhang, X.S. Cui, L.H. Mao et al., Electrolyte additives inhibit the surface reaction of aqueous sodium/zinc battery. J. Colloid Interface Sci. 608, 1481–1488 (2022). https://doi.org/10.1016/j.jcis.2021.10.085
- R. Chua, Y. Cai, P.Q. Lim, S. Kumar, R. Satish et al., Hydrogen-bonding interactions in hybrid aqueous/nonaqueous electrolytes enable low-cost and long-lifespan sodium-ion storage. ACS Appl. Mater. Interfaces 12(20), 22862–22872 (2020). https://doi.org/10.1021/acsami.0c03423
- Z.G. Hou, X.Q. Zhang, J.W. Chen, Y.T. Qian, L.F. Chen et al., Towards high-performance aqueous sodium ion batteries: Constructing hollow NaTi2(PO4)3@C nanocube anode with Zn metal-induced pre-sodiation and deep eutectic electrolyte. Adv. Energy Mater. 12(14), 2104053 (2022). https://doi.org/10.1002/aenm.202104053
- R. Chua, Y. Cai, Z.K. Kou, R. Satish, H. Ren et al., 13 V superwide potential window sponsored by Na-Mn-O plates as cathodes towards aqueous rechargeable sodium-ion batteries. Chem. Eng. J. 370, 742–748 (2019). https://doi.org/10.1016/j.cej.2019.03.251
- Y.S. Wang, L.Q. Mu, J. Liu, Z.Z. Yang, X.Q. Yu et al., A novel high capacity positive electrode material with tunnel-type structure for aqueous sodium-ion batteries. Adv. Energy Mater. 5(22), 1501005 (2015). https://doi.org/10.1002/aenm.201501005
- F. Zhang, W.F. Li, X.D. Xiang, M.L. Sun, Highly stable Na-storage performance of Na0.5Mn0.5Ti05O2 microrods as cathode for aqueous sodium-ion batteries. J. Electroanal. Chem. 802, 22–26 (2017). https://doi.org/10.1016/j.jelechem.2017.08.042
- M. Jayakumar, K. Hemalatha, K. Ramesha, A.S. Prakash, Framework structured Na4Mn4Ti5O18 as an electrode for Na-ion storage hybrid devices. Phys. Chem. Chem. Phys. 17(32), 20733–20740 (2015). https://doi.org/10.1039/c5cp02866c
- S. Boyd, R. Dhall, J.M. LeBeau, V. Augustyn, Charge storage mechanism and degradation of P2-type sodium transition metal oxides in aqueous electrolytes. J. Mater. Chem. A 6(44), 22266–22276 (2018). https://doi.org/10.1039/c8ta08367c
- A.C. Nwanya, M.M. Ndipingwi, O. Anthony, F.I. Ezema, M. Maaza et al., Impedance studies of biosynthesized Na0.8Ni0.33Co0.33Mn0.33O2 applied in an aqueous sodium-ion battery. Int. J. Energy Res. 45(7), 11123–11134 (2021). https://doi.org/10.1002/er.6594
- F.P. Gu, T.J. Sun, X.L. Yao, M. Shui, J. Shu, Studies on the improved electro-chemical performance and the sodium ion migration mechanism of Na0.44MnO2-CNT electrodes for aqueous sodium batteries. J. Phys. Chem. Solid 149, 109771 (2021). https://doi.org/10.1016/j.jpcs.2020.109771
- F.X. Yin, Z.J. Liu, Y. Zhao, Y.T. Feng, Y.G. Zhang, Electrochemical properties of an na4mn9o18-reduced graphene oxide composite synthesized via spray drying for an aqueous sodium-ion battery. Nanomaterials 7(9), 253 (2017). https://doi.org/10.3390/nano7090253
- A.D. Tevar, J.F. Whitacre, Relating synthesis conditions and electrochemical performance for the sodium intercalation compound Na4Mn9O18 in aqueous electrolyte. J. Electrochem. Soc. 157(7), A870–A875 (2010). https://doi.org/10.1149/1.3428667
- J.F. Whitacre, A. Tevar, S. Sharma, Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device. Electrochem. Commun. 12(3), 463–466 (2010). https://doi.org/10.1016/j.elecom.2010.01.020
- Y.G. Zhang, Z. Bakenov, T.Z. Tan, J. Huang, Polyacrylonitrile-nanofiber-based gel polymer electrolyte for novel aqueous sodium-ion battery based on a Na4Mn9O18 cathode and Zn metal anode. Polymers 10(8), 853 (2018). https://doi.org/10.3390/polym10080853
- G.H. Yuan, J.M. Xiang, H.F. Jin, Y.Z. Jin, L.Z. Wu et al., Flexible free-standing Na4Mn9O18/reduced graphene oxide composite film as a cathode for sodium rechargeable hybrid aqueous battery. Electrochim. Acta 259, 647–654 (2018). https://doi.org/10.1016/j.electacta.2017.11.015
- F.X. Yin, Z.J. Liu, S. Yang, Z.Z. Shan, Y. Zhao et al., Na4Mn9O18/carbon nanotube composite as a high electrochemical performance material for aqueous sodium-ion batteries. Nanoscale Res. Lett. 12, 569 (2017). https://doi.org/10.1186/s11671-017-2340-1
- Z.Z. Shan, Y.S. He, T.Z. Tan, Y.G. Zhang, X. Wang, Preparation of Na4Mn9O18/carbon nanotube/reduced graphene oxide by spray drying as cathode materials for sodium ion batteries. Solid State Sci. 94, 77–84 (2019). https://doi.org/10.1016/j.solidstatesciences.2019.05.019
- X.Q. Shan, D.S. Charles, Y.K. Lei, R.M. Qiao, G.F. Wang et al., Bivalence Mn5O8 with hydroxylated interphase for high-voltage aqueous sodium-ion storage. Nat. Commun. 7, 13370 (2016). https://doi.org/10.1038/ncomms13370
- X.Q. Shan, F.H. Guo, W.Q. Xu, X.W. Teng, High purity Mn5O8 nanops with a high overpotential to gas evolution reactions for high voltage aqueous sodium-ion electrochemical storage. Front. Energy 11(3), 383–400 (2017). https://doi.org/10.1007/s11708-017-0485-3
- S. Qiu, Y.K. Xu, X.Y. Wu, X.L. Ji, Prussian blue analogues as electrodes for aqueous monovalent ion batteries. Electrochem. Energy Rev. 5(2), 242–262 (2022). https://doi.org/10.1007/s41918-020-00088-x
- B.X. Xie, B.Y. Sun, T.Y. Gao, Y.L. Ma, G.P. Yin et al., Recent progress of prussian blue analogues as cathode materials for nonaqueous sodium-ion batteries. Coord. Chem. Rev. 460, 214478 (2022). https://doi.org/10.1016/j.ccr.2022.214478
- J. Han, H. Zhang, A. Varzi, S. Passerini, Fluorine-free water-in-salt electrolyte for green and low-cost aqueous sodium-ion batteries. Chemsuschem 11(21), 3704–3707 (2018). https://doi.org/10.1002/cssc.201801930
- K. Shin, Y.P. Zheng, F. Zhang, S. Wu, Y.B. Tang, Facile ion-exchange strategy for Na+/K+ hybrid-ion batteries with superior rate capability and cycling performance. ACS Appl. Energy Mater. 3(7), 7030–7038 (2020). https://doi.org/10.1021/acsaem.0c01060
- S. Qiu, X.Y. Wu, M.Y. Wang, M. Lucero, Y. Wang et al., NASICON-type Na3Fe2(PO4)3 as a low-cost and high-rate anode material for aqueous sodium-ion batteries. Nano Energy 64, 103941 (2019). https://doi.org/10.1016/j.nanoen.2019.103941
- J.S. Chen, C. Liu, Z.X. Yu, J.T. Qu, C. Wang et al., High-energy-density aqueous sodium-ion batteries enabled by chromium hexacycnochromate anodes. Chem. Eng. J. 415, 129003 (2021). https://doi.org/10.1016/j.cej.2021.129003
- Z.G. Hou, W.T. Mao, Z.X. Zhang, J.W. Chen, H.S. Ao et al., Bipolar electrode architecture enables high-energy aqueous rechargeable sodium ion battery. Nano Res. 15(6), 5072–5080 (2022). https://doi.org/10.1007/s12274-022-4113-0
- M. Pasta, R.Y. Wang, R. Ruffo, R.M. Qiao, H.W. Lee et al., Manganese-cobalt hexacyanoferrate cathodes for sodium-ion batteries. J. Mater. Chem. A 4(11), 4211–4223 (2016). https://doi.org/10.1039/c5ta10571d
- K. Nakamoto, R. Sakamoto, M. Ito, A. Kitajou, S. Okada, Effect of concentrated electrolyte on aqueous sodium-ion battery with sodium manganese hexacyanoferrate cathode. Electrochemistry 85(4), 179–185 (2017). https://doi.org/10.5796/electrochemistry.85.179
- L.W. Jiang, L.L. Liu, J.M. Yue, Q.Q. Zhang, A.X. Zhou et al., High-voltage aqueous Na-ion battery enabled by inert-cation-assisted water-in-salt electrolyte. Adv. Mater. 32(2), 1904427 (2020). https://doi.org/10.1002/adma.201904427
- D. Reber, R. Grissa, M. Becker, R.S. Kuhnel, C. Battaglia, Anion selection criteria for water-in-salt electrolytes. Adv. Energy Mater. 11(5), 2002913 (2021). https://doi.org/10.1002/aenm.202002913
- M.A. Oliver-Tolentino, J. Vazquez-Samperio, S.N. Arellano-Ahumada, A. Guzman-Vargas, D. Ramirez-Rosales et al., Enhancement of stability by positive disruptive effect on Mn-Fe charge transfer in vacancy-free Mn-Co hexacyanoferrate through a charge/discharge process in aqueous Na-ion batteries. J. Phys. Chem. C 122(36), 20602–20610 (2018). https://doi.org/10.1021/acs.jpcc.8b05506
- Y. Liu, C. Sun, Y. Li, H.B. Jin, Y.J. Zhao, Recent progress of Mn-based nasicon-type sodium ion cathodes. Energy Storage Mater. 57, 69–80 (2023). https://doi.org/10.1016/j.ensm.2023.02.005
- Y. Yuan, Q.Y. Wei, S.K. Yang, X.Y. Zhang, M. Jia et al., Towards high-performance phosphate-based polyanion-type materials for sodium-ion batteries. Energy Storage Mater. 50, 760–782 (2022). https://doi.org/10.1016/j.ensm.2022.06.008
- H. Zhang, X.P. Tan, H.H. Li, S. Passerini, W. Huang, Assessment and progress of polyanionic cathodes in aqueous sodium batteries. Energy Environ. Sci. 14(11), 5788–5800 (2021). https://doi.org/10.1039/d1ee01392k
- L. Sharma, A. Manthiram, Polyanionic insertion hosts for aqueous rechargeable batteries. J. Mater. Chem. A 10(12), 6376–6396 (2022). https://doi.org/10.1039/d1ta11080b
- M. Minakshi, D. Meyrick, Reversible sodiation in maricite NaMn1/3Co1/3Ni1/3PO4 for renewable energy storage. J. Alloys Compd. 555, 10–15 (2013). https://doi.org/10.1016/j.jallcom.2012.11.203
- Y. Zhou, Z.S. Zhang, Y. Zhao, J.F. Liu, K.H. Lam et al., Cost-effective, long-term aqueous rechargeable hybrid sodium/zinc batteries based on Zn anode and Na3MnTi(PO4)3 cathode. Chem. Eng. J. 425, 130459 (2021). https://doi.org/10.1016/j.cej.2021.130459
- J.T. Wu, H.J. Liu, H.P. Bu, X. Zhang, H.L. Zhang et al., Manganese-based NASICON structured Na1+2xMnxTi2-x(PO4)3 as promising cathode in aqueous sodium ion battery. J. Alloys Compd. 934, 167872 (2023). https://doi.org/10.1016/j.jallcom.2022.167872
- P.R. Kumar, A. Kheireddine, U. Nisar, R.A. Shakoor, R. Essehli et al., Na4MnV(PO4)3-rGO as advanced cathode for aqueous and non-aqueous sodium ion batteries. J. Power Sources 429, 149–155 (2019). https://doi.org/10.1016/j.jpowsour.2019.04.080
- B.W. Xie, R. Sakamoto, A. Kitajou, K. Nakamoto, L.W. Zhao et al., Cathode properties of Na3MnPO4CO3 prepared by the mechanical ball milling method for Na-ion batteries. Energies 12(23), 4534 (2019). https://doi.org/10.3390/en12234534
- X.Y. Guo, Z.B. Wang, Z. Deng, B. Wang, X. Chen et al., Design principles for aqueous Na-ion battery cathodes. Chem. Mater. 32(16), 6875–6885 (2020). https://doi.org/10.1021/acs.chemmater.0c01582
- K. Shiprath, H. Manjunatha, K.C.B. Naidu, A. Khan, A.M. Asiri et al., Na3MnPO4CO3 as cathode for aqueous sodium ion batteries: Synthesis and electrochemical characterization. Mater. Chem. Phys. 248, 122952 (2020). https://doi.org/10.1016/j.matchemphys.2020.122952
- N. Nzimande, A. Haruna, P. Mwonga, B. Rasche, F. Cummings et al., Ceria-spiderweb nanosheets unlock the energy-storage properties in the “sleeping” triplite (Mn2(PO4)F). ACS Appl. Energy Mater. 4(11), 13085–13097 (2021). https://doi.org/10.1021/acsaem.1c02734
- Y.S. Wang, J. Liu, B.J. Lee, R.M. Qiao, Z.Z. Yang et al., Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries. Nat. Commun. 6, 6401 (2015). https://doi.org/10.1038/ncomms7401
- Y. Wang, F.Y. Zhou, Y.H. Li, P. Shi, S.Y. Xu et al., Na2[Mn3Vac0.1Ti0.4]O7: A new layered negative electrode material for aqueous Na-ion batteries. J. Alloys Compd. 918, 165765 (2022). https://doi.org/10.1016/j.jallcom.2022.165765
- M. Pasta, C.D. Wessells, N. Liu, J. Nelson, M.T. McDowell et al., Full open-framework batteries for stationary energy storage. Nat. Commun. 5, 3007 (2014). https://doi.org/10.1038/ncomms4007
- A. Firouzi, R.M. Qiao, S. Motallebi, C.W. Valencia, H.S. Israel et al., Monovalent manganese based anodes and co-solvent electrolyte for stable low-cost high-rate sodium-ion batteries. Nat. Commun. 9, 861 (2018). https://doi.org/10.1038/s41467-018-03257-1
- J. Yun, F.A. Schiegg, Y.C. Liang, D. Scieszka, B. Garlyyev et al., Electrochemically formed NaxMn[Mn(CN)6] thin film anodes demonstrate sodium intercalation and deintercalation at extremely negative electrode potentials in aqueous media. ACS Appl. Energy Mater. 1(1), 123–128 (2018). https://doi.org/10.1021/acsaem.7b00022
- K. Nakamoto, R. Sakamoto, Y. Sawada, M. Ito, S. Okada, Over 2 V aqueous sodium-ion battery with prussian blue-type electrodes. Small Methods 3(4), 1800220 (2019). https://doi.org/10.1002/smtd.201800220
- S. Wheeler, I. Capone, S. Day, C. Tang, M. Pasta, Low-potential prussian blue analogues for sodium-ion batteries: Manganese hexacyanochromate. Chem. Mater. 31(7), 2619–2626 (2019). https://doi.org/10.1021/acs.chemmater.9b00471
- M.G. Wu, W. Ni, J. Hu, J.M. Ma, NASICON-structured NaTi2(PO4)3 for sustainable energy storage. Nano-Micro Lett. 11(1), 44 (2019). https://doi.org/10.1007/s40820-019-0273-1
- P. Lei, K. Liu, X. Wan, D.X. Luo, X.D. Xiang, Ultrafast Na intercalation chemistry of Na2Ti3/2Mn1/2(PO4)3 nanodots planted in a carbon matrix as a low cost anode for aqueous sodium-ion batteries. Chem. Commun. 55(4), 509–512 (2019). https://doi.org/10.1039/c8cc07668e
- Y. Shang, X.X. Li, J.J. Song, S.Z. Huang, Z. Yang et al., Unconventional Mn vacancies in Mn-Fe prussian blue analogs: Suppressing jahn-teller distortion for ultrastable sodium storage. Chem 6(7), 1804–1818 (2020). https://doi.org/10.1016/j.chempr.2020.05.004
References
W.A. Braff, J.M. Mueller, J.E. Trancik, Value of storage technologies for wind and solar energy. Nat. Clim. Change 6(10), 964–969 (2016). https://doi.org/10.1038/Nclimate3045
O.J. Guerra, J.Z. Zhang, J. Eichman, P. Denholm, J. Kurtz et al., The value of seasonal energy storage technologies for the integration of wind and solar power. Energy Environ. Sci. 13(7), 1909–1922 (2020). https://doi.org/10.1039/d0ee00771d
K.C. Divya, J. Ostergaard, Battery energy storage technology for power systems-an overview. Electr. Power Syst. Res. 79(4), 511–520 (2009). https://doi.org/10.1016/j.epsr.2008.09.017
B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
H. Kim, H. Kim, Z. Ding, M.H. Lee, K. Lim et al., Recent progress in electrode materials for sodium-ion batteries. Adv. Energy Mater. 6(19), 1600943 (2016). https://doi.org/10.1002/aenm.201600943
Y.Q. Yang, S. Bremner, C. Menictas, M. Kay, Battery energy storage system size determination in renewable energy systems: a review. Renew. Sust. Energy Rev. 91, 109–125 (2018). https://doi.org/10.1016/j.rser.2018.03.047
Y.G. Wang, J. Yi, Y.Y. Xia, Recent progress in aqueous lithium-ion batteries. Adv. Energy Mater. 2(7), 830–840 (2012). https://doi.org/10.1002/aenm.201200065
H. Kim, J. Hong, K.Y. Park, H. Kim, S.W. Kim et al., Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114(23), 11788–11827 (2014). https://doi.org/10.1021/cr500232y
J. Lamb, J.A. Jeevarajan, New developments in battery safety for large-scale systems. MRS Bull. 46(5), 395–401 (2021). https://doi.org/10.1557/s43577-021-00098-0
J.Y. Hwang, S.T. Myung, Y.K. Sun, Sodium-ion batteries: present and future. Chem. Soc. Rev. 46(12), 3529–3614 (2017). https://doi.org/10.1039/c6cs00776g
K. Chayambuka, G. Mulder, D.L. Danilov, P.H.L. Notten, Sodium-ion battery materials and electrochemical properties reviewed. Adv. Energy Mater. 8(16), 1800079 (2018). https://doi.org/10.1002/aenm.201800079
T. Perveen, M. Siddiq, N. Shahzad, R. Ihsan, A. Ahmad et al., Prospects in anode materials for sodium ion batteries—a review. Renew. Sustain. Energy Rev. 119, 109549 (2020). https://doi.org/10.1016/j.rser.2019.109549
P. Barpanda, L. Lander, S. Nishimura, A. Yamada, Polyanionic insertion materials for sodium-ion batteries. Adv. Energy Mater. 8(17), 1703055 (2018). https://doi.org/10.1002/aenm.201703055
J. Peng, W. Zhang, Q.N. Liu, J.Z. Wang, S.L. Chou et al., Prussian blue analogues for sodium-ion batteries: past, present, and future. Adv. Mater. 34(15), 2108384 (2022). https://doi.org/10.1002/adma.202108384
A. Ponrouch, D. Monti, A. Boschin, B. Steen, P. Johansson et al., Non-aqueous electrolytes for sodium-ion batteries. J. Mater. Chem. A 3(1), 22–42 (2015). https://doi.org/10.1039/c4ta04428b
H. Hijazi, P. Desai, S. Mariyappan, Non-aqueous electrolytes for sodium-ion batteries: challenges and prospects towards commercialization. Batter. Supercaps. 4(6), 881–896 (2021). https://doi.org/10.1002/batt.202000277
W. Tang, Y.S. Zhu, Y.Y. Hou, L.L. Liu, Y.P. Wu et al., Aqueous rechargeable lithium batteries as an energy storage system of superfast charging. Energy Environ. Sci. 6(7), 2093–2104 (2013). https://doi.org/10.1039/c3ee24249h
M. Liu, H. Ao, Y. Jin, Z. Hou, X. Zhang et al., Aqueous rechargeable sodium ion batteries: developments and prospects. Mater. Today Energy 17, 100432 (2020). https://doi.org/10.1016/j.mtener.2020.100432
H.X. Yang, J.F. Qian, Recent development of aqueous sodium ion batteries and their key materials. J. Inorg. Mater. 28(11), 1165–1171 (2013). https://doi.org/10.3724/SP.J.1077.2013.13388
D. Bin, F. Wang, A.G. Tamirat, L.M. Suo, Y.G. Wang et al., Progress in aqueous rechargeable sodium-ion batteries. Adv. Energy Mater. 8(17), 1703008 (2018). https://doi.org/10.1002/aenm.201703008
H. Ma, H.R. Zhang, M.Q. Xue, Research progress and practical challenges of aqueous sodium-ion batteries. Acta. Chim. Sin. 79(4), 388–405 (2021). https://doi.org/10.6023/A20100492
Z.G. Hou, X.Q. Zhang, X.N. Li, Y.C. Zhu, J.W. Liang et al., Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery. J. Mater. Chem. A 5(2), 730–738 (2017). https://doi.org/10.1039/c6ta08736a
H. Tomiyasu, H. Shikata, K. Takao, N. Asanuma, S. Taruta et al., An aqueous electrolyte of the widest potential window and its superior capability for capacitors. Sci. Rep. 7, 45048 (2017). https://doi.org/10.1038/srep45048
H. Gao, K.K. Tang, J. Xiao, X. Guo, W.H. Chen et al., Recent advances in “water in salt” electrolytes for aqueous rechargeable monovalent-ion (Li+, Na+, K+) batteries. J. Energy Chem. 69, 84–99 (2022). https://doi.org/10.1016/j.jechem.2021.12.025
Y.H. Shen, B. Liu, X.R. Liu, J. Liu, J. Ding et al., Water-in-salt electrolyte for safe and high-energy aqueous battery. Energy Storage Mater. 34, 461–474 (2021). https://doi.org/10.1016/j.ensm.2020.10.011
J.H. Huang, X.L. Dong, Z.W. Guo, Y.G. Wang, Progress of organic electrodes in aqueous electrolyte for energy storage and conversion. Angew. Chem. Int. Ed. 59(42), 18322–18333 (2020). https://doi.org/10.1002/anie.202003198
Y.N. Gao, H.Y. Yang, Y. Bai, C. Wu, Mn-based oxides for aqueous rechargeable metal ion batteries. J. Mater. Chem. A 9(19), 11472–11500 (2021). https://doi.org/10.1039/d1ta01951a
Y.Y. Wang, D. Liu, M.L. Sun, J.P. Liu, Recent progress in electrode materials for aqueous sodium and potassium ion batteries. Mater. Chem. Front. 5(20), 7384–7402 (2021). https://doi.org/10.1039/d1qm01011e
H.X. Li, W. Zhang, K.N. Sun, J. Guo, K. Yuan et al., Manganese-based materials for rechargeable batteries beyond lithium-ion. Adv. Energy Mater. 11(25), 2100867 (2021). https://doi.org/10.1002/aenm.202100867
Y.G. Cao, M.J. Xiao, X.Z. Sun, W.J. Dong, F.Q. Huang, Recent advances on high-capacity sodium manganese-based oxide cathodes for sodium-ion batteries. Chem. Eur. J. 29, e202202997 (2023). https://doi.org/10.1002/chem.202202997
A. Zhou, R. Chi, Y. Shi, X. Zhao, X. Li et al., Manganese-based cathode materials for aqueous rechargeable zinc-ion batteries: recent advance and future prospects. Mater. Today Chem. 27, 101294 (2023). https://doi.org/10.1016/j.mtchem.2022.101294
Y.X. Chang, L.Z. Yu, X.X. Xing, Y.J. Guo, Z.Y. Xie et al., Ion substitution strategy of manganese-based layered oxide cathodes for advanced and low-cost sodium ion batteries. Chem. Rec. 22(10), e202200122 (2022). https://doi.org/10.1002/tcr.202200122
J. Chen, W.L. Xu, H.Y. Wang, X.H. Ren, F.Y. Zhan et al., Emerging two-dimensional nanostructured manganese-based materials for electrochemical energy storage: recent advances, mechanisms, challenges, and prospects. J. Mater. Chem. A 10(40), 21197–21250 (2022). https://doi.org/10.1039/d2ta05309h
L.Y. Liu, Y.C. Wu, L. Huang, K.S. Liu, B. Duployer et al., Alkali ions pre-intercalated layered MnO2 nanosheet for zinc-ions storage. Adv. Energy Mater. 11(31), 2101287 (2021). https://doi.org/10.1002/aenm.202101287
G.G. Yadav, J.W. Gallaway, D.E. Turney, M. Nyce, J.C. Huang et al., Regenerable Cu-intercalated MnO2 layered cathode for highly cyclable energy dense batteries. Nat. Commun. 8, 14424 (2017). https://doi.org/10.1038/ncomms14424
D.G.G.J.M. Tarascon, B. Wilkens, W.R. Mc Kinnon, P. Barboux, Chemical and electrochemical insertion of na into the spinel λ-MnO2 phase. Solid State Ionics 57, 113–120 (1992). https://doi.org/10.1016/0167-2738(92)90072-W
J.F. Whitacre, T. Wiley, S. Shanbhag, Y. Wenzhuo, A. Mohamed et al., An aqueous electrolyte, sodium ion functional, large format energy storage device for stationary applications. J. Power Sources 213, 255–264 (2012). https://doi.org/10.1016/j.jpowsour.2012.04.018
M. Minakshi, Looking beyond lithium-ion technology - aqueous NaOH battery. Mater. Sci. Eng. B-Adv. 177(20), 1788–1792 (2012). https://doi.org/10.1016/j.mseb.2012.09.003
X.Q. Zhang, J.W. Chen, J.J. Ye, T.W. Zhang, Z.G. Hou, Revealing the competitive intercalation between Na+ and H+ into Na0.44MnO2 in aqueous sodium ion batteries. Adv. Energy Mater. 13(17), 2204413 (2023). https://doi.org/10.1002/aenm.202204413
D.J. Kim, R. Ponraj, A.G. Kannan, H.W. Lee, R. Fathi et al., Diffusion behavior of sodium ions in Na0.44MnO2 in aqueous and non-aqueous electrolytes. J. Power Sources 244, 758–763 (2013). https://doi.org/10.1016/j.jpowsour.2013.02.090
H. Lim, J.H. Jung, Y.M. Park, H.N. Lee, H.J. Kim, High-performance aqueous rechargeable sulfate- and sodium-ion battery based on polypyrrole-mwcnt core-shell nanowires and Na0.44MnO2 nanorods. Appl. Surf. Sci. 446, 131–138 (2018). https://doi.org/10.1016/j.apsusc.2018.02.021
J.Z. Sun, Y. Dong, C.Y. Kong, Synthesis of Na2MnFe(CN)6 and its application as cathode material for aqueous rechargeable sodium-ion battery. J. New Mater. Electrochem. Syst. 19(3), 117–119 (2016). https://doi.org/10.14447/jnmes.v19i3.306
H.C. Gao, J.B. Goodenough, An aqueous symmetric sodium-ion battery with NASICON-structured Na3MnTi(PO4)3. Angew. Chem. Int. Ed. 55(41), 12768–12772 (2016). https://doi.org/10.1002/anie.201606508
Z.X. Liu, G. Pang, S.Y. Dong, Y.D. Zhang, C.H. Mi et al., An aqueous rechargeable sodium-magnesium mixed ion battery based on NaTi2(PO4)3-MnO2 system. Electrochim. Acta 311, 1–7 (2019). https://doi.org/10.1016/j.electacta.2019.04.130
M.S. Chae, A. Chakraborty, S. Kunnikuruvan, R. Attias, S. Maddukuri et al., Vacancy-driven high rate capabilities in calcium-doped Na0.4MnO2 cathodes for aqueous sodium-ion batteries. Adv. Energy Mater. 10(37), 2002077 (2020). https://doi.org/10.1002/aenm.202002077
M.Q. Zhang, T.B. Dong, D.G. Li, K. Wang, X.Z. Wei et al., High-performance aqueous sodium-ion battery based on graphene-doped Na2MnFe(CN)6-zinc with a highly stable discharge platform and wide electrochemical stability. Energy Fuels 35(13), 10860–10868 (2021). https://doi.org/10.1021/acs.energyfuels.1c01095
H. Kanoh, W.P. Tang, Y. Makita, K. Ooi, Electrochemical intercalation of alkali-metal ions into birnessite-type manganese oxide in aqueous solution. Langmuir 13(25), 6845–6849 (1997). https://doi.org/10.1021/la970767d
S. Devaraj, N. Munichandraiah, Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J. Phys. Chem. C 112(11), 4406–4417 (2008). https://doi.org/10.1021/jp7108785
Y. Zhang, C.L. Yuan, K. Ye, X. Jiang, J.L. Yin et al., An aqueous capacitor battery hybrid device based on Na-ion insertion-deinsertion in lambda-MnO2 positive electrode. Electrochim. Acta 148, 237–243 (2014). https://doi.org/10.1016/j.electacta.2014.10.052
M. Minakshi, D. Meyrick, Electrochemical energy storage device for securing future renewable energy. Electrochim. Acta 101, 66–70 (2013). https://doi.org/10.1016/j.electacta.2013.02.075
P.Y. Wang, X.B. Yan, Recent advances in Mg-Li and Mg-Na hybrid batteries. Energy Storage Mater. 45, 142–181 (2022). https://doi.org/10.1016/j.ensm.2021.11.027
Y. Liu, Y. Qiao, W.X. Zhang, H. Wang, K.Y. Chen et al., Nanostructured alkali cation incorporated delta-MnO2 cathode materials for aqueous sodium-ion batteries. J. Mater. Chem. A 3(15), 7780–7785 (2015). https://doi.org/10.1039/c5ta00396b
Y. Liu, Y. Qiao, W.X. Zhang, H.H. Xu, Z. Li et al., High-performance aqueous sodium-ion batteries with K0.27MnO2 cathode and their sodium storage mechanism. Nano Energy 5, 97–104 (2014). https://doi.org/10.1016/j.nanoen.2014.02.010
Y. Liu, Y. Qiao, X.D. Lou, X.H. Zhang, W.X. Zhang et al., Hollow K0.27MnO2 nanospheres as cathode for high-performance aqueous sodium ion batteries. ACS Appl. Mater. Interfaces 8(23), 14564–14571 (2016). https://doi.org/10.1021/acsami.6b03089
X.Q. Shan, F.H. Guo, K. Page, J.C. Neuefeind, B. Ravel et al., Framework doping of ni enhances pseudocapacitive Na-ion storage of (Ni)MnO2 layered birnessite. Chem. Mater. 31(21), 8774–8786 (2019). https://doi.org/10.1021/acs.chemmater.9b02568
Q.L. Wei, X.Q. Chang, D. Butts, R. DeBlock, K. Lan et al., Surface-redox sodium-ion storage in anatase titanium oxide. Nat. Commun. 14(1), 7 (2023). https://doi.org/10.1038/s41467-022-35617-3
J. Yu, X. Huang, Y. He, D. Tang, T. Huang, L. Liu, H. Wu, D.L. Peng, D. Zhao, K. Lan, Q. Wei, Compacted mesoporous titania nanosheets anode for pseudocapacitance-dominated, high-rate, and high-volumetric sodium-ion storage. SmartMat (2023). https://doi.org/10.1002/smm2.1192
Q. Wei, T. Huang, X. Huang, B. Wang, Y. Jiang et al., High-rate sodium-ion storage of vanadium nitride via surface-redox pseudocapacitance. Interdiscip. Mater. 2(3), 434–442 (2023). https://doi.org/10.1002/idm2.12080
X.Q. Shan, D.S. Charles, W.Q. Xu, M. Feygenson, D. Su et al., Biphase cobalt-manganese oxide with high capacity and rate performance for aqueous sodium-ion electrochemical energy storage. Adv. Funct. Mater. 28(3), 1703266 (2018). https://doi.org/10.1002/adfm.201703266
H. Usui, S. Suzuki, Y. Domi, H. Sakaguchi, Impacts of MnO2 crystal structures and Fe doping in those on photoelectrochemical charge-discharge properties of TiO2/MnO2 composite electrodes. ACS Sustain. Chem. Eng. 8(24), 9165–9173 (2020). https://doi.org/10.1021/acssuschemeng.0c02964
M. Ren, H.Y. Fang, C.C. Wang, H.X. Li, F.J. Li, Advances on manganese-oxide-based cathodes for Na-ion batteries. Energy Fuels 34(11), 13412–13426 (2020). https://doi.org/10.1021/acs.energyfuels.0c02897
N. Jabeen, A. Hussain, Q.Y. Xia, S. Sun, J.W. Zhu et al., High-performance 2.6 V aqueous asymmetric supercapacitors based on in situ formed Na0.5MnO2 nanosheet assembled nanowall arrays. Adv. Mater. 29(32), 1700804 (2017). https://doi.org/10.1002/adma.201700804
W.H. Zuo, Y. Yang, Synthesis, structure, electrochemical mechanisms, and atmospheric stability of Mn-based layered oxide cathodes for sodium ion batteries. Acc. Mater. Res. 3(7), 709–720 (2022). https://doi.org/10.1021/accountsmr.2c00058
X.Q. Shan, F.H. Guo, D.S. Charles, Z. Lebens-Higgins, S.A. Razek et al., Structural water and disordered structure promote aqueous sodium-ion energy storage in sodium-birnessite. Nat. Commun. 10, 4975 (2019). https://doi.org/10.1038/s41467-019-12939-3
B.H. Zhang, Y. Liu, Z. Chang, Y.Q. Yang, Z.B. Wen et al., Nanowire Na0.35MnO2 from a hydrothermal method as a cathode material for aqueous asymmetric supercapacitors. J. Power Sources 253, 98–103 (2014). https://doi.org/10.1016/j.jpowsour.2013.12.011
Y. Liu, B.H. Zhang, S.Y. Xiao, L.L. Liu, Z.B. Wen et al., A nanocomposite of MoO3 coated with PPy as an anode material for aqueous sodium rechargeable batteries with excellent electrochemical performance. Electrochim. Acta 116, 512–517 (2014). https://doi.org/10.1016/j.electacta.2013.11.077
X. Zhou, A.L. Zhao, Z.X. Chen, Y.L. Cao, Research progress of tunnel-structural Na0.44MnO2 cathode for sodium-ion batteries: a mini review. Electrochem. Commun. 122, 106897 (2021). https://doi.org/10.1016/j.elecom.2020.106897
M.S. Chae, Y. Elias, D. Aurbach, Tunnel-type sodium manganese oxide cathodes for sodium-ion batteries. ChemElectroChem 8(5), 798–811 (2021). https://doi.org/10.1002/celc.202001323
B. Tekin, S. Sevinc, M. Morcrette, R. Demir-Cakan, A new sodium-based aqueous rechargeable battery system: the special case of Na0.44MnO2/dissolved sodium polysulfide. Energy Technol. 5(12), 2182–2188 (2017). https://doi.org/10.1002/ente.201700245
H. Li, S.Y. Liu, T.C. Yuan, B. Wang, P. Sheng et al., Electrochemical mechanism of Na0.44MnO2 in alkaline aqueous solution. Acta Phys. Chim. Sin. 36(5), 1905027 (2020). https://doi.org/10.3866/PKU.WHXB201905027
T.J. Sun, C. Liu, J.Y. Wang, Q.S. Nian, Y.Z. Feng et al., A phenazine anode for high-performance aqueous rechargeable batteries in a wide temperature range. Nano Res. 13(3), 676–683 (2020). https://doi.org/10.1007/s12274-020-2674-3
Z.W. Guo, Y. Zhao, Y.X. Ding, X.L. Dong, L. Chen et al., Multi-functional flexible aqueous sodium-ion batteries with high safety. Chem 3(2), 348–362 (2017). https://doi.org/10.1016/j.chempr.2017.05.004
Z. Li, D. Young, K. Xiang, W.C. Carter, Y.M. Chiang, Towards high power high energy aqueous sodium-ion batteries: The NaTi2(PO4)3/Na0.44MnO2 system. Adv. Energy Mater. 3(3), 290–294 (2013). https://doi.org/10.1002/aenm.201200598
W. Wu, A. Mohamed, J.F. Whitacre, Microwave synthesized NaTi2(PO4)3 as an aqueous sodium-ion negative electrode. J. Electrochem. Soc. 160(3), A497–A504 (2013). https://doi.org/10.1149/2.054303jes
B.D. Zhao, Q.Y. Wang, S. Zhang, C. Deng, Self-assembled wafer-like porous NaTi2(PO4)3 decorated with hierarchical carbon as a high-rate anode for aqueous rechargeable sodium batteries. J. Mater. Chem. A 3(22), 12089–12096 (2015). https://doi.org/10.1039/c5ta02568k
B.D. Zhao, B. Lin, S. Zhang, C. Deng, A frogspawn-inspired hierarchical porous NaTi2(PO4)3-C array for high-rate and long-life aqueous rechargeable sodium batteries. Nanoscale 7(44), 18552–18560 (2015). https://doi.org/10.1039/c5nr06505d
G. Pang, P. Nie, C.Z. Yuan, L.F. Shen, X.G. Zhang et al., Enhanced performance of aqueous sodium-ion batteries using electrodes based on the NaTi2(PO4)3/MWNTs–Na0.44MnO2 system. Energy Technol. 2(8), 705–712 (2014). https://doi.org/10.1002/ente.201402045
L.L. Ke, J. Dong, B. Lin, T.T. Yu, H.F. Wang et al., A NaV3(PO4)3@C hierarchical nanofiber in high alignment: exploring a novel high-performance anode for aqueous rechargeable sodium batteries. Nanoscale 9(12), 4183–4190 (2017). https://doi.org/10.1039/c7nr00793k
C. Deng, S. Zhang, Z. Dong, Y. Shang, 1D nanostructured sodium vanadium oxide as a novel anode material for aqueous sodium ion batteries. Nano Energy 4, 49–55 (2014). https://doi.org/10.1016/j.nanoen.2013.12.014
T.T. Gu, M. Zhou, M.Y. Liu, K.L. Wang, S.J. Cheng et al., A polyimide-MWCNTs composite as high performance anode for aqueous Na-ion batteries. RSC Adv. 6(58), 53319–53323 (2016). https://doi.org/10.1039/c6ra09075c
Y. Wang, Z. Feng, D. Laul, W. Zhu, M. Provencher et al., Ultra-low cost and highly stable hydrated FePO4 anodes for aqueous sodium-ion battery. J. Power Sources 374, 211–216 (2018). https://doi.org/10.1016/j.jpowsour.2017.10.088
G. Yee, S. Shanbhag, W. Wu, K. Carlisle, J. Chang et al., TiP2O7 exhibiting reversible interaction with sodium ions in aqueous electrolytes. Electrochem. commun. 86, 104–107 (2018). https://doi.org/10.1016/j.elecom.2017.11.013
X.Q. Zhang, Z.G. Hou, X.N. Li, J.W. Liang, Y.C. Zhu et al., Na-birnessite with high capacity and long cycle life for rechargeable aqueous sodium-ion battery cathode electrodes. J. Mater. Chem. A 4(3), 856–860 (2016). https://doi.org/10.1039/c5ta08857g
L. Rakocevic, S. Strbac, J. Potocnik, M. Popovic, D. Jugovic et al., The NaxMnO2 materials prepared by a glycine-nitrate method as advanced cathode materials for aqueous sodium-ion rechargeable batteries. Ceram Int. 47(4), 4595–4603 (2021). https://doi.org/10.1016/j.ceramint.2020.10.025
F.P. Gu, X.L. Yao, T.J. Sun, M.H. Fang, M. Shui et al., Studies on micron-sized Na0.7MnO2.05 with excellent cycling performance as a cathode material for aqueous rechargeable sodium-ion batteries. Appl. Phys. A Mater. 126(8), 658 (2020). https://doi.org/10.1007/s00339-020-03799-6
B.H. Zhang, Y. Liu, X.W. Wu, Y.Q. Yang, Z. Chang et al., An aqueous rechargeable battery based on zinc anode and Na0.95MnO2. Chem. Commun. 50(10), 1209–1211 (2014). https://doi.org/10.1039/c3cc48382g
S. Liu, T. Lei, Q.Q. Song, J. Zhu, C.B. Zhu, High energy, long cycle, and superior low temperature performance aqueous Na-Zn hybrid batteries enabled by a low-cost and protective interphase film-forming electrolyte. ACS Appl. Mater. Interfaces 14(9), 11425–11434 (2022). https://doi.org/10.1021/acsami.1c23806
Z.G. Hou, X.N. Li, J.W. Liang, Y.C. Zhu, Y.T. Qian, An aqueous rechargeable sodium ion battery based on a NaMnO2-NaTi2(PO4)3 hybrid system for stationary energy storage. J. Mater. Chem. A 3(4), 1400–1404 (2015). https://doi.org/10.1039/c4ta06018k
W. Wu, S. Shabhag, J. Chang, A. Rutt, J.F. Whitacre, Relating electrolyte concentration to performance and stability for NaTi2(PO4)3/Na0.44MnO2 aqueous sodium-ion batteries. J. Electrochem. Soc. 162(6), A803–A808 (2015). https://doi.org/10.1149/2.0121506jes
S. Maddukuri, A. Nimkar, M.S. Chae, T.R. Penki, S. Luski et al., Na0.44MnO2/polyimide aqueous Na-ion batteries for large energy storage applications. Front. Energy Res. 8, 615677 (2021). https://doi.org/10.3389/fenrg.2020.615677
H. Li, S.Y. Liu, T.C. Yuan, B. Wang, P. Sheng et al., Influence of NaOH concentration on sodium storage performance of Na0.44MnO2. Acta Phys. Chim. Sin. 37(3), 1907049 (2021). https://doi.org/10.3866/PKU.WHXB201907049
L.M. Suo, O. Borodin, Y.S. Wang, X.H. Rong, W. Sun et al., Water-in-salt electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting. Adv. Energy Mater. 7(21), 1701189 (2017). https://doi.org/10.1002/aenm.201701189
S.L. Bai, J.L. Song, Y.H. Wen, J. Cheng, G.P. Cao et al., Effects of zinc and manganese ions in aqueous electrolytes on structure and electrochemical performance of Na0.44MnO2 cathode material. RSC Adv. 6(47), 40793–40798 (2016). https://doi.org/10.1039/c6ra01768a
M.S. Chae, H.J. Kim, J. Lyoo, R. Attias, Y. Elias et al., Boosting tunnel-type manganese oxide cathodes by lithium nitrate for practical aqueous Na-ion batteries. ACS Appl. Energy Mater. 3(11), 10744–10751 (2020). https://doi.org/10.1021/acsaem.0c01781
H.Z. Guo, Z.P. Shao, Y.X. Zhang, X.S. Cui, L.H. Mao et al., Electrolyte additives inhibit the surface reaction of aqueous sodium/zinc battery. J. Colloid Interface Sci. 608, 1481–1488 (2022). https://doi.org/10.1016/j.jcis.2021.10.085
R. Chua, Y. Cai, P.Q. Lim, S. Kumar, R. Satish et al., Hydrogen-bonding interactions in hybrid aqueous/nonaqueous electrolytes enable low-cost and long-lifespan sodium-ion storage. ACS Appl. Mater. Interfaces 12(20), 22862–22872 (2020). https://doi.org/10.1021/acsami.0c03423
Z.G. Hou, X.Q. Zhang, J.W. Chen, Y.T. Qian, L.F. Chen et al., Towards high-performance aqueous sodium ion batteries: Constructing hollow NaTi2(PO4)3@C nanocube anode with Zn metal-induced pre-sodiation and deep eutectic electrolyte. Adv. Energy Mater. 12(14), 2104053 (2022). https://doi.org/10.1002/aenm.202104053
R. Chua, Y. Cai, Z.K. Kou, R. Satish, H. Ren et al., 13 V superwide potential window sponsored by Na-Mn-O plates as cathodes towards aqueous rechargeable sodium-ion batteries. Chem. Eng. J. 370, 742–748 (2019). https://doi.org/10.1016/j.cej.2019.03.251
Y.S. Wang, L.Q. Mu, J. Liu, Z.Z. Yang, X.Q. Yu et al., A novel high capacity positive electrode material with tunnel-type structure for aqueous sodium-ion batteries. Adv. Energy Mater. 5(22), 1501005 (2015). https://doi.org/10.1002/aenm.201501005
F. Zhang, W.F. Li, X.D. Xiang, M.L. Sun, Highly stable Na-storage performance of Na0.5Mn0.5Ti05O2 microrods as cathode for aqueous sodium-ion batteries. J. Electroanal. Chem. 802, 22–26 (2017). https://doi.org/10.1016/j.jelechem.2017.08.042
M. Jayakumar, K. Hemalatha, K. Ramesha, A.S. Prakash, Framework structured Na4Mn4Ti5O18 as an electrode for Na-ion storage hybrid devices. Phys. Chem. Chem. Phys. 17(32), 20733–20740 (2015). https://doi.org/10.1039/c5cp02866c
S. Boyd, R. Dhall, J.M. LeBeau, V. Augustyn, Charge storage mechanism and degradation of P2-type sodium transition metal oxides in aqueous electrolytes. J. Mater. Chem. A 6(44), 22266–22276 (2018). https://doi.org/10.1039/c8ta08367c
A.C. Nwanya, M.M. Ndipingwi, O. Anthony, F.I. Ezema, M. Maaza et al., Impedance studies of biosynthesized Na0.8Ni0.33Co0.33Mn0.33O2 applied in an aqueous sodium-ion battery. Int. J. Energy Res. 45(7), 11123–11134 (2021). https://doi.org/10.1002/er.6594
F.P. Gu, T.J. Sun, X.L. Yao, M. Shui, J. Shu, Studies on the improved electro-chemical performance and the sodium ion migration mechanism of Na0.44MnO2-CNT electrodes for aqueous sodium batteries. J. Phys. Chem. Solid 149, 109771 (2021). https://doi.org/10.1016/j.jpcs.2020.109771
F.X. Yin, Z.J. Liu, Y. Zhao, Y.T. Feng, Y.G. Zhang, Electrochemical properties of an na4mn9o18-reduced graphene oxide composite synthesized via spray drying for an aqueous sodium-ion battery. Nanomaterials 7(9), 253 (2017). https://doi.org/10.3390/nano7090253
A.D. Tevar, J.F. Whitacre, Relating synthesis conditions and electrochemical performance for the sodium intercalation compound Na4Mn9O18 in aqueous electrolyte. J. Electrochem. Soc. 157(7), A870–A875 (2010). https://doi.org/10.1149/1.3428667
J.F. Whitacre, A. Tevar, S. Sharma, Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device. Electrochem. Commun. 12(3), 463–466 (2010). https://doi.org/10.1016/j.elecom.2010.01.020
Y.G. Zhang, Z. Bakenov, T.Z. Tan, J. Huang, Polyacrylonitrile-nanofiber-based gel polymer electrolyte for novel aqueous sodium-ion battery based on a Na4Mn9O18 cathode and Zn metal anode. Polymers 10(8), 853 (2018). https://doi.org/10.3390/polym10080853
G.H. Yuan, J.M. Xiang, H.F. Jin, Y.Z. Jin, L.Z. Wu et al., Flexible free-standing Na4Mn9O18/reduced graphene oxide composite film as a cathode for sodium rechargeable hybrid aqueous battery. Electrochim. Acta 259, 647–654 (2018). https://doi.org/10.1016/j.electacta.2017.11.015
F.X. Yin, Z.J. Liu, S. Yang, Z.Z. Shan, Y. Zhao et al., Na4Mn9O18/carbon nanotube composite as a high electrochemical performance material for aqueous sodium-ion batteries. Nanoscale Res. Lett. 12, 569 (2017). https://doi.org/10.1186/s11671-017-2340-1
Z.Z. Shan, Y.S. He, T.Z. Tan, Y.G. Zhang, X. Wang, Preparation of Na4Mn9O18/carbon nanotube/reduced graphene oxide by spray drying as cathode materials for sodium ion batteries. Solid State Sci. 94, 77–84 (2019). https://doi.org/10.1016/j.solidstatesciences.2019.05.019
X.Q. Shan, D.S. Charles, Y.K. Lei, R.M. Qiao, G.F. Wang et al., Bivalence Mn5O8 with hydroxylated interphase for high-voltage aqueous sodium-ion storage. Nat. Commun. 7, 13370 (2016). https://doi.org/10.1038/ncomms13370
X.Q. Shan, F.H. Guo, W.Q. Xu, X.W. Teng, High purity Mn5O8 nanops with a high overpotential to gas evolution reactions for high voltage aqueous sodium-ion electrochemical storage. Front. Energy 11(3), 383–400 (2017). https://doi.org/10.1007/s11708-017-0485-3
S. Qiu, Y.K. Xu, X.Y. Wu, X.L. Ji, Prussian blue analogues as electrodes for aqueous monovalent ion batteries. Electrochem. Energy Rev. 5(2), 242–262 (2022). https://doi.org/10.1007/s41918-020-00088-x
B.X. Xie, B.Y. Sun, T.Y. Gao, Y.L. Ma, G.P. Yin et al., Recent progress of prussian blue analogues as cathode materials for nonaqueous sodium-ion batteries. Coord. Chem. Rev. 460, 214478 (2022). https://doi.org/10.1016/j.ccr.2022.214478
J. Han, H. Zhang, A. Varzi, S. Passerini, Fluorine-free water-in-salt electrolyte for green and low-cost aqueous sodium-ion batteries. Chemsuschem 11(21), 3704–3707 (2018). https://doi.org/10.1002/cssc.201801930
K. Shin, Y.P. Zheng, F. Zhang, S. Wu, Y.B. Tang, Facile ion-exchange strategy for Na+/K+ hybrid-ion batteries with superior rate capability and cycling performance. ACS Appl. Energy Mater. 3(7), 7030–7038 (2020). https://doi.org/10.1021/acsaem.0c01060
S. Qiu, X.Y. Wu, M.Y. Wang, M. Lucero, Y. Wang et al., NASICON-type Na3Fe2(PO4)3 as a low-cost and high-rate anode material for aqueous sodium-ion batteries. Nano Energy 64, 103941 (2019). https://doi.org/10.1016/j.nanoen.2019.103941
J.S. Chen, C. Liu, Z.X. Yu, J.T. Qu, C. Wang et al., High-energy-density aqueous sodium-ion batteries enabled by chromium hexacycnochromate anodes. Chem. Eng. J. 415, 129003 (2021). https://doi.org/10.1016/j.cej.2021.129003
Z.G. Hou, W.T. Mao, Z.X. Zhang, J.W. Chen, H.S. Ao et al., Bipolar electrode architecture enables high-energy aqueous rechargeable sodium ion battery. Nano Res. 15(6), 5072–5080 (2022). https://doi.org/10.1007/s12274-022-4113-0
M. Pasta, R.Y. Wang, R. Ruffo, R.M. Qiao, H.W. Lee et al., Manganese-cobalt hexacyanoferrate cathodes for sodium-ion batteries. J. Mater. Chem. A 4(11), 4211–4223 (2016). https://doi.org/10.1039/c5ta10571d
K. Nakamoto, R. Sakamoto, M. Ito, A. Kitajou, S. Okada, Effect of concentrated electrolyte on aqueous sodium-ion battery with sodium manganese hexacyanoferrate cathode. Electrochemistry 85(4), 179–185 (2017). https://doi.org/10.5796/electrochemistry.85.179
L.W. Jiang, L.L. Liu, J.M. Yue, Q.Q. Zhang, A.X. Zhou et al., High-voltage aqueous Na-ion battery enabled by inert-cation-assisted water-in-salt electrolyte. Adv. Mater. 32(2), 1904427 (2020). https://doi.org/10.1002/adma.201904427
D. Reber, R. Grissa, M. Becker, R.S. Kuhnel, C. Battaglia, Anion selection criteria for water-in-salt electrolytes. Adv. Energy Mater. 11(5), 2002913 (2021). https://doi.org/10.1002/aenm.202002913
M.A. Oliver-Tolentino, J. Vazquez-Samperio, S.N. Arellano-Ahumada, A. Guzman-Vargas, D. Ramirez-Rosales et al., Enhancement of stability by positive disruptive effect on Mn-Fe charge transfer in vacancy-free Mn-Co hexacyanoferrate through a charge/discharge process in aqueous Na-ion batteries. J. Phys. Chem. C 122(36), 20602–20610 (2018). https://doi.org/10.1021/acs.jpcc.8b05506
Y. Liu, C. Sun, Y. Li, H.B. Jin, Y.J. Zhao, Recent progress of Mn-based nasicon-type sodium ion cathodes. Energy Storage Mater. 57, 69–80 (2023). https://doi.org/10.1016/j.ensm.2023.02.005
Y. Yuan, Q.Y. Wei, S.K. Yang, X.Y. Zhang, M. Jia et al., Towards high-performance phosphate-based polyanion-type materials for sodium-ion batteries. Energy Storage Mater. 50, 760–782 (2022). https://doi.org/10.1016/j.ensm.2022.06.008
H. Zhang, X.P. Tan, H.H. Li, S. Passerini, W. Huang, Assessment and progress of polyanionic cathodes in aqueous sodium batteries. Energy Environ. Sci. 14(11), 5788–5800 (2021). https://doi.org/10.1039/d1ee01392k
L. Sharma, A. Manthiram, Polyanionic insertion hosts for aqueous rechargeable batteries. J. Mater. Chem. A 10(12), 6376–6396 (2022). https://doi.org/10.1039/d1ta11080b
M. Minakshi, D. Meyrick, Reversible sodiation in maricite NaMn1/3Co1/3Ni1/3PO4 for renewable energy storage. J. Alloys Compd. 555, 10–15 (2013). https://doi.org/10.1016/j.jallcom.2012.11.203
Y. Zhou, Z.S. Zhang, Y. Zhao, J.F. Liu, K.H. Lam et al., Cost-effective, long-term aqueous rechargeable hybrid sodium/zinc batteries based on Zn anode and Na3MnTi(PO4)3 cathode. Chem. Eng. J. 425, 130459 (2021). https://doi.org/10.1016/j.cej.2021.130459
J.T. Wu, H.J. Liu, H.P. Bu, X. Zhang, H.L. Zhang et al., Manganese-based NASICON structured Na1+2xMnxTi2-x(PO4)3 as promising cathode in aqueous sodium ion battery. J. Alloys Compd. 934, 167872 (2023). https://doi.org/10.1016/j.jallcom.2022.167872
P.R. Kumar, A. Kheireddine, U. Nisar, R.A. Shakoor, R. Essehli et al., Na4MnV(PO4)3-rGO as advanced cathode for aqueous and non-aqueous sodium ion batteries. J. Power Sources 429, 149–155 (2019). https://doi.org/10.1016/j.jpowsour.2019.04.080
B.W. Xie, R. Sakamoto, A. Kitajou, K. Nakamoto, L.W. Zhao et al., Cathode properties of Na3MnPO4CO3 prepared by the mechanical ball milling method for Na-ion batteries. Energies 12(23), 4534 (2019). https://doi.org/10.3390/en12234534
X.Y. Guo, Z.B. Wang, Z. Deng, B. Wang, X. Chen et al., Design principles for aqueous Na-ion battery cathodes. Chem. Mater. 32(16), 6875–6885 (2020). https://doi.org/10.1021/acs.chemmater.0c01582
K. Shiprath, H. Manjunatha, K.C.B. Naidu, A. Khan, A.M. Asiri et al., Na3MnPO4CO3 as cathode for aqueous sodium ion batteries: Synthesis and electrochemical characterization. Mater. Chem. Phys. 248, 122952 (2020). https://doi.org/10.1016/j.matchemphys.2020.122952
N. Nzimande, A. Haruna, P. Mwonga, B. Rasche, F. Cummings et al., Ceria-spiderweb nanosheets unlock the energy-storage properties in the “sleeping” triplite (Mn2(PO4)F). ACS Appl. Energy Mater. 4(11), 13085–13097 (2021). https://doi.org/10.1021/acsaem.1c02734
Y.S. Wang, J. Liu, B.J. Lee, R.M. Qiao, Z.Z. Yang et al., Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries. Nat. Commun. 6, 6401 (2015). https://doi.org/10.1038/ncomms7401
Y. Wang, F.Y. Zhou, Y.H. Li, P. Shi, S.Y. Xu et al., Na2[Mn3Vac0.1Ti0.4]O7: A new layered negative electrode material for aqueous Na-ion batteries. J. Alloys Compd. 918, 165765 (2022). https://doi.org/10.1016/j.jallcom.2022.165765
M. Pasta, C.D. Wessells, N. Liu, J. Nelson, M.T. McDowell et al., Full open-framework batteries for stationary energy storage. Nat. Commun. 5, 3007 (2014). https://doi.org/10.1038/ncomms4007
A. Firouzi, R.M. Qiao, S. Motallebi, C.W. Valencia, H.S. Israel et al., Monovalent manganese based anodes and co-solvent electrolyte for stable low-cost high-rate sodium-ion batteries. Nat. Commun. 9, 861 (2018). https://doi.org/10.1038/s41467-018-03257-1
J. Yun, F.A. Schiegg, Y.C. Liang, D. Scieszka, B. Garlyyev et al., Electrochemically formed NaxMn[Mn(CN)6] thin film anodes demonstrate sodium intercalation and deintercalation at extremely negative electrode potentials in aqueous media. ACS Appl. Energy Mater. 1(1), 123–128 (2018). https://doi.org/10.1021/acsaem.7b00022
K. Nakamoto, R. Sakamoto, Y. Sawada, M. Ito, S. Okada, Over 2 V aqueous sodium-ion battery with prussian blue-type electrodes. Small Methods 3(4), 1800220 (2019). https://doi.org/10.1002/smtd.201800220
S. Wheeler, I. Capone, S. Day, C. Tang, M. Pasta, Low-potential prussian blue analogues for sodium-ion batteries: Manganese hexacyanochromate. Chem. Mater. 31(7), 2619–2626 (2019). https://doi.org/10.1021/acs.chemmater.9b00471
M.G. Wu, W. Ni, J. Hu, J.M. Ma, NASICON-structured NaTi2(PO4)3 for sustainable energy storage. Nano-Micro Lett. 11(1), 44 (2019). https://doi.org/10.1007/s40820-019-0273-1
P. Lei, K. Liu, X. Wan, D.X. Luo, X.D. Xiang, Ultrafast Na intercalation chemistry of Na2Ti3/2Mn1/2(PO4)3 nanodots planted in a carbon matrix as a low cost anode for aqueous sodium-ion batteries. Chem. Commun. 55(4), 509–512 (2019). https://doi.org/10.1039/c8cc07668e
Y. Shang, X.X. Li, J.J. Song, S.Z. Huang, Z. Yang et al., Unconventional Mn vacancies in Mn-Fe prussian blue analogs: Suppressing jahn-teller distortion for ultrastable sodium storage. Chem 6(7), 1804–1818 (2020). https://doi.org/10.1016/j.chempr.2020.05.004