Electrochromic-Induced Rechargeable Aqueous Batteries: An Integrated Multifunctional System for Cross-Domain Applications
Corresponding Author: Jianguo Sun
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 87
Abstract
Multifunctional electrochromic-induced rechargeable aqueous batteries (MERABs) integrate electrochromism and aqueous ion batteries into one platform, which is able to deliver the conversion and storage of photo-thermal-electrochemical sources. Aqueous ion batteries compensate for the drawbacks of slow kinetic reactions and unsatisfied storage capacities of electrochromic devices. On the other hand, electrochromic technology can enable dynamically regulation of solar light and heat radiation. However, MERABs still face several technical issues, including a trade-off between electrochromic and electrochemical performance, low conversion efficiency and poor service life. In this connection, novel device configuration and electrode materials, and an optimized compatibility need to be considered for multidisciplinary applications. In this review, the unique advantages, key challenges and advanced applications are elucidated in a timely and comprehensive manner. Firstly, the prerequisites for effective integration of the working mechanism and device configuration, as well as the choice of electrode materials are examined. Secondly, the latest advances in the applications of MERABs are discussed, including wearable, self-powered, integrated systems and multisystem conversion. Finally, perspectives on the current challenges and future development are outlined, highlighting the giant leap required from laboratory prototypes to large-scale production and eventual commercialization.
Highlights:
1 A timely and updated comprehensive overview focusing on integration of electrochromic aqueous batteries is provided.
2 The key prerequisites of integration, basic operating mechanism, and compatibility of the respective components are examined.
3 The latest advances and emerging applications are discussed, as well as the future roadmap.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Yang, Y.-M. Zhang, Y. Cai, B. Yang, C. Gu et al., Advances in nanomaterials for electrochromic devices. Chem. Soc. Rev. 49(23), 8687–8720 (2020). https://doi.org/10.1039/D0CS00317D
- R. Baetens, B.P. Jelle, A. Gustavsen, Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: a state-of-the-art review. Sol. Energy Mater. Sol. Cells 94(2), 87–105 (2010). https://doi.org/10.1016/j.solmat.2009.08.021
- Y. Ke, J. Chen, G. Lin, S. Wang, Y. Zhou et al., Smart windows: Electro-, thermo-, mechano-, photochromics, and beyond. Adv. Energy Mater. 9(39), 1902066 (2019). https://doi.org/10.1002/aenm.201902066
- Y. Yao, Q. Zhao, W. Wei, Z. Chen, Y. Zhu et al., WO3 quantum-dots electrochromism. Nano Energy 68, 104350 (2020). https://doi.org/10.1016/j.nanoen.2019.104350
- S. Pan, J. Ren, X. Fang, H. Peng, Integration: an effective strategy to develop multifunctional energy storage devices. Adv. Energy Mater. 6(4), 1501867 (2016). https://doi.org/10.1002/aenm.201501867
- J. Chen, P.S. Lee, Electrochemical supercapacitors: from mechanism understanding to multifunctional applications. Adv. Energy Mater. 11(6), 2003311 (2021). https://doi.org/10.1002/aenm.202003311
- J. Yan, S. Li, B. Lan, Y. Wu, P.S. Lee, Rational design of nanostructured electrode materials toward multifunctional supercapacitors. Adv. Funct. 30(2), 1902564 (2020). https://doi.org/10.1002/adfm.201902564
- Y. Wang, L. Xu, L. Zhan, P. Yang, S. Tang et al., Electron accumulation enables Bi efficient CO2 reduction for formate production to boost clean Zn-CO2 batteries. Nano Energy 92, 106780 (2022). https://doi.org/10.1016/j.nanoen.2021.106780
- Y. Chen, D. Ma, K. Ouyang, M. Yang, S. Shen et al., A multifunctional anti-proton electrolyte for high-rate and super-stable aqueous Zn-vanadium oxide battery. Nano-Micro Lett. 14(1), 154 (2022). https://doi.org/10.1007/s40820-022-00907-4
- C. Yan, Y. Wang, X. Deng, Y. Xu, Cooperative chloride hydrogel electrolytes enabling ultralow-temperature aqueous zinc ion batteries by the hofmeister effect. Nano-Micro Lett. 14(1), 98 (2022). https://doi.org/10.1007/s40820-022-00836-2
- Q. Wang, Q. Feng, Y. Lei, S. Tang, L. Xu et al., Quasi-solid-state Zn-air batteries with an atomically dispersed cobalt electrocatalyst and organohydrogel electrolyte. Nat. Commun. 13(1), 3689 (2022). https://doi.org/10.1038/s41467-022-31383-4
- Z. Pan, X. Liu, J. Yang, X. Li, Z. Liu et al., Aqueous rechargeable multivalent metal-ion batteries: advances and challenges. Adv. Energy Mater. 11(24), 2100608 (2021). https://doi.org/10.1002/aenm.202100608
- W. Du, E.H. Ang, Y. Yang, Y. Zhang, M. Ye et al., Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ. 13(10), 3330–3360 (2020). https://doi.org/10.1039/D0EE02079F
- S. Ding, M. Zhang, R. Qin, J. Fang, H. Ren et al., Oxygen-deficient β-MnO2@ graphene oxide cathode for high-rate and long-life aqueous zinc ion batteries. Nano-Micro Lett. 13(1), 173 (2021). https://doi.org/10.1007/s40820-021-00691-7
- W. Fu, K. Turcheniuk, O. Naumov, R. Mysyk, F. Wang et al., Materials and technologies for multifunctional, flexible or integrated supercapacitors and batteries. Mater. Today 48, 176–197 (2021). https://doi.org/10.1016/j.mattod.2021.01.026
- Z. Wang, X. Wang, S. Cong, F. Geng, Z. Zhao, Fusing electrochromic technology with other advanced technologies: a new roadmap for future development. Mater. Sci. Eng. R 140, 100524 (2020). https://doi.org/10.1016/j.mser.2019.100524
- J. Chen, A.L.S. Eh, J.H. Ciou, P.S. Lee, Pseudocapacitive and dual-functional electrochromic Zn batteries. Mater. Today Energy 27, 101048 (2022). https://doi.org/10.1016/j.mtener.2022.101048
- L. Li, Q. Zhang, B. He, R. Pan, Z. Wang et al., Advanced multifunctional aqueous rechargeable batteries design: from materials and devices to systems. Adv. Mater. 34(5), 2104327 (2022). https://doi.org/10.1002/adma.202104327
- Y. Huang, M. Zhu, Y. Huang, Z. Pei, H. Li et al., Multifunctional energy storage and conversion devices. Adv. Mater. 28(38), 8344–8364 (2016). https://doi.org/10.1002/adma.201601928
- Y. Zhou, H. Qi, J. Yang, Z. Bo, F. Huang et al., Two-birds-one-stone: Multifunctional supercapacitors beyond traditional energy storage. Energy Environ. 14(4), 1854–1896 (2021). https://doi.org/10.1039/D0EE03167D
- Q. Zhao, J. Wang, X. Ai, Z. Pan, F. Xu et al., Large-area multifunctional electro-chromic-chemical device made of W17O47 nanowires by Zn2+ ion intercalation. Nano Energy 89, 106356 (2021). https://doi.org/10.1016/j.nanoen.2021.106356
- F. Wang, X. Wu, X. Yuan, Z. Liu, Y. Zhang et al., Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem. Soc. Rev. 46(22), 6816–6854 (2017). https://doi.org/10.1039/C7CS00205J
- J. Wang, L. Zhang, L. Yu, Z. Jiao, H. Xie et al., A bi-functional device for self-powered electrochromic window and self-rechargeable transparent battery applications. Nat. Commun. 5(1), 1–7 (2014). https://doi.org/10.1038/ncomms5921
- H. Lv, S. Yang, C. Li, C. Han, Y. Tang et al., Suppressing passivation layer of al anode in aqueous electrolytes by complexation of H2PO4- to Al3+ and an electrochromic al ion battery. Energy Storage Mater. 39, 412–418 (2021). https://doi.org/10.1016/j.ensm.2021.04.044
- J. Meng, H. Guo, C. Niu, Y. Zhao, L. Xu et al., Advances in structure and property optimizations of battery electrode materials. Joule 1(3), 522–547 (2017). https://doi.org/10.1016/j.joule.2017.08.001
- T. Minato, T. Abe, Surface and interface sciences of Li-ion batteries:-research progress in electrode-electrolyte interface. Prog. Surf. Sci. 92(4), 240–280 (2017). https://doi.org/10.1016/j.progsurf.2017.10.001
- Y. Zhong, X. Xia, W. Mai, J. Tu, H.J. Fan, Integration of energy harvesting and electrochemical storage devices. Adv. Mater. Technol. 2(12), 1700182 (2017). https://doi.org/10.1002/admt.201700182
- Z. Chai, N. Zhang, P. Sun, Y. Huang, C. Zhao et al., Tailorable and wearable textile devices for solar energy harvesting and simultaneous storage. ACS Nano 10(10), 9201–9207 (2016). https://doi.org/10.1021/acsnano.6b05293
- K. Wang, H. Wu, Y. Meng, Y. Zhang, Z. Wei, Integrated energy storage and electrochromic function in one flexible device: an energy storage smart window. Energy Environ. 5(8), 8384–8389 (2012). https://doi.org/10.1039/C2EE21643D
- D. Caruso, M. Fabretto, S. Field, D. Evans, P. Murphy et al., Market evaluation, performance modelling and materials solution addressing short wavelength discomfort glare in rear view automotive mirrors. Transl. Mater. Res. 2(3), 035002 (2015). https://doi.org/10.1088/2053-1613/2/3/035002
- K. Xiong, G. Emilsson, A. Maziz, X. Yang, L. Shao et al., Plasmonic metasurfaces with conjugated polymers for flexible electronic paper in color. Adv. Mater. 28(45), 9956–9960 (2016). https://doi.org/10.1002/adma.201603358
- X. Li, Z. Du, Z. Song, B. Li, L. Wu et al., Bringing hetero-polyacid-based underwater adhesive as printable cathode coating for self-powered electrochromic aqueous batteries. Adv. Funct. 28(23), 1800599 (2018). https://doi.org/10.1002/adfm.201800599
- F. Zhang, T. Cai, L. Ma, L. Zhan, H. Liu, A paper-based electrochromic array for visualized electrochemical sensing. Sensors 17(2), 276 (2017). https://doi.org/10.3390/s17020276
- M. Kim, Y. Kim, J. Yun, C. Gao, H.W. Lee et al., An electrochromic alarm system for smart contact lenses. Sens. Actuators B Chem. 322, 128601 (2020). https://doi.org/10.1016/j.snb.2020.128601
- H. Li, W. Zhang, A.Y. Elezzabi, Transparent zinc-mesh electrodes for solar-charging electrochromic windows. Adv. Mater. 32(43), 2003574 (2020). https://doi.org/10.1002/adma.202003574
- Y. Lu, J. Xu, C. Zhao, Z. Gao, Y.Y. Song, Boosting the local temperature of hybrid Prussian blue/NiO nanotubes by solar light: effect on energy storage. ACS Sustain. Chem. Eng. 9(35), 11837–11846 (2021). https://doi.org/10.1021/acssuschemeng.1c03483
- J. Wang, J. Liu, M. Hu, J. Zeng, Y. Mu et al., A flexible, electrochromic, rechargeable Zn//ppy battery with a short circuit chromatic warning function. J. Mater. Chem. A 6(24), 11113–11118 (2018). https://doi.org/10.1039/C8TA03143F
- Y. Wang, H. Jiang, R. Zheng, J. Pan, J. Niu et al., A flexible, electrochromic, rechargeable Zn-ion battery based on actiniae-like self-doped polyaniline cathode. J. Mater. Chem. A 8(25), 12799–12809 (2020). https://doi.org/10.1039/D0TA04203J
- S.B. Singh, D.T. Tran, K.U. Jeong, N.H. Kim, J.H. Lee, A flexible and transparent zinc-nanofiber network electrode for wearable electrochromic, rechargeable zn-ion battery. Small 18(5), 2104462 (2022). https://doi.org/10.1002/smll.202104462
- C.G. Granqvist, M.A. Arvizu, İB. Pehlivan, H.Y. Qu, R.T. Wen et al., Electrochromic materials and devices for energy efficiency and human comfort in buildings: a critical review. Electrochim. Acta 259, 1170–1182 (2018). https://doi.org/10.1016/j.electacta.2017.11.169
- C.G. Granqvist, Oxide electrochromics: an introduction to devices and materials. Sol. Energy Mater. Sol. Cells 99, 1–13 (2012). https://doi.org/10.1016/j.solmat.2011.08.021
- B. Yong, D. Ma, Y. Wang, H. Mi, C. He et al., Understanding the design principles of advanced aqueous zinc-ion battery cathodes: from transport kinetics to structural engineering, and future perspectives. Adv. Energy Mater. 10(45), 2002354 (2020). https://doi.org/10.1002/aenm.202002354
- Q. Zhao, J. Wang, X. Ai, Y. Duan, Z. Pan et al., Three-dimensional knotting of W17O47@PEDOT: Pss nanowires enables high-performance flexible cathode for dual-functional electrochromic and electrochemical device. InfoMat 4(4), e12298 (2022). https://doi.org/10.1002/inf2.12298
- P. Yang, P. Sun, W. Mai, Electrochromic energy storage devices. Mater. Today 19(7), 394–402 (2016). https://doi.org/10.1016/j.mattod.2015.11.007
- V.K. Thakur, G. Ding, J. Ma, P.S. Lee, X. Lu, Hybrid materials and polymer electrolytes for electrochromic device applications. Adv. Mater. 24(30), 4071–4096 (2012). https://doi.org/10.1002/adma.201200213
- W. Zhang, H. Li, W.W. Yu, A.Y. Elezzabi, Emerging Zn anode-based electrochromic devices. Small Sci. 1(12), 2100040 (2021). https://doi.org/10.1002/smsc.202100040
- D.E. Shen, A.M. Österholm, J.R. Reynolds, Out of sight but not out of mind: the role of counter electrodes in polymer-based solid-state electrochromic devices. J. Mater. Chem. C 3(37), 9715–9725 (2015). https://doi.org/10.1039/C5TC01964H
- R.J. Mortimer, Electrochromic materials. Chem. Soc. Rev. 26(3), 147–156 (1997). https://doi.org/10.1039/CS9972600147
- Q. Zhao, Y. Fang, K. Qiao, W. Wei, Y. Yao et al., Printing of WO3/ITO nanocomposite electrochromic smart windows. Sol. Energy Mater. Sol. Cells 194, 95–102 (2019). https://doi.org/10.1016/j.solmat.2019.02.002
- A. Azam, J. Kim, J. Park, T.G. Novak, A.P. Tiwari et al., Two-dimensional WO3 nanosheets chemically converted from layered WS2 for high-performance electrochromic devices. Nano Lett. 18(9), 5646–5651 (2018). https://doi.org/10.1021/acs.nanolett.8b02150
- S. Zhang, S. Cao, T. Zhang, J.Y. Lee, Plasmonic oxygen-deficient TiO2-x nanocrystals for dual-band electrochromic smart windows with efficient energy recycling. Adv. Mater. 32(43), 2004686 (2020). https://doi.org/10.1002/adma.202004686
- S. Cao, S. Zhang, T. Zhang, Q. Yao, J.Y. Lee, A visible light-near-infrared dual-band smart window with internal energy storage. Joule 3(4), 1152–1162 (2019). https://doi.org/10.1016/j.joule.2018.12.010
- L. Liborio, N. Harrison, Thermodynamics of oxygen defective magnéli phases in rutile: A first-principles study. Phys. Rev. B 77(10), 104104 (2008). https://doi.org/10.1103/PhysRevB.77.104104
- G. Cai, J. Tu, D. Zhou, J. Zhang, X. Wang et al., Dual electrochromic film based on WO3/polyaniline core/shell nanowire array. Sol. Energy Mater. Sol. Cells 122, 51–58 (2014). https://doi.org/10.1016/j.solmat.2013.11.015
- Q. Guo, X. Zhao, Z. Li, B. Wang, D. Wang et al., High performance multicolor intelligent supercapacitor and its quantitative monitoring of energy storage level by electrochromic parameters. ACS Appl. Energy Mater. 3(3), 2727–2736 (2020). https://doi.org/10.1021/acsaem.9b02392
- T.G. Yun, M. Park, D.H. Kim, D. Kim, J.Y. Cheong et al., All-transparent stretchable electrochromic supercapacitor wearable patch device. ACS Nano 13(3), 3141–3150 (2019). https://doi.org/10.1021/acsnano.8b08560
- D. Zhuzhelskii, E. Tolstopjatova, S. Eliseeva, A. Ivanov, S. Miao et al., Electrochemical properties of pedot/wo3 composite films for high performance supercapacitor application. Electro. Acta 299, 182–190 (2019). https://doi.org/10.1016/j.electacta.2019.01.007
- G. Cai, X. Cheng, M. Layani, A.W.M. Tan, S. Li et al., Direct inkjet-patterning of energy efficient flexible electrochromics. Nano Energy 49, 147–154 (2018). https://doi.org/10.1016/j.nanoen.2018.04.017
- G. Cai, P. Darmawan, M. Cui, J. Wang, J. Chen, S. Magdassi et al., Highly stable transparent conductive silver grid/Pedot: PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors. Adv. Energy Mater. 6(4), 1501882 (2016). https://doi.org/10.1002/aenm.201501882
- Z. Wang, X. Wang, S. Cong, J. Chen, H. Sun et al., Towards full-colour tunability of inorganic electrochromic devices using ultracompact fabry-perot nanocavities. Nat. Commun. 11(1), 1–9 (2020). https://doi.org/10.1038/s41467-019-14194-y
- T. Magu, A. Agobi, L. Hitler, P. Dass, A review on conducting polymers-based composites for energy storage application. J. Chem. Res. 1(1), 19–34 (2019). https://doi.org/10.1016/0013-4686(94)80062-6
- S. Zhao, X. Gao, L. Chen, W. Huang, Y. Liu, A hair-trigger self-powered electrochromic window and a rechargeable battery ignoring charging process. Appl. Mater. Today 28, 101543 (2022). https://doi.org/10.1016/j.apmt.2022.101543
- A. Chaudhary, D.K. Pathak, S. Mishra, P. Yogi, P.R. Sagdeo et al., Polythiophene-viologen bilayer for electro-trichromic device. Sol. Energy Mater. Sol. Cells 188, 249–254 (2018). https://doi.org/10.1016/j.solmat.2018.08.029
- B. Yang, D. Ma, E. Zheng, J. Wang, A self-rechargeable electrochromic battery based on electrodeposited polypyrrole film. Sol. Energy Mater. Sol. Cells 192, 1–7 (2019). https://doi.org/10.1016/j.solmat.2018.12.011
- H.Y. Shi, Y.J. Ye, K. Liu, Y. Song, X. Sun, A long-cycle-life self-doped polyaniline cathode for rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 130(50), 16597–16601 (2018). https://doi.org/10.1002/ange.201808886
- J.W. Kim, J.M. Myoung, Flexible and transparent electrochromic displays with simultaneously implementable subpixelated ion gel-based viologens by multiple patterning. Adv. Funct. 29(13), 1808911 (2019). https://doi.org/10.1002/adfm.201808911
- J. Gustafsson-Carlberg, O. Inganäs, M.R. Andersson, C. Booth, A. Azens et al., Tuning the bandgap for polymeric smart windows and displays. Electrochim. Acta 40(13–14), 2233–2235 (1995). https://doi.org/10.1016/0013-4686(95)00169-F
- G. Cai, P. Darmawan, X. Cheng, P.S. Lee, Inkjet printed large area multifunctional smart windows. Adv. Energy Mater. 7(14), 1602598 (2017). https://doi.org/10.1002/aenm.201602598
- C.M. Amb, P.M. Beaujuge, J.R. Reynolds, Spray-processable blue-to-highly transmissive switching polymer electrochromes via the donor–acceptor approach. Adv. Mater. 22(6), 724–728 (2010). https://doi.org/10.1002/adma.200902917
- S.Y. Kim, Y.J. Jang, Y.M. Kim, J.K. Lee, H.C. Moon, Tailoring diffusion dynamics in energy storage ionic conductors for high-performance, multi-function, single-layer electrochromic supercapacitors. Adv. Funct. (2022). https://doi.org/10.1002/adfm.202200757
- Y.J. Jang, S.Y. Kim, Y.M. Kim, J.K. Lee, H.C. Moon, Unveiling the diffusion-controlled operation mechanism of all-in-one type electrochromic supercapacitors: overcoming slow dynamic response with ternary gel electrolytes. Energy Storage Mater. 43, 20–29 (2021). https://doi.org/10.1016/j.ensm.2021.08.038
- Y. Alesanco, A. Viñuales, J. Rodriguez, R. Tena-Zaera, All-in-one gel-based electrochromic devices: strengths and recent developments. Materials 11(3), 414 (2018). https://doi.org/10.3390/ma11030414
- M. Qiu, F. Zhou, P. Sun, X. Chen, C. Zhao et al., Unveiling the electrochromic mechanism of prussian blue by electronic transition analysis. Nano Energy 78, 105148 (2020). https://doi.org/10.1016/j.nanoen.2020.105148
- J. Li, X. Wang, W. Sun, K. Maleski, C.E. Shuck et al., Intercalation-induced reversible electrochromic behavior of two-dimensional Ti3C2Tx mxene in organic electrolytes. ChemElectroChem 8(1), 151–156 (2021). https://doi.org/10.1002/celc.202001449
- K. Hurlbutt, S. Wheeler, I. Capone, M. Pasta, Prussian blue analogs as battery materials. Joule 2(10), 1950–1960 (2018). https://doi.org/10.1016/j.joule.2018.07.017
- C. Xu, Z. Yang, X. Zhang, M. Xia, H. Yan et al., Prussian blue analogues in aqueous batteries and desalination batteries. Nano-Micro Lett. 13, 187 (2021). https://doi.org/10.1007/s40820-021-00715-2
- C. Xu, Z. Yang, X. Zhang, M. Xia, H. Yan et al., Prussian blue analogues in aqueous batteries and desalination batteries. Nano-Micro Lett. 13(1), 166 (2021). https://doi.org/10.1007/s40820-021-00700-9
- P. Salles, D. Pinto, K. Hantanasirisakul, K. Maleski, C.E. Shuck et al., Electrochromic effect in titanium carbide mxene thin films produced by dip-coating. Adv. Funct. Mater. 29(17), 1809223 (2019). https://doi.org/10.1002/adfm.201809223
- S. Deb, A novel electrophotographic system. Appl. Opt. 8(101), 192–195 (1969). https://doi.org/10.1364/AO.8.S1.000192
- S. Deb, Optical and photoelectric properties and colour centres in thin films of tungsten oxide. Philos. Mag. 27(4), 801–822 (1973). https://doi.org/10.1080/14786437308227562
- J.H. Ko, S. Yeo, J.H. Park, J. Choi, C. Noh et al., Graphene-based electrochromic systems: the case of prussian blue nanops on transparent graphene film. Chem. Commun. 48(32), 3884–3886 (2012). https://doi.org/10.1039/C2CC30161J
- X. Liu, A. Zhou, Y. Dou, T. Pan, M. Shao et al., Ultrafast switching of an electrochromic device based on layered double hydroxide/prussian blue multilayered films. Nanoscale 7(40), 17088–17095 (2015). https://doi.org/10.1039/C5NR04458H
- Q. Zhao, J. Wang, Y. Cui, X. Ai, Z. Chen et al., The discovery of conductive ionic bonds in NiO/Ni transparent counter electrodes for electrochromic smart windows with an ultra-long cycling life. Mater. Adv. 2(14), 4667–4676 (2021). https://doi.org/10.1039/D1MA00384D
- Q. Zhao, K. Qiao, Y. Yao, Z. Chen, D. Chen et al., High-conductivity hydrophobic fumed-SiO2 composite gel electrolyte for high performance electrochromic devices. J. Inorg. Mater. 36(2), 200376 (2021). https://doi.org/10.15541/jim20200376
- P. Yang, P. Sun, Z. Chai, L. Huang, X. Cai et al., Large-scale fabrication of pseudocapacitive glass windows that combine electrochromism and energy storage. Angew. Chem. Int. Ed. 126(44), 12129–12133 (2014). https://doi.org/10.1002/ange.201407365
- C.G. Granqvist, Electrochromic tungsten oxide films: review of progress 1993–1998. Sol. Energy Mater. Sol. Cells 60(3), 201–262 (2000). https://doi.org/10.1016/S0927-0248(99)00088-4
- K. Qi, J. Wei, M. Sun, Q. Huang, X. Li et al., Real-time observation of deep lithiation of tungsten oxide nanowires by in situ electron microscopy. Angew. Chem. Int. Ed. 127(50), 15437–15440 (2015). https://doi.org/10.1002/ange.201508112
- S. Lee, Y. Oshima, E. Hosono, H. Zhou, K. Kim et al., In situ tem observation of local phase transformation in a rechargeable LiMn2O4 nanowire battery. J. Phys. Chem. C 117(46), 24236–24241 (2013). https://doi.org/10.1021/jp409032r
- Z. Wang, G. Chen, H. Zhang, L. Liang, J. Gao et al., In situ tem investigation of hexagonal WO3 irreversible transformation to Li2WO4. Scr. Mater. 203, 114090 (2021). https://doi.org/10.1016/j.scriptamat.2021.114090
- R.T. Wen, M.A. Arvizu, M. Morales-Luna, C.G. Granqvist, G.A. Niklasson, Ion trapping and detrapping in amorphous tungsten oxide thin films observed by real-time electro-optical monitoring. Chem. Mater. 28(13), 4670–4676 (2016). https://doi.org/10.1021/acs.chemmater.6b01503
- R.T. Wen, C.G. Granqvist, G.A. Niklasson, Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films. Nat. Mater. 14(10), 996–1001 (2015). https://doi.org/10.1038/nmat4368
- Y. Cui, Q. Wang, G. Yang, Y. Gao, Electronic properties, optical properties and diffusion behavior of WO3 with H+, Li+ and Na+ intercalated ions: a first-principles study. J. Solid State Chem. 297, 122082 (2021). https://doi.org/10.1016/j.jssc.2021.122082
- Y. Huang, B. Wang, F. Chen, Y. Han, W. Zhang et al., Electrochromic materials based on ions insertion and extraction. Adv. Opt. Mater. 10(4), 2101783 (2022). https://doi.org/10.1002/adom.202101783
- L.C. Lopes, S. Husmann, A.J. Zarbin, Chemically synthesized graphene as a precursor to prussian blue-based nanocomposite: a multifunctional material for transparent aqueous K-ion battery or electrochromic device. Electrochim. Acta 345, 136199 (2020). https://doi.org/10.1016/j.electacta.2020.136199
- R.T. Wen, G.A. Niklasson, C.G. Granqvist, Electrochromic nickel oxide films and their compatibility with potassium hydroxide and lithium perchlorate in propylene carbonate: Optical, electrochemical and stress-related properties. Thin Solid Films 565, 128–135 (2014). https://doi.org/10.1016/j.tsf.2014.07.004
- Y. Liang, H.D. Yoo, Y. Li, J. Shuai, H.A. Calderon et al., Interlayer-expanded molybdenum disulfide nanocomposites for electrochemical magnesium storage. Nano Lett. 15(3), 2194–2202 (2015). https://doi.org/10.1021/acs.nanolett.5b00388
- J. Han, A. Varzi, S. Passerini, The emergence of aqueous ammonium-ion batteries. Angew. Chem. Int. Ed. 61(14), e202115046 (2022). https://doi.org/10.1002/anie.202115046
- Z. Tian, J. Yin, T. Guo, Z. Zhao, Y. Zhu et al., A sustainable NH4+ ion battery by electrolyte engineering. Angew. Chem. Int. Ed. 61, e202213757 (2022). https://doi.org/10.1002/anie.202213757
- L. Zhang, D. Chao, P. Yang, L. Weber, J. Li et al., Flexible pseudocapacitive electrochromics via inkjet printing of additive-free tungsten oxide nanocrystal ink. Adv. Energy Mater. 10(17), 2000142 (2020). https://doi.org/10.1002/aenm.202000142
- J. Li, P. Yang, X. Li, C. Jiang, J. Yun et al., Ultrathin smart energy-storage devices for skin-interfaced wearable electronics. ACS Energy Lett. 8, 1–8 (2022). https://doi.org/10.1021/acsenergylett.2c02029
- H. Li, L. McRae, C.J. Firby, A.Y. Elezzabi, Rechargeable aqueous electrochromic batteries utilizing ti-substituted tungsten molybdenum oxide based Zn2+ ion intercalation cathodes. Adv. Mater. 31(15), 1807065 (2019). https://doi.org/10.1002/adma.201807065
- X. Ju, F. Yang, X. Zhu, X. Jia, Zinc ion intercalation/deintercalation of metal organic framework-derived nanostructured NiO@C for low-transmittance and high-performance electrochromism. ACS Sustain. Chem. Eng. 8(32), 12222–12229 (2020). https://doi.org/10.1021/acssuschemeng.0c03837
- C. Legein, B.J. Morgan, F. Fayon, T. Koketsu, J. Ma et al., Atomic insights into aluminium-ion insertion in defective anatase for batteries. Angew. Chem. Int. Ed. 59(43), 19247–19253 (2020). https://doi.org/10.1002/anie.202007983
- S. Gheytani, Y. Liang, F. Wu, Y. Jing, H. Dong et al., An aqueous ca-ion battery. Adv. Sci. 4(12), 1700465 (2017). https://doi.org/10.1002/advs.201700465
- Z. Tong, T. Kang, Y. Wan, R. Yang, Y. Wu et al., A Ca-ion electrochromic battery via a water-in-salt electrolyte. Adv. Funct. 31(41), 2104639 (2021). https://doi.org/10.1002/adfm.202104639
- P. Yang, J.L. Yang, K. Liu, H.J. Fan, Hydrogels enable future smart batteries. ACS Nano 16(10), 15528–15536 (2022). https://doi.org/10.1021/acsnano.2c07468
- P. Sun, J. Chen, Y. Li, X. Tang, H. Sun et al., Deep eutectic solvent-based gel electrolytes for flexible electrochromic devices with excellent high/low temperature durability. InfoMat (2022). https://doi.org/10.1002/inf2.12363
- X. Ai, Q. Zhao, Y. Duan, Z. Chen, Z. Zhang et al., Zinc polyacrylamide hydrogel electrolyte for quasi-solid-state electrochromic devices with low-temperature tolerance. Cell Rep. Phys. Sci. 3(11), 101148 (2022). https://doi.org/10.1016/j.xcrp.2022.101148
- Z. Wang, H. Li, Z. Tang, Z. Liu, Z. Ruan et al., Hydrogel electrolytes for flexible aqueous energy storage devices. Adv. Funct. 28(48), 1804560 (2018). https://doi.org/10.1002/adfm.201804560
- S.R. Taylor, Abundance of chemical elements in the continental crust: a new table. Geochim. Cosmochim. Acta 28(8), 1273–1285 (1964). https://doi.org/10.1016/0016-7037(64)90129-2
- E. Nightingale Jr., Phenomenological theory of ion solvation. Effective radii of hydrated ions. J. Phys. Chem. 63(9), 1381–1387 (1959). https://doi.org/10.1021/j150579a011
- A.L.S. Eh, A.W.M. Tan, X. Cheng, S. Magdassi, P.S. Lee, Recent advances in flexible electrochromic devices: prerequisites, challenges, and prospects. Energy Techn. 6(1), 33–45 (2018). https://doi.org/10.1002/ente.201700705
- C. Dai, G. Sun, L. Hu, Y. Xiao, Z. Zhang et al., Recent progress in graphene-based electrodes for flexible batteries. InfoMat 2(3), 509–526 (2020). https://doi.org/10.1002/inf2.12039
- A.W. Lang, A.M. Österholm, J.R. Reynolds, Paper-based electrochromic devices enabled by nanocellulose-coated substrates. Adv. Funct. 29(39), 1903487 (2019). https://doi.org/10.1002/adfm.201903487
- H. Fan, K. Li, X. Liu, K. Xu, Y. Su et al., Continuously processed, long electrochromic fibers with multi-environmental stability. ACS Appl. Mater. Interfaces 12(25), 28451–28460 (2020). https://doi.org/10.1021/acsami.0c09589
- D. Jiang, Y. Wang, B. Li, C. Sun, Z. Wu et al., Flexible sandwich structural strain sensor based on silver nanowires decorated with self-healing substrate. Macromol. Mater. Eng. 304(7), 1900074 (2019). https://doi.org/10.1002/mame.201900074
- P. Cordier, F. Tournilhac, C. Soulié-Ziakovic, L. Leibler, Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451(7181), 977–980 (2008). https://doi.org/10.1038/nature06669
- J. Shi, S. Liu, L. Zhang, B. Yang, L. Shu et al., Smart textile-integrated microelectronic systems for wearable applications. Adv. Mater. 32(5), 1901958 (2020). https://doi.org/10.1002/adma.201901958
- Q. Shi, J. Sun, C. Hou, Y. Li, Q. Zhang et al., Advanced functional fiber and smart textile. Adv. Fiber Mater. 1(1), 3–31 (2019). https://doi.org/10.1007/s42765-019-0002-z
- J. Liu, J.P. Coleman, Nanostructured metal oxides for printed electrochromic displays. Mater. Sci. Eng. A 286(1), 144–148 (2000). https://doi.org/10.1016/S0921-5093(00)00719-X
- X. Chen, N.S. Villa, Y. Zhuang, L. Chen, T. Wang et al., Stretchable supercapacitors as emergent energy storage units for health monitoring bioelectronics. Adv. Energy Mater. 10(4), 1902769 (2020). https://doi.org/10.1002/aenm.201902769
- W.J. Song, S. Lee, G. Song, S. Park, Stretchable aqueous batteries: progress and prospects. ACS Energy Lett. 4(1), 177–186 (2018). https://doi.org/10.1021/acsenergylett.8b02053
- H.H. Chou, A. Nguyen, A. Chortos, J.W. To, C. Lu et al., A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nat. Commun. 6(1), 1–10 (2015). https://doi.org/10.1038/ncomms9011
- J. Zhao, Y. Tian, Z. Wang, S. Cong, D. Zhou et al., Trace H2O2-assisted high-capacity tungsten oxide electrochromic batteries with ultrafast charging in seconds. Angew. Chem. Int. Ed. 128(25), 7277–7281 (2016). https://doi.org/10.1002/ange.201602657
- W. Zhang, H. Li, M. Al-Hussein, A.Y. Elezzabi, Electrochromic battery displays with energy retrieval functions using solution-processable colloidal vanadium oxide nanops. Adv. Opt. Mater. 8(2), 1901224 (2020). https://doi.org/10.1002/adom.201901224
- H. Zhang, Y. Yu, L. Zhang, Y. Zhai, S. Dong, Self-powered fluorescence display devices based on a fast self-charging/recharging battery (Mg/Prussian Blue). Chem. Sci. 7(11), 6721–6727 (2016). https://doi.org/10.1039/C6SC02347A
- S. Santiago-Malagon, D. Rio-Colin, H. Azizkhani, M. Aller-Pellitero, G. Guirado et al., A self-powered skin-patch electrochromic biosensor. Biosens. Bioelectr. 175, 112879 (2021). https://doi.org/10.1016/j.bios.2020.112879
- Y. Zhai, Y. Li, H. Zhang, D. Yu, Z. Zhu et al., Self-rechargeable-battery-driven device for simultaneous electrochromic windows, ros biosensing, and energy storage. ACS Appl. Mater. Interfaces 11(31), 28072–28077 (2019). https://doi.org/10.1021/acsami.9b08715
- Z. Abdin, M.A. Alim, R. Saidur, M.R. Islam, W. Rashmi et al., Solar energy harvesting with the application of nanotechnology. Renew. Sustain. Energy Rev. 26, 837–852 (2013). https://doi.org/10.1016/j.rser.2013.06.023
- X. Liu, Y. Yuan, J. Liu, B. Liu, X. Chen et al., Utilizing solar energy to improve the oxygen evolution reaction kinetics in zinc–air battery. Nat. Commun. 10(1), 1–10 (2019). https://doi.org/10.1038/s41467-019-12627-2
- W. Qiu, Y. Feng, N. Luo, S. Chen, D. Wang, Sandwich-like sound-driven triboelectric nanogenerator for energy harvesting and electrochromic based on cu foam. Nano Energy 70, 104543 (2020). https://doi.org/10.1016/j.nanoen.2020.104543
- W. Guo, Z. Cong, Z.H. Guo, P. Zhang, Y. Chen et al., Multifunctional self-charging electrochromic supercapacitors driven by direct-current triboelectric nanogenerators. Adv. Funct. Mater. 31(36), 2104348 (2021). https://doi.org/10.1002/adfm.202104348
- X. Yang, G. Zhu, S. Wang, R. Zhang, L. Lin et al., A self-powered electrochromic device driven by a nanogenerator. Energy Environ. 5(11), 9462–9466 (2012). https://doi.org/10.1039/C2EE23194H
- B.D. Boruah, A. Mathieson, B. Wen, S. Feldmann, W.M. Dose et al., Photo-rechargeable zinc-ion batteries. Energy Environ. 13(8), 2414–2421 (2020). https://doi.org/10.1039/D0EE01392G
- Z. Wang, H.C. Chiu, A. Paolella, R. Gauvin, K. Zaghib et al., A sustainable light-chargeable two-electrode energy storage system based on aqueous sodium-ion photo-intercalation. Sustain. Energy Fuels 4(9), 4789–4799 (2020). https://doi.org/10.1039/D0SE00628A
- C.T. Chien, P. Hiralal, D.Y. Wang, I.S. Huang, C.C. Chen et al., Graphene-based integrated photovoltaic energy harvesting/storage device. Small 11(24), 2929–2937 (2015). https://doi.org/10.1002/smll.201403383
- X. Chen, H. Lin, J. Deng, Y. Zhang, X. Sun et al., Electrochromic fiber-shaped supercapacitors. Adv. Mater. 26(48), 8126–8132 (2014). https://doi.org/10.1002/adma.201403243
- J. Xu, H. Wu, L. Lu, S.F. Leung, D. Chen et al., Integrated photo-supercapacitor based on bi-polar TiO2 nanotube arrays with selective one-side plasma-assisted hydrogenation. Adv. Funct. Mater. 24(13), 1840–1846 (2014). https://doi.org/10.1002/adfm.201303042
- W. Guo, X. Xue, S. Wang, C. Lin, Z.L. Wang, An integrated power pack of dye-sensitized solar cell and Li battery based on double-sided TiO2 nanotube arrays. Nano Lett. 12(5), 2520–2523 (2012). https://doi.org/10.1021/nl3007159
- A. Zloczewska, A. Celebanska, K. Szot, D. Tomaszewska, M. Opallo et al., Self-powered biosensor for ascorbic acid with a prussian blue electrochromic display. Biosens. Bioelectr. 54, 455–461 (2014). https://doi.org/10.1016/j.bios.2013.11.033
- W. Xu, K. Fu, C. Ma, P.W. Bohn, Closed bipolar electrode-enabled dual-cell electrochromic detectors for chemical sensing. Analyst 141(21), 6018–6024 (2016). https://doi.org/10.1039/C6AN01415A
- D. Capoferri, R. Álvarez-Diduk, M. Del Carlo, D. Compagnone, A. Merkoçi, Electrochromic molecular imprinting sensor for visual and smartphone-based detections. Anal. Chem. 90(9), 5850–5856 (2018). https://doi.org/10.1021/acs.analchem.8b00389
- Q. Nian, T. Sun, S. Liu, H. Du, X. Ren et al., Issues and opportunities on low-temperature aqueous batteries. Chem. Eng. J. 423, 130253 (2021). https://doi.org/10.1016/j.cej.2021.130253
- T. Cui, Y.P. Wang, T. Ye, J. Wu, Z. Chen et al., Engineering dual single-atom sites on 2d ultrathin n-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem. Int. Ed. 61(12), e202115219 (2022). https://doi.org/10.1002/anie.202115219
- T. Sun, S. Zheng, H. Du, Z. Tao, Synergistic effect of cation and anion for low-temperature aqueous zinc-ion battery. Nano-Micro Lett. 13, 204 (2021). https://doi.org/10.1007/s40820-021-00733-0
- Q. Nian, J. Wang, S. Liu, T. Sun, S. Zheng et al., Aqueous batteries operated at − 50 °C. Angew. Chem. Int. Ed. 58(47), 16994–16999 (2019). https://doi.org/10.1002/anie.201908913
- M. Zhu, X. Wang, H. Tang, J. Wang, Q. Hao et al., Antifreezing hydrogel with high zinc reversibility for flexible and durable aqueous batteries by cooperative hydrated cations. Adv. Funct. Mater. 30(6), 1907218 (2020). https://doi.org/10.1002/adfm.201907218
- Q. Zhang, Y. Ma, Y. Lu, L. Li, F. Wan et al., Modulating electrolyte structure for ultralow temperature aqueous zinc batteries. Nat. Commun. 11(1), 4463 (2020). https://doi.org/10.1038/s41467-020-18284-0
- P. Ma, Y. Sun, X. Zhang, J. Chen, B. Yang et al., Spinel-type solar-thermal conversion coatings on supercapacitors: an effective strategy for capacitance recovery at low temperatures. Energy Storage Mater. 23, 159–167 (2019). https://doi.org/10.1016/j.ensm.2019.05.016
- F. Yi, H. Ren, K. Dai, X. Wang, Y. Han et al., Solar thermal-driven capacitance enhancement of supercapacitors. Energy Environ. 11(8), 2016–2024 (2018). https://doi.org/10.1039/C8EE01244J
- J. Xu, Y. Zhang, T.T. Zhai, Z. Kuang, J. Li, Y. Wang et al., Electrochromic-tuned plasmonics for photothermal sterile window. ACS Nano 12(7), 6895–6903 (2018). https://doi.org/10.1021/acsnano.8b02292
- X. Chang, R. Hu, S. Sun, J. Liu, Y. Lei et al., Sunlight-charged electrochromic battery based on hybrid film of tungsten oxide and polyaniline. Appl. Surf. Sci. 441, 105–112 (2018). https://doi.org/10.1016/j.apsusc.2018.02.003
- Y. Lu, J. Guo, Z. He, Z. Gao, Y.Y. Song, Direct access to NiCo–LDH nanosheets by electrochemical-scanning-mediated hydrolysis for photothermally enhanced energy storage capacity. Energy Storage Mater. 48, 487–496 (2022). https://doi.org/10.1016/j.ensm.2022.03.050
- Z. Tong, R. Lian, R. Yang, T. Kang, J. Feng et al., An aqueous aluminum-ion electrochromic full battery with water-in-salt electrolyte for high-energy density. Energy Storage Mater. 44, 497–507 (2022). https://doi.org/10.1016/j.ensm.2021.11.001
- X. Tang, J. Chen, Z. Wang, Z. Hu, G. Song et al., Vibrant color palettes of electrochromic manganese oxide electrodes for colorful Zn-ion battery. Adv. Opt. Mater. 9(19), 2100637 (2021). https://doi.org/10.1002/adom.202100637
- Z. Shao, A. Huang, C. Ming, J. Bell, P. Yu et al., All-solid-state proton-based tandem structures for fast-switching electrochromic devices. Nat. Electr. (2022). https://doi.org/10.1038/s41928-021-00697-4
- R. Malik, Magnifying opportunities in mg batteries through metastability. Joule 2(2), 201–202 (2018). https://doi.org/10.1016/j.joule.2018.02.005
- S. Zhang, S. Cao, T. Zhang, A. Fisher, J.Y. Lee, Al3+ intercalation/de-intercalation-enabled dual-band electrochromic smart windows with a high optical modulation, quick response and long cycle life. Energy Environ. 11(10), 2884–2892 (2018). https://doi.org/10.1039/C8EE01718B
- N. Wang, C. Sun, X. Liao, Y. Yuan, H. Cheng et al., Reversible (de) intercalation of hydrated Zn2+ in Mg2+-stabilized V2O5 nanobelts with high areal capacity. Adv. Energy Mater. 10(41), 2002293 (2020). https://doi.org/10.1002/aenm.202002293
- C. Wu, G. Zhao, S. Gong, N. Zhang, K. Sun, Pvp incorporated MoS2 as a mg ion host with enhanced capacity and durability. J. Mater. Chem. A 7(9), 4426–4430 (2019). https://doi.org/10.1039/C8TA12288A
- Q. Shen, M. Jiang, R. Wang, K. Song, M.H. Vong et al., Liquid metal-based soft, hermetic, and wireless-communicable seals for stretchable systems. Science 379(6631), 488–493 (2023). https://doi.org/10.1126/science.ade7341
References
G. Yang, Y.-M. Zhang, Y. Cai, B. Yang, C. Gu et al., Advances in nanomaterials for electrochromic devices. Chem. Soc. Rev. 49(23), 8687–8720 (2020). https://doi.org/10.1039/D0CS00317D
R. Baetens, B.P. Jelle, A. Gustavsen, Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: a state-of-the-art review. Sol. Energy Mater. Sol. Cells 94(2), 87–105 (2010). https://doi.org/10.1016/j.solmat.2009.08.021
Y. Ke, J. Chen, G. Lin, S. Wang, Y. Zhou et al., Smart windows: Electro-, thermo-, mechano-, photochromics, and beyond. Adv. Energy Mater. 9(39), 1902066 (2019). https://doi.org/10.1002/aenm.201902066
Y. Yao, Q. Zhao, W. Wei, Z. Chen, Y. Zhu et al., WO3 quantum-dots electrochromism. Nano Energy 68, 104350 (2020). https://doi.org/10.1016/j.nanoen.2019.104350
S. Pan, J. Ren, X. Fang, H. Peng, Integration: an effective strategy to develop multifunctional energy storage devices. Adv. Energy Mater. 6(4), 1501867 (2016). https://doi.org/10.1002/aenm.201501867
J. Chen, P.S. Lee, Electrochemical supercapacitors: from mechanism understanding to multifunctional applications. Adv. Energy Mater. 11(6), 2003311 (2021). https://doi.org/10.1002/aenm.202003311
J. Yan, S. Li, B. Lan, Y. Wu, P.S. Lee, Rational design of nanostructured electrode materials toward multifunctional supercapacitors. Adv. Funct. 30(2), 1902564 (2020). https://doi.org/10.1002/adfm.201902564
Y. Wang, L. Xu, L. Zhan, P. Yang, S. Tang et al., Electron accumulation enables Bi efficient CO2 reduction for formate production to boost clean Zn-CO2 batteries. Nano Energy 92, 106780 (2022). https://doi.org/10.1016/j.nanoen.2021.106780
Y. Chen, D. Ma, K. Ouyang, M. Yang, S. Shen et al., A multifunctional anti-proton electrolyte for high-rate and super-stable aqueous Zn-vanadium oxide battery. Nano-Micro Lett. 14(1), 154 (2022). https://doi.org/10.1007/s40820-022-00907-4
C. Yan, Y. Wang, X. Deng, Y. Xu, Cooperative chloride hydrogel electrolytes enabling ultralow-temperature aqueous zinc ion batteries by the hofmeister effect. Nano-Micro Lett. 14(1), 98 (2022). https://doi.org/10.1007/s40820-022-00836-2
Q. Wang, Q. Feng, Y. Lei, S. Tang, L. Xu et al., Quasi-solid-state Zn-air batteries with an atomically dispersed cobalt electrocatalyst and organohydrogel electrolyte. Nat. Commun. 13(1), 3689 (2022). https://doi.org/10.1038/s41467-022-31383-4
Z. Pan, X. Liu, J. Yang, X. Li, Z. Liu et al., Aqueous rechargeable multivalent metal-ion batteries: advances and challenges. Adv. Energy Mater. 11(24), 2100608 (2021). https://doi.org/10.1002/aenm.202100608
W. Du, E.H. Ang, Y. Yang, Y. Zhang, M. Ye et al., Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ. 13(10), 3330–3360 (2020). https://doi.org/10.1039/D0EE02079F
S. Ding, M. Zhang, R. Qin, J. Fang, H. Ren et al., Oxygen-deficient β-MnO2@ graphene oxide cathode for high-rate and long-life aqueous zinc ion batteries. Nano-Micro Lett. 13(1), 173 (2021). https://doi.org/10.1007/s40820-021-00691-7
W. Fu, K. Turcheniuk, O. Naumov, R. Mysyk, F. Wang et al., Materials and technologies for multifunctional, flexible or integrated supercapacitors and batteries. Mater. Today 48, 176–197 (2021). https://doi.org/10.1016/j.mattod.2021.01.026
Z. Wang, X. Wang, S. Cong, F. Geng, Z. Zhao, Fusing electrochromic technology with other advanced technologies: a new roadmap for future development. Mater. Sci. Eng. R 140, 100524 (2020). https://doi.org/10.1016/j.mser.2019.100524
J. Chen, A.L.S. Eh, J.H. Ciou, P.S. Lee, Pseudocapacitive and dual-functional electrochromic Zn batteries. Mater. Today Energy 27, 101048 (2022). https://doi.org/10.1016/j.mtener.2022.101048
L. Li, Q. Zhang, B. He, R. Pan, Z. Wang et al., Advanced multifunctional aqueous rechargeable batteries design: from materials and devices to systems. Adv. Mater. 34(5), 2104327 (2022). https://doi.org/10.1002/adma.202104327
Y. Huang, M. Zhu, Y. Huang, Z. Pei, H. Li et al., Multifunctional energy storage and conversion devices. Adv. Mater. 28(38), 8344–8364 (2016). https://doi.org/10.1002/adma.201601928
Y. Zhou, H. Qi, J. Yang, Z. Bo, F. Huang et al., Two-birds-one-stone: Multifunctional supercapacitors beyond traditional energy storage. Energy Environ. 14(4), 1854–1896 (2021). https://doi.org/10.1039/D0EE03167D
Q. Zhao, J. Wang, X. Ai, Z. Pan, F. Xu et al., Large-area multifunctional electro-chromic-chemical device made of W17O47 nanowires by Zn2+ ion intercalation. Nano Energy 89, 106356 (2021). https://doi.org/10.1016/j.nanoen.2021.106356
F. Wang, X. Wu, X. Yuan, Z. Liu, Y. Zhang et al., Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem. Soc. Rev. 46(22), 6816–6854 (2017). https://doi.org/10.1039/C7CS00205J
J. Wang, L. Zhang, L. Yu, Z. Jiao, H. Xie et al., A bi-functional device for self-powered electrochromic window and self-rechargeable transparent battery applications. Nat. Commun. 5(1), 1–7 (2014). https://doi.org/10.1038/ncomms5921
H. Lv, S. Yang, C. Li, C. Han, Y. Tang et al., Suppressing passivation layer of al anode in aqueous electrolytes by complexation of H2PO4- to Al3+ and an electrochromic al ion battery. Energy Storage Mater. 39, 412–418 (2021). https://doi.org/10.1016/j.ensm.2021.04.044
J. Meng, H. Guo, C. Niu, Y. Zhao, L. Xu et al., Advances in structure and property optimizations of battery electrode materials. Joule 1(3), 522–547 (2017). https://doi.org/10.1016/j.joule.2017.08.001
T. Minato, T. Abe, Surface and interface sciences of Li-ion batteries:-research progress in electrode-electrolyte interface. Prog. Surf. Sci. 92(4), 240–280 (2017). https://doi.org/10.1016/j.progsurf.2017.10.001
Y. Zhong, X. Xia, W. Mai, J. Tu, H.J. Fan, Integration of energy harvesting and electrochemical storage devices. Adv. Mater. Technol. 2(12), 1700182 (2017). https://doi.org/10.1002/admt.201700182
Z. Chai, N. Zhang, P. Sun, Y. Huang, C. Zhao et al., Tailorable and wearable textile devices for solar energy harvesting and simultaneous storage. ACS Nano 10(10), 9201–9207 (2016). https://doi.org/10.1021/acsnano.6b05293
K. Wang, H. Wu, Y. Meng, Y. Zhang, Z. Wei, Integrated energy storage and electrochromic function in one flexible device: an energy storage smart window. Energy Environ. 5(8), 8384–8389 (2012). https://doi.org/10.1039/C2EE21643D
D. Caruso, M. Fabretto, S. Field, D. Evans, P. Murphy et al., Market evaluation, performance modelling and materials solution addressing short wavelength discomfort glare in rear view automotive mirrors. Transl. Mater. Res. 2(3), 035002 (2015). https://doi.org/10.1088/2053-1613/2/3/035002
K. Xiong, G. Emilsson, A. Maziz, X. Yang, L. Shao et al., Plasmonic metasurfaces with conjugated polymers for flexible electronic paper in color. Adv. Mater. 28(45), 9956–9960 (2016). https://doi.org/10.1002/adma.201603358
X. Li, Z. Du, Z. Song, B. Li, L. Wu et al., Bringing hetero-polyacid-based underwater adhesive as printable cathode coating for self-powered electrochromic aqueous batteries. Adv. Funct. 28(23), 1800599 (2018). https://doi.org/10.1002/adfm.201800599
F. Zhang, T. Cai, L. Ma, L. Zhan, H. Liu, A paper-based electrochromic array for visualized electrochemical sensing. Sensors 17(2), 276 (2017). https://doi.org/10.3390/s17020276
M. Kim, Y. Kim, J. Yun, C. Gao, H.W. Lee et al., An electrochromic alarm system for smart contact lenses. Sens. Actuators B Chem. 322, 128601 (2020). https://doi.org/10.1016/j.snb.2020.128601
H. Li, W. Zhang, A.Y. Elezzabi, Transparent zinc-mesh electrodes for solar-charging electrochromic windows. Adv. Mater. 32(43), 2003574 (2020). https://doi.org/10.1002/adma.202003574
Y. Lu, J. Xu, C. Zhao, Z. Gao, Y.Y. Song, Boosting the local temperature of hybrid Prussian blue/NiO nanotubes by solar light: effect on energy storage. ACS Sustain. Chem. Eng. 9(35), 11837–11846 (2021). https://doi.org/10.1021/acssuschemeng.1c03483
J. Wang, J. Liu, M. Hu, J. Zeng, Y. Mu et al., A flexible, electrochromic, rechargeable Zn//ppy battery with a short circuit chromatic warning function. J. Mater. Chem. A 6(24), 11113–11118 (2018). https://doi.org/10.1039/C8TA03143F
Y. Wang, H. Jiang, R. Zheng, J. Pan, J. Niu et al., A flexible, electrochromic, rechargeable Zn-ion battery based on actiniae-like self-doped polyaniline cathode. J. Mater. Chem. A 8(25), 12799–12809 (2020). https://doi.org/10.1039/D0TA04203J
S.B. Singh, D.T. Tran, K.U. Jeong, N.H. Kim, J.H. Lee, A flexible and transparent zinc-nanofiber network electrode for wearable electrochromic, rechargeable zn-ion battery. Small 18(5), 2104462 (2022). https://doi.org/10.1002/smll.202104462
C.G. Granqvist, M.A. Arvizu, İB. Pehlivan, H.Y. Qu, R.T. Wen et al., Electrochromic materials and devices for energy efficiency and human comfort in buildings: a critical review. Electrochim. Acta 259, 1170–1182 (2018). https://doi.org/10.1016/j.electacta.2017.11.169
C.G. Granqvist, Oxide electrochromics: an introduction to devices and materials. Sol. Energy Mater. Sol. Cells 99, 1–13 (2012). https://doi.org/10.1016/j.solmat.2011.08.021
B. Yong, D. Ma, Y. Wang, H. Mi, C. He et al., Understanding the design principles of advanced aqueous zinc-ion battery cathodes: from transport kinetics to structural engineering, and future perspectives. Adv. Energy Mater. 10(45), 2002354 (2020). https://doi.org/10.1002/aenm.202002354
Q. Zhao, J. Wang, X. Ai, Y. Duan, Z. Pan et al., Three-dimensional knotting of W17O47@PEDOT: Pss nanowires enables high-performance flexible cathode for dual-functional electrochromic and electrochemical device. InfoMat 4(4), e12298 (2022). https://doi.org/10.1002/inf2.12298
P. Yang, P. Sun, W. Mai, Electrochromic energy storage devices. Mater. Today 19(7), 394–402 (2016). https://doi.org/10.1016/j.mattod.2015.11.007
V.K. Thakur, G. Ding, J. Ma, P.S. Lee, X. Lu, Hybrid materials and polymer electrolytes for electrochromic device applications. Adv. Mater. 24(30), 4071–4096 (2012). https://doi.org/10.1002/adma.201200213
W. Zhang, H. Li, W.W. Yu, A.Y. Elezzabi, Emerging Zn anode-based electrochromic devices. Small Sci. 1(12), 2100040 (2021). https://doi.org/10.1002/smsc.202100040
D.E. Shen, A.M. Österholm, J.R. Reynolds, Out of sight but not out of mind: the role of counter electrodes in polymer-based solid-state electrochromic devices. J. Mater. Chem. C 3(37), 9715–9725 (2015). https://doi.org/10.1039/C5TC01964H
R.J. Mortimer, Electrochromic materials. Chem. Soc. Rev. 26(3), 147–156 (1997). https://doi.org/10.1039/CS9972600147
Q. Zhao, Y. Fang, K. Qiao, W. Wei, Y. Yao et al., Printing of WO3/ITO nanocomposite electrochromic smart windows. Sol. Energy Mater. Sol. Cells 194, 95–102 (2019). https://doi.org/10.1016/j.solmat.2019.02.002
A. Azam, J. Kim, J. Park, T.G. Novak, A.P. Tiwari et al., Two-dimensional WO3 nanosheets chemically converted from layered WS2 for high-performance electrochromic devices. Nano Lett. 18(9), 5646–5651 (2018). https://doi.org/10.1021/acs.nanolett.8b02150
S. Zhang, S. Cao, T. Zhang, J.Y. Lee, Plasmonic oxygen-deficient TiO2-x nanocrystals for dual-band electrochromic smart windows with efficient energy recycling. Adv. Mater. 32(43), 2004686 (2020). https://doi.org/10.1002/adma.202004686
S. Cao, S. Zhang, T. Zhang, Q. Yao, J.Y. Lee, A visible light-near-infrared dual-band smart window with internal energy storage. Joule 3(4), 1152–1162 (2019). https://doi.org/10.1016/j.joule.2018.12.010
L. Liborio, N. Harrison, Thermodynamics of oxygen defective magnéli phases in rutile: A first-principles study. Phys. Rev. B 77(10), 104104 (2008). https://doi.org/10.1103/PhysRevB.77.104104
G. Cai, J. Tu, D. Zhou, J. Zhang, X. Wang et al., Dual electrochromic film based on WO3/polyaniline core/shell nanowire array. Sol. Energy Mater. Sol. Cells 122, 51–58 (2014). https://doi.org/10.1016/j.solmat.2013.11.015
Q. Guo, X. Zhao, Z. Li, B. Wang, D. Wang et al., High performance multicolor intelligent supercapacitor and its quantitative monitoring of energy storage level by electrochromic parameters. ACS Appl. Energy Mater. 3(3), 2727–2736 (2020). https://doi.org/10.1021/acsaem.9b02392
T.G. Yun, M. Park, D.H. Kim, D. Kim, J.Y. Cheong et al., All-transparent stretchable electrochromic supercapacitor wearable patch device. ACS Nano 13(3), 3141–3150 (2019). https://doi.org/10.1021/acsnano.8b08560
D. Zhuzhelskii, E. Tolstopjatova, S. Eliseeva, A. Ivanov, S. Miao et al., Electrochemical properties of pedot/wo3 composite films for high performance supercapacitor application. Electro. Acta 299, 182–190 (2019). https://doi.org/10.1016/j.electacta.2019.01.007
G. Cai, X. Cheng, M. Layani, A.W.M. Tan, S. Li et al., Direct inkjet-patterning of energy efficient flexible electrochromics. Nano Energy 49, 147–154 (2018). https://doi.org/10.1016/j.nanoen.2018.04.017
G. Cai, P. Darmawan, M. Cui, J. Wang, J. Chen, S. Magdassi et al., Highly stable transparent conductive silver grid/Pedot: PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors. Adv. Energy Mater. 6(4), 1501882 (2016). https://doi.org/10.1002/aenm.201501882
Z. Wang, X. Wang, S. Cong, J. Chen, H. Sun et al., Towards full-colour tunability of inorganic electrochromic devices using ultracompact fabry-perot nanocavities. Nat. Commun. 11(1), 1–9 (2020). https://doi.org/10.1038/s41467-019-14194-y
T. Magu, A. Agobi, L. Hitler, P. Dass, A review on conducting polymers-based composites for energy storage application. J. Chem. Res. 1(1), 19–34 (2019). https://doi.org/10.1016/0013-4686(94)80062-6
S. Zhao, X. Gao, L. Chen, W. Huang, Y. Liu, A hair-trigger self-powered electrochromic window and a rechargeable battery ignoring charging process. Appl. Mater. Today 28, 101543 (2022). https://doi.org/10.1016/j.apmt.2022.101543
A. Chaudhary, D.K. Pathak, S. Mishra, P. Yogi, P.R. Sagdeo et al., Polythiophene-viologen bilayer for electro-trichromic device. Sol. Energy Mater. Sol. Cells 188, 249–254 (2018). https://doi.org/10.1016/j.solmat.2018.08.029
B. Yang, D. Ma, E. Zheng, J. Wang, A self-rechargeable electrochromic battery based on electrodeposited polypyrrole film. Sol. Energy Mater. Sol. Cells 192, 1–7 (2019). https://doi.org/10.1016/j.solmat.2018.12.011
H.Y. Shi, Y.J. Ye, K. Liu, Y. Song, X. Sun, A long-cycle-life self-doped polyaniline cathode for rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 130(50), 16597–16601 (2018). https://doi.org/10.1002/ange.201808886
J.W. Kim, J.M. Myoung, Flexible and transparent electrochromic displays with simultaneously implementable subpixelated ion gel-based viologens by multiple patterning. Adv. Funct. 29(13), 1808911 (2019). https://doi.org/10.1002/adfm.201808911
J. Gustafsson-Carlberg, O. Inganäs, M.R. Andersson, C. Booth, A. Azens et al., Tuning the bandgap for polymeric smart windows and displays. Electrochim. Acta 40(13–14), 2233–2235 (1995). https://doi.org/10.1016/0013-4686(95)00169-F
G. Cai, P. Darmawan, X. Cheng, P.S. Lee, Inkjet printed large area multifunctional smart windows. Adv. Energy Mater. 7(14), 1602598 (2017). https://doi.org/10.1002/aenm.201602598
C.M. Amb, P.M. Beaujuge, J.R. Reynolds, Spray-processable blue-to-highly transmissive switching polymer electrochromes via the donor–acceptor approach. Adv. Mater. 22(6), 724–728 (2010). https://doi.org/10.1002/adma.200902917
S.Y. Kim, Y.J. Jang, Y.M. Kim, J.K. Lee, H.C. Moon, Tailoring diffusion dynamics in energy storage ionic conductors for high-performance, multi-function, single-layer electrochromic supercapacitors. Adv. Funct. (2022). https://doi.org/10.1002/adfm.202200757
Y.J. Jang, S.Y. Kim, Y.M. Kim, J.K. Lee, H.C. Moon, Unveiling the diffusion-controlled operation mechanism of all-in-one type electrochromic supercapacitors: overcoming slow dynamic response with ternary gel electrolytes. Energy Storage Mater. 43, 20–29 (2021). https://doi.org/10.1016/j.ensm.2021.08.038
Y. Alesanco, A. Viñuales, J. Rodriguez, R. Tena-Zaera, All-in-one gel-based electrochromic devices: strengths and recent developments. Materials 11(3), 414 (2018). https://doi.org/10.3390/ma11030414
M. Qiu, F. Zhou, P. Sun, X. Chen, C. Zhao et al., Unveiling the electrochromic mechanism of prussian blue by electronic transition analysis. Nano Energy 78, 105148 (2020). https://doi.org/10.1016/j.nanoen.2020.105148
J. Li, X. Wang, W. Sun, K. Maleski, C.E. Shuck et al., Intercalation-induced reversible electrochromic behavior of two-dimensional Ti3C2Tx mxene in organic electrolytes. ChemElectroChem 8(1), 151–156 (2021). https://doi.org/10.1002/celc.202001449
K. Hurlbutt, S. Wheeler, I. Capone, M. Pasta, Prussian blue analogs as battery materials. Joule 2(10), 1950–1960 (2018). https://doi.org/10.1016/j.joule.2018.07.017
C. Xu, Z. Yang, X. Zhang, M. Xia, H. Yan et al., Prussian blue analogues in aqueous batteries and desalination batteries. Nano-Micro Lett. 13, 187 (2021). https://doi.org/10.1007/s40820-021-00715-2
C. Xu, Z. Yang, X. Zhang, M. Xia, H. Yan et al., Prussian blue analogues in aqueous batteries and desalination batteries. Nano-Micro Lett. 13(1), 166 (2021). https://doi.org/10.1007/s40820-021-00700-9
P. Salles, D. Pinto, K. Hantanasirisakul, K. Maleski, C.E. Shuck et al., Electrochromic effect in titanium carbide mxene thin films produced by dip-coating. Adv. Funct. Mater. 29(17), 1809223 (2019). https://doi.org/10.1002/adfm.201809223
S. Deb, A novel electrophotographic system. Appl. Opt. 8(101), 192–195 (1969). https://doi.org/10.1364/AO.8.S1.000192
S. Deb, Optical and photoelectric properties and colour centres in thin films of tungsten oxide. Philos. Mag. 27(4), 801–822 (1973). https://doi.org/10.1080/14786437308227562
J.H. Ko, S. Yeo, J.H. Park, J. Choi, C. Noh et al., Graphene-based electrochromic systems: the case of prussian blue nanops on transparent graphene film. Chem. Commun. 48(32), 3884–3886 (2012). https://doi.org/10.1039/C2CC30161J
X. Liu, A. Zhou, Y. Dou, T. Pan, M. Shao et al., Ultrafast switching of an electrochromic device based on layered double hydroxide/prussian blue multilayered films. Nanoscale 7(40), 17088–17095 (2015). https://doi.org/10.1039/C5NR04458H
Q. Zhao, J. Wang, Y. Cui, X. Ai, Z. Chen et al., The discovery of conductive ionic bonds in NiO/Ni transparent counter electrodes for electrochromic smart windows with an ultra-long cycling life. Mater. Adv. 2(14), 4667–4676 (2021). https://doi.org/10.1039/D1MA00384D
Q. Zhao, K. Qiao, Y. Yao, Z. Chen, D. Chen et al., High-conductivity hydrophobic fumed-SiO2 composite gel electrolyte for high performance electrochromic devices. J. Inorg. Mater. 36(2), 200376 (2021). https://doi.org/10.15541/jim20200376
P. Yang, P. Sun, Z. Chai, L. Huang, X. Cai et al., Large-scale fabrication of pseudocapacitive glass windows that combine electrochromism and energy storage. Angew. Chem. Int. Ed. 126(44), 12129–12133 (2014). https://doi.org/10.1002/ange.201407365
C.G. Granqvist, Electrochromic tungsten oxide films: review of progress 1993–1998. Sol. Energy Mater. Sol. Cells 60(3), 201–262 (2000). https://doi.org/10.1016/S0927-0248(99)00088-4
K. Qi, J. Wei, M. Sun, Q. Huang, X. Li et al., Real-time observation of deep lithiation of tungsten oxide nanowires by in situ electron microscopy. Angew. Chem. Int. Ed. 127(50), 15437–15440 (2015). https://doi.org/10.1002/ange.201508112
S. Lee, Y. Oshima, E. Hosono, H. Zhou, K. Kim et al., In situ tem observation of local phase transformation in a rechargeable LiMn2O4 nanowire battery. J. Phys. Chem. C 117(46), 24236–24241 (2013). https://doi.org/10.1021/jp409032r
Z. Wang, G. Chen, H. Zhang, L. Liang, J. Gao et al., In situ tem investigation of hexagonal WO3 irreversible transformation to Li2WO4. Scr. Mater. 203, 114090 (2021). https://doi.org/10.1016/j.scriptamat.2021.114090
R.T. Wen, M.A. Arvizu, M. Morales-Luna, C.G. Granqvist, G.A. Niklasson, Ion trapping and detrapping in amorphous tungsten oxide thin films observed by real-time electro-optical monitoring. Chem. Mater. 28(13), 4670–4676 (2016). https://doi.org/10.1021/acs.chemmater.6b01503
R.T. Wen, C.G. Granqvist, G.A. Niklasson, Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films. Nat. Mater. 14(10), 996–1001 (2015). https://doi.org/10.1038/nmat4368
Y. Cui, Q. Wang, G. Yang, Y. Gao, Electronic properties, optical properties and diffusion behavior of WO3 with H+, Li+ and Na+ intercalated ions: a first-principles study. J. Solid State Chem. 297, 122082 (2021). https://doi.org/10.1016/j.jssc.2021.122082
Y. Huang, B. Wang, F. Chen, Y. Han, W. Zhang et al., Electrochromic materials based on ions insertion and extraction. Adv. Opt. Mater. 10(4), 2101783 (2022). https://doi.org/10.1002/adom.202101783
L.C. Lopes, S. Husmann, A.J. Zarbin, Chemically synthesized graphene as a precursor to prussian blue-based nanocomposite: a multifunctional material for transparent aqueous K-ion battery or electrochromic device. Electrochim. Acta 345, 136199 (2020). https://doi.org/10.1016/j.electacta.2020.136199
R.T. Wen, G.A. Niklasson, C.G. Granqvist, Electrochromic nickel oxide films and their compatibility with potassium hydroxide and lithium perchlorate in propylene carbonate: Optical, electrochemical and stress-related properties. Thin Solid Films 565, 128–135 (2014). https://doi.org/10.1016/j.tsf.2014.07.004
Y. Liang, H.D. Yoo, Y. Li, J. Shuai, H.A. Calderon et al., Interlayer-expanded molybdenum disulfide nanocomposites for electrochemical magnesium storage. Nano Lett. 15(3), 2194–2202 (2015). https://doi.org/10.1021/acs.nanolett.5b00388
J. Han, A. Varzi, S. Passerini, The emergence of aqueous ammonium-ion batteries. Angew. Chem. Int. Ed. 61(14), e202115046 (2022). https://doi.org/10.1002/anie.202115046
Z. Tian, J. Yin, T. Guo, Z. Zhao, Y. Zhu et al., A sustainable NH4+ ion battery by electrolyte engineering. Angew. Chem. Int. Ed. 61, e202213757 (2022). https://doi.org/10.1002/anie.202213757
L. Zhang, D. Chao, P. Yang, L. Weber, J. Li et al., Flexible pseudocapacitive electrochromics via inkjet printing of additive-free tungsten oxide nanocrystal ink. Adv. Energy Mater. 10(17), 2000142 (2020). https://doi.org/10.1002/aenm.202000142
J. Li, P. Yang, X. Li, C. Jiang, J. Yun et al., Ultrathin smart energy-storage devices for skin-interfaced wearable electronics. ACS Energy Lett. 8, 1–8 (2022). https://doi.org/10.1021/acsenergylett.2c02029
H. Li, L. McRae, C.J. Firby, A.Y. Elezzabi, Rechargeable aqueous electrochromic batteries utilizing ti-substituted tungsten molybdenum oxide based Zn2+ ion intercalation cathodes. Adv. Mater. 31(15), 1807065 (2019). https://doi.org/10.1002/adma.201807065
X. Ju, F. Yang, X. Zhu, X. Jia, Zinc ion intercalation/deintercalation of metal organic framework-derived nanostructured NiO@C for low-transmittance and high-performance electrochromism. ACS Sustain. Chem. Eng. 8(32), 12222–12229 (2020). https://doi.org/10.1021/acssuschemeng.0c03837
C. Legein, B.J. Morgan, F. Fayon, T. Koketsu, J. Ma et al., Atomic insights into aluminium-ion insertion in defective anatase for batteries. Angew. Chem. Int. Ed. 59(43), 19247–19253 (2020). https://doi.org/10.1002/anie.202007983
S. Gheytani, Y. Liang, F. Wu, Y. Jing, H. Dong et al., An aqueous ca-ion battery. Adv. Sci. 4(12), 1700465 (2017). https://doi.org/10.1002/advs.201700465
Z. Tong, T. Kang, Y. Wan, R. Yang, Y. Wu et al., A Ca-ion electrochromic battery via a water-in-salt electrolyte. Adv. Funct. 31(41), 2104639 (2021). https://doi.org/10.1002/adfm.202104639
P. Yang, J.L. Yang, K. Liu, H.J. Fan, Hydrogels enable future smart batteries. ACS Nano 16(10), 15528–15536 (2022). https://doi.org/10.1021/acsnano.2c07468
P. Sun, J. Chen, Y. Li, X. Tang, H. Sun et al., Deep eutectic solvent-based gel electrolytes for flexible electrochromic devices with excellent high/low temperature durability. InfoMat (2022). https://doi.org/10.1002/inf2.12363
X. Ai, Q. Zhao, Y. Duan, Z. Chen, Z. Zhang et al., Zinc polyacrylamide hydrogel electrolyte for quasi-solid-state electrochromic devices with low-temperature tolerance. Cell Rep. Phys. Sci. 3(11), 101148 (2022). https://doi.org/10.1016/j.xcrp.2022.101148
Z. Wang, H. Li, Z. Tang, Z. Liu, Z. Ruan et al., Hydrogel electrolytes for flexible aqueous energy storage devices. Adv. Funct. 28(48), 1804560 (2018). https://doi.org/10.1002/adfm.201804560
S.R. Taylor, Abundance of chemical elements in the continental crust: a new table. Geochim. Cosmochim. Acta 28(8), 1273–1285 (1964). https://doi.org/10.1016/0016-7037(64)90129-2
E. Nightingale Jr., Phenomenological theory of ion solvation. Effective radii of hydrated ions. J. Phys. Chem. 63(9), 1381–1387 (1959). https://doi.org/10.1021/j150579a011
A.L.S. Eh, A.W.M. Tan, X. Cheng, S. Magdassi, P.S. Lee, Recent advances in flexible electrochromic devices: prerequisites, challenges, and prospects. Energy Techn. 6(1), 33–45 (2018). https://doi.org/10.1002/ente.201700705
C. Dai, G. Sun, L. Hu, Y. Xiao, Z. Zhang et al., Recent progress in graphene-based electrodes for flexible batteries. InfoMat 2(3), 509–526 (2020). https://doi.org/10.1002/inf2.12039
A.W. Lang, A.M. Österholm, J.R. Reynolds, Paper-based electrochromic devices enabled by nanocellulose-coated substrates. Adv. Funct. 29(39), 1903487 (2019). https://doi.org/10.1002/adfm.201903487
H. Fan, K. Li, X. Liu, K. Xu, Y. Su et al., Continuously processed, long electrochromic fibers with multi-environmental stability. ACS Appl. Mater. Interfaces 12(25), 28451–28460 (2020). https://doi.org/10.1021/acsami.0c09589
D. Jiang, Y. Wang, B. Li, C. Sun, Z. Wu et al., Flexible sandwich structural strain sensor based on silver nanowires decorated with self-healing substrate. Macromol. Mater. Eng. 304(7), 1900074 (2019). https://doi.org/10.1002/mame.201900074
P. Cordier, F. Tournilhac, C. Soulié-Ziakovic, L. Leibler, Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451(7181), 977–980 (2008). https://doi.org/10.1038/nature06669
J. Shi, S. Liu, L. Zhang, B. Yang, L. Shu et al., Smart textile-integrated microelectronic systems for wearable applications. Adv. Mater. 32(5), 1901958 (2020). https://doi.org/10.1002/adma.201901958
Q. Shi, J. Sun, C. Hou, Y. Li, Q. Zhang et al., Advanced functional fiber and smart textile. Adv. Fiber Mater. 1(1), 3–31 (2019). https://doi.org/10.1007/s42765-019-0002-z
J. Liu, J.P. Coleman, Nanostructured metal oxides for printed electrochromic displays. Mater. Sci. Eng. A 286(1), 144–148 (2000). https://doi.org/10.1016/S0921-5093(00)00719-X
X. Chen, N.S. Villa, Y. Zhuang, L. Chen, T. Wang et al., Stretchable supercapacitors as emergent energy storage units for health monitoring bioelectronics. Adv. Energy Mater. 10(4), 1902769 (2020). https://doi.org/10.1002/aenm.201902769
W.J. Song, S. Lee, G. Song, S. Park, Stretchable aqueous batteries: progress and prospects. ACS Energy Lett. 4(1), 177–186 (2018). https://doi.org/10.1021/acsenergylett.8b02053
H.H. Chou, A. Nguyen, A. Chortos, J.W. To, C. Lu et al., A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nat. Commun. 6(1), 1–10 (2015). https://doi.org/10.1038/ncomms9011
J. Zhao, Y. Tian, Z. Wang, S. Cong, D. Zhou et al., Trace H2O2-assisted high-capacity tungsten oxide electrochromic batteries with ultrafast charging in seconds. Angew. Chem. Int. Ed. 128(25), 7277–7281 (2016). https://doi.org/10.1002/ange.201602657
W. Zhang, H. Li, M. Al-Hussein, A.Y. Elezzabi, Electrochromic battery displays with energy retrieval functions using solution-processable colloidal vanadium oxide nanops. Adv. Opt. Mater. 8(2), 1901224 (2020). https://doi.org/10.1002/adom.201901224
H. Zhang, Y. Yu, L. Zhang, Y. Zhai, S. Dong, Self-powered fluorescence display devices based on a fast self-charging/recharging battery (Mg/Prussian Blue). Chem. Sci. 7(11), 6721–6727 (2016). https://doi.org/10.1039/C6SC02347A
S. Santiago-Malagon, D. Rio-Colin, H. Azizkhani, M. Aller-Pellitero, G. Guirado et al., A self-powered skin-patch electrochromic biosensor. Biosens. Bioelectr. 175, 112879 (2021). https://doi.org/10.1016/j.bios.2020.112879
Y. Zhai, Y. Li, H. Zhang, D. Yu, Z. Zhu et al., Self-rechargeable-battery-driven device for simultaneous electrochromic windows, ros biosensing, and energy storage. ACS Appl. Mater. Interfaces 11(31), 28072–28077 (2019). https://doi.org/10.1021/acsami.9b08715
Z. Abdin, M.A. Alim, R. Saidur, M.R. Islam, W. Rashmi et al., Solar energy harvesting with the application of nanotechnology. Renew. Sustain. Energy Rev. 26, 837–852 (2013). https://doi.org/10.1016/j.rser.2013.06.023
X. Liu, Y. Yuan, J. Liu, B. Liu, X. Chen et al., Utilizing solar energy to improve the oxygen evolution reaction kinetics in zinc–air battery. Nat. Commun. 10(1), 1–10 (2019). https://doi.org/10.1038/s41467-019-12627-2
W. Qiu, Y. Feng, N. Luo, S. Chen, D. Wang, Sandwich-like sound-driven triboelectric nanogenerator for energy harvesting and electrochromic based on cu foam. Nano Energy 70, 104543 (2020). https://doi.org/10.1016/j.nanoen.2020.104543
W. Guo, Z. Cong, Z.H. Guo, P. Zhang, Y. Chen et al., Multifunctional self-charging electrochromic supercapacitors driven by direct-current triboelectric nanogenerators. Adv. Funct. Mater. 31(36), 2104348 (2021). https://doi.org/10.1002/adfm.202104348
X. Yang, G. Zhu, S. Wang, R. Zhang, L. Lin et al., A self-powered electrochromic device driven by a nanogenerator. Energy Environ. 5(11), 9462–9466 (2012). https://doi.org/10.1039/C2EE23194H
B.D. Boruah, A. Mathieson, B. Wen, S. Feldmann, W.M. Dose et al., Photo-rechargeable zinc-ion batteries. Energy Environ. 13(8), 2414–2421 (2020). https://doi.org/10.1039/D0EE01392G
Z. Wang, H.C. Chiu, A. Paolella, R. Gauvin, K. Zaghib et al., A sustainable light-chargeable two-electrode energy storage system based on aqueous sodium-ion photo-intercalation. Sustain. Energy Fuels 4(9), 4789–4799 (2020). https://doi.org/10.1039/D0SE00628A
C.T. Chien, P. Hiralal, D.Y. Wang, I.S. Huang, C.C. Chen et al., Graphene-based integrated photovoltaic energy harvesting/storage device. Small 11(24), 2929–2937 (2015). https://doi.org/10.1002/smll.201403383
X. Chen, H. Lin, J. Deng, Y. Zhang, X. Sun et al., Electrochromic fiber-shaped supercapacitors. Adv. Mater. 26(48), 8126–8132 (2014). https://doi.org/10.1002/adma.201403243
J. Xu, H. Wu, L. Lu, S.F. Leung, D. Chen et al., Integrated photo-supercapacitor based on bi-polar TiO2 nanotube arrays with selective one-side plasma-assisted hydrogenation. Adv. Funct. Mater. 24(13), 1840–1846 (2014). https://doi.org/10.1002/adfm.201303042
W. Guo, X. Xue, S. Wang, C. Lin, Z.L. Wang, An integrated power pack of dye-sensitized solar cell and Li battery based on double-sided TiO2 nanotube arrays. Nano Lett. 12(5), 2520–2523 (2012). https://doi.org/10.1021/nl3007159
A. Zloczewska, A. Celebanska, K. Szot, D. Tomaszewska, M. Opallo et al., Self-powered biosensor for ascorbic acid with a prussian blue electrochromic display. Biosens. Bioelectr. 54, 455–461 (2014). https://doi.org/10.1016/j.bios.2013.11.033
W. Xu, K. Fu, C. Ma, P.W. Bohn, Closed bipolar electrode-enabled dual-cell electrochromic detectors for chemical sensing. Analyst 141(21), 6018–6024 (2016). https://doi.org/10.1039/C6AN01415A
D. Capoferri, R. Álvarez-Diduk, M. Del Carlo, D. Compagnone, A. Merkoçi, Electrochromic molecular imprinting sensor for visual and smartphone-based detections. Anal. Chem. 90(9), 5850–5856 (2018). https://doi.org/10.1021/acs.analchem.8b00389
Q. Nian, T. Sun, S. Liu, H. Du, X. Ren et al., Issues and opportunities on low-temperature aqueous batteries. Chem. Eng. J. 423, 130253 (2021). https://doi.org/10.1016/j.cej.2021.130253
T. Cui, Y.P. Wang, T. Ye, J. Wu, Z. Chen et al., Engineering dual single-atom sites on 2d ultrathin n-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem. Int. Ed. 61(12), e202115219 (2022). https://doi.org/10.1002/anie.202115219
T. Sun, S. Zheng, H. Du, Z. Tao, Synergistic effect of cation and anion for low-temperature aqueous zinc-ion battery. Nano-Micro Lett. 13, 204 (2021). https://doi.org/10.1007/s40820-021-00733-0
Q. Nian, J. Wang, S. Liu, T. Sun, S. Zheng et al., Aqueous batteries operated at − 50 °C. Angew. Chem. Int. Ed. 58(47), 16994–16999 (2019). https://doi.org/10.1002/anie.201908913
M. Zhu, X. Wang, H. Tang, J. Wang, Q. Hao et al., Antifreezing hydrogel with high zinc reversibility for flexible and durable aqueous batteries by cooperative hydrated cations. Adv. Funct. Mater. 30(6), 1907218 (2020). https://doi.org/10.1002/adfm.201907218
Q. Zhang, Y. Ma, Y. Lu, L. Li, F. Wan et al., Modulating electrolyte structure for ultralow temperature aqueous zinc batteries. Nat. Commun. 11(1), 4463 (2020). https://doi.org/10.1038/s41467-020-18284-0
P. Ma, Y. Sun, X. Zhang, J. Chen, B. Yang et al., Spinel-type solar-thermal conversion coatings on supercapacitors: an effective strategy for capacitance recovery at low temperatures. Energy Storage Mater. 23, 159–167 (2019). https://doi.org/10.1016/j.ensm.2019.05.016
F. Yi, H. Ren, K. Dai, X. Wang, Y. Han et al., Solar thermal-driven capacitance enhancement of supercapacitors. Energy Environ. 11(8), 2016–2024 (2018). https://doi.org/10.1039/C8EE01244J
J. Xu, Y. Zhang, T.T. Zhai, Z. Kuang, J. Li, Y. Wang et al., Electrochromic-tuned plasmonics for photothermal sterile window. ACS Nano 12(7), 6895–6903 (2018). https://doi.org/10.1021/acsnano.8b02292
X. Chang, R. Hu, S. Sun, J. Liu, Y. Lei et al., Sunlight-charged electrochromic battery based on hybrid film of tungsten oxide and polyaniline. Appl. Surf. Sci. 441, 105–112 (2018). https://doi.org/10.1016/j.apsusc.2018.02.003
Y. Lu, J. Guo, Z. He, Z. Gao, Y.Y. Song, Direct access to NiCo–LDH nanosheets by electrochemical-scanning-mediated hydrolysis for photothermally enhanced energy storage capacity. Energy Storage Mater. 48, 487–496 (2022). https://doi.org/10.1016/j.ensm.2022.03.050
Z. Tong, R. Lian, R. Yang, T. Kang, J. Feng et al., An aqueous aluminum-ion electrochromic full battery with water-in-salt electrolyte for high-energy density. Energy Storage Mater. 44, 497–507 (2022). https://doi.org/10.1016/j.ensm.2021.11.001
X. Tang, J. Chen, Z. Wang, Z. Hu, G. Song et al., Vibrant color palettes of electrochromic manganese oxide electrodes for colorful Zn-ion battery. Adv. Opt. Mater. 9(19), 2100637 (2021). https://doi.org/10.1002/adom.202100637
Z. Shao, A. Huang, C. Ming, J. Bell, P. Yu et al., All-solid-state proton-based tandem structures for fast-switching electrochromic devices. Nat. Electr. (2022). https://doi.org/10.1038/s41928-021-00697-4
R. Malik, Magnifying opportunities in mg batteries through metastability. Joule 2(2), 201–202 (2018). https://doi.org/10.1016/j.joule.2018.02.005
S. Zhang, S. Cao, T. Zhang, A. Fisher, J.Y. Lee, Al3+ intercalation/de-intercalation-enabled dual-band electrochromic smart windows with a high optical modulation, quick response and long cycle life. Energy Environ. 11(10), 2884–2892 (2018). https://doi.org/10.1039/C8EE01718B
N. Wang, C. Sun, X. Liao, Y. Yuan, H. Cheng et al., Reversible (de) intercalation of hydrated Zn2+ in Mg2+-stabilized V2O5 nanobelts with high areal capacity. Adv. Energy Mater. 10(41), 2002293 (2020). https://doi.org/10.1002/aenm.202002293
C. Wu, G. Zhao, S. Gong, N. Zhang, K. Sun, Pvp incorporated MoS2 as a mg ion host with enhanced capacity and durability. J. Mater. Chem. A 7(9), 4426–4430 (2019). https://doi.org/10.1039/C8TA12288A
Q. Shen, M. Jiang, R. Wang, K. Song, M.H. Vong et al., Liquid metal-based soft, hermetic, and wireless-communicable seals for stretchable systems. Science 379(6631), 488–493 (2023). https://doi.org/10.1126/science.ade7341