Nanohollow Carbon for Rechargeable Batteries: Ongoing Progresses and Challenges
Corresponding Author: John Wang
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 183
Abstract
Among the various morphologies of carbon-based materials, hollow carbon nanostructures are of particular interest for energy storage. They have been widely investigated as electrode materials in different types of rechargeable batteries, owing to their high surface areas in association with the high surface-to-volume ratios, controllable pores and pore size distribution, high electrical conductivity, and excellent chemical and mechanical stability, which are beneficial for providing active sites, accelerating electrons/ions transfer, interacting with electrolytes, and giving rise to high specific capacity, rate capability, cycling ability, and overall electrochemical performance. In this overview, we look into the ongoing progresses that are being made with the nanohollow carbon materials, including nanospheres, nanopolyhedrons, and nanofibers, in relation to their applications in the main types of rechargeable batteries. The design and synthesis strategies for them and their electrochemical performance in rechargeable batteries, including lithium-ion batteries, sodium-ion batteries, potassium-ion batteries, and lithium–sulfur batteries are comprehensively reviewed and discussed, together with the challenges being faced and perspectives for them.
Highlights
1 The synthesis strategies of nanohollow carbon materials, including nanospheres, nanopolyhedrons, and nanofibers are summarized.
2 Nanohollow carbon materials used as electrode materials in several types of rechargeable batteries are reviewed.
3 The challenges being faced and perspectives of nanohollow carbon materials are discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Hu, K. Wang, L.H. Wu, S.H. Yu, M. Antonietti et al., Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv. Mater. 22(7), 813–828 (2010). https://doi.org/10.1002/adma.200902812
- Y. Liu, J. Goebl, Y. Yin, Templated synthesis of nanostructured materials. Chem. Soc. Rev. 42(7), 2610–2653 (2013). https://doi.org/10.1039/C2CS35369E
- C. Wang, Y.V. Kaneti, Y. Bando, J. Lin, C. Liu et al., Metal-organic framework-derived one-dimensional porous or hollow carbon-based nanofibers for energy storage and conversion. Mater. Horiz. 5(3), 394–407 (2018). https://doi.org/10.1039/C8MH00133B
- J. Jiang, Y. Zhang, P. Nie, G. Xu, M. Shi et al., Progress of nanostructured electrode materials for supercapacitors. Adv. Sustain. Syst. 2(1), 1700110 (2018). https://doi.org/10.1002/adsu.201700110
- S. Li, A. Pasc, V. Fierro, A. Celzard, Hollow carbon spheres, synthesis and applications-a review. J. Mater. Chem. A 4(33), 12686–12713 (2016). https://doi.org/10.1039/C6TA03802F
- Z. Li, H.B. Wu, X.W.D. Lou, Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium-sulfur batteries. Energy Environ. Sci. 9(10), 3061–3070 (2016). https://doi.org/10.1039/C6EE02364A
- X. Liu, W.H. Lai, S. Chou, The application of hollow micro-/nanostructured cathodes for sodium-ion batteries. Mater. Chem. Front. 4(5), 1289–1303 (2020). https://doi.org/10.1039/C9QM00674E
- X. Wang, J. Feng, Y. Bai, Q. Zhang, Y. Yin, Synthesis, properties, and applications of hollow micro-/nanostructures. Chem. Rev. 116(18), 10983–11060 (2016). https://doi.org/10.1021/acs.chemrev.5b00731
- Z. Yang, Z. Li, M. Xu, Y. Ma, J. Zhang et al., Controllable synthesis of fluorescent carbon dots and their detection application as nanoprobes. Nano-Micro Lett. 5(4), 247–259 (2013). https://doi.org/10.1007/BF03353756
- T. Liu, L. Zhang, B. Cheng, J. Yu, Hollow carbon spheres and their hybrid nanomaterials in electrochemical energy storage. Adv. Energy Mater. 9(17), 1803900 (2019). https://doi.org/10.1002/aenm.201803900
- A. Fu, C. Wang, F. Pei, J. Cui, X. Fang et al., Recent advances in hollow porous carbon materials for lithium-sulfur batteries. Small 15(10), 1804786 (2019). https://doi.org/10.1002/smll.201804786
- H. Fan, F. Ran, X. Zhang, H. Song, X. Niu et al., Hollow carbon microspheres/MnO2 nanosheets composites: hydrothermal synthesis and electrochemical behaviors. Nano-Micro Lett. 7(1), 59–67 (2015). https://doi.org/10.1007/s40820-014-0019-z
- X.L. Ji, A paradigm of storage batteries. Energy Environ. Sci. 12(11), 3203–3224 (2019). https://doi.org/10.1039/c9ee02356a
- J. Jiang, Z. Pan, Z. Kou, P. Nie, C. Chen et al., Lithiophilic polymer interphase anchored on laser-punched 3D holey Cu matrix enables uniform lithium nucleation leading to super-stable lithium metal anodes. Energy Storage Mater. 29, 84–91 (2020). https://doi.org/10.1016/j.ensm.2020.04.006
- J. Jiang, P. Nie, B. Ding, W. Wu, Z. Chang et al., Effect of graphene modified Cu current collector on the performance of Li4Ti5O12 anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 8(45), 30926–30932 (2016). https://doi.org/10.1021/acsami.6b10038
- W. Chen, M. Wan, Q. Liu, X. Xiong, F. Yu et al., Heteroatom-doped carbon materials: synthesis, mechanism, and application for sodium-ion batteries. Small Methods 3(4), 1800323 (2019). https://doi.org/10.1002/smtd.201800323
- H. Geng, Y. Peng, L. Qu, H. Zhang, M. Wu, Structure design and composition engineering of carbon-based nanomaterials for lithium energy storage. Adv. Energy Mater. 10(10), 1903030 (2020). https://doi.org/10.1002/aenm.201903030
- L. Wang, J. Han, D. Kong, Y. Tao, Q. Yang, Enhanced roles of carbon architectures in high-performance lithium-ion batteries. Nano-Micro Lett. 11(1), 5 (2019). https://doi.org/10.1007/s40820-018-0233-1
- J. Jiang, P. Nie, B. Ding, Y. Zhang, G. Xu et al., Highly stable lithium ion capacitor enabled by hierarchical polyimide derived carbon microspheres combined with 3D current collectors. J. Mater. Chem. A 5(44), 23283–23291 (2017). https://doi.org/10.1039/C7TA05972H
- C. Wang, J. Kim, J. Tang, M. Kim, H. Lim et al., New strategies for novel MOF-derived carbon materials based on nanoarchitectures. Chem 6(1), 19–40 (2020). https://doi.org/10.1016/j.chempr.2019.09.005
- F. Marpaung, M. Kim, J.H. Khan, K. Konstantinov, Y. Yamauchi et al., Metal-organic framework (MOF)-derived nanoporous carbon materials. Chem. Asian J. 14(9), 1331–1343 (2019). https://doi.org/10.1002/asia.201900026
- J. Yin, W. Zhang, N.A. Alhebshi, N. Salah, H.N. Alshareef, Synthesis strategies of porous carbon for supercapacitor applications. Small Methods 4(3), 1900853 (2020). https://doi.org/10.1002/smtd.201900853
- F. Caruso, R.A. Caruso, H. Möhwald, Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282(5391), 1111–1114 (1998). https://doi.org/10.1126/science.282.5391.1111
- J. Jiang, Y. Zhang, Y. An, L. Wu, Q. Zhu et al., Engineering ultrathin MoS2 nanosheets anchored on N-doped carbon microspheres with pseudocapacitive properties for high-performance lithium-ion capacitors. Small Methods 3(7), 1900081 (2019). https://doi.org/10.1002/smtd.201900081
- W.J. Lee, J. Lim, S.O. Kim, Nitrogen dopants in carbon nanomaterials: defects or a new opportunity? Small Methods 1(1–2), 1600014 (2017). https://doi.org/10.1002/smtd.201600014
- K.L. Zhang, X.H. Xia, S.J. Deng, Y. Zhong, D. Xie et al., Nitrogen-doped sponge Ni fibers as highly efficient electrocatalysts for oxygen evolution reaction. Nano-Micro Lett. 11(1), 21 (2019). https://doi.org/10.1007/s40820-019-0253-5
- Z. Wang, H. Gao, Q. Zhang, Y. Liu, J. Chen et al., Recent advances in 3D graphene architectures and their composites for energy storage applications. Small 15(3), 1803858 (2019). https://doi.org/10.1002/smll.201803858
- K. Chen, L. Shi, Y. Zhang, Z. Liu, Scalable chemical-vapour-deposition growth of three-dimensional graphene materials towards energy-related applications. Chem. Soc. Rev. 47(9), 3018–3036 (2018). https://doi.org/10.1039/C7CS00852J
- J. Mao, J. Iocozzia, J. Huang, K. Meng, Y. Lai et al., Graphene aerogels for efficient energy storage and conversion. Energy Environ. Sci. 11(4), 772–799 (2018). https://doi.org/10.1039/C7EE03031B
- Y. Zhang, J. Jiang, Y. An, L. Wu, H. Dou et al., Sodium ion capacitors: materials, mechanism and challenges. Chemsuschem 13(10), 2522–2539 (2020). https://doi.org/10.1002/cssc.201903440
- K. Li, J. Zhang, Recent advances in flexible supercapacitors based on carbon nanotubes and graphene. Sci. China Mater. 61(2), 210–232 (2018). https://doi.org/10.1007/s40843-017-9154-2
- X. Li, Y. Chen, H. Huang, Y. Mai, L. Zhou, Electrospun carbon-based nanostructured electrodes for advanced energy storage-a review. Energy Storage Mater. 5, 58–92 (2016). https://doi.org/10.1016/j.ensm.2016.06.002
- H. Feng, L. Tang, G. Zeng, J. Tang, Y. Deng et al., Carbon-based core-shell nanostructured materials for electrochemical energy storage. J. Mater. Chem. A 6(17), 7310–7337 (2018). https://doi.org/10.1039/C8TA01257A
- L. Jiang, X. Yuan, J. Liang, J. Zhang, H. Wang et al., Nanostructured core-shell electrode materials for electrochemical capacitors. J. Power Sources 331, 408–425 (2016). https://doi.org/10.1016/j.jpowsour.2016.09.054
- P. Russo, A. Hu, G. Compagnini, Synthesis, properties and potential applications of porous graphene: a review. Nano-Micro Lett. 5(4), 260–273 (2013). https://doi.org/10.1007/BF03353757
- O. Noonan, H. Zhang, H. Song, C. Xu, X. Huang et al., In situ Stöber templating: facile synthesis of hollow mesoporous carbon spheres from silica-polymer composites for ultra-high level in-cavity adsorption. J. Mater. Chem. A 4(23), 9063–9071 (2016). https://doi.org/10.1039/C6TA02265K
- Y. Han, X. Dong, C. Zhang, S. Liu, Hierarchical porous carbon hollow-spheres as a high performance electrical double-layer capacitor material. J. Power Sources 211, 92–96 (2012). https://doi.org/10.1016/j.jpowsour.2012.03.053
- G. Ferrero, A. Fuertes, M. Sevilla, N-doped porous carbon capsules with tunable porosity for high-performance supercapacitors. J. Mater. Chem. A 3(6), 2914–2923 (2015). https://doi.org/10.1039/C4TA06022A
- A. Chen, Y. Yu, H. Lv, Y. Wang, S. Shen et al., Thin-walled, mesoporous and nitrogen-doped hollow carbon spheres using ionic liquids as precursors. J. Mater. Chem. A 1(4), 1045–1047 (2013). https://doi.org/10.1039/C2TA01013E
- C. Wang, F. Wang, Z. Liu, Y. Zhao, Y. Liu et al., N-doped carbon hollow microspheres for metal-free quasi-solid-state full sodium-ion capacitors. Nano Energy 41, 674–680 (2017). https://doi.org/10.1016/j.nanoen.2017.10.025
- B.Y. Guan, L. Yu, X.W. Lou, Chemically assisted formation of monolayer colloidosomes on functional particles. Adv. Mater. 28(43), 9596–9601 (2016). https://doi.org/10.1002/adma.201603622
- M. Kim, S.B. Yoon, K. Sohn, J.Y. Kim, C.H. Shin et al., Synthesis and characterization of spherical carbon and polymer capsules with hollow macroporous core and mesoporous shell structures. Microporous Mesoporous Mater. 63(1–3), 1–9 (2003). https://doi.org/10.1016/S1387-1811(03)00410-4
- A.B. Fuertes, P. Valle-Vigón, M. Sevilla, One-step synthesis of silica@ resorcinol–formaldehyde spheres and their application for the fabrication of polymer and carbon capsules. Chem. Commun. 48(49), 6124–6126 (2012). https://doi.org/10.1039/C2CC32552G
- X. Fang, J. Zang, X. Wang, M.S. Zheng, N. Zheng, A multiple coating route to hollow carbon spheres with foam-like shells and their applications in supercapacitor and confined catalysis. J. Mater. Chem. A 2(17), 6191–6197 (2014). https://doi.org/10.1039/C3TA14881E
- H. Zhang, M. Yu, H. Song, O. Noonan, J. Zhang et al., Self-organized mesostructured hollow carbon nanoparticles via a surfactant-free sequential heterogeneous nucleation pathway. Chem. Mater. 27(18), 6297–6304 (2015). https://doi.org/10.1021/acs.chemmater.5b01993
- F. Su, X. Zhao, Y. Wang, L. Wang, J.Y. Lee, Hollow carbon spheres with a controllable shell structure. J. Mater. Chem. 16(45), 4413–4419 (2006). https://doi.org/10.1021/acs.chemmater.5b01993
- X. Chen, K. Kierzek, K. Cendrowski, I. Pelech, X. Zhao et al., CVD generated mesoporous hollow carbon spheres as supercapacitors. Colloids Surf. A 396, 246–250 (2012). https://doi.org/10.1016/j.colsurfa.2012.01.002
- X. Chen, K. Kierzek, Z. Jiang, H. Chen, T. Tang et al., Synthesis, growth mechanism, and electrochemical properties of hollow mesoporous carbon spheres with controlled diameter. J. Phys. Chem. C 115(36), 17717–17724 (2011). https://doi.org/10.1021/jp205257u
- M.M. Titirici, A. Thomas, M. Antonietti, Replication and coating of silica templates by hydrothermal carbonization. Adv. Funct. Mater. 17(6), 1010–1018 (2007). https://doi.org/10.1002/adfm.200600501
- J. Fu, Q. Xu, J. Chen, Z. Chen, X. Huang et al., Controlled fabrication of uniform hollow core porous shell carbon spheres by the pyrolysis of core/shell polystyrene/cross-linked polyphosphazene composites. Chem. Commun. 46(35), 6563–6565 (2010). https://doi.org/10.1039/C0CC01185A
- A. Chen, Y. Li, Y. Yu, Y. Li, K. Xia et al., Synthesis of hollow mesoporous carbon spheres via “dissolution-capture” method for effective phenol adsorption. Carbon 103, 157–162 (2016). https://doi.org/10.1016/j.carbon.2016.02.091
- L.K. Gil-Herrera, Á. Blanco, B.H. Juárez, C. López, Seeded synthesis of monodisperse core-shell and hollow carbon spheres. Small 12(32), 4357–4362 (2016). https://doi.org/10.1002/smll.201600902
- A.H. Lu, T. Sun, W.C. Li, Q. Sun, F. Han et al., Synthesis of discrete and dispersible hollow carbon nanospheres with high uniformity by using confined nanospace pyrolysis. Angew. Chem. Int. Ed. 50(49), 11765–11768 (2011). https://doi.org/10.1002/anie.201105486
- J. Han, G. Xu, B. Ding, J. Pan, H. Dou et al., Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercapacitors. J. Mater. Chem. A 2(15), 5352–5357 (2014). https://doi.org/10.1039/C3TA15271E
- L. Xin, R. Chen, Q. Liu, J. Liu, Z. Li et al., Composites of hierarchical metal-organic framework derived nitrogen-doped porous carbon and interpenetrating 3D hollow carbon spheres from lotus pollen for high-performance supercapacitors. New J. Chem. 41(21), 12835–12842 (2017). https://doi.org/10.1039/C7NJ02427D
- X. He, H. Sun, M. Zhu, M. Yaseen, D. Liao et al., N-doped porous graphitic carbon with multi-flaky shell hollow structure prepared using a green and ‘useful’ template of CaCO3 for VOC fast adsorption and small peptide enrichment. Chem. Commun. 53(24), 3442–3445 (2017). https://doi.org/10.1039/C7CC00242D
- W. Liu, X. Huang, H. Wei, K. Chen, J. Gao et al., Facile preparation of hollow crosslinked polyphosphazene submicrospheres with mesoporous shells. J. Mater. Chem. 21(34), 12964–12968 (2011). https://doi.org/10.1039/C1JM11802A
- H. Guo, B. Ding, J. Wang, Y. Zhang, X. Hao et al., Template-induced self-activation route for nitrogen-doped hierarchically porous carbon spheres for electric double layer capacitors. Carbon 136, 204–210 (2018). https://doi.org/10.1016/j.carbon.2018.04.079
- J. Liu, M. Shao, Q. Tang, X. Chen, Z. Liu, A medial-reduction route to hollow carbon spheres. Carbon 41(8), 1682–1685 (2003). https://doi.org/10.1016/S0008-6223(03)00143-X
- L. Shi, H. Lin, K. Bao, J. Cao, Y. Qian, Controlled growth of carbon spheres through the Mg-reduction route. Nanoscale Res. Lett. 5(1), 20 (2010). https://doi.org/10.1007/s11671-009-9436-1
- G. Hu, D. Ma, M. Cheng, L. Liu, X. Bao, Direct synthesis of uniform hollow carbon spheres by a self-assembly template approach. Chem. Commun. 17, 1948–1949 (2002). https://doi.org/10.1039/B205723A
- Z. Bai, Y. Zhang, N. Fan, C. Guo, B. Tang, One-step synthesis of ZnO@C nanospheres and their enhanced performance for lithium-ion batteries. Mater. Lett. 119, 16–19 (2014). https://doi.org/10.1016/j.matlet.2013.12.060
- R. Liu, N. Lun, Y. Qi, H. Zhu, Y. Bai et al., Synthesis of hollow carbon sphere/ZnO@C composite as a light-weight microwave absorber. J. Phys-D Appl. Phys. 44(26), 265502 (2011). https://doi.org/10.1088/0022-3727/44/26/265502
- F. Wang, L. Pang, Y. Jiang, B. Chen, D. Lin et al., Simple synthesis of hollow carbon spheres from glucose. Mater. Lett. 63(29), 2564–2566 (2009). https://doi.org/10.1016/j.matlet.2009.09.008
- J. Liu, T. Yang, D. Wang, G.Q.M. Lu, D. Zhao et al., A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Nat. Commun. 4(1), 1–7 (2013). https://doi.org/10.1038/ncomms3798
- B.Y. Guan, L. Yu, X.W. Lou, Formation of asymmetric bowl-like mesoporous particles via emulsion-induced interface anisotropic assembly. J. Am. Chem. Soc. 138(35), 11306–11311 (2016). https://doi.org/10.1021/jacs.6b06558
- D. Liu, N. Xue, L. Wei, Y. Zhang, Z. Qin et al., Surfactant assembly within pickering emulsion droplets for fabrication of interior-structured mesoporous carbon microspheres. Angew. Chem. Int. Ed. 130(34), 11065–11070 (2018). https://doi.org/10.1002/ange.201805022
- B.Y. Guan, S.L. Zhang, X.W. Lou, Realization of walnut-shaped particles with macro-/mesoporous open channels through pore architecture manipulation and their use in electrocatalytic oxygen reduction. Angew. Chem. Int. Ed. 57(21), 6176–6180 (2018). https://doi.org/10.1002/anie.201801876
- Y. Yang, S. Jin, Z. Zhang, Z. Du, H. Liu et al., Nitrogen-doped hollow carbon nanospheres for high-performance Li-ion batteries. ACS Appl. Mater. Interfaces. 9(16), 14180–14186 (2017). https://doi.org/10.1021/acsami.6b14840
- C. Yuan, X. Liu, M. Jia, Z. Luo, J. Yao, Facile preparation of N-and O-doped hollow carbon spheres derived from poly (o-phenylenediamine) for supercapacitors. J. Mater. Chem. A 3(7), 3409–3415 (2015). https://doi.org/10.1039/C4TA06411A
- H. Zhang, F. Ye, H. Xu, L. Liu, H. Guo, Synthesis of carbon hollow particles by a simple inverse-emulsion method. Mater. Lett. 64(13), 1473–1475 (2010). https://doi.org/10.1016/j.matlet.2010.03.065
- Z. Wen, Q. Wang, Q. Zhang, J. Li, Hollow carbon spheres with wide size distribution as anode catalyst support for direct methanol fuel cells. Electrochem. Commun. 9(8), 1867–1872 (2007). https://doi.org/10.1016/j.matlet.2010.03.065
- X. Sun, Y. Li, Hollow carbonaceous capsules from glucose solution. J. Colloid Interface Sci. 291(1), 7–12 (2005). https://doi.org/10.1016/j.jcis.2005.04.101
- Y. Qu, Z. Zhang, X. Wang, Y. Lai, Y. Liu et al., A simple SDS-assisted self-assembly method for the synthesis of hollow carbon nanospheres to encapsulate sulfur for advanced lithium-sulfur batteries. J. Mater. Chem. A 1(45), 14306–14310 (2013). https://doi.org/10.1039/C3TA13306K
- D. Fujikawa, M. Uota, G. Sakai, T. Kijima, Shape-controlled synthesis of nanocarbons from resorcinol-formaldehyde nanopolymers using surfactant-templated vesicular assemblies. Carbon 45(6), 1289–1295 (2007). https://doi.org/10.1016/j.carbon.2007.01.020
- D. Tashima, E. Yamamoto, N. Kai, D. Fujikawa, G. Sakai et al., Double layer capacitance of high surface area carbon nanospheres derived from resorcinol-formaldehyde polymers. Carbon 49(14), 4848–4857 (2011). https://doi.org/10.1016/j.carbon.2011.07.005
- H. Sun, Y. Zhu, B. Yang, Y. Wang, Y. Wu et al., Template-free fabrication of nitrogen-doped hollow carbon spheres for high-performance supercapacitors based on a scalable homopolymer vesicle. J. Mater. Chem. A 4(31), 12088–12097 (2016). https://doi.org/10.1039/C6TA04330E
- J. Jiang, J. Yuan, P. Nie, Q. Zhu, C. Chen et al., Hierarchical N-doped hollow carbon microspheres as advanced materials for high-performance lithium-ion capacitors. J. Mater. Chem. A 8(7), 3956–3966 (2020). https://doi.org/10.1039/C9TA08676E
- W. Sun, M. Chen, S. Zhou, L. Wu, Facile fabrication of carbon spheres with tunable morphologies from novel polymeric carbon precursors. Langmuir 30(40), 12011–12017 (2014). https://doi.org/10.1021/la5026476
- K. Niwase, T. Homae, K. Nakamura, K. Kondo, Generation of giant carbon hollow spheres from C60 fullerene by shock-compression. Chem. Phys. Lett. 362(1–2), 47–50 (2002). https://doi.org/10.1016/S0009-2614(02)00997-1
- F. Ma, L. Sun, H. Zhao, Q. Li, L. Huo et al., Supercapacitor performance of hollow carbon spheres by direct pyrolysis of melamine-formaldehyde resin spheres. Chem. Res. Chin. Univ. 29(4), 735–742 (2013). https://doi.org/10.1007/s40242-013-3181-9
- J. Zhou, Z. Sun, M. Chen, J. Wang, W. Qiao et al., Macroscopic and mechanically robust hollow carbon spheres with superior oil adsorption and light-to-heat evaporation properties. Adv. Funct. Mater. 26(29), 5368–5375 (2016). https://doi.org/10.1002/adfm.201600564
- H. Xu, J. Guo, K.S. Suslick, Porous carbon spheres from energetic carbon precursors using ultrasonic spray pyrolysis. Adv. Mater. 24(45), 6028–6033 (2012). https://doi.org/10.1002/adma.201201915
- P. Nie, G. Xu, J. Jiang, H. Dou, Y. Wu et al., Aerosol-spray pyrolysis toward preparation of nanostructured materials for batteries and supercapacitors. Small Methods 2(2), 1700272 (2018). https://doi.org/10.1002/smtd.201700272
- J.S. Park, J.K. Kim, J.H. Hong, J.S. Cho, S.K. Park et al., Advances in the synthesis and design of nanostructured materials by aerosol spray processes for efficient energy storage. Nanoscale 11(41), 19012–19057 (2019). https://doi.org/10.1039/C9NR05575D
- T. Zheng, J. Zhan, J. Pang, G.S. Tan, J. He et al., Mesoporous carbon nanocapsules from enzymatically polymerized poly(4-ethylphenol) confined in silica aerosol particles. Adv. Mater. 18(20), 2735–2738 (2006). https://doi.org/10.1002/adma.200600808
- S. Kim, E. Shibata, R. Sergiienko, T. Nakamura, Purification and separation of carbon nanocapsules as a magnetic carrier for drug delivery systems. Carbon 46(12), 1523–1529 (2008). https://doi.org/10.1016/j.carbon.2008.05.027
- H. Okuno, E. Grivei, F. Fabry, T.M. Gruenberger, J. Gonzalez-Aguilar et al., Synthesis of carbon nanotubes and nano-necklaces by thermal plasma process. Carbon 42(12–13), 2543–2549 (2004). https://doi.org/10.1016/j.carbon.2004.05.037
- P. González-García, E. Urones-Garrote, D. Ávila-Brande, L. Otero-Díaz, Carbon particles of variable shape produced by the chlorination of bis(benzene) chromium. J. Organomet. Chem. 740, 141–147 (2013). https://doi.org/10.1016/j.jorganchem.2013.05.011
- H.-F. Wang, L. Chen, H. Pang, S. Kaskel, Q. Xu, MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 49(5), 1414–1448 (2020). https://doi.org/10.1039/C9CS00906J
- R.R. Salunkhe, Y.V. Kaneti, J. Kim, J.H. Kim, Y. Yamauchi, Nanoarchitectures for metal-organic framework-derived nanoporous carbons toward supercapacitor applications. Acc. Chem. Res. 49(12), 2796–2806 (2016). https://doi.org/10.1021/acs.accounts.6b00460
- B. Liu, H. Shioyama, T. Akita, Q. Xu, Metal-organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 130(16), 5390–5391 (2008). https://doi.org/10.1021/ja7106146
- M. Hu, J. Reboul, S. Furukawa, N.L. Torad, Q. Ji et al., Direct carbonization of al-based porous coordination polymer for synthesis of nanoporous carbon. J. Am. Chem. Soc. 134(6), 2864–2867 (2012). https://doi.org/10.1021/ja208940u
- X. Li, S. Zheng, L. Jin, Y. Li, P. Geng et al., Metal-organic framework-derived carbons for battery applications. Adv. Energy Mater. 8(23), 1800716 (2018). https://doi.org/10.1002/aenm.201800716
- W. Yang, X. Li, Y. Li, R. Zhu, H. Pang, Applications of metal-organic-framework-derived carbon materials. Adv. Mater. 31(6), 1804740 (2019). https://doi.org/10.1002/adma.201804740
- C. Liu, X. Huang, J. Wang, H. Song, Y. Yang et al., Hollow mesoporous carbon nanocubes: rigid-interface-induced outward contraction of metal-organic frameworks. Adv. Funct. Mater. 28(6), 1705253 (2018). https://doi.org/10.1002/adfm.201705253
- H. Zhou, D. He, A.I. Saana, J. Yang, Z. Wang et al., Mesoporous-silica induced doped carbon nanotube growth from metal-organic frameworks. Nanoscale 10(13), 6147–6154 (2018). https://doi.org/10.1039/C8NR00137E
- T. Feng, M. Zhang, A mixed-ion strategy to construct CNT-decorated Co/N-doped hollow carbon for enhanced oxygen reduction. Chem. Commun. 54(82), 11570–11573 (2018). https://doi.org/10.1039/C8CC05959D
- M.J. Wang, Z.X. Mao, L. Liu, L. Peng, N. Yang et al., Preparation of hollow nitrogen doped carbon via stresses induced orientation contraction. Small 14(52), 1804183 (2018). https://doi.org/10.1002/smll.201804183
- J. Wang, X. Luo, C. Young, J. Kim, Y.V. Kaneti et al., A glucose-assisted hydrothermal reaction for directly transforming metal-organic frameworks into hollow carbonaceous materials. Chem. Mater. 30(13), 4401–4408 (2018). https://doi.org/10.1021/acs.chemmater.8b01792
- W. Zhang, X. Jiang, Y. Zhao, A. Carné-Sánchez, V. Malgras et al., Hollow carbon nanobubbles: monocrystalline MOF nanobubbles and their pyrolysis. Chem. Sci. 8(5), 3538–3546 (2017). https://doi.org/10.1039/C6SC04903F
- X. Wang, Z. Na, D. Yin, C. Wang, Y. Wu et al., Phytic acid-assisted formation of hierarchical porous CoP/C nanoboxes for enhanced lithium storage and hydrogen generation. ACS Nano 12(12), 12238–12246 (2018). https://doi.org/10.1021/acsnano.8b06039
- J. Zhang, J. Fang, J. Han, T. Yan, L. Shi et al., N, P, S co-doped hollow carbon polyhedra derived from MOF-based core-shell nanocomposites for capacitive deionization. J. Mater. Chem. A 6(31), 15245–15252 (2018). https://doi.org/10.1039/C8TA04813D
- Y. Chen, S. Ji, S. Zhao, W. Chen, J. Dong et al., Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat. Commun. 9(1), 1–12 (2018). https://doi.org/10.1038/s41467-018-07850-2
- W. Ma, N. Wang, T. Tong, L. Zhang, K.-Y.A. Lin et al., Nitrogen, phosphorus, and sulfur tri-doped hollow carbon shells derived from ZIF-67@ poly (cyclotriphosphazene-co-4,4′-sulfonyldiphenol) as a robust catalyst of peroxymonosulfate activation for degradation of bisphenol a. Carbon 13, 291–303 (2018). https://doi.org/10.1016/j.carbon.2018.05.039
- V.S. Kale, M. Hwang, H. Chang, J. Kang, S.I. Chae et al., Microporosity-controlled synthesis of heteroatom codoped carbon nanocages by wrap-bake-sublime approach for flexible all-solid-state-supercapacitors. Adv. Funct. Mater. 28(37), 1803786 (2018). https://doi.org/10.1002/adfm.201803786
- H. Yang, S.J. Bradley, A. Chan, G.I. Waterhouse, T. Nann et al., Catalytically active bimetallic nanoparticles supported on porous carbon capsules derived from metal-organic framework composites. J. Am. Chem. Soc. 138(36), 11872–11881 (2016). https://doi.org/10.1021/jacs.6b06736
- P. Ramakrishnan, S.G. Park, S. Shanmugam, Three-dimensional hierarchical nitrogen-doped arch and hollow nanocarbons: morphological influences on supercapacitor applications. J. Mater. Chem. A 3(31), 16242–16250 (2015). https://doi.org/10.1039/C5TA03384E
- Q. Xu, X. Yu, Q. Liang, Y. Bai, Z.H. Huang et al., Nitrogen-doped hollow activated carbon nanofibers as high performance supercapacitor electrodes. J. Electroanal. Chem. 739, 84–88 (2015). https://doi.org/10.1016/j.jelechem.2014.12.027
- C. Zhan, Q. Xu, X. Yu, Q. Liang, Y. Bai et al., Nitrogen-rich hierarchical porous hollow carbon nanofibers for high-performance supercapacitor electrodes. RSC Adv. 6(47), 41473–41476 (2016). https://doi.org/10.1039/C6RA07128G
- J.G. Kim, H.C. Kim, N.D. Kim, M.S. Khil, N-doped hierarchical porous hollow carbon nanofibers based on PAN/PVP@SAN structure for high performance supercapacitor. Compos. B 186, 107825 (2020). https://doi.org/10.1016/j.compositesb.2020.107825
- T.H. Le, Y. Yang, L. Yu, T. Gao, Z. Huang et al., Polyimide-based porous hollow carbon nanofibers for supercapacitor electrode. J. Appl. Polym. Sci. 133(19), 43397 (2016). https://doi.org/10.1002/app.43397
- Y. Wang, G. Li, J. Jin, S. Yang, Hollow porous carbon nanofibers as novel support for platinum-based oxygen reduction reaction electrocatalysts. Int. J. Hydrogen Energy 42(9), 5938–5947 (2017). https://doi.org/10.1016/j.ijhydene.2017.02.012
- T. He, Q. Su, Z. Yildiz, K. Cai, Y. Wang, Ultrafine carbon fibers with hollow-porous multilayered structure for supercapacitors. Electrochim. Acta 222, 1120–1127 (2016). https://doi.org/10.1016/j.electacta.2016.11.083
- A. Sharma, Free standing hollow carbon nanofiber mats for supercapacitor electrodes. RSC Adv. 6(82), 78528–78537 (2016). https://doi.org/10.1039/C6RA17014E
- X. Li, X. Chen, Y. Zhao, Y. Deng, J. Zhu et al., Flexible all-solid-state supercapacitors based on an integrated electrode of hollow N-doped carbon nanofibers embedded with graphene nanosheets. Electrochim. Acta 332, 135398 (2020). https://doi.org/10.1016/j.electacta.2019.135398
- L.-F. Chen, Y. Lu, L. Yu, X.W.D. Lou, Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors. Energy Environ. Sci. 10(8), 1777–1783 (2017). https://doi.org/10.1039/C7EE00488E
- C. Wang, C. Liu, J. Li, X. Sun, J. Shen et al., Electrospun metal-organic framework derived hierarchical carbon nanofibers with high performance for supercapacitors. Chem. Commun. 53(10), 1751–1754 (2017). https://doi.org/10.1039/C6CC09832K
- Y. Sun, R.B. Sills, X. Hu, Z.W. Seh, X. Xiao et al., A bamboo-inspired nanostructure design for flexible, foldable, and twistable energy storage devices. Nano Lett. 15(6), 3899–3906 (2015). https://doi.org/10.1021/acs.nanolett.5b00738
- L. Wang, G. Zhang, X. Zhang, H. Shi, W. Zeng et al., Porous ultrathin carbon nanobubbles formed carbon nanofiber webs for high-performance flexible supercapacitors. J. Mater. Chem. A 5(28), 14801–14810 (2017). https://doi.org/10.1039/C7TA03445H
- W. Xie, X. Jiang, T. Qin, H. Yang, D. Liu et al., Inner porous carbon nanofibers as binder-free electrodes for high-rate supercapacitors. Electrochim. Acta 258, 1064–1071 (2017). https://doi.org/10.1016/j.electacta.2017.11.159
- L. Zhang, L. Han, S. Liu, C. Zhang, S. Liu, High-performance supercapacitors based on electrospun multichannel carbon nanofibers. RSC Adv. 5(130), 107313–107317 (2015). https://doi.org/10.1039/C5RA23338K
- P. Ramakrishnan, S. Shanmugam, Nitrogen-doped porous multi-nano-channel nanocarbons for use in high-performance supercapacitor applications. ACS Sustain. Chem. Eng. 4(4), 2439–2448 (2016). https://doi.org/10.1021/acssuschemeng.6b00289
- Y. Chen, Z. Lu, L. Zhou, Y.W. Mai, H. Huang, Triple-coaxial electrospun amorphous carbon nanotubes with hollow graphitic carbon nanospheres for high-performance Li ion batteries. Energy Environ. Sci. 5(7), 7898–7902 (2012). https://doi.org/10.1039/C2EE22085G
- P. Yang, X. Pan, J. Wang, R. Yang, J. Chu et al., Nozzle-less electrospun nitrogen-doped hollow carbon nanofibers as enhanced sensing platform for carbendazim electrochemical detection. ChemistrySelect 4(7), 2059–2063 (2019). https://doi.org/10.1002/slct.201803056
- Y. Chen, X. Li, K. Park, W. Lu, C. Wang et al., Nitrogen-doped carbon for sodium-ion battery anode by self-etching and graphitization of bimetallic MOF-based composite. Chem 3(1), 152–163 (2017). https://doi.org/10.1016/j.chempr.2017.05.021
- Y. Chen, X. Li, K. Park, J. Song, J. Hong et al., Hollow carbon-nanotube/carbon-nanofiber hybrid anodes for Li-ion batteries. J. Am. Chem. Soc. 135(44), 16280–16283 (2013). https://doi.org/10.1021/ja408421n
- K. Huo, W. An, J. Fu, B. Gao, L. Wang et al., Mesoporous nitrogen-doped carbon hollow spheres as high-performance anodes for lithium-ion batteries. J. Power Sources 324, 233–238 (2016). https://doi.org/10.1016/j.jpowsour.2016.05.084
- Q. Chen, G. Ping, X. Zhang, R. Zhao, Q. Wu et al., Nitrogen-doped mesoporous hollow carbon nanoflowers as high performance anode materials of lithium ion batteries. RSC Adv. 6(96), 93519–93524 (2016). https://doi.org/10.1039/C6RA21011B
- C.P. Xu, D.C. Niu, N. Zheng, H.N. Yu, J.P. He et al., Facile synthesis of nitrogen-doped double-shelled hollow mesoporous carbon nanospheres as high-performance anode materials for lithium ion batteries. ACS Sustain. Chem. Eng. 6(5), 5999–6007 (2018). https://doi.org/10.1021/acssuschemeng.7b04617
- X.Y. Yue, W. Sun, J. Zhang, F. Wang, Y.X. Yang et al., Macro-mesoporous hollow carbon spheres as anodes for lithium-ion batteries with high rate capability and excellent cycling performance. J. Power Sources 331, 10–15 (2016). https://doi.org/10.1016/j.jpowsour.2016.09.029
- K. Tang, R.J. White, X.K. Mu, M.M. Titirici, P.A. van Aken et al., Hollow carbon nanospheres with a high rate capability for lithium-based batteries. Chemsuschem 5(2), 400–403 (2012). https://doi.org/10.1002/cssc.201100609
- Z. Sun, X.F. Song, P. Zhang, L. Gao, Template-assisted synthesis of multi-shelled carbon hollow spheres with an ultralarge pore volume as anode materials in Li-ion batteries. RSC Adv. 5(5), 3657–3664 (2015). https://doi.org/10.1039/c4ra10591e
- L. Song, S. Xin, D.W. Xu, H.Q. Li, H.P. Cong et al., Graphene-wrapped graphitic carbon hollow spheres: bioinspired synthesis and applications in batteries and supercapacitors. ChemNanoMat 2(6), 540–546 (2016). https://doi.org/10.1002/cnma.201600079
- J.H. Zhu, Y.P. Wu, X.K. Huang, L. Huang, M.Y. Cao et al., Self-healing liquid metal nanoparticles encapsulated in hollow carbon fibers as a free-standing anode for lithium-ion batteries. Nano Energy 62, 883–889 (2019). https://doi.org/10.1016/j.nanoen.2019.06.023
- Y.Q. Zhang, Q. Ma, S.L. Wang, X. Liu, L. Li, Poly(vinyl alcohol)-assisted fabrication of hollow carbon spheres/reduced graphene oxide nanocomposites for high-performance lithium-ion battery anodes. ACS Nano 12(5), 4824–4834 (2018). https://doi.org/10.1021/acsnano.8b01549
- B.S. Lee, S.B. Son, K.M. Park, W.R. Yu, K.H. Oh et al., Anodic properties of hollow carbon nanofibers for Li-ion battery. J. Power Sources 199, 53–60 (2012). https://doi.org/10.1016/j.jpowsour.2011.10.030
- J. Jang, H.E. Kim, S. Kang, J.H. Bang, C.S. Lee, Urea-assisted template-less synthesis of heavily nitrogen-doped hollow carbon fibers for the anode material of lithium-ion batteries. New J. Chem. 43(9), 3821–3828 (2019). https://doi.org/10.1039/c8nj05807e
- Z. Chen, Y. Liu, Y. Zhang, F. Shen, G. Yang et al., Ultrafine layered graphite as an anode material for lithium ion batteries. Mater. Lett. 229, 134–137 (2018). https://doi.org/10.1016/j.matlet.2018.06.104
- F. Xiao, X. Chen, J. Zhang, C. Huang, T. Hu et al., Large-scale production of holey graphite as high-rate anode for lithium ion batteries. J. Energy Chem. 48, 122–127 (2020). https://doi.org/10.1016/j.jechem.2019.12.026
- S. Heng, X. Shan, W. Wang, Y. Wang, G. Zhu et al., Controllable solid electrolyte interphase precursor for stabilizing natural graphite anode in lithium ion batteries. Carbon 159, 390–400 (2020). https://doi.org/10.1016/j.carbon.2019.12.054
- D.S. Bin, Y.M. Li, Y.G. Sun, S.Y. Duan, Y.X. Lu et al., Structural engineering of multishelled hollow carbon nanostructures for high-performance Na-ion battery anode. Adv. Energy Mater. 8(26), 1800855 (2018). https://doi.org/10.1002/aenm.201800855
- K. Tang, L.J. Fu, R.J. White, L.H. Yu, M.M. Titirici et al., Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv. Energy Mater. 2(7), 873–877 (2012). https://doi.org/10.1002/aenm.201100691
- L. Liu, Q.Y. Li, Z.J. Wang, Y. Chen, Phosphorus-doped hollow carbon sphere derived from phytic acid for superior sodium-ion batteries. Mater. Technol. 33(11), 748–753 (2018). https://doi.org/10.1080/10667857.2018.1500131
- J.C. Ye, J. Zang, Z.W. Tian, M.S. Zheng, Q.F. Dong, Sulfur and nitrogen co-doped hollow carbon spheres for sodium-ion batteries with superior cyclic and rate performance. J. Mater. Chem. A 4(34), 13223–13227 (2016). https://doi.org/10.1039/c6ta04592h
- Y.H. Qu, Z. Zhang, K. Du, W. Chen, Y.Q. Lai et al., Synthesis of nitrogen-containing hollow carbon microspheres by a modified template method as anodes for advanced sodium-ion batteries. Carbon 105, 103–112 (2016). https://doi.org/10.1016/j.carbon.2016.04.029
- Y.L. Cao, L.F. Xiao, M.L. Sushko, W. Wang, B. Schwenzer et al., Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 12(7), 3783–3787 (2012). https://doi.org/10.1021/nl3016957
- H.X. Han, X.Y. Chen, J.F. Qian, F.P. Zhong, X.M. Feng et al., Hollow carbon nanofibers as high-performance anode materials for sodium-ion batteries. Nanoscale 11(45), 21999–22005 (2019). https://doi.org/10.1039/c9nr07675a
- Z.G. Luo, S.N. Liu, Y.S. Cai, S. Li, A.Q. Pan et al., Nitrogen/sulfur co-doped hollow carbon nanofiber anode obtained from polypyrrole with enhanced electrochemical performance for Na-ion batteries. Sci. Bull. 63(2), 126–132 (2018). https://doi.org/10.1016/j.scib.2017.12.024
- H.C. Tao, L.Y. Xiong, S.L. Du, Y.Q. Zhang, X.L. Yang et al., Interwoven n and p dual-doped hollow carbon fibers/graphitic carbon nitride: an ultrahigh capacity and rate anode for Li and Na ion batteries. Carbon 122, 54–63 (2017). https://doi.org/10.1016/j.carbon.2017.06.040
- W.P. Shi, Y.M. Zhang, Z.Q. Tian, Z.Y. Pan, J.L. Key et al., Low temperature synthesis of polyhedral hollow porous carbon with high rate capability and long-term cycling stability as Li-ion and Na-ion battery anode material. J. Power Sources 398, 149–158 (2018). https://doi.org/10.1016/j.jpowsour.2018.07.038
- W.B. Li, J.F. Huang, L.L. Feng, L.Y. Cao, Y.J. Ren et al., Controlled synthesis of macroscopic three-dimensional hollow reticulate hard carbon as long-life anode materials for Na-ion batteries. J. Alloys Compd. 716, 210–219 (2017). https://doi.org/10.1016/j.jallcom.2017.05.062
- N. Sun, H. Liu, B. Xu, Facile synthesis of high performance hard carbon anode materials for sodium ion batteries. J. Mater. Chem. A 3(41), 20560–20566 (2015). https://doi.org/10.1039/C5TA05118E
- A. Saha, T. Sharabani, E. Evenstein, G.D. Nessim, M. Noked et al., Probing electrochemical behaviour of lignocellulosic, orange peel derived hard carbon as anode for sodium ion battery. J. Electrochem. Soc. 167(9), 090505 (2020). https://doi.org/10.1149/1945-7111/ab7c55
- Z. Li, Y. Chen, Z. Jian, H. Jiang, J.J. Razink et al., Defective hard carbon anode for Na-ion batteries. Chem. Mater. 30(14), 4536–4542 (2018). https://doi.org/10.1021/acs.chemmater.8b00645
- J. Ding, H.L. Zhang, H. Zhou, J. Feng, X.R. Zheng et al., Sulfur-grafted hollow carbon spheres for potassium-ion battery anodes. Adv. Mater. 31(30), 1900429 (2019). https://doi.org/10.1002/adma.201900429
- G. Wang, X.H. Xiong, D. Xie, Z.H. Lin, J. Zheng et al., Chemically activated hollow carbon nanospheres as a high-performance anode material for potassium ion batteries. J. Mater. Chem. A 6(47), 24317–24323 (2018). https://doi.org/10.1039/c8ta09751h
- J.F. Ruan, X. Wu, Y. Wang, S.Y. Zheng, D.L. Sun et al., Nitrogen-doped hollow carbon nanospheres towards the application of potassium ion storage. J. Mater. Chem. A 7(33), 19305–19315 (2019). https://doi.org/10.1039/c9ta05205d
- D.S. Bin, X.J. Lin, Y.G. Sun, Y.S. Xu, K. Zhang et al., Engineering hollow carbon architecture for high-performance K-ion battery anode. J. Am. Chem. Soc. 140(23), 7127–7134 (2018). https://doi.org/10.1021/jacs.8b02178
- Z.L. Zhang, B.R. Jia, L. Liu, Y.Z. Zhao, H.Y. Wu et al., Hollow multihole carbon bowls: a stress-release structure design for high-stability and high-volumetric-capacity potassium-ion batteries. ACS Nano 13(10), 11363–11371 (2019). https://doi.org/10.1021/acsnano.9b04728
- X.P. Wang, K. Han, D.D. Qin, Q. Li, C.Y. Wang et al., Polycrystalline soft carbon semi-hollow microrods as anode for advanced K-ion full batteries. Nanoscale 9(46), 18216–18222 (2017). https://doi.org/10.1039/c7nr06645g
- Z. Jian, W. Luo, X. Ji, Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 137(36), 11566–11569 (2015). https://doi.org/10.1021/jacs.5b06809
- X. Niu, L. Li, J. Qiu, J. Yang, J. Huang et al., Salt-concentrated electrolytes for graphite anode in potassium ion battery. Solid State Ionics 341, 115050 (2019). https://doi.org/10.1016/j.ssi.2019.115050
- L. Wang, J. Yang, J. Li, T. Chen, S. Chen et al., Graphite as a potassium ion battery anode in carbonate-based electrolyte and ether-based electrolyte. J. Power Sources 409, 24–30 (2019). https://doi.org/10.1016/j.jpowsour.2018.10.092
- Z.L. Li, Z.B. Xiao, S.Q. Wang, Z.B. Cheng, P.Y. Li et al., Engineered interfusion of hollow nitrogen-doped carbon nanospheres for improving electrochemical behavior and energy density of lithium-sulfur batteries. Adv. Funct. Mater. 29(31), 1902322 (2019). https://doi.org/10.1002/adfm.201902322
- Y.J. Zhong, Q. Lu, Y.P. Zhu, Y.L. Zhu, W. Zhou et al., Fructose-derived hollow carbon nanospheres with ultrathin and ordered mesoporous shells as cathodes in lithium-sulfur batteries for fast energy storage. Adv. Sustain. Syst. 1(8), 1700081 (2017). https://doi.org/10.1002/adsu.201700081
- Z. Zhang, G.C. Wang, Y.Q. Lai, J. Li, Z.Y. Zhang et al., Nitrogen-doped porous hollow carbon sphere-decorated separators for advanced lithium-sulfur batteries. J. Power Sources 300, 157–163 (2015). https://doi.org/10.1016/j.jpowsour.2015.09.067
- D.H. Yang, H.Y. Zhou, H. Liu, B.H. Han, Hollow N-doped carbon polyhedrons with hierarchically porous shell for confinement of polysulfides in lithium-sulfur batteries. Science 13, 243–253 (2019). https://doi.org/10.1016/j.isci.2019.02.019
- G.Y. Zheng, Q.F. Zhang, J.J. Cha, Y. Yang, W.Y. Li et al., Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. Nano Lett. 13(3), 1265–1270 (2013). https://doi.org/10.1021/nl304795g
- X.Q. Zhang, B. He, W.C. Li, A.H. Lu, Hollow carbon nanofibers with dynamic adjustable pore sizes and closed ends as hosts for high-rate lithium-sulfur battery cathodes. Nano Res. 11(3), 1238–1246 (2018). https://doi.org/10.1007/s12274-017-1737-6
- G.Y. Zheng, Y. Yang, J.J. Cha, S.S. Hong, Y. Cui, Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 11(10), 4462–4467 (2011). https://doi.org/10.1021/nl2027684
- D. Yang, W. Ni, J.L. Cheng, Z.P. Wang, T. Wang et al., Flexible three-dimensional electrodes of hollow carbon bead strings as graded sulfur reservoirs and the synergistic mechanism for lithium-sulfur batteries. Appl. Surf. Sci. 413, 209–218 (2017). https://doi.org/10.1016/j.apsusc.2017.04.046
- S.Q. Chen, X.D. Huang, H. Liu, B. Sun, W.K. Yeoh et al., 3D hyperbranched hollow carbon nanorod architectures for high-performance lithium-sulfur batteries. Adv. Energy Mater. 4(8), 1301761 (2014). https://doi.org/10.1002/aenm.201301761
- F. Pei, T.H. An, J. Zang, X.J. Zhao, X.L. Fang et al., From hollow carbon spheres to n-doped hollow porous carbon bowls: rational design of hollow carbon host for Li-S batteries. Adv. Energy Mater. 6(8), 2502539 (2016). https://doi.org/10.1002/aenm.201502539
- Y.B. An, Q.Z. Zhu, L.F. Hu, S.K. Yu, Q. Zhao et al., A hollow carbon foam with ultra-high sulfur loading for an integrated cathode of lithium-sulfur batteries. J. Mater. Chem. A 4(40), 15605–15611 (2016). https://doi.org/10.1039/c6ta06088a
- M. Li, Y.N. Zhang, X.L. Wang, W. Ahn, G.P. Jiang et al., Gas pickering emulsion templated hollow carbon for high rate performance lithium sulfur batteries. Adv. Funct. Mater. 26(46), 8408–8417 (2016). https://doi.org/10.1002/adfm.201603241
- C.L. Ma, J. Dong, Y. Zhao, J. Li, H.L. Chen, Dual-template synthesis of novel pomegranate-like hollow carbon nanoparticles with improved electrochemical performance for Li-ion batteries. Carbon 110, 180–188 (2016). https://doi.org/10.1016/j.carbon.2016.09.020
- J. Zang, J.C. Ye, X.L. Fang, X.W. Zhang, M.S. Zheng et al., Hollow-in-hollow carbon spheres for lithium-ion batteries with superior capacity and cyclic performance. Electrochim. Acta 186, 436–441 (2015). https://doi.org/10.1016/j.electacta.2015.11.002
- B.S. Lee, S.B. Son, K.M. Park, G. Lee, K.H. Oh et al., Effect of pores in hollow carbon nanofibers on their negative electrode properties for a lithium rechargeable battery. ACS Appl. Mater. Interfaces. 4(12), 6701–6709 (2012). https://doi.org/10.1021/am301873d
- Z.Y. Pan, H. Sun, J. Pan, J. Zhang, B.J. Wang et al., The creation of hollow walls in carbon nanotubes for high-performance lithium ion batteries. Carbon 133, 384–389 (2018). https://doi.org/10.1016/j.carbon.2018.03.021
- Q.L. Huang, S.L. Wang, Y. Zhang, B.W. Yu, L.Z. Hou et al., Hollow carbon nanospheres with extremely small size as anode material in lithium-ion batteries with outstanding cycling stability. J. Phys. Chem. C 120(6), 3139–3144 (2016). https://doi.org/10.1021/acs.jpcc.5b10455
- S.G. Liu, C.P. Mao, L. Wang, M. Jia, Q.Q. Sun et al., Bio-inspired synthesis of carbon hollow microspheres from Aspergillus flavus conidia for lithium-ion batteries. RSC Adv. 5(73), 59655–59658 (2015). https://doi.org/10.1039/c5ra12059d
- X.H. Dai, H.X. Fan, J.J. Zhang, S.J. Yuan, Sewage sludge-derived porous hollow carbon nanospheres as high-performance anode material for lithium ion batteries. Electrochim. Acta 319, 277–285 (2019). https://doi.org/10.1016/j.electacta.2019.07.006
- Q.Q. Li, K. Yao, G.C. Zhang, J. Gong, E. Mijowska et al., Controllable synthesis of 3d hollow-carbon-spheres/graphene-flake hybrid nanostructures from polymer nanocomposite by self-assembly and feasibility for lithium-ion batteries. Part. Part. Syst. Charact. 32(9), 874–879 (2015). https://doi.org/10.1002/ppsc.201500037
- F.D. Han, Y.J. Bai, R. Liu, B. Yao, Y.X. Qi et al., Template-free synthesis of interconnected hollow carbon nanospheres for high-performance anode material in lithium-ion batteries. Adv. Energy Mater. 1(5), 798–801 (2011). https://doi.org/10.1002/aenm.201100340
- P. Nie, Z.Y. Le, G. Chen, D. Liu, X.Y. Liu et al., Graphene caging silicon particles for high-performance lithium-ion batteries. Small 14(25), 1800635 (2018). https://doi.org/10.1002/smll.201800635
- S.M. Zou, X.Y. Xu, Y.Q. Zhu, C.B. Cao, Microwave-assisted preparation of hollow porous carbon spheres and as anode of lithium-ion batteries. Microporous Mesoporous Mater. 251, 114–121 (2017). https://doi.org/10.1016/j.micromeso.2017.05.062
- Y.F. Wen, B. Wang, B. Luo, L.Z. Wang, Long-term cycling performance of nitrogen-doped hollow carbon nanospheres as anode materials for sodium-ion batteries. Eur. J. Inorg. Chem. 13–14, 2051–2055 (2016). https://doi.org/10.1002/ejic.201501172
- K.L. Zhang, X.N. Li, J.W. Liang, Y.C. Zhu, L. Hu et al., Nitrogen-doped porous interconnected double-shelled hollow carbon spheres with high capacity for lithium ion batteries and sodium ion batteries. Electrochim. Acta 155, 174–182 (2015). https://doi.org/10.1016/j.electacta.2014.12.108
- W.C. Zhang, C.W. Lan, X.H. Xie, Q.Y. Cao, M.T. Zheng et al., Facile construction of hollow carbon nanosphere-interconnected network for advanced sodium-ion battery anode. J. Colloid Interface Sci. 546, 53–59 (2019). https://doi.org/10.1016/j.jcis.2019.03.043
- Y.H. Qu, Y.M. Deng, Q. Li, Z. Zhang, F.Y. Zeng et al., Core-shell-structured hollow carbon nanofiber@nitrogen-doped porous carbon composite materials as anodes for advanced sodium-ion batteries. J. Mater. Sci. 52(4), 2356–2365 (2017). https://doi.org/10.1007/s10853-016-0528-x
- J.S. Park, S.Y. Jeong, K.M. Jeon, Y.C. Kang, J.S. Cho, Iron diselenide combined with hollow graphitic carbon nanospheres as a high-performance anode material for sodium-ion batteries. Chem. Eng. J. 339, 97–107 (2018). https://doi.org/10.1016/j.cej.2018.01.118
- Y.X. Luan, G.D. Nie, X.W. Zhao, N. Qiao, X.C. Liu et al., The integration of sno2 dots and porous carbon nanofibers for flexible supercapacitors. Electrochim. Acta 308, 121–130 (2019). https://doi.org/10.1016/j.electacta.2019.03.204
- X.W. Zhao, G.D. Nie, Y.X. Luan, X.X. Wang, S.Y. Yan et al., Nitrogen-doped carbon networks derived from the electrospun polyacrylonitrile@branched polyethylenimine nanofibers as flexible supercapacitor electrodes. J. Alloys Compd. 808, 151737 (2019). https://doi.org/10.1016/j.jallcom.2019.151737
- S.Z. Zeng, Y.C. Yao, L. Huang, H.L. Wu, B.L. Peng et al., Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres and their application in lithium-sulfur batteries. Chem. Eur. J. 24(8), 1988–1997 (2018). https://doi.org/10.1002/chem.201705211
- K. Zhang, Q. Zhao, Z.L. Tao, J. Chen, Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li-S batteries with high performance. Nano Res. 6(1), 38–46 (2013). https://doi.org/10.1007/s12274-012-0279-1
- W.D. Zhou, X.C. Xiao, M. Cai, L. Yang, Polydopamine-coated, nitrogen-doped, hollow carbon sulfur double-layered core-shell structure for improving lithium sulfur batteries. Nano Lett. 14(9), 5250–5256 (2014). https://doi.org/10.1021/nl502238b
- C.F. Zhang, H.B. Wu, C.Z. Yuan, Z.P. Guo, X.W. Lou, Confining sulfur in double-shelled hollow carbon spheres for lithium-sulfur batteries. Angew. Chem. Int. Ed. 51(38), 9592–9595 (2012). https://doi.org/10.1002/anie.201205292
- W.D. Zhou, C.M. Wang, Q.L. Zhang, H.D. Abruna, Y. He et al., Tailoring pore size of nitrogen-doped hollow carbon nanospheres for confining sulfur in lithium-sulfur batteries. Adv. Energy Mater. 5(16), 1401752 (2015). https://doi.org/10.1002/aenm.201401752
- X.J. Zhou, J. Tian, Q.P. Wu, J.L. Hu, C.L. Li, N/O dual-doped hollow carbon microspheres constructed by holey nanosheet shells as large-grain cathode host for high loading Li-S batteries. Energy Storage Mater. 24, 644–654 (2020). https://doi.org/10.1016/j.ensm.2019.06.009
- L. Zhang, B.W. Zhang, Y.H. Dou, Y.X. Wang, M. Al-Mamun et al., Self-assembling hollow carbon nanobeads into double-shell microspheres as a hierarchical sulfur host for sustainable room-temperature sodium sulfur batteries. ACS Appl. Mater. Interfaces 10(24), 20422–20428 (2018). https://doi.org/10.1021/acsami.8b03850
- Y.J. Zhong, S.F. Wang, Y.J. Sha, M.L. Liu, R. Cai et al., Trapping sulfur in hierarchically porous, hollow indented carbon spheres: a high-performance cathode for lithium-sulfur batteries. J. Mater. Chem. A 4(24), 9526–9535 (2016). https://doi.org/10.1039/c6ta03187k
- Y.P. Xie, L. Fang, H.W. Cheng, C.J. Hu, H.B. Zhao et al., Biological cell derived N-doped hollow porous carbon microspheres for lithium-sulfur batteries. J. Mater. Chem. A 4(40), 15612–15620 (2016). https://doi.org/10.1039/c6ta06164h
- S.N. Liu, T.Q. Zhao, X.H. Tan, L.M. Guo, J.X. Wu et al., 3D pomegranate-like structures of porous carbon microspheres self-assembled by hollow thin-walled highly-graphitized nanoballs as sulfur immobilizers for Li-S batteries. Nano Energy (2019). https://doi.org/10.1016/j.nanoen.2019.103894
- N. Jayaprakash, J. Shen, S.S. Moganty, A. Corona, L.A. Archer, Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew. Chem. Int. Ed. 50(26), 5904–5908 (2011). https://doi.org/10.1002/anie.201100637
- G.L. Xia, L.J. Zhang, X.W. Chen, Y.Q. Huang, D.L. Sun et al., Carbon hollow nanobubbles on porous carbon nanofibers: an ideal host for high-performance sodium-sulfur batteries and hydrogen storage. Energy Storage Mater. 14, 314–323 (2018). https://doi.org/10.1016/j.ensm.2018.05.008
- G. Nie, X. Zhao, Y. Luan, J. Jiang, Z. Kou et al., Key issues facing electrospun carbon nanofibers in energy applications: on-going approaches and challenges. Nanoscale 12, 13225–13248 (2020). https://doi.org/10.1039/D0NR03425H
References
B. Hu, K. Wang, L.H. Wu, S.H. Yu, M. Antonietti et al., Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv. Mater. 22(7), 813–828 (2010). https://doi.org/10.1002/adma.200902812
Y. Liu, J. Goebl, Y. Yin, Templated synthesis of nanostructured materials. Chem. Soc. Rev. 42(7), 2610–2653 (2013). https://doi.org/10.1039/C2CS35369E
C. Wang, Y.V. Kaneti, Y. Bando, J. Lin, C. Liu et al., Metal-organic framework-derived one-dimensional porous or hollow carbon-based nanofibers for energy storage and conversion. Mater. Horiz. 5(3), 394–407 (2018). https://doi.org/10.1039/C8MH00133B
J. Jiang, Y. Zhang, P. Nie, G. Xu, M. Shi et al., Progress of nanostructured electrode materials for supercapacitors. Adv. Sustain. Syst. 2(1), 1700110 (2018). https://doi.org/10.1002/adsu.201700110
S. Li, A. Pasc, V. Fierro, A. Celzard, Hollow carbon spheres, synthesis and applications-a review. J. Mater. Chem. A 4(33), 12686–12713 (2016). https://doi.org/10.1039/C6TA03802F
Z. Li, H.B. Wu, X.W.D. Lou, Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium-sulfur batteries. Energy Environ. Sci. 9(10), 3061–3070 (2016). https://doi.org/10.1039/C6EE02364A
X. Liu, W.H. Lai, S. Chou, The application of hollow micro-/nanostructured cathodes for sodium-ion batteries. Mater. Chem. Front. 4(5), 1289–1303 (2020). https://doi.org/10.1039/C9QM00674E
X. Wang, J. Feng, Y. Bai, Q. Zhang, Y. Yin, Synthesis, properties, and applications of hollow micro-/nanostructures. Chem. Rev. 116(18), 10983–11060 (2016). https://doi.org/10.1021/acs.chemrev.5b00731
Z. Yang, Z. Li, M. Xu, Y. Ma, J. Zhang et al., Controllable synthesis of fluorescent carbon dots and their detection application as nanoprobes. Nano-Micro Lett. 5(4), 247–259 (2013). https://doi.org/10.1007/BF03353756
T. Liu, L. Zhang, B. Cheng, J. Yu, Hollow carbon spheres and their hybrid nanomaterials in electrochemical energy storage. Adv. Energy Mater. 9(17), 1803900 (2019). https://doi.org/10.1002/aenm.201803900
A. Fu, C. Wang, F. Pei, J. Cui, X. Fang et al., Recent advances in hollow porous carbon materials for lithium-sulfur batteries. Small 15(10), 1804786 (2019). https://doi.org/10.1002/smll.201804786
H. Fan, F. Ran, X. Zhang, H. Song, X. Niu et al., Hollow carbon microspheres/MnO2 nanosheets composites: hydrothermal synthesis and electrochemical behaviors. Nano-Micro Lett. 7(1), 59–67 (2015). https://doi.org/10.1007/s40820-014-0019-z
X.L. Ji, A paradigm of storage batteries. Energy Environ. Sci. 12(11), 3203–3224 (2019). https://doi.org/10.1039/c9ee02356a
J. Jiang, Z. Pan, Z. Kou, P. Nie, C. Chen et al., Lithiophilic polymer interphase anchored on laser-punched 3D holey Cu matrix enables uniform lithium nucleation leading to super-stable lithium metal anodes. Energy Storage Mater. 29, 84–91 (2020). https://doi.org/10.1016/j.ensm.2020.04.006
J. Jiang, P. Nie, B. Ding, W. Wu, Z. Chang et al., Effect of graphene modified Cu current collector on the performance of Li4Ti5O12 anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 8(45), 30926–30932 (2016). https://doi.org/10.1021/acsami.6b10038
W. Chen, M. Wan, Q. Liu, X. Xiong, F. Yu et al., Heteroatom-doped carbon materials: synthesis, mechanism, and application for sodium-ion batteries. Small Methods 3(4), 1800323 (2019). https://doi.org/10.1002/smtd.201800323
H. Geng, Y. Peng, L. Qu, H. Zhang, M. Wu, Structure design and composition engineering of carbon-based nanomaterials for lithium energy storage. Adv. Energy Mater. 10(10), 1903030 (2020). https://doi.org/10.1002/aenm.201903030
L. Wang, J. Han, D. Kong, Y. Tao, Q. Yang, Enhanced roles of carbon architectures in high-performance lithium-ion batteries. Nano-Micro Lett. 11(1), 5 (2019). https://doi.org/10.1007/s40820-018-0233-1
J. Jiang, P. Nie, B. Ding, Y. Zhang, G. Xu et al., Highly stable lithium ion capacitor enabled by hierarchical polyimide derived carbon microspheres combined with 3D current collectors. J. Mater. Chem. A 5(44), 23283–23291 (2017). https://doi.org/10.1039/C7TA05972H
C. Wang, J. Kim, J. Tang, M. Kim, H. Lim et al., New strategies for novel MOF-derived carbon materials based on nanoarchitectures. Chem 6(1), 19–40 (2020). https://doi.org/10.1016/j.chempr.2019.09.005
F. Marpaung, M. Kim, J.H. Khan, K. Konstantinov, Y. Yamauchi et al., Metal-organic framework (MOF)-derived nanoporous carbon materials. Chem. Asian J. 14(9), 1331–1343 (2019). https://doi.org/10.1002/asia.201900026
J. Yin, W. Zhang, N.A. Alhebshi, N. Salah, H.N. Alshareef, Synthesis strategies of porous carbon for supercapacitor applications. Small Methods 4(3), 1900853 (2020). https://doi.org/10.1002/smtd.201900853
F. Caruso, R.A. Caruso, H. Möhwald, Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282(5391), 1111–1114 (1998). https://doi.org/10.1126/science.282.5391.1111
J. Jiang, Y. Zhang, Y. An, L. Wu, Q. Zhu et al., Engineering ultrathin MoS2 nanosheets anchored on N-doped carbon microspheres with pseudocapacitive properties for high-performance lithium-ion capacitors. Small Methods 3(7), 1900081 (2019). https://doi.org/10.1002/smtd.201900081
W.J. Lee, J. Lim, S.O. Kim, Nitrogen dopants in carbon nanomaterials: defects or a new opportunity? Small Methods 1(1–2), 1600014 (2017). https://doi.org/10.1002/smtd.201600014
K.L. Zhang, X.H. Xia, S.J. Deng, Y. Zhong, D. Xie et al., Nitrogen-doped sponge Ni fibers as highly efficient electrocatalysts for oxygen evolution reaction. Nano-Micro Lett. 11(1), 21 (2019). https://doi.org/10.1007/s40820-019-0253-5
Z. Wang, H. Gao, Q. Zhang, Y. Liu, J. Chen et al., Recent advances in 3D graphene architectures and their composites for energy storage applications. Small 15(3), 1803858 (2019). https://doi.org/10.1002/smll.201803858
K. Chen, L. Shi, Y. Zhang, Z. Liu, Scalable chemical-vapour-deposition growth of three-dimensional graphene materials towards energy-related applications. Chem. Soc. Rev. 47(9), 3018–3036 (2018). https://doi.org/10.1039/C7CS00852J
J. Mao, J. Iocozzia, J. Huang, K. Meng, Y. Lai et al., Graphene aerogels for efficient energy storage and conversion. Energy Environ. Sci. 11(4), 772–799 (2018). https://doi.org/10.1039/C7EE03031B
Y. Zhang, J. Jiang, Y. An, L. Wu, H. Dou et al., Sodium ion capacitors: materials, mechanism and challenges. Chemsuschem 13(10), 2522–2539 (2020). https://doi.org/10.1002/cssc.201903440
K. Li, J. Zhang, Recent advances in flexible supercapacitors based on carbon nanotubes and graphene. Sci. China Mater. 61(2), 210–232 (2018). https://doi.org/10.1007/s40843-017-9154-2
X. Li, Y. Chen, H. Huang, Y. Mai, L. Zhou, Electrospun carbon-based nanostructured electrodes for advanced energy storage-a review. Energy Storage Mater. 5, 58–92 (2016). https://doi.org/10.1016/j.ensm.2016.06.002
H. Feng, L. Tang, G. Zeng, J. Tang, Y. Deng et al., Carbon-based core-shell nanostructured materials for electrochemical energy storage. J. Mater. Chem. A 6(17), 7310–7337 (2018). https://doi.org/10.1039/C8TA01257A
L. Jiang, X. Yuan, J. Liang, J. Zhang, H. Wang et al., Nanostructured core-shell electrode materials for electrochemical capacitors. J. Power Sources 331, 408–425 (2016). https://doi.org/10.1016/j.jpowsour.2016.09.054
P. Russo, A. Hu, G. Compagnini, Synthesis, properties and potential applications of porous graphene: a review. Nano-Micro Lett. 5(4), 260–273 (2013). https://doi.org/10.1007/BF03353757
O. Noonan, H. Zhang, H. Song, C. Xu, X. Huang et al., In situ Stöber templating: facile synthesis of hollow mesoporous carbon spheres from silica-polymer composites for ultra-high level in-cavity adsorption. J. Mater. Chem. A 4(23), 9063–9071 (2016). https://doi.org/10.1039/C6TA02265K
Y. Han, X. Dong, C. Zhang, S. Liu, Hierarchical porous carbon hollow-spheres as a high performance electrical double-layer capacitor material. J. Power Sources 211, 92–96 (2012). https://doi.org/10.1016/j.jpowsour.2012.03.053
G. Ferrero, A. Fuertes, M. Sevilla, N-doped porous carbon capsules with tunable porosity for high-performance supercapacitors. J. Mater. Chem. A 3(6), 2914–2923 (2015). https://doi.org/10.1039/C4TA06022A
A. Chen, Y. Yu, H. Lv, Y. Wang, S. Shen et al., Thin-walled, mesoporous and nitrogen-doped hollow carbon spheres using ionic liquids as precursors. J. Mater. Chem. A 1(4), 1045–1047 (2013). https://doi.org/10.1039/C2TA01013E
C. Wang, F. Wang, Z. Liu, Y. Zhao, Y. Liu et al., N-doped carbon hollow microspheres for metal-free quasi-solid-state full sodium-ion capacitors. Nano Energy 41, 674–680 (2017). https://doi.org/10.1016/j.nanoen.2017.10.025
B.Y. Guan, L. Yu, X.W. Lou, Chemically assisted formation of monolayer colloidosomes on functional particles. Adv. Mater. 28(43), 9596–9601 (2016). https://doi.org/10.1002/adma.201603622
M. Kim, S.B. Yoon, K. Sohn, J.Y. Kim, C.H. Shin et al., Synthesis and characterization of spherical carbon and polymer capsules with hollow macroporous core and mesoporous shell structures. Microporous Mesoporous Mater. 63(1–3), 1–9 (2003). https://doi.org/10.1016/S1387-1811(03)00410-4
A.B. Fuertes, P. Valle-Vigón, M. Sevilla, One-step synthesis of silica@ resorcinol–formaldehyde spheres and their application for the fabrication of polymer and carbon capsules. Chem. Commun. 48(49), 6124–6126 (2012). https://doi.org/10.1039/C2CC32552G
X. Fang, J. Zang, X. Wang, M.S. Zheng, N. Zheng, A multiple coating route to hollow carbon spheres with foam-like shells and their applications in supercapacitor and confined catalysis. J. Mater. Chem. A 2(17), 6191–6197 (2014). https://doi.org/10.1039/C3TA14881E
H. Zhang, M. Yu, H. Song, O. Noonan, J. Zhang et al., Self-organized mesostructured hollow carbon nanoparticles via a surfactant-free sequential heterogeneous nucleation pathway. Chem. Mater. 27(18), 6297–6304 (2015). https://doi.org/10.1021/acs.chemmater.5b01993
F. Su, X. Zhao, Y. Wang, L. Wang, J.Y. Lee, Hollow carbon spheres with a controllable shell structure. J. Mater. Chem. 16(45), 4413–4419 (2006). https://doi.org/10.1021/acs.chemmater.5b01993
X. Chen, K. Kierzek, K. Cendrowski, I. Pelech, X. Zhao et al., CVD generated mesoporous hollow carbon spheres as supercapacitors. Colloids Surf. A 396, 246–250 (2012). https://doi.org/10.1016/j.colsurfa.2012.01.002
X. Chen, K. Kierzek, Z. Jiang, H. Chen, T. Tang et al., Synthesis, growth mechanism, and electrochemical properties of hollow mesoporous carbon spheres with controlled diameter. J. Phys. Chem. C 115(36), 17717–17724 (2011). https://doi.org/10.1021/jp205257u
M.M. Titirici, A. Thomas, M. Antonietti, Replication and coating of silica templates by hydrothermal carbonization. Adv. Funct. Mater. 17(6), 1010–1018 (2007). https://doi.org/10.1002/adfm.200600501
J. Fu, Q. Xu, J. Chen, Z. Chen, X. Huang et al., Controlled fabrication of uniform hollow core porous shell carbon spheres by the pyrolysis of core/shell polystyrene/cross-linked polyphosphazene composites. Chem. Commun. 46(35), 6563–6565 (2010). https://doi.org/10.1039/C0CC01185A
A. Chen, Y. Li, Y. Yu, Y. Li, K. Xia et al., Synthesis of hollow mesoporous carbon spheres via “dissolution-capture” method for effective phenol adsorption. Carbon 103, 157–162 (2016). https://doi.org/10.1016/j.carbon.2016.02.091
L.K. Gil-Herrera, Á. Blanco, B.H. Juárez, C. López, Seeded synthesis of monodisperse core-shell and hollow carbon spheres. Small 12(32), 4357–4362 (2016). https://doi.org/10.1002/smll.201600902
A.H. Lu, T. Sun, W.C. Li, Q. Sun, F. Han et al., Synthesis of discrete and dispersible hollow carbon nanospheres with high uniformity by using confined nanospace pyrolysis. Angew. Chem. Int. Ed. 50(49), 11765–11768 (2011). https://doi.org/10.1002/anie.201105486
J. Han, G. Xu, B. Ding, J. Pan, H. Dou et al., Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercapacitors. J. Mater. Chem. A 2(15), 5352–5357 (2014). https://doi.org/10.1039/C3TA15271E
L. Xin, R. Chen, Q. Liu, J. Liu, Z. Li et al., Composites of hierarchical metal-organic framework derived nitrogen-doped porous carbon and interpenetrating 3D hollow carbon spheres from lotus pollen for high-performance supercapacitors. New J. Chem. 41(21), 12835–12842 (2017). https://doi.org/10.1039/C7NJ02427D
X. He, H. Sun, M. Zhu, M. Yaseen, D. Liao et al., N-doped porous graphitic carbon with multi-flaky shell hollow structure prepared using a green and ‘useful’ template of CaCO3 for VOC fast adsorption and small peptide enrichment. Chem. Commun. 53(24), 3442–3445 (2017). https://doi.org/10.1039/C7CC00242D
W. Liu, X. Huang, H. Wei, K. Chen, J. Gao et al., Facile preparation of hollow crosslinked polyphosphazene submicrospheres with mesoporous shells. J. Mater. Chem. 21(34), 12964–12968 (2011). https://doi.org/10.1039/C1JM11802A
H. Guo, B. Ding, J. Wang, Y. Zhang, X. Hao et al., Template-induced self-activation route for nitrogen-doped hierarchically porous carbon spheres for electric double layer capacitors. Carbon 136, 204–210 (2018). https://doi.org/10.1016/j.carbon.2018.04.079
J. Liu, M. Shao, Q. Tang, X. Chen, Z. Liu, A medial-reduction route to hollow carbon spheres. Carbon 41(8), 1682–1685 (2003). https://doi.org/10.1016/S0008-6223(03)00143-X
L. Shi, H. Lin, K. Bao, J. Cao, Y. Qian, Controlled growth of carbon spheres through the Mg-reduction route. Nanoscale Res. Lett. 5(1), 20 (2010). https://doi.org/10.1007/s11671-009-9436-1
G. Hu, D. Ma, M. Cheng, L. Liu, X. Bao, Direct synthesis of uniform hollow carbon spheres by a self-assembly template approach. Chem. Commun. 17, 1948–1949 (2002). https://doi.org/10.1039/B205723A
Z. Bai, Y. Zhang, N. Fan, C. Guo, B. Tang, One-step synthesis of ZnO@C nanospheres and their enhanced performance for lithium-ion batteries. Mater. Lett. 119, 16–19 (2014). https://doi.org/10.1016/j.matlet.2013.12.060
R. Liu, N. Lun, Y. Qi, H. Zhu, Y. Bai et al., Synthesis of hollow carbon sphere/ZnO@C composite as a light-weight microwave absorber. J. Phys-D Appl. Phys. 44(26), 265502 (2011). https://doi.org/10.1088/0022-3727/44/26/265502
F. Wang, L. Pang, Y. Jiang, B. Chen, D. Lin et al., Simple synthesis of hollow carbon spheres from glucose. Mater. Lett. 63(29), 2564–2566 (2009). https://doi.org/10.1016/j.matlet.2009.09.008
J. Liu, T. Yang, D. Wang, G.Q.M. Lu, D. Zhao et al., A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Nat. Commun. 4(1), 1–7 (2013). https://doi.org/10.1038/ncomms3798
B.Y. Guan, L. Yu, X.W. Lou, Formation of asymmetric bowl-like mesoporous particles via emulsion-induced interface anisotropic assembly. J. Am. Chem. Soc. 138(35), 11306–11311 (2016). https://doi.org/10.1021/jacs.6b06558
D. Liu, N. Xue, L. Wei, Y. Zhang, Z. Qin et al., Surfactant assembly within pickering emulsion droplets for fabrication of interior-structured mesoporous carbon microspheres. Angew. Chem. Int. Ed. 130(34), 11065–11070 (2018). https://doi.org/10.1002/ange.201805022
B.Y. Guan, S.L. Zhang, X.W. Lou, Realization of walnut-shaped particles with macro-/mesoporous open channels through pore architecture manipulation and their use in electrocatalytic oxygen reduction. Angew. Chem. Int. Ed. 57(21), 6176–6180 (2018). https://doi.org/10.1002/anie.201801876
Y. Yang, S. Jin, Z. Zhang, Z. Du, H. Liu et al., Nitrogen-doped hollow carbon nanospheres for high-performance Li-ion batteries. ACS Appl. Mater. Interfaces. 9(16), 14180–14186 (2017). https://doi.org/10.1021/acsami.6b14840
C. Yuan, X. Liu, M. Jia, Z. Luo, J. Yao, Facile preparation of N-and O-doped hollow carbon spheres derived from poly (o-phenylenediamine) for supercapacitors. J. Mater. Chem. A 3(7), 3409–3415 (2015). https://doi.org/10.1039/C4TA06411A
H. Zhang, F. Ye, H. Xu, L. Liu, H. Guo, Synthesis of carbon hollow particles by a simple inverse-emulsion method. Mater. Lett. 64(13), 1473–1475 (2010). https://doi.org/10.1016/j.matlet.2010.03.065
Z. Wen, Q. Wang, Q. Zhang, J. Li, Hollow carbon spheres with wide size distribution as anode catalyst support for direct methanol fuel cells. Electrochem. Commun. 9(8), 1867–1872 (2007). https://doi.org/10.1016/j.matlet.2010.03.065
X. Sun, Y. Li, Hollow carbonaceous capsules from glucose solution. J. Colloid Interface Sci. 291(1), 7–12 (2005). https://doi.org/10.1016/j.jcis.2005.04.101
Y. Qu, Z. Zhang, X. Wang, Y. Lai, Y. Liu et al., A simple SDS-assisted self-assembly method for the synthesis of hollow carbon nanospheres to encapsulate sulfur for advanced lithium-sulfur batteries. J. Mater. Chem. A 1(45), 14306–14310 (2013). https://doi.org/10.1039/C3TA13306K
D. Fujikawa, M. Uota, G. Sakai, T. Kijima, Shape-controlled synthesis of nanocarbons from resorcinol-formaldehyde nanopolymers using surfactant-templated vesicular assemblies. Carbon 45(6), 1289–1295 (2007). https://doi.org/10.1016/j.carbon.2007.01.020
D. Tashima, E. Yamamoto, N. Kai, D. Fujikawa, G. Sakai et al., Double layer capacitance of high surface area carbon nanospheres derived from resorcinol-formaldehyde polymers. Carbon 49(14), 4848–4857 (2011). https://doi.org/10.1016/j.carbon.2011.07.005
H. Sun, Y. Zhu, B. Yang, Y. Wang, Y. Wu et al., Template-free fabrication of nitrogen-doped hollow carbon spheres for high-performance supercapacitors based on a scalable homopolymer vesicle. J. Mater. Chem. A 4(31), 12088–12097 (2016). https://doi.org/10.1039/C6TA04330E
J. Jiang, J. Yuan, P. Nie, Q. Zhu, C. Chen et al., Hierarchical N-doped hollow carbon microspheres as advanced materials for high-performance lithium-ion capacitors. J. Mater. Chem. A 8(7), 3956–3966 (2020). https://doi.org/10.1039/C9TA08676E
W. Sun, M. Chen, S. Zhou, L. Wu, Facile fabrication of carbon spheres with tunable morphologies from novel polymeric carbon precursors. Langmuir 30(40), 12011–12017 (2014). https://doi.org/10.1021/la5026476
K. Niwase, T. Homae, K. Nakamura, K. Kondo, Generation of giant carbon hollow spheres from C60 fullerene by shock-compression. Chem. Phys. Lett. 362(1–2), 47–50 (2002). https://doi.org/10.1016/S0009-2614(02)00997-1
F. Ma, L. Sun, H. Zhao, Q. Li, L. Huo et al., Supercapacitor performance of hollow carbon spheres by direct pyrolysis of melamine-formaldehyde resin spheres. Chem. Res. Chin. Univ. 29(4), 735–742 (2013). https://doi.org/10.1007/s40242-013-3181-9
J. Zhou, Z. Sun, M. Chen, J. Wang, W. Qiao et al., Macroscopic and mechanically robust hollow carbon spheres with superior oil adsorption and light-to-heat evaporation properties. Adv. Funct. Mater. 26(29), 5368–5375 (2016). https://doi.org/10.1002/adfm.201600564
H. Xu, J. Guo, K.S. Suslick, Porous carbon spheres from energetic carbon precursors using ultrasonic spray pyrolysis. Adv. Mater. 24(45), 6028–6033 (2012). https://doi.org/10.1002/adma.201201915
P. Nie, G. Xu, J. Jiang, H. Dou, Y. Wu et al., Aerosol-spray pyrolysis toward preparation of nanostructured materials for batteries and supercapacitors. Small Methods 2(2), 1700272 (2018). https://doi.org/10.1002/smtd.201700272
J.S. Park, J.K. Kim, J.H. Hong, J.S. Cho, S.K. Park et al., Advances in the synthesis and design of nanostructured materials by aerosol spray processes for efficient energy storage. Nanoscale 11(41), 19012–19057 (2019). https://doi.org/10.1039/C9NR05575D
T. Zheng, J. Zhan, J. Pang, G.S. Tan, J. He et al., Mesoporous carbon nanocapsules from enzymatically polymerized poly(4-ethylphenol) confined in silica aerosol particles. Adv. Mater. 18(20), 2735–2738 (2006). https://doi.org/10.1002/adma.200600808
S. Kim, E. Shibata, R. Sergiienko, T. Nakamura, Purification and separation of carbon nanocapsules as a magnetic carrier for drug delivery systems. Carbon 46(12), 1523–1529 (2008). https://doi.org/10.1016/j.carbon.2008.05.027
H. Okuno, E. Grivei, F. Fabry, T.M. Gruenberger, J. Gonzalez-Aguilar et al., Synthesis of carbon nanotubes and nano-necklaces by thermal plasma process. Carbon 42(12–13), 2543–2549 (2004). https://doi.org/10.1016/j.carbon.2004.05.037
P. González-García, E. Urones-Garrote, D. Ávila-Brande, L. Otero-Díaz, Carbon particles of variable shape produced by the chlorination of bis(benzene) chromium. J. Organomet. Chem. 740, 141–147 (2013). https://doi.org/10.1016/j.jorganchem.2013.05.011
H.-F. Wang, L. Chen, H. Pang, S. Kaskel, Q. Xu, MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 49(5), 1414–1448 (2020). https://doi.org/10.1039/C9CS00906J
R.R. Salunkhe, Y.V. Kaneti, J. Kim, J.H. Kim, Y. Yamauchi, Nanoarchitectures for metal-organic framework-derived nanoporous carbons toward supercapacitor applications. Acc. Chem. Res. 49(12), 2796–2806 (2016). https://doi.org/10.1021/acs.accounts.6b00460
B. Liu, H. Shioyama, T. Akita, Q. Xu, Metal-organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 130(16), 5390–5391 (2008). https://doi.org/10.1021/ja7106146
M. Hu, J. Reboul, S. Furukawa, N.L. Torad, Q. Ji et al., Direct carbonization of al-based porous coordination polymer for synthesis of nanoporous carbon. J. Am. Chem. Soc. 134(6), 2864–2867 (2012). https://doi.org/10.1021/ja208940u
X. Li, S. Zheng, L. Jin, Y. Li, P. Geng et al., Metal-organic framework-derived carbons for battery applications. Adv. Energy Mater. 8(23), 1800716 (2018). https://doi.org/10.1002/aenm.201800716
W. Yang, X. Li, Y. Li, R. Zhu, H. Pang, Applications of metal-organic-framework-derived carbon materials. Adv. Mater. 31(6), 1804740 (2019). https://doi.org/10.1002/adma.201804740
C. Liu, X. Huang, J. Wang, H. Song, Y. Yang et al., Hollow mesoporous carbon nanocubes: rigid-interface-induced outward contraction of metal-organic frameworks. Adv. Funct. Mater. 28(6), 1705253 (2018). https://doi.org/10.1002/adfm.201705253
H. Zhou, D. He, A.I. Saana, J. Yang, Z. Wang et al., Mesoporous-silica induced doped carbon nanotube growth from metal-organic frameworks. Nanoscale 10(13), 6147–6154 (2018). https://doi.org/10.1039/C8NR00137E
T. Feng, M. Zhang, A mixed-ion strategy to construct CNT-decorated Co/N-doped hollow carbon for enhanced oxygen reduction. Chem. Commun. 54(82), 11570–11573 (2018). https://doi.org/10.1039/C8CC05959D
M.J. Wang, Z.X. Mao, L. Liu, L. Peng, N. Yang et al., Preparation of hollow nitrogen doped carbon via stresses induced orientation contraction. Small 14(52), 1804183 (2018). https://doi.org/10.1002/smll.201804183
J. Wang, X. Luo, C. Young, J. Kim, Y.V. Kaneti et al., A glucose-assisted hydrothermal reaction for directly transforming metal-organic frameworks into hollow carbonaceous materials. Chem. Mater. 30(13), 4401–4408 (2018). https://doi.org/10.1021/acs.chemmater.8b01792
W. Zhang, X. Jiang, Y. Zhao, A. Carné-Sánchez, V. Malgras et al., Hollow carbon nanobubbles: monocrystalline MOF nanobubbles and their pyrolysis. Chem. Sci. 8(5), 3538–3546 (2017). https://doi.org/10.1039/C6SC04903F
X. Wang, Z. Na, D. Yin, C. Wang, Y. Wu et al., Phytic acid-assisted formation of hierarchical porous CoP/C nanoboxes for enhanced lithium storage and hydrogen generation. ACS Nano 12(12), 12238–12246 (2018). https://doi.org/10.1021/acsnano.8b06039
J. Zhang, J. Fang, J. Han, T. Yan, L. Shi et al., N, P, S co-doped hollow carbon polyhedra derived from MOF-based core-shell nanocomposites for capacitive deionization. J. Mater. Chem. A 6(31), 15245–15252 (2018). https://doi.org/10.1039/C8TA04813D
Y. Chen, S. Ji, S. Zhao, W. Chen, J. Dong et al., Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat. Commun. 9(1), 1–12 (2018). https://doi.org/10.1038/s41467-018-07850-2
W. Ma, N. Wang, T. Tong, L. Zhang, K.-Y.A. Lin et al., Nitrogen, phosphorus, and sulfur tri-doped hollow carbon shells derived from ZIF-67@ poly (cyclotriphosphazene-co-4,4′-sulfonyldiphenol) as a robust catalyst of peroxymonosulfate activation for degradation of bisphenol a. Carbon 13, 291–303 (2018). https://doi.org/10.1016/j.carbon.2018.05.039
V.S. Kale, M. Hwang, H. Chang, J. Kang, S.I. Chae et al., Microporosity-controlled synthesis of heteroatom codoped carbon nanocages by wrap-bake-sublime approach for flexible all-solid-state-supercapacitors. Adv. Funct. Mater. 28(37), 1803786 (2018). https://doi.org/10.1002/adfm.201803786
H. Yang, S.J. Bradley, A. Chan, G.I. Waterhouse, T. Nann et al., Catalytically active bimetallic nanoparticles supported on porous carbon capsules derived from metal-organic framework composites. J. Am. Chem. Soc. 138(36), 11872–11881 (2016). https://doi.org/10.1021/jacs.6b06736
P. Ramakrishnan, S.G. Park, S. Shanmugam, Three-dimensional hierarchical nitrogen-doped arch and hollow nanocarbons: morphological influences on supercapacitor applications. J. Mater. Chem. A 3(31), 16242–16250 (2015). https://doi.org/10.1039/C5TA03384E
Q. Xu, X. Yu, Q. Liang, Y. Bai, Z.H. Huang et al., Nitrogen-doped hollow activated carbon nanofibers as high performance supercapacitor electrodes. J. Electroanal. Chem. 739, 84–88 (2015). https://doi.org/10.1016/j.jelechem.2014.12.027
C. Zhan, Q. Xu, X. Yu, Q. Liang, Y. Bai et al., Nitrogen-rich hierarchical porous hollow carbon nanofibers for high-performance supercapacitor electrodes. RSC Adv. 6(47), 41473–41476 (2016). https://doi.org/10.1039/C6RA07128G
J.G. Kim, H.C. Kim, N.D. Kim, M.S. Khil, N-doped hierarchical porous hollow carbon nanofibers based on PAN/PVP@SAN structure for high performance supercapacitor. Compos. B 186, 107825 (2020). https://doi.org/10.1016/j.compositesb.2020.107825
T.H. Le, Y. Yang, L. Yu, T. Gao, Z. Huang et al., Polyimide-based porous hollow carbon nanofibers for supercapacitor electrode. J. Appl. Polym. Sci. 133(19), 43397 (2016). https://doi.org/10.1002/app.43397
Y. Wang, G. Li, J. Jin, S. Yang, Hollow porous carbon nanofibers as novel support for platinum-based oxygen reduction reaction electrocatalysts. Int. J. Hydrogen Energy 42(9), 5938–5947 (2017). https://doi.org/10.1016/j.ijhydene.2017.02.012
T. He, Q. Su, Z. Yildiz, K. Cai, Y. Wang, Ultrafine carbon fibers with hollow-porous multilayered structure for supercapacitors. Electrochim. Acta 222, 1120–1127 (2016). https://doi.org/10.1016/j.electacta.2016.11.083
A. Sharma, Free standing hollow carbon nanofiber mats for supercapacitor electrodes. RSC Adv. 6(82), 78528–78537 (2016). https://doi.org/10.1039/C6RA17014E
X. Li, X. Chen, Y. Zhao, Y. Deng, J. Zhu et al., Flexible all-solid-state supercapacitors based on an integrated electrode of hollow N-doped carbon nanofibers embedded with graphene nanosheets. Electrochim. Acta 332, 135398 (2020). https://doi.org/10.1016/j.electacta.2019.135398
L.-F. Chen, Y. Lu, L. Yu, X.W.D. Lou, Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors. Energy Environ. Sci. 10(8), 1777–1783 (2017). https://doi.org/10.1039/C7EE00488E
C. Wang, C. Liu, J. Li, X. Sun, J. Shen et al., Electrospun metal-organic framework derived hierarchical carbon nanofibers with high performance for supercapacitors. Chem. Commun. 53(10), 1751–1754 (2017). https://doi.org/10.1039/C6CC09832K
Y. Sun, R.B. Sills, X. Hu, Z.W. Seh, X. Xiao et al., A bamboo-inspired nanostructure design for flexible, foldable, and twistable energy storage devices. Nano Lett. 15(6), 3899–3906 (2015). https://doi.org/10.1021/acs.nanolett.5b00738
L. Wang, G. Zhang, X. Zhang, H. Shi, W. Zeng et al., Porous ultrathin carbon nanobubbles formed carbon nanofiber webs for high-performance flexible supercapacitors. J. Mater. Chem. A 5(28), 14801–14810 (2017). https://doi.org/10.1039/C7TA03445H
W. Xie, X. Jiang, T. Qin, H. Yang, D. Liu et al., Inner porous carbon nanofibers as binder-free electrodes for high-rate supercapacitors. Electrochim. Acta 258, 1064–1071 (2017). https://doi.org/10.1016/j.electacta.2017.11.159
L. Zhang, L. Han, S. Liu, C. Zhang, S. Liu, High-performance supercapacitors based on electrospun multichannel carbon nanofibers. RSC Adv. 5(130), 107313–107317 (2015). https://doi.org/10.1039/C5RA23338K
P. Ramakrishnan, S. Shanmugam, Nitrogen-doped porous multi-nano-channel nanocarbons for use in high-performance supercapacitor applications. ACS Sustain. Chem. Eng. 4(4), 2439–2448 (2016). https://doi.org/10.1021/acssuschemeng.6b00289
Y. Chen, Z. Lu, L. Zhou, Y.W. Mai, H. Huang, Triple-coaxial electrospun amorphous carbon nanotubes with hollow graphitic carbon nanospheres for high-performance Li ion batteries. Energy Environ. Sci. 5(7), 7898–7902 (2012). https://doi.org/10.1039/C2EE22085G
P. Yang, X. Pan, J. Wang, R. Yang, J. Chu et al., Nozzle-less electrospun nitrogen-doped hollow carbon nanofibers as enhanced sensing platform for carbendazim electrochemical detection. ChemistrySelect 4(7), 2059–2063 (2019). https://doi.org/10.1002/slct.201803056
Y. Chen, X. Li, K. Park, W. Lu, C. Wang et al., Nitrogen-doped carbon for sodium-ion battery anode by self-etching and graphitization of bimetallic MOF-based composite. Chem 3(1), 152–163 (2017). https://doi.org/10.1016/j.chempr.2017.05.021
Y. Chen, X. Li, K. Park, J. Song, J. Hong et al., Hollow carbon-nanotube/carbon-nanofiber hybrid anodes for Li-ion batteries. J. Am. Chem. Soc. 135(44), 16280–16283 (2013). https://doi.org/10.1021/ja408421n
K. Huo, W. An, J. Fu, B. Gao, L. Wang et al., Mesoporous nitrogen-doped carbon hollow spheres as high-performance anodes for lithium-ion batteries. J. Power Sources 324, 233–238 (2016). https://doi.org/10.1016/j.jpowsour.2016.05.084
Q. Chen, G. Ping, X. Zhang, R. Zhao, Q. Wu et al., Nitrogen-doped mesoporous hollow carbon nanoflowers as high performance anode materials of lithium ion batteries. RSC Adv. 6(96), 93519–93524 (2016). https://doi.org/10.1039/C6RA21011B
C.P. Xu, D.C. Niu, N. Zheng, H.N. Yu, J.P. He et al., Facile synthesis of nitrogen-doped double-shelled hollow mesoporous carbon nanospheres as high-performance anode materials for lithium ion batteries. ACS Sustain. Chem. Eng. 6(5), 5999–6007 (2018). https://doi.org/10.1021/acssuschemeng.7b04617
X.Y. Yue, W. Sun, J. Zhang, F. Wang, Y.X. Yang et al., Macro-mesoporous hollow carbon spheres as anodes for lithium-ion batteries with high rate capability and excellent cycling performance. J. Power Sources 331, 10–15 (2016). https://doi.org/10.1016/j.jpowsour.2016.09.029
K. Tang, R.J. White, X.K. Mu, M.M. Titirici, P.A. van Aken et al., Hollow carbon nanospheres with a high rate capability for lithium-based batteries. Chemsuschem 5(2), 400–403 (2012). https://doi.org/10.1002/cssc.201100609
Z. Sun, X.F. Song, P. Zhang, L. Gao, Template-assisted synthesis of multi-shelled carbon hollow spheres with an ultralarge pore volume as anode materials in Li-ion batteries. RSC Adv. 5(5), 3657–3664 (2015). https://doi.org/10.1039/c4ra10591e
L. Song, S. Xin, D.W. Xu, H.Q. Li, H.P. Cong et al., Graphene-wrapped graphitic carbon hollow spheres: bioinspired synthesis and applications in batteries and supercapacitors. ChemNanoMat 2(6), 540–546 (2016). https://doi.org/10.1002/cnma.201600079
J.H. Zhu, Y.P. Wu, X.K. Huang, L. Huang, M.Y. Cao et al., Self-healing liquid metal nanoparticles encapsulated in hollow carbon fibers as a free-standing anode for lithium-ion batteries. Nano Energy 62, 883–889 (2019). https://doi.org/10.1016/j.nanoen.2019.06.023
Y.Q. Zhang, Q. Ma, S.L. Wang, X. Liu, L. Li, Poly(vinyl alcohol)-assisted fabrication of hollow carbon spheres/reduced graphene oxide nanocomposites for high-performance lithium-ion battery anodes. ACS Nano 12(5), 4824–4834 (2018). https://doi.org/10.1021/acsnano.8b01549
B.S. Lee, S.B. Son, K.M. Park, W.R. Yu, K.H. Oh et al., Anodic properties of hollow carbon nanofibers for Li-ion battery. J. Power Sources 199, 53–60 (2012). https://doi.org/10.1016/j.jpowsour.2011.10.030
J. Jang, H.E. Kim, S. Kang, J.H. Bang, C.S. Lee, Urea-assisted template-less synthesis of heavily nitrogen-doped hollow carbon fibers for the anode material of lithium-ion batteries. New J. Chem. 43(9), 3821–3828 (2019). https://doi.org/10.1039/c8nj05807e
Z. Chen, Y. Liu, Y. Zhang, F. Shen, G. Yang et al., Ultrafine layered graphite as an anode material for lithium ion batteries. Mater. Lett. 229, 134–137 (2018). https://doi.org/10.1016/j.matlet.2018.06.104
F. Xiao, X. Chen, J. Zhang, C. Huang, T. Hu et al., Large-scale production of holey graphite as high-rate anode for lithium ion batteries. J. Energy Chem. 48, 122–127 (2020). https://doi.org/10.1016/j.jechem.2019.12.026
S. Heng, X. Shan, W. Wang, Y. Wang, G. Zhu et al., Controllable solid electrolyte interphase precursor for stabilizing natural graphite anode in lithium ion batteries. Carbon 159, 390–400 (2020). https://doi.org/10.1016/j.carbon.2019.12.054
D.S. Bin, Y.M. Li, Y.G. Sun, S.Y. Duan, Y.X. Lu et al., Structural engineering of multishelled hollow carbon nanostructures for high-performance Na-ion battery anode. Adv. Energy Mater. 8(26), 1800855 (2018). https://doi.org/10.1002/aenm.201800855
K. Tang, L.J. Fu, R.J. White, L.H. Yu, M.M. Titirici et al., Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv. Energy Mater. 2(7), 873–877 (2012). https://doi.org/10.1002/aenm.201100691
L. Liu, Q.Y. Li, Z.J. Wang, Y. Chen, Phosphorus-doped hollow carbon sphere derived from phytic acid for superior sodium-ion batteries. Mater. Technol. 33(11), 748–753 (2018). https://doi.org/10.1080/10667857.2018.1500131
J.C. Ye, J. Zang, Z.W. Tian, M.S. Zheng, Q.F. Dong, Sulfur and nitrogen co-doped hollow carbon spheres for sodium-ion batteries with superior cyclic and rate performance. J. Mater. Chem. A 4(34), 13223–13227 (2016). https://doi.org/10.1039/c6ta04592h
Y.H. Qu, Z. Zhang, K. Du, W. Chen, Y.Q. Lai et al., Synthesis of nitrogen-containing hollow carbon microspheres by a modified template method as anodes for advanced sodium-ion batteries. Carbon 105, 103–112 (2016). https://doi.org/10.1016/j.carbon.2016.04.029
Y.L. Cao, L.F. Xiao, M.L. Sushko, W. Wang, B. Schwenzer et al., Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 12(7), 3783–3787 (2012). https://doi.org/10.1021/nl3016957
H.X. Han, X.Y. Chen, J.F. Qian, F.P. Zhong, X.M. Feng et al., Hollow carbon nanofibers as high-performance anode materials for sodium-ion batteries. Nanoscale 11(45), 21999–22005 (2019). https://doi.org/10.1039/c9nr07675a
Z.G. Luo, S.N. Liu, Y.S. Cai, S. Li, A.Q. Pan et al., Nitrogen/sulfur co-doped hollow carbon nanofiber anode obtained from polypyrrole with enhanced electrochemical performance for Na-ion batteries. Sci. Bull. 63(2), 126–132 (2018). https://doi.org/10.1016/j.scib.2017.12.024
H.C. Tao, L.Y. Xiong, S.L. Du, Y.Q. Zhang, X.L. Yang et al., Interwoven n and p dual-doped hollow carbon fibers/graphitic carbon nitride: an ultrahigh capacity and rate anode for Li and Na ion batteries. Carbon 122, 54–63 (2017). https://doi.org/10.1016/j.carbon.2017.06.040
W.P. Shi, Y.M. Zhang, Z.Q. Tian, Z.Y. Pan, J.L. Key et al., Low temperature synthesis of polyhedral hollow porous carbon with high rate capability and long-term cycling stability as Li-ion and Na-ion battery anode material. J. Power Sources 398, 149–158 (2018). https://doi.org/10.1016/j.jpowsour.2018.07.038
W.B. Li, J.F. Huang, L.L. Feng, L.Y. Cao, Y.J. Ren et al., Controlled synthesis of macroscopic three-dimensional hollow reticulate hard carbon as long-life anode materials for Na-ion batteries. J. Alloys Compd. 716, 210–219 (2017). https://doi.org/10.1016/j.jallcom.2017.05.062
N. Sun, H. Liu, B. Xu, Facile synthesis of high performance hard carbon anode materials for sodium ion batteries. J. Mater. Chem. A 3(41), 20560–20566 (2015). https://doi.org/10.1039/C5TA05118E
A. Saha, T. Sharabani, E. Evenstein, G.D. Nessim, M. Noked et al., Probing electrochemical behaviour of lignocellulosic, orange peel derived hard carbon as anode for sodium ion battery. J. Electrochem. Soc. 167(9), 090505 (2020). https://doi.org/10.1149/1945-7111/ab7c55
Z. Li, Y. Chen, Z. Jian, H. Jiang, J.J. Razink et al., Defective hard carbon anode for Na-ion batteries. Chem. Mater. 30(14), 4536–4542 (2018). https://doi.org/10.1021/acs.chemmater.8b00645
J. Ding, H.L. Zhang, H. Zhou, J. Feng, X.R. Zheng et al., Sulfur-grafted hollow carbon spheres for potassium-ion battery anodes. Adv. Mater. 31(30), 1900429 (2019). https://doi.org/10.1002/adma.201900429
G. Wang, X.H. Xiong, D. Xie, Z.H. Lin, J. Zheng et al., Chemically activated hollow carbon nanospheres as a high-performance anode material for potassium ion batteries. J. Mater. Chem. A 6(47), 24317–24323 (2018). https://doi.org/10.1039/c8ta09751h
J.F. Ruan, X. Wu, Y. Wang, S.Y. Zheng, D.L. Sun et al., Nitrogen-doped hollow carbon nanospheres towards the application of potassium ion storage. J. Mater. Chem. A 7(33), 19305–19315 (2019). https://doi.org/10.1039/c9ta05205d
D.S. Bin, X.J. Lin, Y.G. Sun, Y.S. Xu, K. Zhang et al., Engineering hollow carbon architecture for high-performance K-ion battery anode. J. Am. Chem. Soc. 140(23), 7127–7134 (2018). https://doi.org/10.1021/jacs.8b02178
Z.L. Zhang, B.R. Jia, L. Liu, Y.Z. Zhao, H.Y. Wu et al., Hollow multihole carbon bowls: a stress-release structure design for high-stability and high-volumetric-capacity potassium-ion batteries. ACS Nano 13(10), 11363–11371 (2019). https://doi.org/10.1021/acsnano.9b04728
X.P. Wang, K. Han, D.D. Qin, Q. Li, C.Y. Wang et al., Polycrystalline soft carbon semi-hollow microrods as anode for advanced K-ion full batteries. Nanoscale 9(46), 18216–18222 (2017). https://doi.org/10.1039/c7nr06645g
Z. Jian, W. Luo, X. Ji, Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 137(36), 11566–11569 (2015). https://doi.org/10.1021/jacs.5b06809
X. Niu, L. Li, J. Qiu, J. Yang, J. Huang et al., Salt-concentrated electrolytes for graphite anode in potassium ion battery. Solid State Ionics 341, 115050 (2019). https://doi.org/10.1016/j.ssi.2019.115050
L. Wang, J. Yang, J. Li, T. Chen, S. Chen et al., Graphite as a potassium ion battery anode in carbonate-based electrolyte and ether-based electrolyte. J. Power Sources 409, 24–30 (2019). https://doi.org/10.1016/j.jpowsour.2018.10.092
Z.L. Li, Z.B. Xiao, S.Q. Wang, Z.B. Cheng, P.Y. Li et al., Engineered interfusion of hollow nitrogen-doped carbon nanospheres for improving electrochemical behavior and energy density of lithium-sulfur batteries. Adv. Funct. Mater. 29(31), 1902322 (2019). https://doi.org/10.1002/adfm.201902322
Y.J. Zhong, Q. Lu, Y.P. Zhu, Y.L. Zhu, W. Zhou et al., Fructose-derived hollow carbon nanospheres with ultrathin and ordered mesoporous shells as cathodes in lithium-sulfur batteries for fast energy storage. Adv. Sustain. Syst. 1(8), 1700081 (2017). https://doi.org/10.1002/adsu.201700081
Z. Zhang, G.C. Wang, Y.Q. Lai, J. Li, Z.Y. Zhang et al., Nitrogen-doped porous hollow carbon sphere-decorated separators for advanced lithium-sulfur batteries. J. Power Sources 300, 157–163 (2015). https://doi.org/10.1016/j.jpowsour.2015.09.067
D.H. Yang, H.Y. Zhou, H. Liu, B.H. Han, Hollow N-doped carbon polyhedrons with hierarchically porous shell for confinement of polysulfides in lithium-sulfur batteries. Science 13, 243–253 (2019). https://doi.org/10.1016/j.isci.2019.02.019
G.Y. Zheng, Q.F. Zhang, J.J. Cha, Y. Yang, W.Y. Li et al., Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. Nano Lett. 13(3), 1265–1270 (2013). https://doi.org/10.1021/nl304795g
X.Q. Zhang, B. He, W.C. Li, A.H. Lu, Hollow carbon nanofibers with dynamic adjustable pore sizes and closed ends as hosts for high-rate lithium-sulfur battery cathodes. Nano Res. 11(3), 1238–1246 (2018). https://doi.org/10.1007/s12274-017-1737-6
G.Y. Zheng, Y. Yang, J.J. Cha, S.S. Hong, Y. Cui, Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 11(10), 4462–4467 (2011). https://doi.org/10.1021/nl2027684
D. Yang, W. Ni, J.L. Cheng, Z.P. Wang, T. Wang et al., Flexible three-dimensional electrodes of hollow carbon bead strings as graded sulfur reservoirs and the synergistic mechanism for lithium-sulfur batteries. Appl. Surf. Sci. 413, 209–218 (2017). https://doi.org/10.1016/j.apsusc.2017.04.046
S.Q. Chen, X.D. Huang, H. Liu, B. Sun, W.K. Yeoh et al., 3D hyperbranched hollow carbon nanorod architectures for high-performance lithium-sulfur batteries. Adv. Energy Mater. 4(8), 1301761 (2014). https://doi.org/10.1002/aenm.201301761
F. Pei, T.H. An, J. Zang, X.J. Zhao, X.L. Fang et al., From hollow carbon spheres to n-doped hollow porous carbon bowls: rational design of hollow carbon host for Li-S batteries. Adv. Energy Mater. 6(8), 2502539 (2016). https://doi.org/10.1002/aenm.201502539
Y.B. An, Q.Z. Zhu, L.F. Hu, S.K. Yu, Q. Zhao et al., A hollow carbon foam with ultra-high sulfur loading for an integrated cathode of lithium-sulfur batteries. J. Mater. Chem. A 4(40), 15605–15611 (2016). https://doi.org/10.1039/c6ta06088a
M. Li, Y.N. Zhang, X.L. Wang, W. Ahn, G.P. Jiang et al., Gas pickering emulsion templated hollow carbon for high rate performance lithium sulfur batteries. Adv. Funct. Mater. 26(46), 8408–8417 (2016). https://doi.org/10.1002/adfm.201603241
C.L. Ma, J. Dong, Y. Zhao, J. Li, H.L. Chen, Dual-template synthesis of novel pomegranate-like hollow carbon nanoparticles with improved electrochemical performance for Li-ion batteries. Carbon 110, 180–188 (2016). https://doi.org/10.1016/j.carbon.2016.09.020
J. Zang, J.C. Ye, X.L. Fang, X.W. Zhang, M.S. Zheng et al., Hollow-in-hollow carbon spheres for lithium-ion batteries with superior capacity and cyclic performance. Electrochim. Acta 186, 436–441 (2015). https://doi.org/10.1016/j.electacta.2015.11.002
B.S. Lee, S.B. Son, K.M. Park, G. Lee, K.H. Oh et al., Effect of pores in hollow carbon nanofibers on their negative electrode properties for a lithium rechargeable battery. ACS Appl. Mater. Interfaces. 4(12), 6701–6709 (2012). https://doi.org/10.1021/am301873d
Z.Y. Pan, H. Sun, J. Pan, J. Zhang, B.J. Wang et al., The creation of hollow walls in carbon nanotubes for high-performance lithium ion batteries. Carbon 133, 384–389 (2018). https://doi.org/10.1016/j.carbon.2018.03.021
Q.L. Huang, S.L. Wang, Y. Zhang, B.W. Yu, L.Z. Hou et al., Hollow carbon nanospheres with extremely small size as anode material in lithium-ion batteries with outstanding cycling stability. J. Phys. Chem. C 120(6), 3139–3144 (2016). https://doi.org/10.1021/acs.jpcc.5b10455
S.G. Liu, C.P. Mao, L. Wang, M. Jia, Q.Q. Sun et al., Bio-inspired synthesis of carbon hollow microspheres from Aspergillus flavus conidia for lithium-ion batteries. RSC Adv. 5(73), 59655–59658 (2015). https://doi.org/10.1039/c5ra12059d
X.H. Dai, H.X. Fan, J.J. Zhang, S.J. Yuan, Sewage sludge-derived porous hollow carbon nanospheres as high-performance anode material for lithium ion batteries. Electrochim. Acta 319, 277–285 (2019). https://doi.org/10.1016/j.electacta.2019.07.006
Q.Q. Li, K. Yao, G.C. Zhang, J. Gong, E. Mijowska et al., Controllable synthesis of 3d hollow-carbon-spheres/graphene-flake hybrid nanostructures from polymer nanocomposite by self-assembly and feasibility for lithium-ion batteries. Part. Part. Syst. Charact. 32(9), 874–879 (2015). https://doi.org/10.1002/ppsc.201500037
F.D. Han, Y.J. Bai, R. Liu, B. Yao, Y.X. Qi et al., Template-free synthesis of interconnected hollow carbon nanospheres for high-performance anode material in lithium-ion batteries. Adv. Energy Mater. 1(5), 798–801 (2011). https://doi.org/10.1002/aenm.201100340
P. Nie, Z.Y. Le, G. Chen, D. Liu, X.Y. Liu et al., Graphene caging silicon particles for high-performance lithium-ion batteries. Small 14(25), 1800635 (2018). https://doi.org/10.1002/smll.201800635
S.M. Zou, X.Y. Xu, Y.Q. Zhu, C.B. Cao, Microwave-assisted preparation of hollow porous carbon spheres and as anode of lithium-ion batteries. Microporous Mesoporous Mater. 251, 114–121 (2017). https://doi.org/10.1016/j.micromeso.2017.05.062
Y.F. Wen, B. Wang, B. Luo, L.Z. Wang, Long-term cycling performance of nitrogen-doped hollow carbon nanospheres as anode materials for sodium-ion batteries. Eur. J. Inorg. Chem. 13–14, 2051–2055 (2016). https://doi.org/10.1002/ejic.201501172
K.L. Zhang, X.N. Li, J.W. Liang, Y.C. Zhu, L. Hu et al., Nitrogen-doped porous interconnected double-shelled hollow carbon spheres with high capacity for lithium ion batteries and sodium ion batteries. Electrochim. Acta 155, 174–182 (2015). https://doi.org/10.1016/j.electacta.2014.12.108
W.C. Zhang, C.W. Lan, X.H. Xie, Q.Y. Cao, M.T. Zheng et al., Facile construction of hollow carbon nanosphere-interconnected network for advanced sodium-ion battery anode. J. Colloid Interface Sci. 546, 53–59 (2019). https://doi.org/10.1016/j.jcis.2019.03.043
Y.H. Qu, Y.M. Deng, Q. Li, Z. Zhang, F.Y. Zeng et al., Core-shell-structured hollow carbon nanofiber@nitrogen-doped porous carbon composite materials as anodes for advanced sodium-ion batteries. J. Mater. Sci. 52(4), 2356–2365 (2017). https://doi.org/10.1007/s10853-016-0528-x
J.S. Park, S.Y. Jeong, K.M. Jeon, Y.C. Kang, J.S. Cho, Iron diselenide combined with hollow graphitic carbon nanospheres as a high-performance anode material for sodium-ion batteries. Chem. Eng. J. 339, 97–107 (2018). https://doi.org/10.1016/j.cej.2018.01.118
Y.X. Luan, G.D. Nie, X.W. Zhao, N. Qiao, X.C. Liu et al., The integration of sno2 dots and porous carbon nanofibers for flexible supercapacitors. Electrochim. Acta 308, 121–130 (2019). https://doi.org/10.1016/j.electacta.2019.03.204
X.W. Zhao, G.D. Nie, Y.X. Luan, X.X. Wang, S.Y. Yan et al., Nitrogen-doped carbon networks derived from the electrospun polyacrylonitrile@branched polyethylenimine nanofibers as flexible supercapacitor electrodes. J. Alloys Compd. 808, 151737 (2019). https://doi.org/10.1016/j.jallcom.2019.151737
S.Z. Zeng, Y.C. Yao, L. Huang, H.L. Wu, B.L. Peng et al., Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres and their application in lithium-sulfur batteries. Chem. Eur. J. 24(8), 1988–1997 (2018). https://doi.org/10.1002/chem.201705211
K. Zhang, Q. Zhao, Z.L. Tao, J. Chen, Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li-S batteries with high performance. Nano Res. 6(1), 38–46 (2013). https://doi.org/10.1007/s12274-012-0279-1
W.D. Zhou, X.C. Xiao, M. Cai, L. Yang, Polydopamine-coated, nitrogen-doped, hollow carbon sulfur double-layered core-shell structure for improving lithium sulfur batteries. Nano Lett. 14(9), 5250–5256 (2014). https://doi.org/10.1021/nl502238b
C.F. Zhang, H.B. Wu, C.Z. Yuan, Z.P. Guo, X.W. Lou, Confining sulfur in double-shelled hollow carbon spheres for lithium-sulfur batteries. Angew. Chem. Int. Ed. 51(38), 9592–9595 (2012). https://doi.org/10.1002/anie.201205292
W.D. Zhou, C.M. Wang, Q.L. Zhang, H.D. Abruna, Y. He et al., Tailoring pore size of nitrogen-doped hollow carbon nanospheres for confining sulfur in lithium-sulfur batteries. Adv. Energy Mater. 5(16), 1401752 (2015). https://doi.org/10.1002/aenm.201401752
X.J. Zhou, J. Tian, Q.P. Wu, J.L. Hu, C.L. Li, N/O dual-doped hollow carbon microspheres constructed by holey nanosheet shells as large-grain cathode host for high loading Li-S batteries. Energy Storage Mater. 24, 644–654 (2020). https://doi.org/10.1016/j.ensm.2019.06.009
L. Zhang, B.W. Zhang, Y.H. Dou, Y.X. Wang, M. Al-Mamun et al., Self-assembling hollow carbon nanobeads into double-shell microspheres as a hierarchical sulfur host for sustainable room-temperature sodium sulfur batteries. ACS Appl. Mater. Interfaces 10(24), 20422–20428 (2018). https://doi.org/10.1021/acsami.8b03850
Y.J. Zhong, S.F. Wang, Y.J. Sha, M.L. Liu, R. Cai et al., Trapping sulfur in hierarchically porous, hollow indented carbon spheres: a high-performance cathode for lithium-sulfur batteries. J. Mater. Chem. A 4(24), 9526–9535 (2016). https://doi.org/10.1039/c6ta03187k
Y.P. Xie, L. Fang, H.W. Cheng, C.J. Hu, H.B. Zhao et al., Biological cell derived N-doped hollow porous carbon microspheres for lithium-sulfur batteries. J. Mater. Chem. A 4(40), 15612–15620 (2016). https://doi.org/10.1039/c6ta06164h
S.N. Liu, T.Q. Zhao, X.H. Tan, L.M. Guo, J.X. Wu et al., 3D pomegranate-like structures of porous carbon microspheres self-assembled by hollow thin-walled highly-graphitized nanoballs as sulfur immobilizers for Li-S batteries. Nano Energy (2019). https://doi.org/10.1016/j.nanoen.2019.103894
N. Jayaprakash, J. Shen, S.S. Moganty, A. Corona, L.A. Archer, Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew. Chem. Int. Ed. 50(26), 5904–5908 (2011). https://doi.org/10.1002/anie.201100637
G.L. Xia, L.J. Zhang, X.W. Chen, Y.Q. Huang, D.L. Sun et al., Carbon hollow nanobubbles on porous carbon nanofibers: an ideal host for high-performance sodium-sulfur batteries and hydrogen storage. Energy Storage Mater. 14, 314–323 (2018). https://doi.org/10.1016/j.ensm.2018.05.008
G. Nie, X. Zhao, Y. Luan, J. Jiang, Z. Kou et al., Key issues facing electrospun carbon nanofibers in energy applications: on-going approaches and challenges. Nanoscale 12, 13225–13248 (2020). https://doi.org/10.1039/D0NR03425H