Simultaneous Detection and Removal of Formaldehyde at Room Temperature: Janus Au@ZnO@ZIF-8 Nanoparticles
Corresponding Author: Wei-Ning Wang
Nano-Micro Letters,
Vol. 10 No. 1 (2018), Article Number: 4
Abstract
The detection and removal of volatile organic compounds (VOCs) are of great importance to reduce the risk of indoor air quality concerns. This study reports the rational synthesis of a dual-functional Janus nanostructure and its feasibility for simultaneous detection and removal of VOCs. The Janus nanostructure was synthesized via an anisotropic growth method, composed of plasmonic nanoparticles, semiconductors, and metal organic frameworks (e.g., Au@ZnO@ZIF-8). It exhibits excellent selective detection to formaldehyde (HCHO, as a representative VOC) at room temperature over a wide range of concentrations (from 0.25 to 100 ppm), even in the presence of water and toluene molecules as interferences. In addition, HCHO was also found to be partially oxidized into non-toxic formic acid simultaneously with detection. The mechanism underlying this technology was unraveled by both experimental measurements and theoretical calculations: ZnO maintains the conductivity, while ZIF-8 improves the selective gas adsorption; the plasmonic effect of Au nanorods enhances the visible-light-driven photocatalysis of ZnO at room temperature.
Highlights:
1 Au@ZnO@ZIF-8 Janus nanostructure was designed and synthesized via an anisotropic growth method for the detection of volatile organic compounds (VOCs).
2 Due to the synergistic effects of the high conductivity of ZnO, the superior gas adsorption capability of ZIF-8, the clean interface between ZnO and ZIF-8, and the plasmonic resonance of gold nanorods, the Janus nanostructure demonstrates an excellent sensing performance with a selective detection toward formaldehyde at room temperature.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N.E. Klepeis, W.C. Nelson, W.R. Ott, J.P. Robinson, A.M. Tsang, P. Switzer, J.V. Behar, S.C. Hern, W.H. Engelmann, The national human activity pattern survey (NHAPS): a resource for assessing exposure to environmental pollutants. J. Exposure Anal. Environ. Epidemiol. 11(3), 231–252 (2001). doi:10.1038/sj.jea.7500165
- K.A. Mundt, A.E. Gallagher, L.D. Dell, E.A. Natelson, P. Boffetta, P.R. Gentry, Does occupational exposure to formaldehyde cause hematotoxicity and leukemia-specific chromosome changes in cultured myeloid progenitor cells? Crit. Rev. Toxicol. 47(7), 592–602 (2017). doi:10.1080/10408444.2017.1301878
- M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 13(2), 113–116 (2001). doi:10.1002/1521-4095(200101)13:2<113:AID-ADMA113>3.0.CO;2-H
- J. Zhai, L. Wang, D. Wang, H. Li, Y. Zhang, D.Q. He, T. Xie, Enhancement of gas sensing properties of CdS nanowire/ZnO nanosphere composite materials at room temperature by visible-light activation. ACS Appl. Mater. Interfaces 3(7), 2253–2258 (2011). doi:10.1021/am200008y
- Q. Kuang, C.-S. Lao, Z. Li, Y.-Z. Liu, Z.-X. Xie, L.-S. Zheng, Z.L. Wang, Enhancing the photon- and gas-sensing properties of a single SnO2 nanowire based nanodevice by nanoparticle surface functionalization. J. Phys. Chem. C 112(30), 11539–11544 (2008). doi:10.1021/jp802880c
- W.-T. Koo, S.-J. Choi, S.-J. Kim, J.-S. Jang, H.L. Tuller, I.-D. Kim, Heterogeneous sensitization of metal-organic framework driven metal@metal oxide complex catalysts on an oxide nanofiber scaffold toward superior gas sensors. J. Am. Chem. Soc. 138(40), 13431–13437 (2016). doi:10.1021/jacs.6b09167
- M.S. Yao, W.X. Tang, G.E. Wang, B. Nath, G. Xu, MOF thin film-coated metal oxide nanowire array: significantly improved chemiresistor sensor performance. Adv. Mater. 28(26), 5229–5234 (2016). doi:10.1002/adma.201506457
- K.Y. Ko, J.-G. Song, Y. Kim, T. Choi, S. Shin et al., Improvement of gas-sensing performance of large-area tungsten disulfide nanosheets by surface functionalization. ACS Nano 10(10), 9287–9296 (2016). doi:10.1021/acsnano.6b03631
- N. Singh, R.K. Gupta, P.S. Lee, Gold-nanoparticle-functionalized In2O3 nanowires as CO gas sensors with a significant enhancement in response. ACS Appl. Mater. Interfaces 3(7), 2246–2252 (2011). doi:10.1021/am101259t
- J. Kong, M.G. Chapline, H. Dai, Functionalized carbon nanotubes for molecular hydrogen sensors. Adv. Mater. 13(18), 1384–1386 (2001). doi:10.1002/1521-4095(200109)13:18<1384:AID-ADMA1384>3.0.CO;2-8
- K.S. Park, Z. Ni, A.P. Côté, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. O’Keeffe, O.M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. 103(27), 10186–10191 (2006). doi:10.1073/pnas.0602439103
- R.J. Kuppler, D.J. Timmons, Q.-R. Fang, J.-R. Li, T.A. Makal et al., Potential applications of metal-organic frameworks. Coord. Chem. Rev. 253(23–24), 3042–3066 (2009). doi:10.1016/j.ccr.2009.05.019
- M.G. Campbell, S.F. Liu, T.M. Swager, M. Dincă, Chemiresistive sensor arrays from conductive 2D metal-organic frameworks. J. Am. Chem. Soc. 137(43), 13780–13783 (2015). doi:10.1021/jacs.5b09600
- L.H. Wee, N. Janssens, S.P. Sree, C. Wiktor, E. Gobechiya, R.A. Fischer, C.E.A. Kirschhock, J.A. Martens, Local transformation of ZIF-8 powders and coatings into ZnO nanorods for photocatalytic application. Nanoscle 6(4), 2056–2060 (2014). doi:10.1039/c3nr05289c
- B. Nikoobakht, M.A. El-Sayed, Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 15(10), 1957–1962 (2003). doi:10.1021/cm020732l
- S.M. Majhi, P. Rai, Y.-T. Yu, Facile approach to synthesize Au@ZnO core-shell nanoparticles and their application for highly sensitive and selective gas sensors. ACS Appl. Mater. Interfaces 7(18), 9462–9468 (2015). doi:10.1021/acsami.5b00055
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). doi:10.1103/PhysRevLett.77.3865
- G. Kresse, J. Furthmüller, Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996). doi:10.1016/0927-0256(96)00008-0
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). doi:10.1103/PhysRevB.54.11169
- H.J. Monkhorst, J.D. Pack, Special points for brillouin-zone integrations. Phys. Rev. B 13(12), 5188–5192 (1976). doi:10.1103/PhysRevB.13.5188
- MathSciNet
- S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787–1799 (2006). doi:10.1002/jcc.20495
- L.M. Liz-Marzán, M. Giersig, P. Mulvaney, Synthesis of nanosized gold-silica core-shell particles. Langmuir 12(18), 4329–4335 (1996). doi:10.1021/la9601871
- S.R. Venna, J.B. Jasinski, M.A. Carreon, Structural evolution of zeolitic imidazolate framework-8. J. Am. Chem. Soc. 132(51), 18030–18033 (2010). doi:10.1021/ja109268m
- W.-W. Zhan, Q. Kuang, J.-Z. Zhou, X.-J. Kong, Z.-X. Xie, L.-S. Zheng, Semiconductor@metal-organic framework core-shell heterostructures: a case of ZnO@ZIF-8 nanorods with selective photoelectrochemical response. J. Am. Chem. Soc. 135(5), 1926–1933 (2013). doi:10.1021/ja311085e
- Z. Wang, H. Zhang, L. Zhang, J. Yuan, S. Yan, C. Wang, Low-temperature synthesis of ZnO nanoparticles by solid-state pyrolytic reaction. Nanotechnology 14(1), 11–15 (2003). doi:10.1088/0957-4484/14/1/303
- G. Cao, Nanostructures and nanomaterials synthesis (Properties & applications. Imperial College Press, London, 2003)
- C.S. Woo, S.E. Barry, S. Zaromb, Detection and estimation of part-per-billion levels of formaldehyde using a portable high-throughput liquid absorption air sampler. Environ. Sci. Technol. 32(1), 169–176 (1998). doi:10.1021/es970465y
- S. Lowell, J.E. Shields, M.A. Thomas, M. Thommes, Characterization of porous solids and powders: surface area, pore size and density (Kluwer Academic Publishers, Norwell, 2004)
- E. Comini, G. Faglia, G. Sberveglieri, Z. Pan, Z.L. Wang, Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 81(10), 1869–1871 (2002). doi:10.1063/1.1504867
- L.E. Kreno, J.T. Hupp, R.P. Van Duyne, Metal-organic framework thin film for enhanced localized surface plasmon resonance gas sensing. Anal. Chem. 82(19), 8042–8046 (2010). doi:10.1021/ac102127p
- A. Chaudhry, V. Ramamurthi, E. Fong, M.S. Islam, Ultra-low contact resistance of epitaxially interfaced bridged silicon nanowires. Nano Lett. 7(6), 1536–1541 (2007). doi:10.1021/nl070325e
- B. Liu, M. Tu, R.A. Fischer, Metal-organic framework thin films: crystallite orientation dependent adsorption. Angew. Chem. Int. Ed. 52(12), 3402–3405 (2013). doi:10.1002/anie.201207908
- K. Zhang, R.P. Lively, C. Zhang, R.R. Chance, W.J. Koros, D.S. Sholl, S. Nair, Exploring the framework hydrophobicity and flexibility of ZIF-8: from biofuel recovery to hydrocarbon separations. J. Phys. Chem. Lett. 4(21), 3618–3622 (2013). doi:10.1021/jz402019d
- G.J. Millar, C.H. Rochester, K.C. Waugh, An FTIR study of the adsorption of formic acid and formaldehyde on potassium-promoted Cu/SiO2 Catalysts. J. Catal. 155(1), 52–58 (1995). doi:10.1006/jcat.1995.1187
- S.-W. Fan, A.K. Srivastava, V.P. Dravid, UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO. Appl. Phys. Lett. 95(14), 142106 (2009). doi:10.1063/1.3243458
- H.-J. Kim, J.-H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens. Actuators B Chem. 192, 607–627 (2014). doi:10.1016/j.snb.2013.11.005
- A.A. Sadun, Mitochondrial optic neuropathies. J. Neurol. Neurosurg. Psychiatry 72(4), 423–425 (2002). doi:10.1136/jnnp.72.4.423
- J. Li, S.K. Cushing, J. Bright, F. Meng, T.R. Senty, P. Zheng, A.D. Bristow, N. Wu, Ag@Cu2O core-shell nanoparticles as visible-light plasmonic photocatalysts. ACS Catal. 3(1), 47–51 (2013). doi:10.1021/cs300672f
- S.K. Cushing, J. Li, F. Meng, T.R. Senty, S. Suri, M. Zhi, M. Li, A.D. Bristow, N. Wu, Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J. Am. Chem. Soc. 134(36), 15033–15041 (2012). doi:10.1021/ja305603t
- A.K. Srivastava, V.P. Dravid, On the performance evaluation of hybrid and mono-class sensor arrays in selective detection of VOCs: a comparative study. Sens. Actuators B Chem. 117(1), 244–252 (2006). doi:10.1016/j.snb.2005.11.034
References
N.E. Klepeis, W.C. Nelson, W.R. Ott, J.P. Robinson, A.M. Tsang, P. Switzer, J.V. Behar, S.C. Hern, W.H. Engelmann, The national human activity pattern survey (NHAPS): a resource for assessing exposure to environmental pollutants. J. Exposure Anal. Environ. Epidemiol. 11(3), 231–252 (2001). doi:10.1038/sj.jea.7500165
K.A. Mundt, A.E. Gallagher, L.D. Dell, E.A. Natelson, P. Boffetta, P.R. Gentry, Does occupational exposure to formaldehyde cause hematotoxicity and leukemia-specific chromosome changes in cultured myeloid progenitor cells? Crit. Rev. Toxicol. 47(7), 592–602 (2017). doi:10.1080/10408444.2017.1301878
M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 13(2), 113–116 (2001). doi:10.1002/1521-4095(200101)13:2<113:AID-ADMA113>3.0.CO;2-H
J. Zhai, L. Wang, D. Wang, H. Li, Y. Zhang, D.Q. He, T. Xie, Enhancement of gas sensing properties of CdS nanowire/ZnO nanosphere composite materials at room temperature by visible-light activation. ACS Appl. Mater. Interfaces 3(7), 2253–2258 (2011). doi:10.1021/am200008y
Q. Kuang, C.-S. Lao, Z. Li, Y.-Z. Liu, Z.-X. Xie, L.-S. Zheng, Z.L. Wang, Enhancing the photon- and gas-sensing properties of a single SnO2 nanowire based nanodevice by nanoparticle surface functionalization. J. Phys. Chem. C 112(30), 11539–11544 (2008). doi:10.1021/jp802880c
W.-T. Koo, S.-J. Choi, S.-J. Kim, J.-S. Jang, H.L. Tuller, I.-D. Kim, Heterogeneous sensitization of metal-organic framework driven metal@metal oxide complex catalysts on an oxide nanofiber scaffold toward superior gas sensors. J. Am. Chem. Soc. 138(40), 13431–13437 (2016). doi:10.1021/jacs.6b09167
M.S. Yao, W.X. Tang, G.E. Wang, B. Nath, G. Xu, MOF thin film-coated metal oxide nanowire array: significantly improved chemiresistor sensor performance. Adv. Mater. 28(26), 5229–5234 (2016). doi:10.1002/adma.201506457
K.Y. Ko, J.-G. Song, Y. Kim, T. Choi, S. Shin et al., Improvement of gas-sensing performance of large-area tungsten disulfide nanosheets by surface functionalization. ACS Nano 10(10), 9287–9296 (2016). doi:10.1021/acsnano.6b03631
N. Singh, R.K. Gupta, P.S. Lee, Gold-nanoparticle-functionalized In2O3 nanowires as CO gas sensors with a significant enhancement in response. ACS Appl. Mater. Interfaces 3(7), 2246–2252 (2011). doi:10.1021/am101259t
J. Kong, M.G. Chapline, H. Dai, Functionalized carbon nanotubes for molecular hydrogen sensors. Adv. Mater. 13(18), 1384–1386 (2001). doi:10.1002/1521-4095(200109)13:18<1384:AID-ADMA1384>3.0.CO;2-8
K.S. Park, Z. Ni, A.P. Côté, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. O’Keeffe, O.M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. 103(27), 10186–10191 (2006). doi:10.1073/pnas.0602439103
R.J. Kuppler, D.J. Timmons, Q.-R. Fang, J.-R. Li, T.A. Makal et al., Potential applications of metal-organic frameworks. Coord. Chem. Rev. 253(23–24), 3042–3066 (2009). doi:10.1016/j.ccr.2009.05.019
M.G. Campbell, S.F. Liu, T.M. Swager, M. Dincă, Chemiresistive sensor arrays from conductive 2D metal-organic frameworks. J. Am. Chem. Soc. 137(43), 13780–13783 (2015). doi:10.1021/jacs.5b09600
L.H. Wee, N. Janssens, S.P. Sree, C. Wiktor, E. Gobechiya, R.A. Fischer, C.E.A. Kirschhock, J.A. Martens, Local transformation of ZIF-8 powders and coatings into ZnO nanorods for photocatalytic application. Nanoscle 6(4), 2056–2060 (2014). doi:10.1039/c3nr05289c
B. Nikoobakht, M.A. El-Sayed, Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 15(10), 1957–1962 (2003). doi:10.1021/cm020732l
S.M. Majhi, P. Rai, Y.-T. Yu, Facile approach to synthesize Au@ZnO core-shell nanoparticles and their application for highly sensitive and selective gas sensors. ACS Appl. Mater. Interfaces 7(18), 9462–9468 (2015). doi:10.1021/acsami.5b00055
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). doi:10.1103/PhysRevLett.77.3865
G. Kresse, J. Furthmüller, Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996). doi:10.1016/0927-0256(96)00008-0
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). doi:10.1103/PhysRevB.54.11169
H.J. Monkhorst, J.D. Pack, Special points for brillouin-zone integrations. Phys. Rev. B 13(12), 5188–5192 (1976). doi:10.1103/PhysRevB.13.5188
MathSciNet
S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787–1799 (2006). doi:10.1002/jcc.20495
L.M. Liz-Marzán, M. Giersig, P. Mulvaney, Synthesis of nanosized gold-silica core-shell particles. Langmuir 12(18), 4329–4335 (1996). doi:10.1021/la9601871
S.R. Venna, J.B. Jasinski, M.A. Carreon, Structural evolution of zeolitic imidazolate framework-8. J. Am. Chem. Soc. 132(51), 18030–18033 (2010). doi:10.1021/ja109268m
W.-W. Zhan, Q. Kuang, J.-Z. Zhou, X.-J. Kong, Z.-X. Xie, L.-S. Zheng, Semiconductor@metal-organic framework core-shell heterostructures: a case of ZnO@ZIF-8 nanorods with selective photoelectrochemical response. J. Am. Chem. Soc. 135(5), 1926–1933 (2013). doi:10.1021/ja311085e
Z. Wang, H. Zhang, L. Zhang, J. Yuan, S. Yan, C. Wang, Low-temperature synthesis of ZnO nanoparticles by solid-state pyrolytic reaction. Nanotechnology 14(1), 11–15 (2003). doi:10.1088/0957-4484/14/1/303
G. Cao, Nanostructures and nanomaterials synthesis (Properties & applications. Imperial College Press, London, 2003)
C.S. Woo, S.E. Barry, S. Zaromb, Detection and estimation of part-per-billion levels of formaldehyde using a portable high-throughput liquid absorption air sampler. Environ. Sci. Technol. 32(1), 169–176 (1998). doi:10.1021/es970465y
S. Lowell, J.E. Shields, M.A. Thomas, M. Thommes, Characterization of porous solids and powders: surface area, pore size and density (Kluwer Academic Publishers, Norwell, 2004)
E. Comini, G. Faglia, G. Sberveglieri, Z. Pan, Z.L. Wang, Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 81(10), 1869–1871 (2002). doi:10.1063/1.1504867
L.E. Kreno, J.T. Hupp, R.P. Van Duyne, Metal-organic framework thin film for enhanced localized surface plasmon resonance gas sensing. Anal. Chem. 82(19), 8042–8046 (2010). doi:10.1021/ac102127p
A. Chaudhry, V. Ramamurthi, E. Fong, M.S. Islam, Ultra-low contact resistance of epitaxially interfaced bridged silicon nanowires. Nano Lett. 7(6), 1536–1541 (2007). doi:10.1021/nl070325e
B. Liu, M. Tu, R.A. Fischer, Metal-organic framework thin films: crystallite orientation dependent adsorption. Angew. Chem. Int. Ed. 52(12), 3402–3405 (2013). doi:10.1002/anie.201207908
K. Zhang, R.P. Lively, C. Zhang, R.R. Chance, W.J. Koros, D.S. Sholl, S. Nair, Exploring the framework hydrophobicity and flexibility of ZIF-8: from biofuel recovery to hydrocarbon separations. J. Phys. Chem. Lett. 4(21), 3618–3622 (2013). doi:10.1021/jz402019d
G.J. Millar, C.H. Rochester, K.C. Waugh, An FTIR study of the adsorption of formic acid and formaldehyde on potassium-promoted Cu/SiO2 Catalysts. J. Catal. 155(1), 52–58 (1995). doi:10.1006/jcat.1995.1187
S.-W. Fan, A.K. Srivastava, V.P. Dravid, UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO. Appl. Phys. Lett. 95(14), 142106 (2009). doi:10.1063/1.3243458
H.-J. Kim, J.-H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens. Actuators B Chem. 192, 607–627 (2014). doi:10.1016/j.snb.2013.11.005
A.A. Sadun, Mitochondrial optic neuropathies. J. Neurol. Neurosurg. Psychiatry 72(4), 423–425 (2002). doi:10.1136/jnnp.72.4.423
J. Li, S.K. Cushing, J. Bright, F. Meng, T.R. Senty, P. Zheng, A.D. Bristow, N. Wu, Ag@Cu2O core-shell nanoparticles as visible-light plasmonic photocatalysts. ACS Catal. 3(1), 47–51 (2013). doi:10.1021/cs300672f
S.K. Cushing, J. Li, F. Meng, T.R. Senty, S. Suri, M. Zhi, M. Li, A.D. Bristow, N. Wu, Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J. Am. Chem. Soc. 134(36), 15033–15041 (2012). doi:10.1021/ja305603t
A.K. Srivastava, V.P. Dravid, On the performance evaluation of hybrid and mono-class sensor arrays in selective detection of VOCs: a comparative study. Sens. Actuators B Chem. 117(1), 244–252 (2006). doi:10.1016/j.snb.2005.11.034