Fundamental Perspectives on the Electrochemical Water Applications of Metal–Organic Frameworks
Corresponding Author: Xiang He
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 148
Abstract
Metal–organic frameworks (MOFs), a family of highly porous materials possessing huge surface areas and feasible chemical tunability, are emerging as critical functional materials to solve the growing challenges associated with energy–water systems, such as water scarcity issues. In this contribution, the roles of MOFs are highlighted in electrochemical-based water applications (i.e., reactions, sensing, and separations), where MOF-based functional materials exhibit outstanding performances in detecting/removing pollutants, recovering resources, and harvesting energies from different water sources. Compared with the pristine MOFs, the efficiency and/or selectivity can be further enhanced via rational structural modulation of MOFs (e.g., partial metal substitution) or integration of MOFs with other functional materials (e.g., metal clusters and reduced graphene oxide). Several key factors/properties that affect the performances of MOF-based materials are also reviewed, including electronic structures, nanoconfined effects, stability, conductivity, and atomic structures. The advancement in the fundamental understanding of these key factors is expected to shed light on the functioning mechanisms of MOFs (e.g., charge transfer pathways and guest–host interactions), which will subsequently accelerate the integration of precisely designed MOFs into electrochemical architectures to achieve highly effective water remediation with optimized selectivity and long-term stability.
Highlights:
1 The recent development and implementation of metal–organic frameworks (MOFs) and MOF-based materials in electrochemical water applications are reviewed.
2 The critical factors that affect the performances of MOFs in the electrochemical reactions, sensing, and separations are highlighted.
3 Advanced tools, such as pair distribution function analysis, are playing critical roles in unraveling the functioning mechanisms, including local structures and nanoconfined interactions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Kummu, J.H. Guillaume, H. de Moel, S. Eisner, M. Florke et al., The world’s road to water scarcity: shortage and stress in the 20th century and pathways towards sustainability. Sci. Rep. 6(1), 38495 (2016). https://doi.org/10.1038/srep38495
- M. Salgot, M. Folch, Wastewater treatment and water reuse. Curr. Opinion Environ. Sci. Health. 2, 64–74 (2018). https://doi.org/10.1016/j.coesh.2018.03.005
- Y. Jiang, P. Biswas, J.D. Fortner, A review of recent developments in graphene-enabled membranes for water treatment. Environ. Sci.: Water Res. Technol. 2(6), 915–922 (2016). https://doi.org/10.1039/c6ew00187d
- X. Li, G. Huang, X. Chen, J. Huang, M. Li et al., A review on graphitic carbon nitride (g-C3N4) based hybrid membranes for water and wastewater treatment. Sci. Total Environ. 792, 148462 (2021). https://doi.org/10.1016/j.scitotenv.2021.148462
- C. Wang, J. Ye, L. Liang, X. Cui, L. Kong et al., Application of MXene-based materials in Fenton-like systems for organic wastewater treatment: a review. Sci. Total Environ. 862, 160539 (2023). https://doi.org/10.1016/j.scitotenv.2022.160539
- P. Kumar, V. Bansal, K.H. Kim, E.E. Kwon, Metal-organic frameworks (MOFs) as futuristic options for wastewater treatment. J. Ind. Eng. Chem. 62, 130–145 (2018). https://doi.org/10.1016/j.jiec.2017.12.051
- I. Stassen, N. Burtch, A. Talin, P. Falcaro, M. Allendorf et al., An updated roadmap for the integration of metal-organic frameworks with electronic devices and chemical sensors. Chem. Soc. Rev. 46(11), 3185–3241 (2017). https://doi.org/10.1039/c7cs00122c
- M. Rubio-Martinez, C. Avci-Camur, A.W. Thornton, I. Imaz, D. Maspoch et al., New synthetic routes towards MOF production at scale. Chem. Soc. Rev. 46(11), 3453–3480 (2017). https://doi.org/10.1039/C7CS00109F
- N. Al Amery, H.R. Abid, S. Al-Saadi, S. Wang, S. Liu, Facile directions for synthesis, modification and activation of MOFs. Mater. Today Chem. 17, 100343 (2020). https://doi.org/10.1016/j.mtchem.2020.100343
- S. Głowniak, B. Szczęśniak, J. Choma, M. Jaroniec, Advances in microwave synthesis of nanoporous materials. Adv. Mater. 33(48), 2103477 (2021). https://doi.org/10.1002/adma.202103477
- Z.-Q. Li, L.-G. Qiu, T. Xu, Y. Wu, W. Wang et al., Ultrasonic synthesis of the microporous metal–organic framework Cu3(BTC)2 at ambient temperature and pressure: An efficient and environmentally friendly method. Mater. Lett. 63(1), 78–80 (2009). https://doi.org/10.1016/j.matlet.2008.09.010
- X. He, W.-N. Wang, Synthesis of Cu-trimesic acid/Cu-1,4-benzenedioic acid via microdroplets: Role of component compositions. Cryst. Growth Des. 19(2), 1095–1102 (2019). https://doi.org/10.1021/acs.cgd.8b01606
- J. Troyano, C. Çamur, L. Garzón-Tovar, A. Carné-Sánchez, I. Imaz et al., Spray-drying synthesis of MOFs, COFs, and related composites. Acc. Chem. Res. 53(6), 1206–1217 (2020). https://doi.org/10.1021/acs.accounts.0c00133
- M.D. Allendorf, V. Stavila, Crystal engineering, structure–function relationships, and the future of metal–organic frameworks. CrystEngComm 17(2), 229–246 (2015). https://doi.org/10.1039/C4CE01693A
- J.R. Li, R.J. Kuppler, H.C. Zhou, Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 38(5), 1477–1504 (2009). https://doi.org/10.1039/b802426j
- X. He, W.N. Wang, Pressure-regulated synthesis of Cu(TPA)·(DMF) in microdroplets for selective CO2 adsorption. Dalton Trans. 48(3), 1006–1016 (2019). https://doi.org/10.1039/c8dt03812k
- X. He, D.R. Chen, W.N. Wang, Bimetallic metal-organic frameworks (MOFs) synthesized using the spray method for tunable CO2 adsorption. Chem. Eng. J. 382, 122825 (2020). https://doi.org/10.1016/j.cej.2019.122825
- J. Yang, Y.W. Yang, Metal-organic frameworks for biomedical applications. Small 16(10), e1906846 (2020). https://doi.org/10.1002/smll.201906846
- J. Chen, F. Cheng, D. Luo, J. Huang, J. Ouyang et al., Recent advances in Ti-based MOFs in biomedical applications. Dalton Trans. 51(39), 14817–14832 (2022). https://doi.org/10.1039/d2dt02470e
- L. Zhu, X.Q. Liu, H.L. Jiang, L.B. Sun, Metal-organic frameworks for heterogeneous basic catalysis. Chem. Rev. 117(12), 8129–8176 (2017). https://doi.org/10.1021/acs.chemrev.7b00091
- X. He, W.N. Wang, MOF-based ternary nanocomposites for better CO2 photoreduction: roles of heterojunctions and coordinatively unsaturated metal sites. J. Mater. Chem. A 6(3), 932–940 (2018). https://doi.org/10.1039/c7ta09192c
- F. Zheng, W. Zhang, X. Zhang, Y. Zhang, W. Chen, Sub-2 nm ultrathin and robust 2D FeNi layered double hydroxide nanosheets packed with 1D FeNi-MOFs for enhanced oxygen evolution electrocatalysis. Adv. Funct. Mater. 31(43), 2103318 (2021). https://doi.org/10.1002/adfm.202103318
- F. Zheng, Z. Zhang, C. Zhang, W. Chen, Advanced electrocatalysts based on metal–organic frameworks. ACS Omega 5(6), 2495–2502 (2020). https://doi.org/10.1021/acsomega.9b03295
- F. Zheng, Z. Zhang, D. Xiang, P. Li, C. Du et al., Fe/Ni bimetal organic framework as efficient oxygen evolution catalyst with low overpotential. J. Colloid Interface Sci. 555, 541–547 (2019). https://doi.org/10.1016/j.jcis.2019.08.005
- F. Fan, Y. Hui, R. Devasenathipathy, X. Peng, Q. Huang et al., Composition-adjustable Mo6Co6C2/Co@carbon nanocage for enhanced oxygen reduction and evolution reactions. J. Colloid Interface Sci. 636, 450–458 (2023). https://doi.org/10.1016/j.jcis.2023.01.039
- V. Shrivastav, S. Sundriyal, P. Goel, H. Kaur, S.K. Tuteja et al., Metal-organic frameworks (MOFs) and their composites as electrodes for lithium battery applications: novel means for alternative energy storage. Coord. Chem. Rev. 393, 48–78 (2019). https://doi.org/10.1016/j.ccr.2019.05.006
- D. Wang, Z. Li, J. Zhou, H. Fang, X. He et al., Simultaneous detection and removal of formaldehyde at room temperature: Janus Au@ZnO@ZIF-8 nanops. Nano-Micro Lett. 10(1), 4 (2017). https://doi.org/10.1007/s40820-017-0158-0
- R.J. Drout, L. Robison, Z.J. Chen, T. Islamoglu, O.K. Farha, Zirconium metal-organic frameworks for organic pollutant adsorption. Trends Chem. 1(3), 304–317 (2019). https://doi.org/10.1016/j.trechm.2019.03.010
- X. He, V. Nguyen, Z. Jiang, D.W. Wang, Z. Zhu et al., Highly-oriented one-dimensional MOF-semiconductor nanoarrays for efficient photodegradation of antibiotics. Catal. Sci. Technol. 8(8), 2117–2123 (2018). https://doi.org/10.1039/c8cy00229k
- X. He, H. Fang, D.J. Gosztola, Z. Jiang, P. Jena et al., Mechanistic insight into photocatalytic pathways of MIL-100(Fe)/TiO2 composites. ACS Appl. Mater. Interfaces 11(13), 12516–12524 (2019). https://doi.org/10.1021/acsami.9b00223
- C. Candia-Onfray, S. Rojas, M.V.B. Zanoni, R. Salazar, An updated review of metal-organic framework materials in photo(electro)catalytic applications: From CO2 reduction to wastewater treatments. Curr. Opin. Electrochem. 26, 100669 (2021). https://doi.org/10.1016/j.coelec.2020.100669
- A. Thiam, J.A. Lopez-Ruiz, D. Barpaga, S. Garcia-Segura, The surge of metal–organic-framework (MOFs)-based electrodes as key elements in electrochemically driven processes for the environment. Molecules 26(18), (2021). https://doi.org/10.3390/molecules26185713
- L.T. Liu, Y.L. Zhou, S. Liu, M.T. Xu, The applications of metal-organic frameworks in electrochemical sensors. ChemElectroChem 5(1), 6–19 (2018). https://doi.org/10.1002/celc.201700931
- N. Stock, S. Biswas, Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112(2), 933–969 (2012). https://doi.org/10.1021/cr200304e
- H.V. Doan, H. Amer Hamzah, P. Karikkethu Prabhakaran, C. Petrillo, V.P. Ting, Hierarchical metal–organic frameworks with macroporosity: Synthesis, achievements, and challenges. Nano-Micro Lett. 11(1), 54 (2019). https://doi.org/10.1007/s40820-019-0286-9
- G. Cai, P. Yan, L. Zhang, H.C. Zhou, H.L. Jiang, Metal-organic framework-based hierarchically porous materials: synthesis and applications. Chem. Rev. 121(20), 12278–12326 (2021). https://doi.org/10.1021/acs.chemrev.1c00243
- Z. Wang, S.M. Cohen, Postsynthetic modification of metal-organic frameworks. Chem. Soc. Rev. 38(5), 1315–1329 (2009). https://doi.org/10.1039/b802258p
- Q.L. Zhu, Q. Xu, Metal-organic framework composites. Chem. Soc. Rev. 43(16), 5468–5512 (2014). https://doi.org/10.1039/c3cs60472a
- G.H. Chen, Electrochemical technologies in wastewater treatment. Sep. Purif. Technol. 38(1), 11–41 (2004). https://doi.org/10.1016/j.seppur.2003.10.006
- M. Jiang, J. Su, X. Song, P. Zhang, M. Zhu et al., Interfacial reduction nucleation of noble metal nanodots on redox-active metal-organic frameworks for high-efficiency electrocatalytic conversion of nitrate to ammonia. Nano Lett. 22(6), 2529–2537 (2022). https://doi.org/10.1021/acs.nanolett.2c00446
- Z.M. Lou, C.C. Yu, X.F. Wen, Y.H. Xu, J.M. Yu et al., Construction of Pd nanops/two-dimensional Co-MOF nanosheets heterojunction for enhanced electrocatalytic hydrodechlorination. Appl. Catal. B 317, 121730 (2022). https://doi.org/10.1016/j.apcatb.2022.121730
- X. Zhu, H. Huang, H. Zhang, Y. Zhang, P. Shi et al., Filling mesopores of conductive metal-organic frameworks with Cu clusters for selective nitrate reduction to ammonia. ACS Appl. Mater. Interfaces 14(28), 32176–32182 (2022). https://doi.org/10.1021/acsami.2c09241
- J. Wang, T. Feng, J. Chen, V. Ramalingam, Z. Li et al., Electrocatalytic nitrate/nitrite reduction to ammonia synthesis using metal nanocatalysts and bio-inspired metalloenzymes. Nano Energy 86, 106088 (2021). https://doi.org/10.1016/j.nanoen.2021.106088
- X. Lu, H. Song, J. Cai, S. Lu, Recent development of electrochemical nitrate reduction to ammonia: A mini review. Electrochem. Commun. 129, 107094 (2021). https://doi.org/10.1016/j.elecom.2021.107094
- H. Lu, K. Chandran, D. Stensel, Microbial ecology of denitrification in biological wastewater treatment. Water Res. 64, 237–254 (2014). https://doi.org/10.1016/j.watres.2014.06.042
- Z. Fang, Z. Jin, S. Tang, P. Li, P. Wu et al., Porous two-dimensional iron-cyano nanosheets for high-rate electrochemical nitrate reduction. ACS Nano 16(1), 1072–1081 (2022). https://doi.org/10.1021/acsnano.1c08814
- Y.C. Wang, Y.C. Chen, W.S. Chuang, J.H. Li, Y.S. Wang et al., Pore-confined silver nanops in a porphyrinic metal-organic framework for electrochemical nitrite detection. ACS Appl. Nano Mater. 3(9), 9440–9448 (2020). https://doi.org/10.1021/acsanm.0c02052
- Z. Gao, Y. Lai, Y. Tao, L. Xiao, L. Zhang et al., Constructing well-defined and robust Th-MOF-supported single-site copper for production and storage of ammonia from electroreduction of nitrate. ACS Cent. Sci. 7(6), 1066–1072 (2021). https://doi.org/10.1021/acscentsci.1c00370
- Y. Lv, J. Su, Y. Gu, B. Tian, J. Ma et al., Atomically precise integration of multiple functional motifs in catalytic metal–organic frameworks for highly efficient nitrate electroreduction. JACS Au. 2(12), 2765–2777 (2022). https://doi.org/10.1021/jacsau.2c00502
- H.Y. Zhao, Y. Chen, Q.S. Peng, Q.N. Wang, G.H. Zhao, Catalytic activity of MOF(2Fe/Co)/carbon aerogel for improving H2O2 and •OH generation in solar photo-electro-Fenton process. Appl. Catal. B 203, 127–137 (2017). https://doi.org/10.1016/j.apcatb.2016.09.074
- T. Hu, L. Tang, H. Feng, J. Zhang, X. Li et al., Metal-organic frameworks (MOFs) and their derivatives as emerging catalysts for electro-Fenton process in water purification. Coord. Chem. Rev. 451, 214277 (2022). https://doi.org/10.1016/j.ccr.2021.214277
- X. Du, W. Fu, P. Su, Q. Zhang, M. Zhou, S-doped MIL-53 as efficient heterogeneous electro-Fenton catalyst for degradation of sulfamethazine at circumneutral pH. J. Hazard. Mater. 424(Part D), 127674 (2022). https://doi.org/10.1016/j.jhazmat.2021.127674
- P. Su, X.D. Du, Y. Zheng, W.Y. Fu, Q.Z. Zhang et al., Interface-confined multi-layered reaction centers between Ce-MOFs and Fe3O4@C for heterogeneous electro-Fenton at wide pH 3–9: Mediation of Ce3+/Ce4+ and oxygen vacancy. Chem. Eng. J. 433, 133597 (2022). https://doi.org/10.1016/j.cej.2021.133597
- Y. Wang, M.Z. Zhao, C. Hou, W.Q. Chen, S.S. Li et al., Efficient degradation of perfluorooctanoic acid by solar photo-electro-Fenton like system fabricated by MOFs/carbon nanofibers composite membrane. Chem. Eng. J. 414, 128940 (2021). https://doi.org/10.1016/j.cej.2021.128940
- Y. Wang, S. Li, C. Hou, L. Jing, R. Ren et al., Biomass-based carbon fiber/MOFs composite electrode for electro-Fenton degradation of TBBPA. Sep. Purif. Technol. 282, 120059 (2022). https://doi.org/10.1016/j.seppur.2021.120059
- F.S. Xie, Y. Gao, J.B. Zhang, H.L. Bai, J.F. Zhang et al., A novel bifunctional cathode for the generation and activation of H2O2 in electro-Fenton: Characteristics and mechanism. Electrochim. Acta 430, 141099 (2022). https://doi.org/10.1016/j.electacta.2022.141099
- Y. Zhang, J. Sun, Z. Guo, X. Zheng, P. Guo et al., The decomplexation of Cu-EDTA by electro-assisted heterogeneous activation of persulfate via acceleration of Fe(II)/Fe(III) redox cycle on Fe-MOF catalyst. Chem. Eng. J. 430, 133025 (2022). https://doi.org/10.1016/j.cej.2021.133025
- S. Zhou, J. Zhu, Z. Wang, Z. Yang, W. Yang et al., Defective MOFs-based electrocatalytic self-cleaning membrane for wastewater reclamation: Enhanced antibiotics removal, membrane fouling control and mechanisms. Water Res. 220, 118635 (2022). https://doi.org/10.1016/j.watres.2022.118635
- C.S. Liu, J.J. Li, H. Pang, Metal-organic framework-based materials as an emerging platform for advanced electrochemical sensing. Coord. Chem. Rev. 410, 213222 (2020). https://doi.org/10.1016/j.ccr.2020.213222
- Y. Wei, Y. Hui, X. Lu, C. Liu, Y. Zhang et al., One-pot preparation of NiMn layered double hydroxide-MOF material for highly sensitive electrochemical sensing of glucose. J. Electroanal. Chem. 933, 117276 (2023).https://doi.org/10.1016/j.jelechem.2023.117276
- M. Devaraj, Y. Sasikumar, S. Rajendran, L.C. Ponce, Review-metal organic framework based nanomaterials for electrochemical sensing of toxic heavy metal ions: Progress and their prospects. J. Electrochem. Soc. 168(3), 037513 (2021). https://doi.org/10.1149/1945-7111/abec97
- S. Tajik, H. Beitollahi, F.G. Nejad, I. Sheikhshoaie, A.S. Nugraha et al., Performance of metal-organic frameworks in the electrochemical sensing of environmental pollutants. J. Mater. Chem. A 9(13), 8195–8220 (2021). https://doi.org/10.1039/d0ta08344e
- W.W. Cheng, X.Z. Tang, Y. Zhang, D. Wu, W.J. Yang, Applications of metal-organic framework (MOF)-based sensors for food safety: enhancing mechanisms and recent advances. Trends Food Sci. Technol. 112, 268–282 (2021). https://doi.org/10.1016/j.tifs.2021.04.004
- C.W. Kung, T.H. Chang, L.Y. Chou, J.T. Hupp, O.K. Farha et al., Porphyrin-based metal-organic framework thin films for electrochemical nitrite detection. Electrochem. Commun. 58, 51–56 (2015). https://doi.org/10.1016/j.elecom.2015.06.003
- E. Shi, G. Yu, H. Lin, C. Liang, T. Zhang et al., The incorporation of bismuth(III) into metal-organic frameworks for electrochemical detection of trace cadmium(II) and lead(II). Microchim. Acta 186(7), 451 (2019). https://doi.org/10.1007/s00604-019-3522-6
- S. Singh, A. Numan, Y. Zhan, V. Singh, T. Van Hung et al., A novel highly efficient and ultrasensitive electrochemical detection of toxic mercury (II) ions in canned tuna fish and tap water based on a copper metal-organic framework. J. Hazard. Mater. 399, 123042 (2020). https://doi.org/10.1016/j.jhazmat.2020.123042
- Y.H. Cheng, D. Barpaga, J.A. Soltis, V. Shutthanandan, R. Kargupta et al., Metal-organic framework-based microfluidic impedance sensor platform for ultrasensitive detection of perfluorooctanesulfonate. ACS Appl. Mater. Interfaces 12(9), 10503–10514 (2020). https://doi.org/10.1021/acsami.9b22445
- S. Kempahanumakkagari, K. Vellingiri, A. Deep, E.E. Kwon, N. Bolan et al., Metal-organic framework composites as electrocatalysts for electrochemical sensing applications. Coord. Chem. Rev. 357, 105–129 (2018). https://doi.org/10.1016/j.ccr.2017.11.028
- F. Cai, Q. Wang, X. Chen, W. Qiu, F. Zhan et al., Selective binding of Pb2+ with manganese-terephthalic acid MOF/SWCNTs: Theoretical modeling, experimental study and electroanalytical application. Biosens. Bioelectron. 98, 310–316 (2017). https://doi.org/10.1016/j.bios.2017.07.007
- A.D. Ambaye, K.K. Kefeni, T.G. Kebede, B. Ntsendwana, S.B. Mishra et al., Cu-MOF/N-doped GO nanocomposites modified screen-printed carbon electrode towards detection of 4-nitrophenol. J. Electroanal. Chem. 919, 116542 (2022). https://doi.org/10.1016/j.jelechem.2022.116542
- Y. Cao, L.N. Wang, C. Shen, C.Y. Wang, X.Y. Hu et al., An electrochemical sensor on the hierarchically porous Cu-BTC MOF platform for glyphosate determination. Sens. Actuat. B. 283, 487–494 (2019). https://doi.org/10.1016/j.snb.2018.12.064
- T. Zhang, J.Z. Wei, X.J. Sun, X.J. Zhao, H.L. Tang et al., Rapid synthesis of UiO-66 by means of electrochemical cathode method with electrochemical detection of 2,4,6-TCP. Inorg. Chem. Commun. 111, 107671 (2020). https://doi.org/10.1016/j.inoche.2019.107671
- M.S. Denny, J.C. Moreton, L. Benz, S.M. Cohen, Metal-organic frameworks for membrane-based separations. Nat. Rev. Mater. 1(12), 16078 (2016). https://doi.org/10.1038/natrevmats.2016.78
- J. Lu, H.T. Wang, Emerging porous framework material-based nanofluidic membranes toward ultimate ion separation. Matter 4(9), 2810–2830 (2021). https://doi.org/10.1016/j.matt.2021.06.045
- Y.C. Liu, L.H. Yeh, M.J. Zheng, K.C. Wu, Highly selective and high-performance osmotic power generators in subnanochannel membranes enabled by metal-organic frameworks. Sci. Adv. 7(10), eabe9924 (2021). https://doi.org/10.1126/sciadv.abe9924
- L. Xia, Y. Zhao, X. Zhang, Y. Qiu, J. Shao et al., Ionic control of functional zeolitic imidazolate framework-based membrane for tailoring selectivity toward target ions. ACS Appl. Mater. Interfaces 14(8), 11038–11049 (2022). https://doi.org/10.1021/acsami.1c24876
- Y. Kim, K. Kim, H.H. Eom, X. Su, J.W. Lee, Electrochemically-assisted removal of cadmium ions by redox active Cu-based metal-organic framework. Chem. Eng. J. 421, 129765 (2021). https://doi.org/10.1016/j.cej.2021.129765
- K. Zuo, X. Huang, X. Liu, E.M. Gil Garcia, J. Kim et al., A hybrid metal-organic framework-reduced graphene oxide nanomaterial for selective removal of chromate from water in an electrochemical process. Environ. Sci. Technol. 54(20), 13322–13332 (2020). https://doi.org/10.1021/acs.est.0c04703
- W.B. Ma, X.A. Du, M.M. Liu, F.F. Gao, X.L. Ma et al., A conductive chlorine ion-imprinted polymer threaded in metal-organic frameworks for electrochemically selective separation of chloride ions. Chem. Eng. J. 412, 128576 (2021). https://doi.org/10.1016/j.cej.2021.128576
- P.F. Wang, X. Du, T. Chen, X.G. Hao, A. Abudula et al., A novel electroactive PPy/HKUST-1 composite film-coated electrode for the selective recovery of lithium ions with low concentrations in aqueous solutions. Electrochim. Acta 306, 35–44 (2019). https://doi.org/10.1016/j.electacta.2019.03.106
- Y. Guo, Y. Ying, Y. Mao, X. Peng, B. Chen, Polystyrene sulfonate threaded through a metal-organic framework membrane for fast and selective lithium-ion separation. Angew. Chem. Int. Ed. 55(48), 15120–15124 (2016). https://doi.org/10.1002/anie.201607329
- T. Xu, M.A. Shehzad, X. Wang, B. Wu, L. Ge et al., Engineering leaf-like UiO-66-SO3H membranes for selective transport of cations. Nano-Micro Lett. 12(1), 51 (2020). https://doi.org/10.1007/s40820-020-0386-6
- H. Zhang, J. Hou, Y. Hu, P. Wang, R. Ou et al., Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores. Sci. Adv. 4(2), eaaq0066 (2018). https://doi.org/10.1126/sciadv.aaq0066
- C. Wang, F.F. Liu, Z. Tan, Y.M. Chen, W.C. Hu et al., Fabrication of bio-inspired 2D MOFs/PAA hybrid membrane for asymmetric ion transport. Adv. Funct. Mater. 30(9), 1908804 (2019). https://doi.org/10.1002/adfm.201908804
- X.L. Zhao, C.X. Lu, L.S. Yang, W.P. Chen, W.W. Xin et al., Metal organic framework enhanced SPEEK/SPSF heterogeneous membrane for ion transport and energy conversion. Nano Energy 81, 105657 (2021). https://doi.org/10.1016/j.nanoen.2020.105657
- Z.Q. Li, G.L. Zhu, R.J. Mo, M.Y. Wu, X.L. Ding et al., Light-enhanced osmotic energy harvester using photoactive porphyrin metal-organic framework membranes. Angew. Chem. Int. Ed. 61(22), e202202698 (2022). https://doi.org/10.1002/anie.202202698
- A. Walsh, K.T. Butler, C.H. Hendon, Chemical principles for electroactive metal-organic frameworks. MRS Bull. 41(11), 870–876 (2016). https://doi.org/10.1557/mrs.2016.243
- S. Pandey, B. Demaske, O.A. Ejegbavwo, A.A. Berseneva, W. Setyawan et al., Electronic structures and magnetism of Zr-, Th-, and U-based metal-organic frameworks (MOFs) by density functional theory. Comput. Mater. Sci. 184, 109903 (2020). https://doi.org/10.1016/j.commatsci.2020.109903
- A. De Vos, K. Hendrickx, P. Van Der Voort, V. Van Speybroeck, K. Lejaeghere, Missing linkers: An alternative pathway to UiO-66 electronic structure engineering. Chem. Mater. 29(7), 3006–3019 (2017). https://doi.org/10.1021/acs.chemmater.6b05444
- M.A. Nasalevich, C.H. Hendon, J.G. Santaclara, K. Svane, B. van der Linden et al., Electronic origins of photocatalytic activity in d0 metal organic frameworks. Sci. Rep. 6(1), 23676 (2016). https://doi.org/10.1038/srep23676
- J.L. Mancuso, A.M. Mroz, K.N. Le, C.H. Hendon, Electronic structure modeling of metal-organic frameworks. Chem. Rev. 120(16), 8641–8715 (2020). https://doi.org/10.1021/acs.chemrev.0c00148
- M.A. Syzgantseva, C.P. Ireland, F.M. Ebrahim, B. Smit, O.A. Syzgantseva, Metal substitution as the method of modifying electronic structure of metal-organic frameworks. J. Am. Chem. Soc. 141(15), 6271–6278 (2019). https://doi.org/10.1021/jacs.8b13667
- H.Q. Pham, T. Mai, N.N. Pham-Tran, Y. Kawazoe, H. Mizuseki et al., Engineering of band gap in metal organic frameworks by functionalizing organic linker: a systematic density functional theory investigation. J. Phys. Chem. C 118(9), 4567–4577 (2014). https://doi.org/10.1021/jp405997r
- N. Heidary, D. Chartrand, A. Guiet, N. Kornienko, Rational incorporation of defects within metal-organic frameworks generates highly active electrocatalytic sites. Chem. Sci. 12(21), 7324–7333 (2021). https://doi.org/10.1039/d1sc00573a
- P.M. Usov, C.F. Leong, B. Chan, M. Hayashi, H. Kitagawa et al., Probing charge transfer characteristics in a donor-acceptor metal-organic framework by Raman spectroelectrochemistry and pressure-dependence studies. Phys. Chem. Chem. Phys. 20(40), 25772–25779 (2018). https://doi.org/10.1039/c8cp04157a
- J. Nyakuchena, S. Ostresh, D. Streater, B. Pattengale, J. Neu et al., Direct evidence of photoinduced charge transport mechanism in 2D conductive metal organic frameworks. J. Am. Chem. Soc. 142(50), 21050–21058 (2020). https://doi.org/10.1021/jacs.0c09000
- D.M. D’Alessandro, Exploiting redox activity in metal-organic frameworks: concepts, trends and perspectives. Chem. Commun. 52(58), 8957–8971 (2016). https://doi.org/10.1039/c6cc00805d
- K.H. Ly, I.M. Weidinger, Understanding active sites in molecular (photo)electrocatalysis through complementary vibrational spectroelectrochemistry. Chem. Commun. 57(19), 2328–2342 (2021). https://doi.org/10.1039/d0cc07376h
- E.A. Dolgopolova, A.J. Brandt, O.A. Ejegbavwo, A.S. Duke, T.D. Maddumapatabandi et al., Electronic properties of bimetallic metal-organic frameworks (MOFs): tailoring the density of electronic states through MOF modularity. J. Am. Chem. Soc. 139(14), 5201–5209 (2017). https://doi.org/10.1021/jacs.7b01125
- D. Wu, T. Hua, S. Han, X. Lan, J. Cheng et al., Two-dimensional manganese-iron bimetallic MOF-74 for electro-Fenton degradation of sulfamethoxazole. Chemosphere 327, 138514 (2023). https://doi.org/10.1016/j.chemosphere.2023.138514
- X. Huang, D. Huang, J. Chen, R. Ye, Q. Lin et al., Fabrication of novel electrochemical sensor based on bimetallic Ce-Ni-MOF for sensitive detection of bisphenol A. Anal. Bioanal. Chem. 412(4), 849–860 (2020). https://doi.org/10.1007/s00216-019-02282-3
- D.M. Tiede, G. Kwon, X. He, K.L. Mulfort, A.B.F. Martinson, Characterizing electronic and atomic structures for amorphous and molecular metal oxide catalysts at functional interfaces by combining soft X-ray spectroscopy and high-energy X-ray scattering. Nanoscale 12(25), 13276–13296 (2020). https://doi.org/10.1039/d0nr02350g
- T. Wang, L. Gao, J. Hou, S.J.A. Herou, J.T. Griffiths et al., Rational approach to guest confinement inside MOF cavities for low-temperature catalysis. Nat. Commun. 10(1), 1340 (2019). https://doi.org/10.1038/s41467-019-08972-x
- A. Braschinsky, J.W. Steed, Molecular clusters in confined spaces. Coord. Chem. Rev. 473, 214840 (2022). https://doi.org/10.1016/j.ccr.2022.214840
- S. Let, P. Samanta, S. Dutta, S.K. Ghosh, A Dye@MOF composite as luminescent sensory material for selective and sensitive recognition of Fe(III) ions in water. Inorg. Chim. Acta 500, 119205 (2020). https://doi.org/10.1016/j.ica.2019.119205
- V. Haigis, F.X. Coudert, R. Vuilleumier, A. Boutin, Investigation of structure and dynamics of the hydrated metal-organic framework MIL-53(Cr) using first-principles molecular dynamics. Phys. Chem. Chem. Phys. 15(43), 19049–19056 (2013). https://doi.org/10.1039/c3cp53126k
- L. Zhang, B. Zheng, Y. Gao, L. Wang, J. Wang et al., Confined water vapor in ZIF-8 nanopores. ACS Omega 7(1), 64–69 (2022). https://doi.org/10.1021/acsomega.1c02953
- G.R. Medders, F. Paesani, Water dynamics in metal-organic frameworks: effects of heterogeneous confinement predicted by computational spectroscopy. J. Phys. Chem. Lett. 5(16), 2897–2902 (2014). https://doi.org/10.1021/jz5013998
- A. Ghosh, S. Karmakar, F.A. Rahimi, R.S. Roy, S. Nath et al., Confinement matters: stabilization of CdS nanops inside a postmodified MOF toward photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 14(22), 25220–25231 (2022). https://doi.org/10.1021/acsami.1c23458
- S. Zhang, T. Hedtke, X. Zhou, M. Elimelech, J.-H. Kim, Environmental applications of engineered materials with nanoconfinement. ACS EST Engg. 1(4), 706–724 (2021). https://doi.org/10.1021/acsestengg.1c00007
- Z. Xu, L. Yang, C. Xu, Pt@UiO-66 heterostructures for highly selective detection of hydrogen peroxide with an extended linear range. Anal. Chem. 87(6), 3438–3444 (2015). https://doi.org/10.1021/ac5047278
- D. Munoz-Santiburcio, D. Marx, Confinement-controlled aqueous chemistry within nanometric slit pores. Chem. Rev. 121(11), 6293–6320 (2021). https://doi.org/10.1021/acs.chemrev.0c01292
- R. Epsztein, R.M. DuChanois, C.L. Ritt, A. Noy, M. Elimelech, Towards single-species selectivity of membranes with subnanometre pores. Nat. Nanotechnol. 15(6), 426–436 (2020). https://doi.org/10.1038/s41565-020-0713-6
- R. Li, B. Lu, Z. Xie, J. Zhai, The confinement effect of angstrom-sized pores in asymmetrical membrane constructed by zeolitic imidazolate frameworks: Partially dehydrated ion transport performance. Small 15(52), e1904866 (2019). https://doi.org/10.1002/smll.201904866
- N.H. Vu, H.C. Dong, M.V. Nguyen, D. Hoang, T.T. Trinh et al., Mechanism of proton transport in water clusters and the effect of electric fields: a DFT study. Curr. Appl. Phys. 25, 62–69 (2021). https://doi.org/10.1016/j.cap.2021.02.006
- D.D. Borges, S. Devautour-Vinot, H. Jobic, J. Ollivier, F. Nouar et al., Proton transport in a highly conductive porous zirconium-based metal-organic framework: molecular insight. Angew. Chem. Int. Ed. 55(12), 3919–3924 (2016). https://doi.org/10.1002/anie.201510855
- X. Li, H. Zhang, H. Yu, J. Xia, Y.B. Zhu et al., Unidirectional and selective proton transport in artificial heterostructured nanochannels with nano-to-subnano confined water clusters. Adv. Mater. 32(24), e2001777 (2020). https://doi.org/10.1002/adma.202001777
- Y. Zhang, A. Nsabimana, L. Zhu, X. Bo, C. Han et al., Metal organic frameworks/macroporous carbon composites with enhanced stability properties and good electrocatalytic ability for ascorbic acid and hemoglobin. Talanta 129, 55–62 (2014). https://doi.org/10.1016/j.talanta.2014.05.007
- W.R. Zheng, M.J. Liu, L.Y.S. Lee, Electrochemical instability of metal-organic frameworks: in situ spectroelectrochemical investigation of the real active sites. ACS Catal. 10(1), 81 (2020). https://doi.org/10.1021/acscatal.9b03790
- J.Q. Shen, P.Q. Liao, D.D. Zhou, C.T. He, J.X. Wu et al., Modular and stepwise synthesis of a hybrid metal-organic framework for efficient electrocatalytic oxygen evolution. J. Am. Chem. Soc. 139(5), 1778–1781 (2017). https://doi.org/10.1021/jacs.6b12353
- Z. Zhou, S. Mukherjee, S. Hou, W. Li, M. Elsner et al., Porphyrinic MOF film for multifaceted electrochemical sensing. Angew. Chem. Int. Ed. 60(37), 20551–20557 (2021). https://doi.org/10.1002/anie.202107860
- N.S. Lopa, M.M. Rahman, F. Ahmed, T. Ryu, J. Lei et al., A chemically and electrochemically stable, redox-active and highly sensitive metal azolate framework for non-enzymatic electrochemical detection of glucose. J. Electroanal. Chem. 840, 263–271 (2019). https://doi.org/10.1016/j.jelechem.2019.03.081
- P.-Q. Liao, C.-T. He, D.-D. Zhou, J.-P. Zhang, X.-M. Chen, Porous metal azolate frameworks, the chemistry of metal-organic frameworks: Synthesis, characterization, and applications (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2016), pp.309–343
- Z. Zhu, X. He, W.-N. Wang, Unraveling the origin of the “Turn-On” effect of Al-MIL-53-NO2 during H2S detection. CrystEngComm 22(2), 195–204 (2020). https://doi.org/10.1039/c9ce01595g
- D. Yao, C. Tang, A. Vasileff, X. Zhi, Y. Jiao et al., The controllable reconstruction of Bi-MOFs for electrochemical CO2 reduction through electrolyte and potential mediation. Angew. Chem. Int. Ed. 60(33), 18178–18184 (2021). https://doi.org/10.1002/anie.202104747
- A. Pathak, J.W. Shen, M. Usman, L.F. Wei, S. Mendiratta et al., Integration of a (-Cu-S-)n plane in a metal-organic framework affords high electrical conductivity. Nat. Commun. 10(1), 1721 (2019). https://doi.org/10.1038/s41467-019-09682-0
- L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne et al., Metal-organic framework materials as chemical sensors. Chem. Rev. 112(2), 1105–1125 (2012). https://doi.org/10.1021/cr200324t
- L. Sun, M.G. Campbell, M. Dinca, Electrically conductive porous metal-organic frameworks. Angew. Chem. Int. Ed. 55(11), 3566–3579 (2016). https://doi.org/10.1002/anie.201506219
- J. Liu, X. Song, T. Zhang, S. Liu, H. Wen et al., 2D conductive metal-organic frameworks: an emerging platform for electrochemical energy storage. Angew. Chem. Int. Ed. 60(11), 5612–5624 (2021). https://doi.org/10.1002/anie.202006102
- B.J. Zhu, D.S. Wen, Z.B. Liang, R.Q. Zou, Conductive metal-organic frameworks for electrochemical energy conversion and storage. Coord. Chem. Rev. 446, 214119 (2021). https://doi.org/10.1016/j.ccr.2021.214119
- J.H. Dou, M.Q. Arguilla, Y. Luo, J. Li, W. Zhang et al., Atomically precise single-crystal structures of electrically conducting 2D metal-organic frameworks. Nat. Mater. 20(2), 222–228 (2021). https://doi.org/10.1038/s41563-020-00847-7
- L.S. Xie, G. Skorupskii, M. Dinca, Electrically conductive metal-organic frameworks. Chem. Rev. 120(16), 8536–8580 (2020). https://doi.org/10.1021/acs.chemrev.9b00766
- D. Sheberla, J.C. Bachman, J.S. Elias, C.J. Sun, Y. Shao-Horn et al., Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 16(2), 220–224 (2017). https://doi.org/10.1038/nmat4766
- A.A. Talin, A. Centrone, A.C. Ford, M.E. Foster, V. Stavila et al., Tunable electrical conductivity in metal-organic framework thin-film devices. Science 343(6166), 66–69 (2014). https://doi.org/10.1126/science.1246738
- P. Stallinga, Electronic transport in organic materials: comparison of band theory with percolation/(variable range) hopping theory. Adv. Mater. 23(30), 3356–3362 (2011). https://doi.org/10.1002/adma.201101129
- Y. Jiang, I. Oh, S.H. Joo, Y.S. Seo, S.H. Lee et al., Synthesis of a copper 1,3,5-triamino-2,4,6-benzenetriol metal-organic framework. J. Am. Chem. Soc. 142(43), 18346–18354 (2020). https://doi.org/10.1021/jacs.0c02389
- G. Skorupskii, B.A. Trump, T.W. Kasel, C.M. Brown, C.H. Hendon et al., Efficient and tunable one-dimensional charge transport in layered lanthanide metal-organic frameworks. Nat. Chem. 12(2), 131–136 (2020). https://doi.org/10.1038/s41557-019-0372-0
- X. Nie, A. Kulkarni, D.S. Sholl, Computational prediction of metal organic frameworks suitable for molecular infiltration as a route to development of conductive materials. J. Phys. Chem. Lett. 6(9), 1586–1591 (2015). https://doi.org/10.1021/acs.jpclett.5b00298
- M.D. Allendorf, M.E. Foster, F. Leonard, V. Stavila, P.L. Feng et al., Guest-induced emergent properties in metal-organic frameworks. J. Phys. Chem. Lett. 6(7), 1182–1195 (2015). https://doi.org/10.1021/jz5026883
- B. Le Ouay, M. Boudot, T. Kitao, T. Yanagida, S. Kitagawa et al., Nanostructuration of PEDOT in porous coordination polymers for tunable porosity and conductivity. J. Am. Chem. Soc. 138(32), 10088–10091 (2016). https://doi.org/10.1021/jacs.6b05552
- A.F. Sapnik, I. Bechis, S.M. Collins, D.N. Johnstone, G. Divitini et al., Mixed hierarchical local structure in a disordered metal-organic framework. Nat. Commun. 12(1), 2062 (2021). https://doi.org/10.1038/s41467-021-22218-9
- M.D. Allendorf, V. Stavila, M. Witman, C.K. Brozek, C.H. Hendon, What lies beneath a metal-organic framework crystal structure? New design principles from unexpected behaviors. J. Am. Chem. Soc. 143(18), 6705–6723 (2021). https://doi.org/10.1021/jacs.0c10777
- J.G. Park, M.L. Aubrey, J. Oktawiec, K. Chakarawet, L.E. Darago et al., Charge delocalization and bulk electronic conductivity in the mixed-valence metal-organic framework Fe(1,2,3-triazolate)2(BF4)x. J. Am. Chem. Soc. 140(27), 8526–8534 (2018). https://doi.org/10.1021/jacs.8b03696
- O. Kozachuk, I. Luz, F.X. Llabres i Xamena, H. Noei, M. Kauer et al., Multifunctional, defect-engineered metal-organic frameworks with ruthenium centers: sorption and catalytic properties. Angew. Chem. Int. Ed. 53(27), 7058–7062 (2014). https://doi.org/10.1002/anie.201311128
- J. Li, H. Wang, X.Z. Yuan, J.J. Zhang, J.W. Chew, Metal-organic framework membranes for wastewater treatment and water regeneration. Coord. Chem. Rev. 404, 213116 (2020). https://doi.org/10.1016/j.ccr.2019.213116
- T. Egami, S. Billinge, Underneath the Bragg peaks: structural analysis of complex materials, 2nd edn. (Pergamon, Kidlington, 2012)
- C. Li, Q. Yang, M. Shen, J.Y. Ma, B.W. Hu, The electrochemical Na intercalation/extraction mechanism of ultrathin cobalt(II) terephthalate-based MOF nanosheets revealed by synchrotron X-ray absorption spectroscopy. Energy Stor. Mater. 14, 82–89 (2018). https://doi.org/10.1016/j.ensm.2018.02.021
- K.W. Chapman, P.J. Chupas, Pair distribution function analysis of high-energy X-ray scattering data, In-situ characterization of heterogeneous catalysts (John Wiley & Sons Inc, New Jersey, 2013), pp.147–168
- S.J.L. Billinge, The rise of the X-ray atomic pair distribution function method: a series of fortunate events. Philos. Trans. R. Soc. A 377(2147), 20180413 (2019). https://doi.org/10.1098/rsta.2018.0413
- M.W. Terban, S.J.L. Billinge, Structural analysis of molecular materials using the pair distribution function. Chem. Rev. 122(1), 1208–1272 (2022). https://doi.org/10.1021/acs.chemrev.1c00237
- X. He, R.Z. Waldman, D.J. Mandia, N. Jeon, N.J. Zaluzec et al., Resolving the atomic structure of sequential infiltration synthesis derived inorganic clusters. ACS Nano 14(11), 14846–14860 (2020). https://doi.org/10.1021/acsnano.0c03848
- M. Wang, X. He, E. Hoenig, G. Yan, G. Peng et al., Tuning transport in graphene oxide membrane with single-site copper (II) cations. iScience 25(4), 104044 (2022). https://doi.org/10.1016/j.isci.2022.104044
- P. Juhás, T. Davis, C.L. Farrow, S.J. Billinge, PDFgetX3: A rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions. J. Appl. Crystallogr. 46(2), 560–566 (2013). https://doi.org/10.1107/S0021889813005190
- M.A. Molina, A. Manjon-Sanz, M. Sanchez-Sanchez, On the contribution of pair distribution function (PDF) to the characterization of nanocrystalline MOFs: The case of M-MOF-74. Microporous Mesoporous Mater. 319, 110973 (2021). https://doi.org/10.1016/j.micromeso.2021.110973
- T. Stassin, I. Stassen, J. Marreiros, A.J. Cruz, R. Verbeke et al., Solvent-free powder synthesis and MOF-CVD thin films of the large-pore metal-organic framework MAF-6. Chem. Mater. 32(5), 1784–1793 (2020). https://doi.org/10.1021/acs.chemmater.9b03807
- Z. Hassanzadeh Fard, N.E. Wong, C.D. Malliakas, P. Ramaswamy, J.M. Taylor et al., Superprotonic phase change to a robust phosphonate metal–organic framework. Chem. Mater. 30(2), 314–318 (2018). https://doi.org/10.1021/acs.chemmater.7b04467
- K. Kang, L. Li, M. Zhang, X. Miao, L. Lei et al., Two-fold interlocking cationic metal-organic framework material with exchangeable chloride for perrhenate/pertechnetate sorption. Inorg. Chem. 61(29), 11463–11470 (2022). https://doi.org/10.1021/acs.inorgchem.2c01846
- S. Rangwani, A.J. Howarth, M.R. DeStefano, C.D. Malliakas, A.E. Platero-Prats et al., Adsorptive removal of Sb(V) from water using a mesoporous Zr-based metal-organic framework. Polyhedron 151, 338–343 (2018). https://doi.org/10.1016/j.poly.2018.05.021
- I.S. Kim, Z. Li, J. Zheng, A.E. Platero-Prats, A. Mavrandonakis et al., Sinter-resistant platinum catalyst supported by metal-organic framework. Angew. Chem. Int. Ed. 57(4), 909–913 (2018). https://doi.org/10.1002/anie.201708092
- X. Zhang, I. da Silva, H.G.W. Godfrey, S.K. Callear, S.A. Sapchenko et al., Confinement of iodine molecules into triple-helical chains within robust metal-organic frameworks. J. Am. Chem. Soc. 139(45), 16289–16296 (2017). https://doi.org/10.1021/jacs.7b08748
- C. Castillo-Blas, J.M. Moreno, I. Romero-Muniz, A.E. Platero-Prats, Applications of pair distribution function analyses to the emerging field of non-ideal metal-organic framework materials. Nanoscale 12(29), 15577–15587 (2020). https://doi.org/10.1039/d0nr01673j
- F.C.N. Firth, M.W. Gaultois, Y. Wu, J.M. Stratford, D.S. Keeble et al., Exploring the role of cluster formation in UiO family Hf metal-organic frameworks with in situ X-ray pair distribution function analysis. J. Am. Chem. Soc. 143(47), 19668–19683 (2021). https://doi.org/10.1021/jacs.1c06990
- H. Xu, S. Sommer, N.L.N. Broge, J. Gao, B.B. Iversen, The chemistry of nucleation: In situ pair distribution function analysis of secondary building units during UiO-66 MOF formation. Chem. Eur. J. 25(8), 2051–2058 (2019). https://doi.org/10.1002/chem.201805024
- A.E. Platero-Prats, A. Mavrandonakis, L.C. Gallington, Y. Liu, J.T. Hupp et al., Structural transitions of the metal-oxide nodes within metal-organic frameworks: on the local structures of NU-1000 and UiO-66. J. Am. Chem. Soc. 138(12), 4178–4185 (2016). https://doi.org/10.1021/jacs.6b00069
- K.W. Chapman, D.F. Sava, G.J. Halder, P.J. Chupas, T.M. Nenoff, Trapping guests within a nanoporous metal-organic framework through pressure-induced amorphization. J. Am. Chem. Soc. 133(46), 18583–18585 (2011). https://doi.org/10.1021/ja2085096
- S. Lu, L. Liu, H. Demissie, G. An, D. Wang, Design and application of metal-organic frameworks and derivatives as heterogeneous Fenton-like catalysts for organic wastewater treatment: A review. Environ. Int. 146, 106273 (2021). https://doi.org/10.1016/j.envint.2020.106273
- M. Jahan, Q. Bao, K.P. Loh, Electrocatalytically active graphene–porphyrin MOF composite for oxygen reduction reaction. J. Am. Chem. Soc. 134(15), 6707–6713 (2012). https://doi.org/10.1021/ja211433h
- N.K. Zimmerli, C.R. Müller, P.M. Abdala, Deciphering the structure of heterogeneous catalysts across scales using pair distribution function analysis. Trends Chem. 4(9), 807–821 (2022). https://doi.org/10.1016/j.trechm.2022.06.006
- A.-C. Dippel, M. Roelsgaard, U. Boettger, T. Schneller, O. Gutowski et al., Local atomic structure of thin and ultrathin films via rapid high-energy X-ray total scattering at grazing incidence. IUCr J. 6(2), 290–298 (2019). https://doi.org/10.1107/S2052252519000514
- C. Castillo-Blas, I. Romero-Muñiz, A. Mavrandonakis, L. Simonelli, A.E. Platero-Prats, Unravelling the local structure of catalytic Fe-oxo clusters stabilized on the MOF-808 metal organic-framework. Chem. Commun. 56(100), 15615–15618 (2020). https://doi.org/10.1039/D0CC06134D
References
M. Kummu, J.H. Guillaume, H. de Moel, S. Eisner, M. Florke et al., The world’s road to water scarcity: shortage and stress in the 20th century and pathways towards sustainability. Sci. Rep. 6(1), 38495 (2016). https://doi.org/10.1038/srep38495
M. Salgot, M. Folch, Wastewater treatment and water reuse. Curr. Opinion Environ. Sci. Health. 2, 64–74 (2018). https://doi.org/10.1016/j.coesh.2018.03.005
Y. Jiang, P. Biswas, J.D. Fortner, A review of recent developments in graphene-enabled membranes for water treatment. Environ. Sci.: Water Res. Technol. 2(6), 915–922 (2016). https://doi.org/10.1039/c6ew00187d
X. Li, G. Huang, X. Chen, J. Huang, M. Li et al., A review on graphitic carbon nitride (g-C3N4) based hybrid membranes for water and wastewater treatment. Sci. Total Environ. 792, 148462 (2021). https://doi.org/10.1016/j.scitotenv.2021.148462
C. Wang, J. Ye, L. Liang, X. Cui, L. Kong et al., Application of MXene-based materials in Fenton-like systems for organic wastewater treatment: a review. Sci. Total Environ. 862, 160539 (2023). https://doi.org/10.1016/j.scitotenv.2022.160539
P. Kumar, V. Bansal, K.H. Kim, E.E. Kwon, Metal-organic frameworks (MOFs) as futuristic options for wastewater treatment. J. Ind. Eng. Chem. 62, 130–145 (2018). https://doi.org/10.1016/j.jiec.2017.12.051
I. Stassen, N. Burtch, A. Talin, P. Falcaro, M. Allendorf et al., An updated roadmap for the integration of metal-organic frameworks with electronic devices and chemical sensors. Chem. Soc. Rev. 46(11), 3185–3241 (2017). https://doi.org/10.1039/c7cs00122c
M. Rubio-Martinez, C. Avci-Camur, A.W. Thornton, I. Imaz, D. Maspoch et al., New synthetic routes towards MOF production at scale. Chem. Soc. Rev. 46(11), 3453–3480 (2017). https://doi.org/10.1039/C7CS00109F
N. Al Amery, H.R. Abid, S. Al-Saadi, S. Wang, S. Liu, Facile directions for synthesis, modification and activation of MOFs. Mater. Today Chem. 17, 100343 (2020). https://doi.org/10.1016/j.mtchem.2020.100343
S. Głowniak, B. Szczęśniak, J. Choma, M. Jaroniec, Advances in microwave synthesis of nanoporous materials. Adv. Mater. 33(48), 2103477 (2021). https://doi.org/10.1002/adma.202103477
Z.-Q. Li, L.-G. Qiu, T. Xu, Y. Wu, W. Wang et al., Ultrasonic synthesis of the microporous metal–organic framework Cu3(BTC)2 at ambient temperature and pressure: An efficient and environmentally friendly method. Mater. Lett. 63(1), 78–80 (2009). https://doi.org/10.1016/j.matlet.2008.09.010
X. He, W.-N. Wang, Synthesis of Cu-trimesic acid/Cu-1,4-benzenedioic acid via microdroplets: Role of component compositions. Cryst. Growth Des. 19(2), 1095–1102 (2019). https://doi.org/10.1021/acs.cgd.8b01606
J. Troyano, C. Çamur, L. Garzón-Tovar, A. Carné-Sánchez, I. Imaz et al., Spray-drying synthesis of MOFs, COFs, and related composites. Acc. Chem. Res. 53(6), 1206–1217 (2020). https://doi.org/10.1021/acs.accounts.0c00133
M.D. Allendorf, V. Stavila, Crystal engineering, structure–function relationships, and the future of metal–organic frameworks. CrystEngComm 17(2), 229–246 (2015). https://doi.org/10.1039/C4CE01693A
J.R. Li, R.J. Kuppler, H.C. Zhou, Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 38(5), 1477–1504 (2009). https://doi.org/10.1039/b802426j
X. He, W.N. Wang, Pressure-regulated synthesis of Cu(TPA)·(DMF) in microdroplets for selective CO2 adsorption. Dalton Trans. 48(3), 1006–1016 (2019). https://doi.org/10.1039/c8dt03812k
X. He, D.R. Chen, W.N. Wang, Bimetallic metal-organic frameworks (MOFs) synthesized using the spray method for tunable CO2 adsorption. Chem. Eng. J. 382, 122825 (2020). https://doi.org/10.1016/j.cej.2019.122825
J. Yang, Y.W. Yang, Metal-organic frameworks for biomedical applications. Small 16(10), e1906846 (2020). https://doi.org/10.1002/smll.201906846
J. Chen, F. Cheng, D. Luo, J. Huang, J. Ouyang et al., Recent advances in Ti-based MOFs in biomedical applications. Dalton Trans. 51(39), 14817–14832 (2022). https://doi.org/10.1039/d2dt02470e
L. Zhu, X.Q. Liu, H.L. Jiang, L.B. Sun, Metal-organic frameworks for heterogeneous basic catalysis. Chem. Rev. 117(12), 8129–8176 (2017). https://doi.org/10.1021/acs.chemrev.7b00091
X. He, W.N. Wang, MOF-based ternary nanocomposites for better CO2 photoreduction: roles of heterojunctions and coordinatively unsaturated metal sites. J. Mater. Chem. A 6(3), 932–940 (2018). https://doi.org/10.1039/c7ta09192c
F. Zheng, W. Zhang, X. Zhang, Y. Zhang, W. Chen, Sub-2 nm ultrathin and robust 2D FeNi layered double hydroxide nanosheets packed with 1D FeNi-MOFs for enhanced oxygen evolution electrocatalysis. Adv. Funct. Mater. 31(43), 2103318 (2021). https://doi.org/10.1002/adfm.202103318
F. Zheng, Z. Zhang, C. Zhang, W. Chen, Advanced electrocatalysts based on metal–organic frameworks. ACS Omega 5(6), 2495–2502 (2020). https://doi.org/10.1021/acsomega.9b03295
F. Zheng, Z. Zhang, D. Xiang, P. Li, C. Du et al., Fe/Ni bimetal organic framework as efficient oxygen evolution catalyst with low overpotential. J. Colloid Interface Sci. 555, 541–547 (2019). https://doi.org/10.1016/j.jcis.2019.08.005
F. Fan, Y. Hui, R. Devasenathipathy, X. Peng, Q. Huang et al., Composition-adjustable Mo6Co6C2/Co@carbon nanocage for enhanced oxygen reduction and evolution reactions. J. Colloid Interface Sci. 636, 450–458 (2023). https://doi.org/10.1016/j.jcis.2023.01.039
V. Shrivastav, S. Sundriyal, P. Goel, H. Kaur, S.K. Tuteja et al., Metal-organic frameworks (MOFs) and their composites as electrodes for lithium battery applications: novel means for alternative energy storage. Coord. Chem. Rev. 393, 48–78 (2019). https://doi.org/10.1016/j.ccr.2019.05.006
D. Wang, Z. Li, J. Zhou, H. Fang, X. He et al., Simultaneous detection and removal of formaldehyde at room temperature: Janus Au@ZnO@ZIF-8 nanops. Nano-Micro Lett. 10(1), 4 (2017). https://doi.org/10.1007/s40820-017-0158-0
R.J. Drout, L. Robison, Z.J. Chen, T. Islamoglu, O.K. Farha, Zirconium metal-organic frameworks for organic pollutant adsorption. Trends Chem. 1(3), 304–317 (2019). https://doi.org/10.1016/j.trechm.2019.03.010
X. He, V. Nguyen, Z. Jiang, D.W. Wang, Z. Zhu et al., Highly-oriented one-dimensional MOF-semiconductor nanoarrays for efficient photodegradation of antibiotics. Catal. Sci. Technol. 8(8), 2117–2123 (2018). https://doi.org/10.1039/c8cy00229k
X. He, H. Fang, D.J. Gosztola, Z. Jiang, P. Jena et al., Mechanistic insight into photocatalytic pathways of MIL-100(Fe)/TiO2 composites. ACS Appl. Mater. Interfaces 11(13), 12516–12524 (2019). https://doi.org/10.1021/acsami.9b00223
C. Candia-Onfray, S. Rojas, M.V.B. Zanoni, R. Salazar, An updated review of metal-organic framework materials in photo(electro)catalytic applications: From CO2 reduction to wastewater treatments. Curr. Opin. Electrochem. 26, 100669 (2021). https://doi.org/10.1016/j.coelec.2020.100669
A. Thiam, J.A. Lopez-Ruiz, D. Barpaga, S. Garcia-Segura, The surge of metal–organic-framework (MOFs)-based electrodes as key elements in electrochemically driven processes for the environment. Molecules 26(18), (2021). https://doi.org/10.3390/molecules26185713
L.T. Liu, Y.L. Zhou, S. Liu, M.T. Xu, The applications of metal-organic frameworks in electrochemical sensors. ChemElectroChem 5(1), 6–19 (2018). https://doi.org/10.1002/celc.201700931
N. Stock, S. Biswas, Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112(2), 933–969 (2012). https://doi.org/10.1021/cr200304e
H.V. Doan, H. Amer Hamzah, P. Karikkethu Prabhakaran, C. Petrillo, V.P. Ting, Hierarchical metal–organic frameworks with macroporosity: Synthesis, achievements, and challenges. Nano-Micro Lett. 11(1), 54 (2019). https://doi.org/10.1007/s40820-019-0286-9
G. Cai, P. Yan, L. Zhang, H.C. Zhou, H.L. Jiang, Metal-organic framework-based hierarchically porous materials: synthesis and applications. Chem. Rev. 121(20), 12278–12326 (2021). https://doi.org/10.1021/acs.chemrev.1c00243
Z. Wang, S.M. Cohen, Postsynthetic modification of metal-organic frameworks. Chem. Soc. Rev. 38(5), 1315–1329 (2009). https://doi.org/10.1039/b802258p
Q.L. Zhu, Q. Xu, Metal-organic framework composites. Chem. Soc. Rev. 43(16), 5468–5512 (2014). https://doi.org/10.1039/c3cs60472a
G.H. Chen, Electrochemical technologies in wastewater treatment. Sep. Purif. Technol. 38(1), 11–41 (2004). https://doi.org/10.1016/j.seppur.2003.10.006
M. Jiang, J. Su, X. Song, P. Zhang, M. Zhu et al., Interfacial reduction nucleation of noble metal nanodots on redox-active metal-organic frameworks for high-efficiency electrocatalytic conversion of nitrate to ammonia. Nano Lett. 22(6), 2529–2537 (2022). https://doi.org/10.1021/acs.nanolett.2c00446
Z.M. Lou, C.C. Yu, X.F. Wen, Y.H. Xu, J.M. Yu et al., Construction of Pd nanops/two-dimensional Co-MOF nanosheets heterojunction for enhanced electrocatalytic hydrodechlorination. Appl. Catal. B 317, 121730 (2022). https://doi.org/10.1016/j.apcatb.2022.121730
X. Zhu, H. Huang, H. Zhang, Y. Zhang, P. Shi et al., Filling mesopores of conductive metal-organic frameworks with Cu clusters for selective nitrate reduction to ammonia. ACS Appl. Mater. Interfaces 14(28), 32176–32182 (2022). https://doi.org/10.1021/acsami.2c09241
J. Wang, T. Feng, J. Chen, V. Ramalingam, Z. Li et al., Electrocatalytic nitrate/nitrite reduction to ammonia synthesis using metal nanocatalysts and bio-inspired metalloenzymes. Nano Energy 86, 106088 (2021). https://doi.org/10.1016/j.nanoen.2021.106088
X. Lu, H. Song, J. Cai, S. Lu, Recent development of electrochemical nitrate reduction to ammonia: A mini review. Electrochem. Commun. 129, 107094 (2021). https://doi.org/10.1016/j.elecom.2021.107094
H. Lu, K. Chandran, D. Stensel, Microbial ecology of denitrification in biological wastewater treatment. Water Res. 64, 237–254 (2014). https://doi.org/10.1016/j.watres.2014.06.042
Z. Fang, Z. Jin, S. Tang, P. Li, P. Wu et al., Porous two-dimensional iron-cyano nanosheets for high-rate electrochemical nitrate reduction. ACS Nano 16(1), 1072–1081 (2022). https://doi.org/10.1021/acsnano.1c08814
Y.C. Wang, Y.C. Chen, W.S. Chuang, J.H. Li, Y.S. Wang et al., Pore-confined silver nanops in a porphyrinic metal-organic framework for electrochemical nitrite detection. ACS Appl. Nano Mater. 3(9), 9440–9448 (2020). https://doi.org/10.1021/acsanm.0c02052
Z. Gao, Y. Lai, Y. Tao, L. Xiao, L. Zhang et al., Constructing well-defined and robust Th-MOF-supported single-site copper for production and storage of ammonia from electroreduction of nitrate. ACS Cent. Sci. 7(6), 1066–1072 (2021). https://doi.org/10.1021/acscentsci.1c00370
Y. Lv, J. Su, Y. Gu, B. Tian, J. Ma et al., Atomically precise integration of multiple functional motifs in catalytic metal–organic frameworks for highly efficient nitrate electroreduction. JACS Au. 2(12), 2765–2777 (2022). https://doi.org/10.1021/jacsau.2c00502
H.Y. Zhao, Y. Chen, Q.S. Peng, Q.N. Wang, G.H. Zhao, Catalytic activity of MOF(2Fe/Co)/carbon aerogel for improving H2O2 and •OH generation in solar photo-electro-Fenton process. Appl. Catal. B 203, 127–137 (2017). https://doi.org/10.1016/j.apcatb.2016.09.074
T. Hu, L. Tang, H. Feng, J. Zhang, X. Li et al., Metal-organic frameworks (MOFs) and their derivatives as emerging catalysts for electro-Fenton process in water purification. Coord. Chem. Rev. 451, 214277 (2022). https://doi.org/10.1016/j.ccr.2021.214277
X. Du, W. Fu, P. Su, Q. Zhang, M. Zhou, S-doped MIL-53 as efficient heterogeneous electro-Fenton catalyst for degradation of sulfamethazine at circumneutral pH. J. Hazard. Mater. 424(Part D), 127674 (2022). https://doi.org/10.1016/j.jhazmat.2021.127674
P. Su, X.D. Du, Y. Zheng, W.Y. Fu, Q.Z. Zhang et al., Interface-confined multi-layered reaction centers between Ce-MOFs and Fe3O4@C for heterogeneous electro-Fenton at wide pH 3–9: Mediation of Ce3+/Ce4+ and oxygen vacancy. Chem. Eng. J. 433, 133597 (2022). https://doi.org/10.1016/j.cej.2021.133597
Y. Wang, M.Z. Zhao, C. Hou, W.Q. Chen, S.S. Li et al., Efficient degradation of perfluorooctanoic acid by solar photo-electro-Fenton like system fabricated by MOFs/carbon nanofibers composite membrane. Chem. Eng. J. 414, 128940 (2021). https://doi.org/10.1016/j.cej.2021.128940
Y. Wang, S. Li, C. Hou, L. Jing, R. Ren et al., Biomass-based carbon fiber/MOFs composite electrode for electro-Fenton degradation of TBBPA. Sep. Purif. Technol. 282, 120059 (2022). https://doi.org/10.1016/j.seppur.2021.120059
F.S. Xie, Y. Gao, J.B. Zhang, H.L. Bai, J.F. Zhang et al., A novel bifunctional cathode for the generation and activation of H2O2 in electro-Fenton: Characteristics and mechanism. Electrochim. Acta 430, 141099 (2022). https://doi.org/10.1016/j.electacta.2022.141099
Y. Zhang, J. Sun, Z. Guo, X. Zheng, P. Guo et al., The decomplexation of Cu-EDTA by electro-assisted heterogeneous activation of persulfate via acceleration of Fe(II)/Fe(III) redox cycle on Fe-MOF catalyst. Chem. Eng. J. 430, 133025 (2022). https://doi.org/10.1016/j.cej.2021.133025
S. Zhou, J. Zhu, Z. Wang, Z. Yang, W. Yang et al., Defective MOFs-based electrocatalytic self-cleaning membrane for wastewater reclamation: Enhanced antibiotics removal, membrane fouling control and mechanisms. Water Res. 220, 118635 (2022). https://doi.org/10.1016/j.watres.2022.118635
C.S. Liu, J.J. Li, H. Pang, Metal-organic framework-based materials as an emerging platform for advanced electrochemical sensing. Coord. Chem. Rev. 410, 213222 (2020). https://doi.org/10.1016/j.ccr.2020.213222
Y. Wei, Y. Hui, X. Lu, C. Liu, Y. Zhang et al., One-pot preparation of NiMn layered double hydroxide-MOF material for highly sensitive electrochemical sensing of glucose. J. Electroanal. Chem. 933, 117276 (2023).https://doi.org/10.1016/j.jelechem.2023.117276
M. Devaraj, Y. Sasikumar, S. Rajendran, L.C. Ponce, Review-metal organic framework based nanomaterials for electrochemical sensing of toxic heavy metal ions: Progress and their prospects. J. Electrochem. Soc. 168(3), 037513 (2021). https://doi.org/10.1149/1945-7111/abec97
S. Tajik, H. Beitollahi, F.G. Nejad, I. Sheikhshoaie, A.S. Nugraha et al., Performance of metal-organic frameworks in the electrochemical sensing of environmental pollutants. J. Mater. Chem. A 9(13), 8195–8220 (2021). https://doi.org/10.1039/d0ta08344e
W.W. Cheng, X.Z. Tang, Y. Zhang, D. Wu, W.J. Yang, Applications of metal-organic framework (MOF)-based sensors for food safety: enhancing mechanisms and recent advances. Trends Food Sci. Technol. 112, 268–282 (2021). https://doi.org/10.1016/j.tifs.2021.04.004
C.W. Kung, T.H. Chang, L.Y. Chou, J.T. Hupp, O.K. Farha et al., Porphyrin-based metal-organic framework thin films for electrochemical nitrite detection. Electrochem. Commun. 58, 51–56 (2015). https://doi.org/10.1016/j.elecom.2015.06.003
E. Shi, G. Yu, H. Lin, C. Liang, T. Zhang et al., The incorporation of bismuth(III) into metal-organic frameworks for electrochemical detection of trace cadmium(II) and lead(II). Microchim. Acta 186(7), 451 (2019). https://doi.org/10.1007/s00604-019-3522-6
S. Singh, A. Numan, Y. Zhan, V. Singh, T. Van Hung et al., A novel highly efficient and ultrasensitive electrochemical detection of toxic mercury (II) ions in canned tuna fish and tap water based on a copper metal-organic framework. J. Hazard. Mater. 399, 123042 (2020). https://doi.org/10.1016/j.jhazmat.2020.123042
Y.H. Cheng, D. Barpaga, J.A. Soltis, V. Shutthanandan, R. Kargupta et al., Metal-organic framework-based microfluidic impedance sensor platform for ultrasensitive detection of perfluorooctanesulfonate. ACS Appl. Mater. Interfaces 12(9), 10503–10514 (2020). https://doi.org/10.1021/acsami.9b22445
S. Kempahanumakkagari, K. Vellingiri, A. Deep, E.E. Kwon, N. Bolan et al., Metal-organic framework composites as electrocatalysts for electrochemical sensing applications. Coord. Chem. Rev. 357, 105–129 (2018). https://doi.org/10.1016/j.ccr.2017.11.028
F. Cai, Q. Wang, X. Chen, W. Qiu, F. Zhan et al., Selective binding of Pb2+ with manganese-terephthalic acid MOF/SWCNTs: Theoretical modeling, experimental study and electroanalytical application. Biosens. Bioelectron. 98, 310–316 (2017). https://doi.org/10.1016/j.bios.2017.07.007
A.D. Ambaye, K.K. Kefeni, T.G. Kebede, B. Ntsendwana, S.B. Mishra et al., Cu-MOF/N-doped GO nanocomposites modified screen-printed carbon electrode towards detection of 4-nitrophenol. J. Electroanal. Chem. 919, 116542 (2022). https://doi.org/10.1016/j.jelechem.2022.116542
Y. Cao, L.N. Wang, C. Shen, C.Y. Wang, X.Y. Hu et al., An electrochemical sensor on the hierarchically porous Cu-BTC MOF platform for glyphosate determination. Sens. Actuat. B. 283, 487–494 (2019). https://doi.org/10.1016/j.snb.2018.12.064
T. Zhang, J.Z. Wei, X.J. Sun, X.J. Zhao, H.L. Tang et al., Rapid synthesis of UiO-66 by means of electrochemical cathode method with electrochemical detection of 2,4,6-TCP. Inorg. Chem. Commun. 111, 107671 (2020). https://doi.org/10.1016/j.inoche.2019.107671
M.S. Denny, J.C. Moreton, L. Benz, S.M. Cohen, Metal-organic frameworks for membrane-based separations. Nat. Rev. Mater. 1(12), 16078 (2016). https://doi.org/10.1038/natrevmats.2016.78
J. Lu, H.T. Wang, Emerging porous framework material-based nanofluidic membranes toward ultimate ion separation. Matter 4(9), 2810–2830 (2021). https://doi.org/10.1016/j.matt.2021.06.045
Y.C. Liu, L.H. Yeh, M.J. Zheng, K.C. Wu, Highly selective and high-performance osmotic power generators in subnanochannel membranes enabled by metal-organic frameworks. Sci. Adv. 7(10), eabe9924 (2021). https://doi.org/10.1126/sciadv.abe9924
L. Xia, Y. Zhao, X. Zhang, Y. Qiu, J. Shao et al., Ionic control of functional zeolitic imidazolate framework-based membrane for tailoring selectivity toward target ions. ACS Appl. Mater. Interfaces 14(8), 11038–11049 (2022). https://doi.org/10.1021/acsami.1c24876
Y. Kim, K. Kim, H.H. Eom, X. Su, J.W. Lee, Electrochemically-assisted removal of cadmium ions by redox active Cu-based metal-organic framework. Chem. Eng. J. 421, 129765 (2021). https://doi.org/10.1016/j.cej.2021.129765
K. Zuo, X. Huang, X. Liu, E.M. Gil Garcia, J. Kim et al., A hybrid metal-organic framework-reduced graphene oxide nanomaterial for selective removal of chromate from water in an electrochemical process. Environ. Sci. Technol. 54(20), 13322–13332 (2020). https://doi.org/10.1021/acs.est.0c04703
W.B. Ma, X.A. Du, M.M. Liu, F.F. Gao, X.L. Ma et al., A conductive chlorine ion-imprinted polymer threaded in metal-organic frameworks for electrochemically selective separation of chloride ions. Chem. Eng. J. 412, 128576 (2021). https://doi.org/10.1016/j.cej.2021.128576
P.F. Wang, X. Du, T. Chen, X.G. Hao, A. Abudula et al., A novel electroactive PPy/HKUST-1 composite film-coated electrode for the selective recovery of lithium ions with low concentrations in aqueous solutions. Electrochim. Acta 306, 35–44 (2019). https://doi.org/10.1016/j.electacta.2019.03.106
Y. Guo, Y. Ying, Y. Mao, X. Peng, B. Chen, Polystyrene sulfonate threaded through a metal-organic framework membrane for fast and selective lithium-ion separation. Angew. Chem. Int. Ed. 55(48), 15120–15124 (2016). https://doi.org/10.1002/anie.201607329
T. Xu, M.A. Shehzad, X. Wang, B. Wu, L. Ge et al., Engineering leaf-like UiO-66-SO3H membranes for selective transport of cations. Nano-Micro Lett. 12(1), 51 (2020). https://doi.org/10.1007/s40820-020-0386-6
H. Zhang, J. Hou, Y. Hu, P. Wang, R. Ou et al., Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores. Sci. Adv. 4(2), eaaq0066 (2018). https://doi.org/10.1126/sciadv.aaq0066
C. Wang, F.F. Liu, Z. Tan, Y.M. Chen, W.C. Hu et al., Fabrication of bio-inspired 2D MOFs/PAA hybrid membrane for asymmetric ion transport. Adv. Funct. Mater. 30(9), 1908804 (2019). https://doi.org/10.1002/adfm.201908804
X.L. Zhao, C.X. Lu, L.S. Yang, W.P. Chen, W.W. Xin et al., Metal organic framework enhanced SPEEK/SPSF heterogeneous membrane for ion transport and energy conversion. Nano Energy 81, 105657 (2021). https://doi.org/10.1016/j.nanoen.2020.105657
Z.Q. Li, G.L. Zhu, R.J. Mo, M.Y. Wu, X.L. Ding et al., Light-enhanced osmotic energy harvester using photoactive porphyrin metal-organic framework membranes. Angew. Chem. Int. Ed. 61(22), e202202698 (2022). https://doi.org/10.1002/anie.202202698
A. Walsh, K.T. Butler, C.H. Hendon, Chemical principles for electroactive metal-organic frameworks. MRS Bull. 41(11), 870–876 (2016). https://doi.org/10.1557/mrs.2016.243
S. Pandey, B. Demaske, O.A. Ejegbavwo, A.A. Berseneva, W. Setyawan et al., Electronic structures and magnetism of Zr-, Th-, and U-based metal-organic frameworks (MOFs) by density functional theory. Comput. Mater. Sci. 184, 109903 (2020). https://doi.org/10.1016/j.commatsci.2020.109903
A. De Vos, K. Hendrickx, P. Van Der Voort, V. Van Speybroeck, K. Lejaeghere, Missing linkers: An alternative pathway to UiO-66 electronic structure engineering. Chem. Mater. 29(7), 3006–3019 (2017). https://doi.org/10.1021/acs.chemmater.6b05444
M.A. Nasalevich, C.H. Hendon, J.G. Santaclara, K. Svane, B. van der Linden et al., Electronic origins of photocatalytic activity in d0 metal organic frameworks. Sci. Rep. 6(1), 23676 (2016). https://doi.org/10.1038/srep23676
J.L. Mancuso, A.M. Mroz, K.N. Le, C.H. Hendon, Electronic structure modeling of metal-organic frameworks. Chem. Rev. 120(16), 8641–8715 (2020). https://doi.org/10.1021/acs.chemrev.0c00148
M.A. Syzgantseva, C.P. Ireland, F.M. Ebrahim, B. Smit, O.A. Syzgantseva, Metal substitution as the method of modifying electronic structure of metal-organic frameworks. J. Am. Chem. Soc. 141(15), 6271–6278 (2019). https://doi.org/10.1021/jacs.8b13667
H.Q. Pham, T. Mai, N.N. Pham-Tran, Y. Kawazoe, H. Mizuseki et al., Engineering of band gap in metal organic frameworks by functionalizing organic linker: a systematic density functional theory investigation. J. Phys. Chem. C 118(9), 4567–4577 (2014). https://doi.org/10.1021/jp405997r
N. Heidary, D. Chartrand, A. Guiet, N. Kornienko, Rational incorporation of defects within metal-organic frameworks generates highly active electrocatalytic sites. Chem. Sci. 12(21), 7324–7333 (2021). https://doi.org/10.1039/d1sc00573a
P.M. Usov, C.F. Leong, B. Chan, M. Hayashi, H. Kitagawa et al., Probing charge transfer characteristics in a donor-acceptor metal-organic framework by Raman spectroelectrochemistry and pressure-dependence studies. Phys. Chem. Chem. Phys. 20(40), 25772–25779 (2018). https://doi.org/10.1039/c8cp04157a
J. Nyakuchena, S. Ostresh, D. Streater, B. Pattengale, J. Neu et al., Direct evidence of photoinduced charge transport mechanism in 2D conductive metal organic frameworks. J. Am. Chem. Soc. 142(50), 21050–21058 (2020). https://doi.org/10.1021/jacs.0c09000
D.M. D’Alessandro, Exploiting redox activity in metal-organic frameworks: concepts, trends and perspectives. Chem. Commun. 52(58), 8957–8971 (2016). https://doi.org/10.1039/c6cc00805d
K.H. Ly, I.M. Weidinger, Understanding active sites in molecular (photo)electrocatalysis through complementary vibrational spectroelectrochemistry. Chem. Commun. 57(19), 2328–2342 (2021). https://doi.org/10.1039/d0cc07376h
E.A. Dolgopolova, A.J. Brandt, O.A. Ejegbavwo, A.S. Duke, T.D. Maddumapatabandi et al., Electronic properties of bimetallic metal-organic frameworks (MOFs): tailoring the density of electronic states through MOF modularity. J. Am. Chem. Soc. 139(14), 5201–5209 (2017). https://doi.org/10.1021/jacs.7b01125
D. Wu, T. Hua, S. Han, X. Lan, J. Cheng et al., Two-dimensional manganese-iron bimetallic MOF-74 for electro-Fenton degradation of sulfamethoxazole. Chemosphere 327, 138514 (2023). https://doi.org/10.1016/j.chemosphere.2023.138514
X. Huang, D. Huang, J. Chen, R. Ye, Q. Lin et al., Fabrication of novel electrochemical sensor based on bimetallic Ce-Ni-MOF for sensitive detection of bisphenol A. Anal. Bioanal. Chem. 412(4), 849–860 (2020). https://doi.org/10.1007/s00216-019-02282-3
D.M. Tiede, G. Kwon, X. He, K.L. Mulfort, A.B.F. Martinson, Characterizing electronic and atomic structures for amorphous and molecular metal oxide catalysts at functional interfaces by combining soft X-ray spectroscopy and high-energy X-ray scattering. Nanoscale 12(25), 13276–13296 (2020). https://doi.org/10.1039/d0nr02350g
T. Wang, L. Gao, J. Hou, S.J.A. Herou, J.T. Griffiths et al., Rational approach to guest confinement inside MOF cavities for low-temperature catalysis. Nat. Commun. 10(1), 1340 (2019). https://doi.org/10.1038/s41467-019-08972-x
A. Braschinsky, J.W. Steed, Molecular clusters in confined spaces. Coord. Chem. Rev. 473, 214840 (2022). https://doi.org/10.1016/j.ccr.2022.214840
S. Let, P. Samanta, S. Dutta, S.K. Ghosh, A Dye@MOF composite as luminescent sensory material for selective and sensitive recognition of Fe(III) ions in water. Inorg. Chim. Acta 500, 119205 (2020). https://doi.org/10.1016/j.ica.2019.119205
V. Haigis, F.X. Coudert, R. Vuilleumier, A. Boutin, Investigation of structure and dynamics of the hydrated metal-organic framework MIL-53(Cr) using first-principles molecular dynamics. Phys. Chem. Chem. Phys. 15(43), 19049–19056 (2013). https://doi.org/10.1039/c3cp53126k
L. Zhang, B. Zheng, Y. Gao, L. Wang, J. Wang et al., Confined water vapor in ZIF-8 nanopores. ACS Omega 7(1), 64–69 (2022). https://doi.org/10.1021/acsomega.1c02953
G.R. Medders, F. Paesani, Water dynamics in metal-organic frameworks: effects of heterogeneous confinement predicted by computational spectroscopy. J. Phys. Chem. Lett. 5(16), 2897–2902 (2014). https://doi.org/10.1021/jz5013998
A. Ghosh, S. Karmakar, F.A. Rahimi, R.S. Roy, S. Nath et al., Confinement matters: stabilization of CdS nanops inside a postmodified MOF toward photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 14(22), 25220–25231 (2022). https://doi.org/10.1021/acsami.1c23458
S. Zhang, T. Hedtke, X. Zhou, M. Elimelech, J.-H. Kim, Environmental applications of engineered materials with nanoconfinement. ACS EST Engg. 1(4), 706–724 (2021). https://doi.org/10.1021/acsestengg.1c00007
Z. Xu, L. Yang, C. Xu, Pt@UiO-66 heterostructures for highly selective detection of hydrogen peroxide with an extended linear range. Anal. Chem. 87(6), 3438–3444 (2015). https://doi.org/10.1021/ac5047278
D. Munoz-Santiburcio, D. Marx, Confinement-controlled aqueous chemistry within nanometric slit pores. Chem. Rev. 121(11), 6293–6320 (2021). https://doi.org/10.1021/acs.chemrev.0c01292
R. Epsztein, R.M. DuChanois, C.L. Ritt, A. Noy, M. Elimelech, Towards single-species selectivity of membranes with subnanometre pores. Nat. Nanotechnol. 15(6), 426–436 (2020). https://doi.org/10.1038/s41565-020-0713-6
R. Li, B. Lu, Z. Xie, J. Zhai, The confinement effect of angstrom-sized pores in asymmetrical membrane constructed by zeolitic imidazolate frameworks: Partially dehydrated ion transport performance. Small 15(52), e1904866 (2019). https://doi.org/10.1002/smll.201904866
N.H. Vu, H.C. Dong, M.V. Nguyen, D. Hoang, T.T. Trinh et al., Mechanism of proton transport in water clusters and the effect of electric fields: a DFT study. Curr. Appl. Phys. 25, 62–69 (2021). https://doi.org/10.1016/j.cap.2021.02.006
D.D. Borges, S. Devautour-Vinot, H. Jobic, J. Ollivier, F. Nouar et al., Proton transport in a highly conductive porous zirconium-based metal-organic framework: molecular insight. Angew. Chem. Int. Ed. 55(12), 3919–3924 (2016). https://doi.org/10.1002/anie.201510855
X. Li, H. Zhang, H. Yu, J. Xia, Y.B. Zhu et al., Unidirectional and selective proton transport in artificial heterostructured nanochannels with nano-to-subnano confined water clusters. Adv. Mater. 32(24), e2001777 (2020). https://doi.org/10.1002/adma.202001777
Y. Zhang, A. Nsabimana, L. Zhu, X. Bo, C. Han et al., Metal organic frameworks/macroporous carbon composites with enhanced stability properties and good electrocatalytic ability for ascorbic acid and hemoglobin. Talanta 129, 55–62 (2014). https://doi.org/10.1016/j.talanta.2014.05.007
W.R. Zheng, M.J. Liu, L.Y.S. Lee, Electrochemical instability of metal-organic frameworks: in situ spectroelectrochemical investigation of the real active sites. ACS Catal. 10(1), 81 (2020). https://doi.org/10.1021/acscatal.9b03790
J.Q. Shen, P.Q. Liao, D.D. Zhou, C.T. He, J.X. Wu et al., Modular and stepwise synthesis of a hybrid metal-organic framework for efficient electrocatalytic oxygen evolution. J. Am. Chem. Soc. 139(5), 1778–1781 (2017). https://doi.org/10.1021/jacs.6b12353
Z. Zhou, S. Mukherjee, S. Hou, W. Li, M. Elsner et al., Porphyrinic MOF film for multifaceted electrochemical sensing. Angew. Chem. Int. Ed. 60(37), 20551–20557 (2021). https://doi.org/10.1002/anie.202107860
N.S. Lopa, M.M. Rahman, F. Ahmed, T. Ryu, J. Lei et al., A chemically and electrochemically stable, redox-active and highly sensitive metal azolate framework for non-enzymatic electrochemical detection of glucose. J. Electroanal. Chem. 840, 263–271 (2019). https://doi.org/10.1016/j.jelechem.2019.03.081
P.-Q. Liao, C.-T. He, D.-D. Zhou, J.-P. Zhang, X.-M. Chen, Porous metal azolate frameworks, the chemistry of metal-organic frameworks: Synthesis, characterization, and applications (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2016), pp.309–343
Z. Zhu, X. He, W.-N. Wang, Unraveling the origin of the “Turn-On” effect of Al-MIL-53-NO2 during H2S detection. CrystEngComm 22(2), 195–204 (2020). https://doi.org/10.1039/c9ce01595g
D. Yao, C. Tang, A. Vasileff, X. Zhi, Y. Jiao et al., The controllable reconstruction of Bi-MOFs for electrochemical CO2 reduction through electrolyte and potential mediation. Angew. Chem. Int. Ed. 60(33), 18178–18184 (2021). https://doi.org/10.1002/anie.202104747
A. Pathak, J.W. Shen, M. Usman, L.F. Wei, S. Mendiratta et al., Integration of a (-Cu-S-)n plane in a metal-organic framework affords high electrical conductivity. Nat. Commun. 10(1), 1721 (2019). https://doi.org/10.1038/s41467-019-09682-0
L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne et al., Metal-organic framework materials as chemical sensors. Chem. Rev. 112(2), 1105–1125 (2012). https://doi.org/10.1021/cr200324t
L. Sun, M.G. Campbell, M. Dinca, Electrically conductive porous metal-organic frameworks. Angew. Chem. Int. Ed. 55(11), 3566–3579 (2016). https://doi.org/10.1002/anie.201506219
J. Liu, X. Song, T. Zhang, S. Liu, H. Wen et al., 2D conductive metal-organic frameworks: an emerging platform for electrochemical energy storage. Angew. Chem. Int. Ed. 60(11), 5612–5624 (2021). https://doi.org/10.1002/anie.202006102
B.J. Zhu, D.S. Wen, Z.B. Liang, R.Q. Zou, Conductive metal-organic frameworks for electrochemical energy conversion and storage. Coord. Chem. Rev. 446, 214119 (2021). https://doi.org/10.1016/j.ccr.2021.214119
J.H. Dou, M.Q. Arguilla, Y. Luo, J. Li, W. Zhang et al., Atomically precise single-crystal structures of electrically conducting 2D metal-organic frameworks. Nat. Mater. 20(2), 222–228 (2021). https://doi.org/10.1038/s41563-020-00847-7
L.S. Xie, G. Skorupskii, M. Dinca, Electrically conductive metal-organic frameworks. Chem. Rev. 120(16), 8536–8580 (2020). https://doi.org/10.1021/acs.chemrev.9b00766
D. Sheberla, J.C. Bachman, J.S. Elias, C.J. Sun, Y. Shao-Horn et al., Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 16(2), 220–224 (2017). https://doi.org/10.1038/nmat4766
A.A. Talin, A. Centrone, A.C. Ford, M.E. Foster, V. Stavila et al., Tunable electrical conductivity in metal-organic framework thin-film devices. Science 343(6166), 66–69 (2014). https://doi.org/10.1126/science.1246738
P. Stallinga, Electronic transport in organic materials: comparison of band theory with percolation/(variable range) hopping theory. Adv. Mater. 23(30), 3356–3362 (2011). https://doi.org/10.1002/adma.201101129
Y. Jiang, I. Oh, S.H. Joo, Y.S. Seo, S.H. Lee et al., Synthesis of a copper 1,3,5-triamino-2,4,6-benzenetriol metal-organic framework. J. Am. Chem. Soc. 142(43), 18346–18354 (2020). https://doi.org/10.1021/jacs.0c02389
G. Skorupskii, B.A. Trump, T.W. Kasel, C.M. Brown, C.H. Hendon et al., Efficient and tunable one-dimensional charge transport in layered lanthanide metal-organic frameworks. Nat. Chem. 12(2), 131–136 (2020). https://doi.org/10.1038/s41557-019-0372-0
X. Nie, A. Kulkarni, D.S. Sholl, Computational prediction of metal organic frameworks suitable for molecular infiltration as a route to development of conductive materials. J. Phys. Chem. Lett. 6(9), 1586–1591 (2015). https://doi.org/10.1021/acs.jpclett.5b00298
M.D. Allendorf, M.E. Foster, F. Leonard, V. Stavila, P.L. Feng et al., Guest-induced emergent properties in metal-organic frameworks. J. Phys. Chem. Lett. 6(7), 1182–1195 (2015). https://doi.org/10.1021/jz5026883
B. Le Ouay, M. Boudot, T. Kitao, T. Yanagida, S. Kitagawa et al., Nanostructuration of PEDOT in porous coordination polymers for tunable porosity and conductivity. J. Am. Chem. Soc. 138(32), 10088–10091 (2016). https://doi.org/10.1021/jacs.6b05552
A.F. Sapnik, I. Bechis, S.M. Collins, D.N. Johnstone, G. Divitini et al., Mixed hierarchical local structure in a disordered metal-organic framework. Nat. Commun. 12(1), 2062 (2021). https://doi.org/10.1038/s41467-021-22218-9
M.D. Allendorf, V. Stavila, M. Witman, C.K. Brozek, C.H. Hendon, What lies beneath a metal-organic framework crystal structure? New design principles from unexpected behaviors. J. Am. Chem. Soc. 143(18), 6705–6723 (2021). https://doi.org/10.1021/jacs.0c10777
J.G. Park, M.L. Aubrey, J. Oktawiec, K. Chakarawet, L.E. Darago et al., Charge delocalization and bulk electronic conductivity in the mixed-valence metal-organic framework Fe(1,2,3-triazolate)2(BF4)x. J. Am. Chem. Soc. 140(27), 8526–8534 (2018). https://doi.org/10.1021/jacs.8b03696
O. Kozachuk, I. Luz, F.X. Llabres i Xamena, H. Noei, M. Kauer et al., Multifunctional, defect-engineered metal-organic frameworks with ruthenium centers: sorption and catalytic properties. Angew. Chem. Int. Ed. 53(27), 7058–7062 (2014). https://doi.org/10.1002/anie.201311128
J. Li, H. Wang, X.Z. Yuan, J.J. Zhang, J.W. Chew, Metal-organic framework membranes for wastewater treatment and water regeneration. Coord. Chem. Rev. 404, 213116 (2020). https://doi.org/10.1016/j.ccr.2019.213116
T. Egami, S. Billinge, Underneath the Bragg peaks: structural analysis of complex materials, 2nd edn. (Pergamon, Kidlington, 2012)
C. Li, Q. Yang, M. Shen, J.Y. Ma, B.W. Hu, The electrochemical Na intercalation/extraction mechanism of ultrathin cobalt(II) terephthalate-based MOF nanosheets revealed by synchrotron X-ray absorption spectroscopy. Energy Stor. Mater. 14, 82–89 (2018). https://doi.org/10.1016/j.ensm.2018.02.021
K.W. Chapman, P.J. Chupas, Pair distribution function analysis of high-energy X-ray scattering data, In-situ characterization of heterogeneous catalysts (John Wiley & Sons Inc, New Jersey, 2013), pp.147–168
S.J.L. Billinge, The rise of the X-ray atomic pair distribution function method: a series of fortunate events. Philos. Trans. R. Soc. A 377(2147), 20180413 (2019). https://doi.org/10.1098/rsta.2018.0413
M.W. Terban, S.J.L. Billinge, Structural analysis of molecular materials using the pair distribution function. Chem. Rev. 122(1), 1208–1272 (2022). https://doi.org/10.1021/acs.chemrev.1c00237
X. He, R.Z. Waldman, D.J. Mandia, N. Jeon, N.J. Zaluzec et al., Resolving the atomic structure of sequential infiltration synthesis derived inorganic clusters. ACS Nano 14(11), 14846–14860 (2020). https://doi.org/10.1021/acsnano.0c03848
M. Wang, X. He, E. Hoenig, G. Yan, G. Peng et al., Tuning transport in graphene oxide membrane with single-site copper (II) cations. iScience 25(4), 104044 (2022). https://doi.org/10.1016/j.isci.2022.104044
P. Juhás, T. Davis, C.L. Farrow, S.J. Billinge, PDFgetX3: A rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions. J. Appl. Crystallogr. 46(2), 560–566 (2013). https://doi.org/10.1107/S0021889813005190
M.A. Molina, A. Manjon-Sanz, M. Sanchez-Sanchez, On the contribution of pair distribution function (PDF) to the characterization of nanocrystalline MOFs: The case of M-MOF-74. Microporous Mesoporous Mater. 319, 110973 (2021). https://doi.org/10.1016/j.micromeso.2021.110973
T. Stassin, I. Stassen, J. Marreiros, A.J. Cruz, R. Verbeke et al., Solvent-free powder synthesis and MOF-CVD thin films of the large-pore metal-organic framework MAF-6. Chem. Mater. 32(5), 1784–1793 (2020). https://doi.org/10.1021/acs.chemmater.9b03807
Z. Hassanzadeh Fard, N.E. Wong, C.D. Malliakas, P. Ramaswamy, J.M. Taylor et al., Superprotonic phase change to a robust phosphonate metal–organic framework. Chem. Mater. 30(2), 314–318 (2018). https://doi.org/10.1021/acs.chemmater.7b04467
K. Kang, L. Li, M. Zhang, X. Miao, L. Lei et al., Two-fold interlocking cationic metal-organic framework material with exchangeable chloride for perrhenate/pertechnetate sorption. Inorg. Chem. 61(29), 11463–11470 (2022). https://doi.org/10.1021/acs.inorgchem.2c01846
S. Rangwani, A.J. Howarth, M.R. DeStefano, C.D. Malliakas, A.E. Platero-Prats et al., Adsorptive removal of Sb(V) from water using a mesoporous Zr-based metal-organic framework. Polyhedron 151, 338–343 (2018). https://doi.org/10.1016/j.poly.2018.05.021
I.S. Kim, Z. Li, J. Zheng, A.E. Platero-Prats, A. Mavrandonakis et al., Sinter-resistant platinum catalyst supported by metal-organic framework. Angew. Chem. Int. Ed. 57(4), 909–913 (2018). https://doi.org/10.1002/anie.201708092
X. Zhang, I. da Silva, H.G.W. Godfrey, S.K. Callear, S.A. Sapchenko et al., Confinement of iodine molecules into triple-helical chains within robust metal-organic frameworks. J. Am. Chem. Soc. 139(45), 16289–16296 (2017). https://doi.org/10.1021/jacs.7b08748
C. Castillo-Blas, J.M. Moreno, I. Romero-Muniz, A.E. Platero-Prats, Applications of pair distribution function analyses to the emerging field of non-ideal metal-organic framework materials. Nanoscale 12(29), 15577–15587 (2020). https://doi.org/10.1039/d0nr01673j
F.C.N. Firth, M.W. Gaultois, Y. Wu, J.M. Stratford, D.S. Keeble et al., Exploring the role of cluster formation in UiO family Hf metal-organic frameworks with in situ X-ray pair distribution function analysis. J. Am. Chem. Soc. 143(47), 19668–19683 (2021). https://doi.org/10.1021/jacs.1c06990
H. Xu, S. Sommer, N.L.N. Broge, J. Gao, B.B. Iversen, The chemistry of nucleation: In situ pair distribution function analysis of secondary building units during UiO-66 MOF formation. Chem. Eur. J. 25(8), 2051–2058 (2019). https://doi.org/10.1002/chem.201805024
A.E. Platero-Prats, A. Mavrandonakis, L.C. Gallington, Y. Liu, J.T. Hupp et al., Structural transitions of the metal-oxide nodes within metal-organic frameworks: on the local structures of NU-1000 and UiO-66. J. Am. Chem. Soc. 138(12), 4178–4185 (2016). https://doi.org/10.1021/jacs.6b00069
K.W. Chapman, D.F. Sava, G.J. Halder, P.J. Chupas, T.M. Nenoff, Trapping guests within a nanoporous metal-organic framework through pressure-induced amorphization. J. Am. Chem. Soc. 133(46), 18583–18585 (2011). https://doi.org/10.1021/ja2085096
S. Lu, L. Liu, H. Demissie, G. An, D. Wang, Design and application of metal-organic frameworks and derivatives as heterogeneous Fenton-like catalysts for organic wastewater treatment: A review. Environ. Int. 146, 106273 (2021). https://doi.org/10.1016/j.envint.2020.106273
M. Jahan, Q. Bao, K.P. Loh, Electrocatalytically active graphene–porphyrin MOF composite for oxygen reduction reaction. J. Am. Chem. Soc. 134(15), 6707–6713 (2012). https://doi.org/10.1021/ja211433h
N.K. Zimmerli, C.R. Müller, P.M. Abdala, Deciphering the structure of heterogeneous catalysts across scales using pair distribution function analysis. Trends Chem. 4(9), 807–821 (2022). https://doi.org/10.1016/j.trechm.2022.06.006
A.-C. Dippel, M. Roelsgaard, U. Boettger, T. Schneller, O. Gutowski et al., Local atomic structure of thin and ultrathin films via rapid high-energy X-ray total scattering at grazing incidence. IUCr J. 6(2), 290–298 (2019). https://doi.org/10.1107/S2052252519000514
C. Castillo-Blas, I. Romero-Muñiz, A. Mavrandonakis, L. Simonelli, A.E. Platero-Prats, Unravelling the local structure of catalytic Fe-oxo clusters stabilized on the MOF-808 metal organic-framework. Chem. Commun. 56(100), 15615–15618 (2020). https://doi.org/10.1039/D0CC06134D