Synthesis of 3D Hexagram-Like Cobalt–Manganese Sulfides Nanosheets Grown on Nickel Foam: A Bifunctional Electrocatalyst for Overall Water Splitting
Corresponding Author: Dingsheng Yuan
Nano-Micro Letters,
Vol. 10 No. 1 (2018), Article Number: 6
Abstract
The exploration of low-cost and efficient bifunctional electrocatalysts for oxygen evolution reaction and hydrogen evolution reaction through tuning the chemical composition is strongly required for sustainable resources. Herein, we developed a bimetallic cobalt–manganese sulfide supported on Ni foam (CMS/Ni) via a solvothermal method. It has discovered that after combining with the pure Co9S8 and MnS, the morphologies of CMS/Ni have modulated. The obtained three-dimensionally hexagram-like CMS/Ni nanosheets have a significant increase in electrochemical active surface area and charge transport ability. More than that, the synergetic effect of Co and Mn has also presented in this composite. Benefiting from these, the CMS/Ni electrode shows great performance toward hydrogen evolution reaction and oxygen evolution reaction in basic medium, comparing favorably to that of the pure Co9S8/Ni and MnS/Ni. More importantly, this versatile CMS/Ni can catalyze the water splitting in a two-electrode system at a potential of 1.47 V, and this electrolyzer can be efficiently driven by a 1.50 V commercial dry battery.
Highlights:
1 Cobalt–manganese sulfides grown on Ni foam (CMS/Ni) with three-dimensionally hexagram-like nanosheets structure were prepared via a solvothermal method.
2 As-prepared CMS/Ni shows highly catalytic activity for OER and HER in basic medium and can catalyze water splitting by a 1.50 V dry battery.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.G. Morales-Guio, M.T. Mayer, A. Yella, S.D. Tilley, M. Gratzel, X. Hu, An optically transparent iron nickel oxide catalyst for solar water splitting. J. Am. Chem. Soc. 137(31), 9927–9936 (2015). doi:10.1021/jacs.5b05544
- M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Solar water splitting cells. Chem. Rev. 110(11), 6446–6473 (2010). doi:10.1021/cr1002326
- L. Kuai, J. Geng, C. Chen, E. Kan, Y. Liu, Q. Wang, B. Geng, A reliable aerosol-spray-assisted approach to produce and optimize amorphous metal oxide catalysts for electrochemical water splitting. Angew. Chem. Int. Ed. 126(29), 7677–7681 (2014). doi:10.1002/anie.201404208
- J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334(6061), 1383–1385 (2011). doi:10.1126/science.1212858
- B. Rausch, M.D. Symes, G. Chisholm, L. Cronin, Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting. Science 345(6202), 1326–1330 (2014). doi:10.1126/science.1257443
- J.W.D. Ng, M. García-Melchor, M. Bajdich, P. Chakthranont, C. Kirk, A. Vojvodic, T.F. Jaramillo, Gold-supported cerium-doped NiO x catalysts for water oxidation. Nat. Energy 1(5), 16053 (2016). doi:10.1038/nenergy.2016.53
- Y. Gorlin, T.F. Jaramillo, A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J. Am. Chem. Soc. 132(39), 13612–13614 (2010). doi:10.1021/ja104587v
- X. Zhang, C. Si, X. Guo, R. Konga, F. Qu, MnCo2S4 nanowire array as an earth-abundant electrocatalyst for efficient oxygen evolution reaction under alkaline conditions. J. Mater. Chem. A 5(33), 17211–17215 (2017). doi:10.1039/C7TA04804A
- J. Zhang, Y. Hu, D. Liu, Y. Yu, B. Zhang, Enhancing oxygen evolution reaction at high current densities on amorphous-like Ni–Fe–S ultrathin nanosheets via oxygen incorporation and electrochemical tuning. Adv. Sci. 4(3), 1600343 (2017). doi:10.1002/advs.201600343
- D. Yang, L. Gao, J.-H. Yang, Facile synthesis of ultrathin Ni(OH)2–Cu2S hexagonal nanosheets hybrid for oxygen evolution reaction. J. Power Sources 359, 52–56 (2017). doi:10.1016/j.jpowsour.2017.05.034
- J. Long, Y. Gong, J. Lin, Metal-organic framework-derived Co9S8@CoS@CoO@C nanoparticles as efficient electro- and photo-catalysts for the oxygen evolution reaction. J. Mater. Chem. A 5(21), 10495–10509 (2017). doi:10.1039/C7TA01447C
- B.Y. Guan, L. Yu, X.W. Lou, General synthesis of multishell mixed-metal oxyphosphide particles with enhanced electrocatalytic activity in the oxygen evolution reaction. Angew. Chem. Int. Ed. 56(9), 2386–2389 (2017). doi:10.1002/anie.201611804
- N.T. Suen, S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu, H.M. Chen, Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46(2), 337–365 (2017). doi:10.1039/C6CS00328A
- X. Chen, Z. Zhang, L. Chi, A.K. Nair, W. Shangguan, Z. Jiang, Recent advances in visible-light-driven photoelectrochemical water splitting: catalyst nanostructures and reaction systems. Nano-Micro Lett. 8(1), 1–12 (2015). doi:10.1007/s40820-015-0063-3
- R. Li, L. Yang, T. Xiong, Y. Wu, L. Cao, D. Yuan, W. Zhou, Nitrogen doped MoS2 nanosheets synthesized via a low-temperature process as electrocatalysts with enhanced activity for hydrogen evolution reaction. J. Power Sources 356, 133–139 (2017). doi:10.1016/j.jpowsour.2017.04.060
- C. Wang, B. Tian, M. Wu, J. Wang, Revelation of the excellent intrinsic activity of MoS2|NiS|MoO3 nanowires for hydrogen evolution reaction in alkaline medium. ACS Appl. Mater. Interfaces 9(8), 7084–7090 (2017). doi:10.1021/acsami.6b14827
- Z. Wu, J. Guo, J. Wang, R. Liu, W. Xiao, C. Xuan, K. Xia, D. Wang, Hierarchically porous electrocatalyst with vertically aligned defect-rich CoMoS nanosheets for the hydrogen evolution reaction in an alkaline medium. ACS Appl. Mater. Interfaces 9(6), 5288–5294 (2017). doi:10.1021/acsami.6b15244
- N. Wang, T. Hang, D. Chu, M. Li, Three-dimensional hierarchical nanostructured Cu/Ni–Co coating electrode for hydrogen evolution reaction in alkaline media. Nano-Micro Lett. 7(4), 347–352 (2015). doi:10.1007/s40820-015-0049-1
- X. Li, P.F. Liu, L. Zhang, M.Y. Zu, Y.X. Yang, H.G. Yang, Enhancing alkaline hydrogen evolution reaction activity through Ni–Mn3O4 nanocomposites. Chem. Commun. 52(69), 10566–10569 (2016). doi:10.1039/C6CC04141H
- Q. Li, F. Wang, L. Sun, Z. Jiang, T. Ye, M. Chen, Q. Bai, C. Wang, X. Han, Design and synthesis of Cu@CuS yolk-shell structures with enhanced photocatalytic activity. Nano-Micro Lett. 9, 35 (2017). doi:10.1007/s40820-017-0135-7
- X. Yan, L. Tian, J. Murowchick, X. Chen, Partially amorphized MnMoO4 for highly efficient energy storage and the hydrogen evolution reaction. J. Mater. Chem. A 4(10), 3683–3688 (2016). doi:10.1039/C6TA00744A
- L. Shao, X. Qian, X. Wang, H. Li, R. Yan, L. Hou, Low-cost and highly efficient CoMoS4/NiMoS4-based electrocatalysts for hydrogen evolution reactions over a wide pH range. Electrochim. Acta 213, 236–243 (2016). doi:10.1016/j.electacta.2016.07.113
- J. Luo, J.-H. Im, M.T. Mayer, M. Schreier, M.K. Nazeeruddin, N.-G. Park, S.D. Tilley, H.J. Fan, M. Grätzel, Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 345(6204), 1593–1596 (2014). doi:10.1126/science.1258307
- J. Xing, H. Li, M. Ming-Cheng Cheng, S.M. Geyer, K.Y.S. Ng, Electro-synthesis of 3D porous hierarchical Ni–Fe phosphate film/Ni foam as a high-efficiency bifunctional electrocatalyst for overall water splitting. J. Mater. Chem. A 4(36), 13866–13873 (2016). doi:10.1039/C6TA05952J
- A. Sivanantham, P. Ganesan, S. Shanmugam, Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: an efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Adv. Funct. Mater. 26(26), 4661–4672 (2016). doi:10.1002/adfm.201600566
- D. Liu, Q. Lu, Y. Luo, X. Sun, A.M. Asiri, NiCo2S4 nanowires array as an efficient bifunctional electrocatalyst for full water splitting with superior activity. Nanoscale 7(37), 15122–15126 (2015). doi:10.1039/C5NR04064G
- B. Zhang, C. Xiao, S. Xie, J. Liang, X. Chen, Y. Tang, Iron-nickel nitride nanostructures in situ grown on surface-redox-etching nickel foam: efficient and ultrasustainable electrocatalysts for overall water splitting. Chem. Mater. 28(19), 6934–6941 (2016). doi:10.1021/acs.chemmater.6b02610
- B. You, N. Jiang, M. Sheng, M.W. Bhushan, Y. Sun, Hierarchically porous urchin-like Ni2P superstructures supported on nickel foam as efficient bifunctional electrocatalysts for overall water splitting. ACS Catal. 6(2), 714–721 (2016). doi:10.1021/acscatal.5b02193
- L.-L. Feng, G. Yu, Y. Wu, G.-D. Li, H. Li, Y. Sun, T. Asefa, W. Chen, X. Zou, High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 137(44), 14023–14026 (2015). doi:10.1021/jacs.5b08186
- G.-F. Chen, T.Y. Ma, Z.-Q. Liu, N. Li, Y.-Z. Su, K. Davey, S.-Z. Qiao, Efficient and stable bifunctional electrocatalysts Ni/NixMy (M = P, S) for overall water splitting. Adv. Funct. Mater. 26(19), 3314–3323 (2016). doi:10.1002/adfm.201505626
- C. Tang, N. Cheng, Z. Pu, W. Xing, X. Sun, NiSe Nanowire film supported on nickel foam: an efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem. Int. Ed. 127(32), 9483–9487 (2015). doi:10.1002/ange.201503407
- R. Li, D. Zhou, J. Luo, W. Xu, J. Li, S. Li, P. Cheng, D. Yuan, The urchin-like sphere arrays Co3O4 as a bifunctional catalyst for hydrogen evolution reaction and oxygen evolution reaction. J. Power Sources 341, 250–256 (2017). doi:10.1016/j.jpowsour.2016.10.096
- W. Zhu, X. Yue, W. Zhang, S. Yu, Y. Zhang, J. Wang, J. Wang, Nickel sulfide microsphere film on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting. Chem. Commun. 52(7), 1486–1489 (2016). doi:10.1039/C5CC08064A
- R. Xu, R. Wu, Y. Shi, J. Zhang, B. Zhang, Ni3Se2 nanoforest/Ni foam as a hydrophilic, metallic, and self-supported bifunctional electrocatalyst for both H2 and O2 generations. Nano Energy 24, 103–110 (2016). doi:10.1016/j.nanoen.2016.04.006
- X. Zhu, C. Tang, H.-F. Wang, B.-Q. Li, Q. Zhang, C. Li, C. Yang, F. Wei, Monolithic-structured ternary hydroxides as freestanding bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 4(19), 7245–7250 (2016). doi:10.1039/C6TA02216B
- Y. Rao, Y. Wang, H. Ning, P. Li, M. Wu, Hydrotalcite-like Ni(OH)2 nanosheets in situ grown on nickel foam for overall water splitting. ACS Appl. Mater. Interfaces 8(49), 33601–33607 (2016). doi:10.1021/acsami.6b11023
- Z. Wang, S. Zeng, W. Liu, X. Wang, Q. Li, Z. Zhao, F. Geng, Coupling molecularly ultrathin sheets of NiFe-layered double hydroxide on NiCo2O4 nanowire arrays for highly efficient overall water-splitting activity. ACS Appl. Mater. Interfaces 9(2), 1488–1495 (2017). doi:10.1021/acsami.6b13075
- Y. Yang, K. Zhang, H. Lin, X. Li, H.C. Chan, L. Yang, Q. Gao, MoS2–Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting. ACS Catal. 7(4), 2357–2366 (2017). doi:10.1021/acscatal.6b03192
- R. Miao, J. He, S. Sahoo, Z. Luo, W. Zhong et al., Reduced graphene oxide supported nickel-manganese-cobalt spinel ternary oxide nanocomposites and their chemically converted sulfide nanocomposites as efficient electrocatalysts for alkaline water splitting. ACS Catal. 7(1), 819–832 (2017). doi:10.1021/acscatal.6b02650
- J. Li, G. Wei, Y. Zhu, Y. Xi, X. Pan, Y. Ji, I.V. Zatovsky, W. Han, Hierarchical NiCoP nanocone arrays supported on Ni foam as an efficient and stable bifunctional electrocatalyst for overall water splitting. J. Mater. Chem. A 5, 14828–14837 (2017). doi:10.1039/C7TA03947F
- T. Tang, W.-J. Jiang, S. Niu, N. Liu, H. Luo et al., Electronic and morphological dual modulation of cobalt carbonate hydroxides by Mn doping toward highly efficient and stable bifunctional electrocatalysts for overall water splitting. J. Am. Chem. Soc. 139(24), 8320–8328 (2017). doi:10.1021/jacs.7b03507
- Y. Wang, W. Wu, Y. Rao, Z. Li, N. Tsubaki, M. Wu, Cation modulating electrocatalyst derived from bimetallic metal-organic frameworks for overall water splitting. J. Mater. Chem. A 5(13), 6170–6177 (2017). doi:10.1039/C7TA00692F
- L. Fang, W. Li, Y. Guan, Y. Feng, H. Zhang, S. Wang, Y. Wang, Tuning unique peapod-like Co(S x Se1−x )2 nanoparticles for efficient overall water splitting. Adv. Funct. Mater. 27(24), 1701008 (2017). doi:10.1002/adfm.201701008
- X.-D. Wang, H.-Y. Chen, Y.-F. Xu, J.-F. Liao, B.-X. Chen, H.-S. Rao, D.-B. Kuang, C.-Y. Su, Self-supported NiMoP2 nanowires on carbon cloth as an efficient and durable electrocatalyst for overall water splitting. J. Mater. Chem. A 5(15), 7191–7199 (2017). doi:10.1039/C6TA11188B
- J. Li, W. Xu, R. Li, J. Luo, D. Zhou, S. Li, P. Cheng, D. Yuan, A tremella-like Ni76Co24 layered double hydroxides nanosheets as an efficient catalyst for oxygen evolution reaction. J. Mater. Sci. 51(20), 9287–9295 (2016). doi:10.1007/s10853-016-0175-2
- Y. Yang, Z. Lin, S. Gao, J. Su, Z. Lun, G. Xia, J. Chen, R. Zhang, Q. Chen, Tuning electronic structures of nonprecious ternary alloys encapsulated in graphene layers for optimizing overall water splitting activity. ACS Catal. 7(1), 469–479 (2017). doi:10.1021/acscatal.6b02573
- X. Fan, Z. Peng, R. Ye, H. Zhou, X. Guo, M3C (M: Fe Co, Ni) nanocrystals encased in graphene nanoribbons: an active and stable bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions. ACS Nano 9(7), 7407–7418 (2015). doi:10.1021/acsnano.5b02420
- J. Xu, J. Cui, C. Guo, Z. Zhao, R. Jiang et al., Ultrasmall Cu7S4@MoS2 hetero-nanoframes with abundant active edge sites for ultrahigh-performance hydrogen evolution. Angew. Chem. Int. Ed. 55(22), 6502–6505 (2016). doi:10.1002/anie.201600686
- A.-L. Wang, J. Lin, H. Xu, Y.-X. Tong, G.-R. Li, Ni2P–CoP hybrid nanosheet arrays supported on carbon cloth as an efficient flexible cathode for hydrogen evolution. J. Mater. Chem. A 4(43), 16992–16999 (2016). doi:10.1039/C6TA07704H
- Z. Wang, S. Xiao, Y. An, X. Long, X. Zheng, X. Lu, Y. Tong, S. Yang, Co(II)1−x Co(0) x/3Mn(III)2x/3S nanoparticles supported on B/N-codoped mesoporous nanocarbon as a bifunctional electrocatalyst of oxygen reduction/evolution for high-performance zinc-air batteries. ACS Appl. Mater. Interfaces 8(21), 13348–13359 (2016). doi:10.1021/acsami.5b12803
- P. Chen, T. Zhou, M. Zhang, Y. Tong, C. Zhong, N. Zhang, L. Zhang, C. Wu, Y. Xie, 3D nitrogen-anion-decorated nickel sulfides for highly efficient overall water splitting. Adv. Mater. 29(30), 1701584 (2017). doi:10.1002/adma.201701584
- Y. Wang, D. Liu, Z. Liu, C. Xie, J. Huo, S. Wang, Porous cobalt–iron nitride nanowires as excellent bifunctional electrocatalysts for overall water splitting. Chem. Commun. 52(85), 12614–12617 (2016). doi:10.1039/C6CC06608A
- F. Ming, H. Liang, H. Shi, X. Xu, G. Mei, Z. Wang, MOF-derived Co-doped nickel selenide/C electrocatalysts supported on Ni foam for overall water splitting. J. Mater. Chem. A 4(39), 15148–15155 (2016). doi:10.1039/C6TA06496E
- Y. Jin, X. Yue, C. Shu, S. Huang, P.K. Shen, Three-dimensional porous MoNi4 networks constructed by nanosheets as bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 5(6), 2508–2513 (2017). doi:10.1039/C6TA10802D
- Q. Li, Z. Xing, D. Wang, X. Sun, X. Yang, In situ electrochemically activated CoMn-S@NiO/CC nanosheets array for enhanced hydrogen evolution. ACS Catal. 6(7), 2797–2801 (2016). doi:10.1021/acscatal.6b00014
- S.K. Jana, B. Saha, B. Satpati, S. Banerjee, Structural and electrochemical analysis of a novel co-electrodeposited Mn2O3–Au nanocomposite thin film. Dalton Trans. 44(19), 9158–91569 (2015). doi:10.1039/C5DT01025J
- S. Li, P. Wang, J. Cheng, D. Luo, W. Zhou, J. Xu, R. Li, D.Yuan Li, High-performance flexible asymmetric supercapacitor based on CoAl-LDH and rGO electrodes. Nano-Micro Lett. 9, 31 (2017). doi:10.1007/s40820-017-0134-8
- V.R. Stamenkovic, D. Strmcnik, P.P. Lopes, N.M. Markovic, Energy and fuels from electrochemical interfaces. Nat. Mater. 16(1), 57–69 (2016). doi:10.1038/nmat4738
- Y. Liu, Q. Li, R. Si, G.-D. Li, W. Li et al., Coupling sub-nanometric copper clusters with quasi amorphous cobalt sulfide yields efficient and robust electrocatalysts for water splitting reaction. Adv. Mater. 29(13), 1606200 (2017). doi:10.1002/adma.201606200
- Y. Wu, G.-D. Li, Y. Liu, L. Yang, X. Lian, T. Asefa, X. Zou, Overall water splitting catalyzed efficiently by an ultrathin nanosheet-built, hollow Ni3S2-based electrocatalyst. Adv. Funct. Mater. 26(27), 4839–4847 (2016). doi:10.1002/adfm.201601315
- Y. Wu, Y. Liu, G.-D. Li, X. Zou, X. Lian, D. Wang, L. Sun, T. Asefa, X. Zou, Efficient electrocatalysis of overall water splitting by ultrasmall NixCo3−x S4 coupled Ni3S2 nanosheet arrays. Nano Energy 35, 161–170 (2017). doi:10.1016/j.nanoen.2017.03.024
References
C.G. Morales-Guio, M.T. Mayer, A. Yella, S.D. Tilley, M. Gratzel, X. Hu, An optically transparent iron nickel oxide catalyst for solar water splitting. J. Am. Chem. Soc. 137(31), 9927–9936 (2015). doi:10.1021/jacs.5b05544
M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Solar water splitting cells. Chem. Rev. 110(11), 6446–6473 (2010). doi:10.1021/cr1002326
L. Kuai, J. Geng, C. Chen, E. Kan, Y. Liu, Q. Wang, B. Geng, A reliable aerosol-spray-assisted approach to produce and optimize amorphous metal oxide catalysts for electrochemical water splitting. Angew. Chem. Int. Ed. 126(29), 7677–7681 (2014). doi:10.1002/anie.201404208
J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334(6061), 1383–1385 (2011). doi:10.1126/science.1212858
B. Rausch, M.D. Symes, G. Chisholm, L. Cronin, Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting. Science 345(6202), 1326–1330 (2014). doi:10.1126/science.1257443
J.W.D. Ng, M. García-Melchor, M. Bajdich, P. Chakthranont, C. Kirk, A. Vojvodic, T.F. Jaramillo, Gold-supported cerium-doped NiO x catalysts for water oxidation. Nat. Energy 1(5), 16053 (2016). doi:10.1038/nenergy.2016.53
Y. Gorlin, T.F. Jaramillo, A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J. Am. Chem. Soc. 132(39), 13612–13614 (2010). doi:10.1021/ja104587v
X. Zhang, C. Si, X. Guo, R. Konga, F. Qu, MnCo2S4 nanowire array as an earth-abundant electrocatalyst for efficient oxygen evolution reaction under alkaline conditions. J. Mater. Chem. A 5(33), 17211–17215 (2017). doi:10.1039/C7TA04804A
J. Zhang, Y. Hu, D. Liu, Y. Yu, B. Zhang, Enhancing oxygen evolution reaction at high current densities on amorphous-like Ni–Fe–S ultrathin nanosheets via oxygen incorporation and electrochemical tuning. Adv. Sci. 4(3), 1600343 (2017). doi:10.1002/advs.201600343
D. Yang, L. Gao, J.-H. Yang, Facile synthesis of ultrathin Ni(OH)2–Cu2S hexagonal nanosheets hybrid for oxygen evolution reaction. J. Power Sources 359, 52–56 (2017). doi:10.1016/j.jpowsour.2017.05.034
J. Long, Y. Gong, J. Lin, Metal-organic framework-derived Co9S8@CoS@CoO@C nanoparticles as efficient electro- and photo-catalysts for the oxygen evolution reaction. J. Mater. Chem. A 5(21), 10495–10509 (2017). doi:10.1039/C7TA01447C
B.Y. Guan, L. Yu, X.W. Lou, General synthesis of multishell mixed-metal oxyphosphide particles with enhanced electrocatalytic activity in the oxygen evolution reaction. Angew. Chem. Int. Ed. 56(9), 2386–2389 (2017). doi:10.1002/anie.201611804
N.T. Suen, S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu, H.M. Chen, Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46(2), 337–365 (2017). doi:10.1039/C6CS00328A
X. Chen, Z. Zhang, L. Chi, A.K. Nair, W. Shangguan, Z. Jiang, Recent advances in visible-light-driven photoelectrochemical water splitting: catalyst nanostructures and reaction systems. Nano-Micro Lett. 8(1), 1–12 (2015). doi:10.1007/s40820-015-0063-3
R. Li, L. Yang, T. Xiong, Y. Wu, L. Cao, D. Yuan, W. Zhou, Nitrogen doped MoS2 nanosheets synthesized via a low-temperature process as electrocatalysts with enhanced activity for hydrogen evolution reaction. J. Power Sources 356, 133–139 (2017). doi:10.1016/j.jpowsour.2017.04.060
C. Wang, B. Tian, M. Wu, J. Wang, Revelation of the excellent intrinsic activity of MoS2|NiS|MoO3 nanowires for hydrogen evolution reaction in alkaline medium. ACS Appl. Mater. Interfaces 9(8), 7084–7090 (2017). doi:10.1021/acsami.6b14827
Z. Wu, J. Guo, J. Wang, R. Liu, W. Xiao, C. Xuan, K. Xia, D. Wang, Hierarchically porous electrocatalyst with vertically aligned defect-rich CoMoS nanosheets for the hydrogen evolution reaction in an alkaline medium. ACS Appl. Mater. Interfaces 9(6), 5288–5294 (2017). doi:10.1021/acsami.6b15244
N. Wang, T. Hang, D. Chu, M. Li, Three-dimensional hierarchical nanostructured Cu/Ni–Co coating electrode for hydrogen evolution reaction in alkaline media. Nano-Micro Lett. 7(4), 347–352 (2015). doi:10.1007/s40820-015-0049-1
X. Li, P.F. Liu, L. Zhang, M.Y. Zu, Y.X. Yang, H.G. Yang, Enhancing alkaline hydrogen evolution reaction activity through Ni–Mn3O4 nanocomposites. Chem. Commun. 52(69), 10566–10569 (2016). doi:10.1039/C6CC04141H
Q. Li, F. Wang, L. Sun, Z. Jiang, T. Ye, M. Chen, Q. Bai, C. Wang, X. Han, Design and synthesis of Cu@CuS yolk-shell structures with enhanced photocatalytic activity. Nano-Micro Lett. 9, 35 (2017). doi:10.1007/s40820-017-0135-7
X. Yan, L. Tian, J. Murowchick, X. Chen, Partially amorphized MnMoO4 for highly efficient energy storage and the hydrogen evolution reaction. J. Mater. Chem. A 4(10), 3683–3688 (2016). doi:10.1039/C6TA00744A
L. Shao, X. Qian, X. Wang, H. Li, R. Yan, L. Hou, Low-cost and highly efficient CoMoS4/NiMoS4-based electrocatalysts for hydrogen evolution reactions over a wide pH range. Electrochim. Acta 213, 236–243 (2016). doi:10.1016/j.electacta.2016.07.113
J. Luo, J.-H. Im, M.T. Mayer, M. Schreier, M.K. Nazeeruddin, N.-G. Park, S.D. Tilley, H.J. Fan, M. Grätzel, Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 345(6204), 1593–1596 (2014). doi:10.1126/science.1258307
J. Xing, H. Li, M. Ming-Cheng Cheng, S.M. Geyer, K.Y.S. Ng, Electro-synthesis of 3D porous hierarchical Ni–Fe phosphate film/Ni foam as a high-efficiency bifunctional electrocatalyst for overall water splitting. J. Mater. Chem. A 4(36), 13866–13873 (2016). doi:10.1039/C6TA05952J
A. Sivanantham, P. Ganesan, S. Shanmugam, Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: an efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Adv. Funct. Mater. 26(26), 4661–4672 (2016). doi:10.1002/adfm.201600566
D. Liu, Q. Lu, Y. Luo, X. Sun, A.M. Asiri, NiCo2S4 nanowires array as an efficient bifunctional electrocatalyst for full water splitting with superior activity. Nanoscale 7(37), 15122–15126 (2015). doi:10.1039/C5NR04064G
B. Zhang, C. Xiao, S. Xie, J. Liang, X. Chen, Y. Tang, Iron-nickel nitride nanostructures in situ grown on surface-redox-etching nickel foam: efficient and ultrasustainable electrocatalysts for overall water splitting. Chem. Mater. 28(19), 6934–6941 (2016). doi:10.1021/acs.chemmater.6b02610
B. You, N. Jiang, M. Sheng, M.W. Bhushan, Y. Sun, Hierarchically porous urchin-like Ni2P superstructures supported on nickel foam as efficient bifunctional electrocatalysts for overall water splitting. ACS Catal. 6(2), 714–721 (2016). doi:10.1021/acscatal.5b02193
L.-L. Feng, G. Yu, Y. Wu, G.-D. Li, H. Li, Y. Sun, T. Asefa, W. Chen, X. Zou, High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 137(44), 14023–14026 (2015). doi:10.1021/jacs.5b08186
G.-F. Chen, T.Y. Ma, Z.-Q. Liu, N. Li, Y.-Z. Su, K. Davey, S.-Z. Qiao, Efficient and stable bifunctional electrocatalysts Ni/NixMy (M = P, S) for overall water splitting. Adv. Funct. Mater. 26(19), 3314–3323 (2016). doi:10.1002/adfm.201505626
C. Tang, N. Cheng, Z. Pu, W. Xing, X. Sun, NiSe Nanowire film supported on nickel foam: an efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem. Int. Ed. 127(32), 9483–9487 (2015). doi:10.1002/ange.201503407
R. Li, D. Zhou, J. Luo, W. Xu, J. Li, S. Li, P. Cheng, D. Yuan, The urchin-like sphere arrays Co3O4 as a bifunctional catalyst for hydrogen evolution reaction and oxygen evolution reaction. J. Power Sources 341, 250–256 (2017). doi:10.1016/j.jpowsour.2016.10.096
W. Zhu, X. Yue, W. Zhang, S. Yu, Y. Zhang, J. Wang, J. Wang, Nickel sulfide microsphere film on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting. Chem. Commun. 52(7), 1486–1489 (2016). doi:10.1039/C5CC08064A
R. Xu, R. Wu, Y. Shi, J. Zhang, B. Zhang, Ni3Se2 nanoforest/Ni foam as a hydrophilic, metallic, and self-supported bifunctional electrocatalyst for both H2 and O2 generations. Nano Energy 24, 103–110 (2016). doi:10.1016/j.nanoen.2016.04.006
X. Zhu, C. Tang, H.-F. Wang, B.-Q. Li, Q. Zhang, C. Li, C. Yang, F. Wei, Monolithic-structured ternary hydroxides as freestanding bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 4(19), 7245–7250 (2016). doi:10.1039/C6TA02216B
Y. Rao, Y. Wang, H. Ning, P. Li, M. Wu, Hydrotalcite-like Ni(OH)2 nanosheets in situ grown on nickel foam for overall water splitting. ACS Appl. Mater. Interfaces 8(49), 33601–33607 (2016). doi:10.1021/acsami.6b11023
Z. Wang, S. Zeng, W. Liu, X. Wang, Q. Li, Z. Zhao, F. Geng, Coupling molecularly ultrathin sheets of NiFe-layered double hydroxide on NiCo2O4 nanowire arrays for highly efficient overall water-splitting activity. ACS Appl. Mater. Interfaces 9(2), 1488–1495 (2017). doi:10.1021/acsami.6b13075
Y. Yang, K. Zhang, H. Lin, X. Li, H.C. Chan, L. Yang, Q. Gao, MoS2–Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting. ACS Catal. 7(4), 2357–2366 (2017). doi:10.1021/acscatal.6b03192
R. Miao, J. He, S. Sahoo, Z. Luo, W. Zhong et al., Reduced graphene oxide supported nickel-manganese-cobalt spinel ternary oxide nanocomposites and their chemically converted sulfide nanocomposites as efficient electrocatalysts for alkaline water splitting. ACS Catal. 7(1), 819–832 (2017). doi:10.1021/acscatal.6b02650
J. Li, G. Wei, Y. Zhu, Y. Xi, X. Pan, Y. Ji, I.V. Zatovsky, W. Han, Hierarchical NiCoP nanocone arrays supported on Ni foam as an efficient and stable bifunctional electrocatalyst for overall water splitting. J. Mater. Chem. A 5, 14828–14837 (2017). doi:10.1039/C7TA03947F
T. Tang, W.-J. Jiang, S. Niu, N. Liu, H. Luo et al., Electronic and morphological dual modulation of cobalt carbonate hydroxides by Mn doping toward highly efficient and stable bifunctional electrocatalysts for overall water splitting. J. Am. Chem. Soc. 139(24), 8320–8328 (2017). doi:10.1021/jacs.7b03507
Y. Wang, W. Wu, Y. Rao, Z. Li, N. Tsubaki, M. Wu, Cation modulating electrocatalyst derived from bimetallic metal-organic frameworks for overall water splitting. J. Mater. Chem. A 5(13), 6170–6177 (2017). doi:10.1039/C7TA00692F
L. Fang, W. Li, Y. Guan, Y. Feng, H. Zhang, S. Wang, Y. Wang, Tuning unique peapod-like Co(S x Se1−x )2 nanoparticles for efficient overall water splitting. Adv. Funct. Mater. 27(24), 1701008 (2017). doi:10.1002/adfm.201701008
X.-D. Wang, H.-Y. Chen, Y.-F. Xu, J.-F. Liao, B.-X. Chen, H.-S. Rao, D.-B. Kuang, C.-Y. Su, Self-supported NiMoP2 nanowires on carbon cloth as an efficient and durable electrocatalyst for overall water splitting. J. Mater. Chem. A 5(15), 7191–7199 (2017). doi:10.1039/C6TA11188B
J. Li, W. Xu, R. Li, J. Luo, D. Zhou, S. Li, P. Cheng, D. Yuan, A tremella-like Ni76Co24 layered double hydroxides nanosheets as an efficient catalyst for oxygen evolution reaction. J. Mater. Sci. 51(20), 9287–9295 (2016). doi:10.1007/s10853-016-0175-2
Y. Yang, Z. Lin, S. Gao, J. Su, Z. Lun, G. Xia, J. Chen, R. Zhang, Q. Chen, Tuning electronic structures of nonprecious ternary alloys encapsulated in graphene layers for optimizing overall water splitting activity. ACS Catal. 7(1), 469–479 (2017). doi:10.1021/acscatal.6b02573
X. Fan, Z. Peng, R. Ye, H. Zhou, X. Guo, M3C (M: Fe Co, Ni) nanocrystals encased in graphene nanoribbons: an active and stable bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions. ACS Nano 9(7), 7407–7418 (2015). doi:10.1021/acsnano.5b02420
J. Xu, J. Cui, C. Guo, Z. Zhao, R. Jiang et al., Ultrasmall Cu7S4@MoS2 hetero-nanoframes with abundant active edge sites for ultrahigh-performance hydrogen evolution. Angew. Chem. Int. Ed. 55(22), 6502–6505 (2016). doi:10.1002/anie.201600686
A.-L. Wang, J. Lin, H. Xu, Y.-X. Tong, G.-R. Li, Ni2P–CoP hybrid nanosheet arrays supported on carbon cloth as an efficient flexible cathode for hydrogen evolution. J. Mater. Chem. A 4(43), 16992–16999 (2016). doi:10.1039/C6TA07704H
Z. Wang, S. Xiao, Y. An, X. Long, X. Zheng, X. Lu, Y. Tong, S. Yang, Co(II)1−x Co(0) x/3Mn(III)2x/3S nanoparticles supported on B/N-codoped mesoporous nanocarbon as a bifunctional electrocatalyst of oxygen reduction/evolution for high-performance zinc-air batteries. ACS Appl. Mater. Interfaces 8(21), 13348–13359 (2016). doi:10.1021/acsami.5b12803
P. Chen, T. Zhou, M. Zhang, Y. Tong, C. Zhong, N. Zhang, L. Zhang, C. Wu, Y. Xie, 3D nitrogen-anion-decorated nickel sulfides for highly efficient overall water splitting. Adv. Mater. 29(30), 1701584 (2017). doi:10.1002/adma.201701584
Y. Wang, D. Liu, Z. Liu, C. Xie, J. Huo, S. Wang, Porous cobalt–iron nitride nanowires as excellent bifunctional electrocatalysts for overall water splitting. Chem. Commun. 52(85), 12614–12617 (2016). doi:10.1039/C6CC06608A
F. Ming, H. Liang, H. Shi, X. Xu, G. Mei, Z. Wang, MOF-derived Co-doped nickel selenide/C electrocatalysts supported on Ni foam for overall water splitting. J. Mater. Chem. A 4(39), 15148–15155 (2016). doi:10.1039/C6TA06496E
Y. Jin, X. Yue, C. Shu, S. Huang, P.K. Shen, Three-dimensional porous MoNi4 networks constructed by nanosheets as bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 5(6), 2508–2513 (2017). doi:10.1039/C6TA10802D
Q. Li, Z. Xing, D. Wang, X. Sun, X. Yang, In situ electrochemically activated CoMn-S@NiO/CC nanosheets array for enhanced hydrogen evolution. ACS Catal. 6(7), 2797–2801 (2016). doi:10.1021/acscatal.6b00014
S.K. Jana, B. Saha, B. Satpati, S. Banerjee, Structural and electrochemical analysis of a novel co-electrodeposited Mn2O3–Au nanocomposite thin film. Dalton Trans. 44(19), 9158–91569 (2015). doi:10.1039/C5DT01025J
S. Li, P. Wang, J. Cheng, D. Luo, W. Zhou, J. Xu, R. Li, D.Yuan Li, High-performance flexible asymmetric supercapacitor based on CoAl-LDH and rGO electrodes. Nano-Micro Lett. 9, 31 (2017). doi:10.1007/s40820-017-0134-8
V.R. Stamenkovic, D. Strmcnik, P.P. Lopes, N.M. Markovic, Energy and fuels from electrochemical interfaces. Nat. Mater. 16(1), 57–69 (2016). doi:10.1038/nmat4738
Y. Liu, Q. Li, R. Si, G.-D. Li, W. Li et al., Coupling sub-nanometric copper clusters with quasi amorphous cobalt sulfide yields efficient and robust electrocatalysts for water splitting reaction. Adv. Mater. 29(13), 1606200 (2017). doi:10.1002/adma.201606200
Y. Wu, G.-D. Li, Y. Liu, L. Yang, X. Lian, T. Asefa, X. Zou, Overall water splitting catalyzed efficiently by an ultrathin nanosheet-built, hollow Ni3S2-based electrocatalyst. Adv. Funct. Mater. 26(27), 4839–4847 (2016). doi:10.1002/adfm.201601315
Y. Wu, Y. Liu, G.-D. Li, X. Zou, X. Lian, D. Wang, L. Sun, T. Asefa, X. Zou, Efficient electrocatalysis of overall water splitting by ultrasmall NixCo3−x S4 coupled Ni3S2 nanosheet arrays. Nano Energy 35, 161–170 (2017). doi:10.1016/j.nanoen.2017.03.024