Electrochemical Proton Storage: From Fundamental Understanding to Materials to Devices
Corresponding Author: Laifa Shen
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 126
Abstract
Simultaneously improving the energy density and power density of electrochemical energy storage systems is the ultimate goal of electrochemical energy storage technology. An effective strategy to achieve this goal is to take advantage of the high capacity and rapid kinetics of electrochemical proton storage to break through the power limit of batteries and the energy limit of capacitors. This article aims to review the research progress on the physicochemical properties, electrochemical performance, and reaction mechanisms of electrode materials for electrochemical proton storage. According to the different charge storage mechanisms, the surface redox, intercalation, and conversion materials are classified and introduced in detail, where the influence of crystal water and other nanostructures on the migration kinetics of protons is clarified. Several reported advanced full cell devices are summarized to promote the commercialization of electrochemical proton storage. Finally, this review provides a framework for research directions of charge storage mechanism, basic principles of material structure design, construction strategies of full cell device, and goals of practical application for electrochemical proton storage.
Highlights:
1 Fundamental principles and advantages of electrochemical proton storage are briefly reviewed.
2 Research progresses and strategies to promote the development of electrochemical proton storage based on various charge storage mechanisms, electrode materials, and devices are discussed and summarized.
3 Challenges and perspectives of the next-generation electrochemical proton storage technology are discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
- Y. Gogotsi, P. Simon, True performance metrics in electrochemical energy storage. Science 334(6058), 917–918 (2011). https://doi.org/10.1126/science.1213003
- Z. Li, B.Y. Guan, J.T. Zhang, X.W. Lou, A compact nanoconfined sulfur cathode for high-performance lithium-sulfur batteries. Joule 1(3), 576–587 (2017). https://doi.org/10.1016/j.joule.2017.06.003
- Y.J. Liu, X.Y. Tao, Y. Wang, C. Jiang, C. Ma et al., Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 375(6582), 739–745 (2022). https://doi.org/10.1126/science.abn1818
- D.Q. Cao, X.X. Shen, A.P. Wang, F.J. Yu, Y.P. Wu et al., Threshold potentials for fast kinetics during mediated redox catalysis of insulators in Li-O2 and Li-S batteries. Nat. Catal. 5, 193–201 (2022). https://doi.org/10.1038/s41929-022-00752-z
- X. Gao, Y. Chen, L.R. Johnson, Z.P. Jovanov, P.G. Bruce, A rechargeable lithium-oxygen battery with dual mediators stabilizing the carbon cathode. Nat. Energy 2(9), 17118 (2017). https://doi.org/10.1038/nenergy.2017.118
- D. Wang, J. Yang, P. He, H. Zhou, A low-charge-overpotential lithium-CO2 cell based on a binary molten salt electrolyte. Energy Environ. Sci. 14(7), 4107–4114 (2021). https://doi.org/10.1039/d1ee00068c
- K. Baek, W.C. Jeon, S. Woo, J.C. Kim, J.G. Lee et al., Synergistic effect of quinary molten salts and ruthenium catalyst for high-power-density lithium-carbon dioxide cell. Nat. Commun. 11, 456 (2020). https://doi.org/10.1038/s41467-019-14121-1
- E. Fan, L. Li, Z. Wang, J. Lin, Y. Huang et al., Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects. Chem. Rev. 120(14), 7020–7063 (2020). https://doi.org/10.1021/acs.chemrev.9b00535
- C. Delmas, Sodium and sodium-ion batteries: 50 years of research. Adv. Energy Mater. 8(17), 1703137 (2018). https://doi.org/10.1002/aenm.201703137
- T. Hosaka, K. Kubota, A.S. Hameed, S. Komaba, Research development on K-ion batteries. Chem. Rev. 120(14), 6358–6466 (2020). https://doi.org/10.1021/acs.chemrev.9b00463
- C. Zhong, B. Liu, J. Ding, X. Liu, Y. Zhong et al., Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc-manganese dioxide batteries. Nat. Energy 5(6), 440–449 (2020). https://doi.org/10.1038/s41560-020-0584-y
- A. Du, Z. Zhang, H. Qu, Z. Cui, L. Qiao et al., An efficient organic magnesium borate-based electrolyte with non-nucleophilic characteristics for magnesium-sulfur battery. Energy Environ. Sci. 10(12), 2616–2625 (2017). https://doi.org/10.1039/c7ee02304a
- M.C. Lin, M. Gong, B. Lu, Y. Wu, D.Y. Wang et al., An ultrafast rechargeable aluminium-ion battery. Nature 520(7547), 325–328 (2015). https://doi.org/10.1038/nature14340
- S. Dong, W. Shin, H. Jiang, X. Wu, Z. Li et al., Ultra-fast NH4+ storage: strong H bonding between NH4+ and bi-layered V2O5. Chem 5(6), 1537–1551 (2019). https://doi.org/10.1016/j.chempr.2019.03.009
- G. Liang, Y. Wang, Z. Huang, F. Mo, X. Li et al., Initiating hexagonal MoO3 for superb-stable and fast NH4+ storage based on hydrogen bond chemistry. Adv. Mater. 32(14), 1907802 (2020). https://doi.org/10.1002/adma.201907802
- X. Wu, Y. Qi, J.J. Hong, Z. Li, A.S. Hernandez et al., Rocking-chair ammonium-ion battery: a highly reversible aqueous energy storage system. Angew. Chem. Int. Ed. 56(42), 13026–13030 (2017). https://doi.org/10.1002/anie.201707473
- M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.L. Taberna et al., Efficient storage mechanisms for building better supercapacitors. Nat. Energy 1(6), 16070 (2016). https://doi.org/10.1038/nenergy.2016.70
- P. Simon, Y. Gogotsi, Perspectives for electrochemical capacitors and related devices. Nat. Mater. 19(11), 1151–1163 (2020). https://doi.org/10.1038/s41563-020-0747-z
- Y. Xu, X. Wu, X. Ji, The renaissance of proton batteries. Small Struct. 2(5), 2000113 (2021). https://doi.org/10.1002/sstr.202000113
- X. Wu, J.J. Hong, W. Shin, L. Ma, T. Liu et al., Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries. Nat. Energy 4(2), 123–130 (2019). https://doi.org/10.1038/s41560-018-0309-7
- C. Knight, G.A. Voth, The curious case of the hydrated proton. Acc. Chem. Res. 45(1), 101–109 (2012). https://doi.org/10.1021/ar200140h
- C.T. Wolke, J.A. Fournier, L.C. Dzugan, M.R. Fagiani, T.T. Odbadrakh et al., Spectroscopic snapshots of the proton-transfer mechanism in water. Science 354(6316), 1131–1135 (2016). https://doi.org/10.1126/science.aaf8425
- S.M.S.E. Adabifiroozjaei, Y. Yao, P. Koshy, S. Lim, R. Webster et al., Proton-assisted creation of controllable volumetric oxygen vacancies in ultrathin CeO2–x for pseudocapacitive energy storage applications. Nat. Commun. 10, 2594 (2019). https://doi.org/10.1038/s41467-019-10621-2
- D.W. Lim, M. Sadakiyo, H. Kitagawa, Proton transfer in hydrogen-bonded degenerate systems of water and ammonia in metal-organic frameworks. Chem. Sci. 10(1), 16–33 (2019). https://doi.org/10.1039/c8sc04475a
- Z. Chen, Y. Peng, F. Liu, Z. Le, J. Zhu et al., Hierarchical nanostructured WO3 with biomimetic proton channels and mixed ionic-electronic conductivity for electrochemical energy storage. Nano Lett. 15(10), 6802–6808 (2015). https://doi.org/10.1021/acs.nanolett.5b02642
- M.R. Lukatskaya, S. Kota, Z. Lin, M.Q. Zhao, N. Shpigel et al., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2(8), 17105 (2017). https://doi.org/10.1038/nenergy.2017.105
- X. Wang, Y. Xie, K. Tang, C. Wang, C. Yan, Redox chemistry of molybdenum trioxide for ultrafast hydrogen-ion storage. Angew. Chem. Int. Ed. 57(36), 11569–11573 (2018). https://doi.org/10.1002/anie.201803664
- D.P. Dubal, N.R. Chodankar, S. Qiao, Tungsten nitride nanodots embedded phosphorous modified carbon fabric as flexible and robust electrode for asymmetric pseudocapacitor. Small 15(1), 1804104 (2019). https://doi.org/10.1002/smll.201804104
- Z. Wu, L. Jiang, W. Tian, Y. Wang, Y. Jiang et al., Novel sub-5 nm layered niobium phosphate nanosheets for high-voltage, cation-intercalation typed electrochemical energy storage in wearable pseudocapacitors. Adv. Energy Mater. 9(20), 1900111 (2019). https://doi.org/10.1002/aenm.201900111
- G. Liang, F. Mo, X. Ji, C. Zhi, Non-metallic charge carriers for aqueous batteries. Nat. Rev. Mater. 6(2), 109–123 (2020). https://doi.org/10.1038/s41578-020-00241-4
- D.L. Chao, W.H. Zhou, F.X. Xie, C. Ye, H. Li et al., Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv. 6(21), eaba4098 (2020). https://doi.org/10.1126/sciadv.aba4098
- Z. Guo, J. Huang, X. Dong, Y. Xia, L. Yan et al., An organic/inorganic electrode-based hydronium-ion battery. Nat. Commun. 11, 959 (2020). https://doi.org/10.1038/s41467-020-14748-5
- J. Huang, S. Peng, J. Gu, G. Chen, J. Gao et al., Self-powered integrated system of a strain sensor and flexible all-solid-state supercapacitor by using a high performance ionic organohydrogel. Mater. Horiz. 7(8), 2085–2096 (2020). https://doi.org/10.1039/d0mh00100g
- H. Jiang, W. Shin, L. Ma, J.J. Hong, Z. Wei et al., A high-rate aqueous proton battery delivering power below − 78 °C via an unfrozen phosphoric acid. Adv. Energy Mater. 10(28), 2000968 (2020). https://doi.org/10.1002/aenm.202000968
- C. Lu, X. Chen, All-temperature flexible supercapacitors enabled by antifreezing and thermally stable hydrogel electrolyte. Nano Lett. 20(3), 1907–1914 (2020). https://doi.org/10.1021/acs.nanolett.9b05148
- C. Strietzel, M. Sterby, H. Huang, M. Stromme, R. Emanuelsson et al., An aqueous conducting redox-polymer-based proton battery that can withstand rapid constant-voltage charging and sub-zero temperatures. Angew. Chem. Int. Ed. 59(24), 9631–9638 (2020). https://doi.org/10.1002/anie.202001191
- X. Wu, S. Qiu, Y. Xu, L. Ma, X. Bi et al., Hydrous nickel-iron turnbull’s blue as a high-rate and low-temperature proton electrode. ACS Appl. Mater. Interfaces 12(8), 9201–9208 (2020). https://doi.org/10.1021/acsami.9b20320
- J. Xu, X. Hu, X. Wang, X. Wang, Y. Ju et al., Low-temperature pseudocapacitive energy storage in Ti3C2Tx MXene. Energy Stor. Mater. 33, 382–389 (2020). https://doi.org/10.1016/j.ensm.2020.08.029
- L. Yan, J. Huang, Z. Guo, X. Dong, Z. Wang et al., Solid-state proton battery operated at ultralow temperature. ACS Energy Lett. 5(2), 685–691 (2020). https://doi.org/10.1021/acsenergylett.0c00109
- C. Choi, D.S. Ashby, D.M. Butts, R.H. DeBlock, Q. Wei et al., Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 5, 5–19 (2019). https://doi.org/10.1038/s41578-019-0142-z
- F. Liu, T. Wang, X. Liu, L.Z. Fan, Challenges and recent progress on key materials for rechargeable magnesium batteries. Adv. Energy Mater. 11(2), 2000787 (2020). https://doi.org/10.1002/aenm.202000787
- J.P. Zheng, P.J. Cygan, T.R. Jow, Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J. Electrochem. Soc. 142(8), 2699–2703 (1995). https://doi.org/10.1149/1.2050077
- W. Dmowski, T. Egami, K.E. Swider-Lyons, C.T. Love, D.R. Rolison, Local atomic structure and conduction mechanism of nanocrystalline hydrous RuO2 from X-ray scattering. J. Phys. Chem. B 106(49), 12677–12683 (2002). https://doi.org/10.1021/jp026228l
- N. Yoshida, Y. Yamada, S. Nishimura, Y. Oba, M. Ohnuma et al., Unveiling the origin of unusual pseudocapacitance of RuO2·nH2O from its hierarchical nanostructure by small-angle X-ray scattering. J. Phys. Chem. C 117(23), 12003–12009 (2013). https://doi.org/10.1021/jp403402k
- V. Ozolins, F. Zhou, M. Asta, Ruthenia-based electrochemical supercapacitors: insights from first-principles calculations. Acc. Chem. Res. 46(5), 1084–1093 (2013). https://doi.org/10.1021/ar3002987
- Y. Liu, F. Zhou, V. Ozolins, Ab initio study of the charge-storage mechanisms in RuO2-based electrochemical ultracapacitors. J. Phys. Chem. C 116(1), 1450–1457 (2011). https://doi.org/10.1021/jp207616s
- C. Costentin, T.R. Porter, J.M. Saveant, How do pseudocapacitors store energy? Theoretical analysis and experimental illustration. ACS Appl. Mater. Interfaces 9(10), 8649–8658 (2017). https://doi.org/10.1021/acsami.6b14100
- A. Jadon, S. Prabhudev, G. Buvat, S.G. Patnaik, M. Djafari-Rouhani et al., Rethinking pseudocapacitance: a way to harness charge storage of crystalline RuO2. ACS Appl. Energy Mater. 3(5), 4144–4148 (2020). https://doi.org/10.1021/acsaem.0c00476
- H.A. Evans, Y. Wu, R. Seshadri, A.K. Cheetham, Perovskite-related ReO3-type structures. Nat. Rev. Mater. 5(3), 196–213 (2020). https://doi.org/10.1038/s41578-019-0160-x
- S. Tanisaki, Crystal structure of monoclinic tungsten trioxide at room temperature. J. Phys. Soc. Jpn. 15(4), 573–581 (1960). https://doi.org/10.1143/JPSJ.15.573
- S.H. Lee, R. Deshpande, P.A. Parilla, K.M. Jones, B. To et al., Crystalline WO3 nanops for highly improved electrochromic applications. Adv. Mater. 18(6), 763–766 (2006). https://doi.org/10.1002/adma.200501953
- J.D.E. McIntyre, S. Basu, W.F. Peck, W.L. Brown, W.M. Augustyniak, Cation insertion reactions of electrochromic tungsten and iridium oxide films. Phys. Rev. B 25(12), 7242–7254 (1982). https://doi.org/10.1103/PhysRevB.25.7242
- P.G. Dickens, S. Crouch-Baker, M.T. Weller, Hydrogen insertion in oxides. Solid State Ion. 18–19, 89–97 (1986). https://doi.org/10.1016/0167-2738(86)90092-5
- S.J. Babinec, A quartz crystal microbalance analysis of ion insertion into WO3. Sol. Energy Mater Sol. Cells 25(3–4), 269–291 (1992). https://doi.org/10.1016/0927-0248(92)90073-x
- M.S. Whittingham, Hydrogen motion in oxides: from insulators to bronzes. Solid State Ion. 168(3–4), 255–263 (2004). https://doi.org/10.1016/j.ssi.2003.08.056
- M. Zhu, W. Meng, Y. Huang, Y. Huang, C. Zhi, Proton-insertion-enhanced pseudocapacitance based on the assembly structure of tungsten oxide. ACS Appl. Mater. Interfaces 6(21), 18901–18910 (2014). https://doi.org/10.1021/am504756u
- J.B. Mitchell, W.C. Lo, A. Genc, J. LeBeau, V. Augustyn, Transition from battery to pseudocapacitor behavior via structural water in tungsten oxide. Chem. Mater. 29(9), 3928–3937 (2017). https://doi.org/10.1021/acs.chemmater.6b05485
- J. Besnardiere, B. Ma, A. Torres-Pardo, G. Wallez, H. Kabbour et al., Structure and electrochromism of two-dimensional octahedral molecular sieve h’-WO3. Nat. Commun. 10, 327 (2019). https://doi.org/10.1038/s41467-018-07774-x
- W. Sun, M.T. Yeung, A.T. Lech, C.W. Lin, C. Lee et al., High surface area tunnels in hexagonal WO3. Nano Lett. 15(7), 4834–4838 (2015). https://doi.org/10.1021/acs.nanolett.5b02013
- M. Zhu, Y. Huang, Y. Huang, Z. Pei, Q. Xue et al., Capacitance enhancement in a semiconductor nanostructure-based supercapacitor by solar light and a self-powered supercapacitor-photodetector system. Adv. Funct. Mater. 26(25), 4481–4490 (2016). https://doi.org/10.1002/adfm.201601260
- E.V. Miu, J.R. McKone, Comparisons of WO3 reduction to HxWO3 under thermochemical and electrochemical control. J. Mater. Chem. A 7(41), 23756–23761 (2019). https://doi.org/10.1039/c9ta06394c
- H. Jiang, J.J. Hong, X. Wu, T.W. Surta, Y. Qi et al., Insights on the proton insertion mechanism in the electrode of hexagonal tungsten oxide hydrate. J. Am. Chem. Soc. 140(37), 11556–11559 (2018). https://doi.org/10.1021/jacs.8b03959
- A. Hu, Z. Jiang, C. Kuai, S. McGuigan, D. Nordlund et al., Uncovering phase transformation, morphological evolution, and nanoscale color heterogeneity in tungsten oxide electrochromic materials. J. Mater. Chem. A 8(38), 20000–20010 (2020). https://doi.org/10.1039/d0ta06612e
- H. Lin, F. Zhou, C.P. Liu, V. Ozoliņš, Non-grotthuss proton diffusion mechanism in tungsten oxide dihydrate from first-principles calculations. J. Mater. Chem. A 2(31), 12280–12288 (2014). https://doi.org/10.1039/c4ta02465f
- R. Wang, J.B. Mitchell, Q. Gao, W.Y. Tsai, S. Boyd et al., Operando atomic force microscopy reveals mechanics of structural water driven battery-to-pseudocapacitor transition. ACS Nano 12(6), 6032–6039 (2018). https://doi.org/10.1021/acsnano.8b02273
- J.B. Mitchell, N.R. Geise, A.R. Paterson, N.C. Osti, Y. Sun et al., Confined interlayer water promotes structural stability for high-rate electrochemical proton intercalation in tungsten oxide hydrates. ACS Energy Lett. 4(12), 2805–2812 (2019). https://doi.org/10.1021/acsenergylett.9b02040
- A. Zhou, W. Cheng, W. Wang, Q. Zhao, J. Xie et al., Hexacyanoferrate-type Prussian blue analogs: principles and advances toward high-performance sodium and potassium ion batteries. Adv. Energy Mater. 11(2), 2000943 (2020). https://doi.org/10.1002/aenm.202000943
- A. Simonov, T.D. Baerdemaeker, H.L.B. Bostrom, M.L.R. Gomez, H.J. Gray et al., Hidden diversity of vacancy networks in Prussian blue analogues. Nature 578(7794), 256–260 (2020). https://doi.org/10.1038/s41586-020-1980-y
- X. He, L. Tian, M. Qiao, J. Zhang, W. Geng et al., A novel highly crystalline Fe4(Fe(CN)6)3 concave cube anode material for Li-ion batteries with high capacity and long life. J. Mater. Chem. A 7(18), 11478–11486 (2019). https://doi.org/10.1039/c9ta02265a
- L. Jiang, Y. Lu, C. Zhao, L. Liu, J. Zhang et al., Building aqueous K-ion batteries for energy storage. Nat. Energy 4(6), 495–503 (2019). https://doi.org/10.1038/s41560-019-0388-0
- J.H. Lee, G. Ali, D.H. Kim, K.Y. Chung, Metal-organic framework cathodes based on a vanadium hexacyanoferrate Prussian blue analogue for high-performance aqueous rechargeable batteries. Adv. Energy Mater. 7(2), 1601491 (2017). https://doi.org/10.1002/aenm.201601491
- Z. Li, K. Xiang, W. Xing, W.C. Carter, Y.M. Chiang, Reversible aluminum-ion intercalation in Prussian blue analogs and demonstration of a high-power aluminum-ion asymmetric capacitor. Adv. Energy Mater. 5(5), 1401410 (2015). https://doi.org/10.1002/aenm.201401410
- L. Ma, S. Chen, C. Long, X. Li, Y. Zhao et al., Achieving high-voltage and high-capacity aqueous rechargeable zinc ion battery by incorporating two-species redox reaction. Adv. Energy Mater. 9(45), 1902446 (2019). https://doi.org/10.1002/aenm.201902446
- X. Peng, H. Guo, W. Ren, Z. Su, C. Zhao, Vanadium hexacyanoferrate as high-capacity cathode for fast proton storage. Chem. Commun. 56(79), 11803–11806 (2020). https://doi.org/10.1039/d0cc03974h
- K. Ono, M. Ishizaki, K. Kanaizuka, T. Togashi, T. Yamada et al., Grain-boundary-free super-proton conduction of a solution-processed prussian-blue nanop film. Angew. Chem. Int. Ed. 56(20), 5531–5535 (2017). https://doi.org/10.1002/anie.201701759
- S. Ohkoshi, K. Nakagawa, K. Tomono, K. Imoto, Y. Tsunobuchi et al., High proton conductivity in Prussian blue analogues and the interference effect by magnetic ordering. J. Am. Chem. Soc. 132(19), 6620–6621 (2010). https://doi.org/10.1021/ja100385f
- P. Higel, F. Villain, M. Verdaguer, E. Riviere, A. Bleuzen, Solid-state magnetic switching triggered by proton-coupled electron-transfer assisted by long-distance proton-alkali cation transport. J. Am. Chem. Soc. 136(17), 6231–6234 (2014). https://doi.org/10.1021/ja502294x
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- Y.T. Liu, P. Zhang, N. Sun, B. Anasori, Q.Z. Zhu et al., Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage. Adv. Mater. 30(23), 1707334 (2018). https://doi.org/10.1002/adma.201707334
- Z. Lin, D. Barbara, P.L. Taberna, K.L.V. Aken, B. Anasori et al., Capacitance of Ti3C2Tx MXene in ionic liquid electrolyte. J. Power Sources 326, 575–579 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.035
- J. Yu, J. Zhou, P. Yao, H. Xie, M. Zhang et al., Antimonene engineered highly deformable freestanding electrode with extraordinarily improved energy storage performance. Adv. Energy Mater. 9(44), 1902462 (2019). https://doi.org/10.1002/aenm.201902462
- M.R. Lukatskaya, S.M. Bak, X. Yu, X.Q. Yang, M.W. Barsoum et al., Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy. Adv. Energy Mater. 5(15), 1500589 (2015). https://doi.org/10.1002/aenm.201500589
- M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341(6153), 1502–1505 (2013). https://doi.org/10.1126/science.1241488
- X. Mu, D. Wang, F. Du, G. Chen, C. Wang et al., Revealing the pseudo-intercalation charge storage mechanism of MXenes in acidic electrolyte. Adv. Funct. Mater. 29(29), 1902953 (2019). https://doi.org/10.1002/adfm.201902953
- H. Shao, K. Xu, Y.C. Wu, A. Iadecola, L. Liu et al., Unraveling the charge storage mechanism of Ti3C2Tx MXene electrode in acidic electrolyte. ACS Energy Lett. 5(9), 2873–2880 (2020). https://doi.org/10.1021/acsenergylett.0c01290
- X. Hu, W. Zhang, X. Liu, Y. Mei, Y. Huang, Nanostructured Mo-based electrode materials for electrochemical energy storage. Chem. Soc. Rev. 44(8), 2376–2404 (2015). https://doi.org/10.1039/c4cs00350k
- I.A. Castro, R.S. Datta, J.Z. Ou, A. Castellanos-Gomez, S. Sriram et al., Molybdenum oxides–from fundamentals to functionality. Adv. Mater. 29(40), 1701619 (2017). https://doi.org/10.1002/adma.201701619
- Z. Su, W. Ren, H. Guo, X. Peng, X. Chen et al., Ultrahigh areal capacity hydrogen-ion batteries with MoO3 loading over 90 mg cm−2. Adv. Funct. Mater. 30(46), 2005477 (2020). https://doi.org/10.1002/adfm.202005477
- W. Zheng, J. Halim, A.E. Ghazaly, A.S. Etman, E.N. Tseng et al., Flexible free-standing MoO3/Ti3C2Tz MXene composite films with high gravimetric and volumetric capacities. Adv. Sci. 8(3), 2003656 (2021). https://doi.org/10.1002/advs.202003656
- H. Guo, D. Goonetilleke, N. Sharma, W. Ren, Z. Su et al., Two-phase electrochemical proton transport and storage in α-MoO3 for proton batteries. Cell Rep. Phys. Sci. 1(10), 100225 (2020). https://doi.org/10.1016/j.xcrp.2020.100225
- Y. Shi, L. Peng, Y. Ding, Y. Zhao, G. Yu, Nanostructured conductive polymers for advanced energy storage. Chem. Soc. Rev. 44(19), 6684–6696 (2015). https://doi.org/10.1039/c5cs00362h
- S.K. Kim, J. Cho, J.S. Moore, H.S. Park, P.V. Braun, High-performance mesostructured organic hybrid pseudocapacitor electrodes. Adv. Funct. Mater. 26(6), 903–910 (2016). https://doi.org/10.1002/adfm.201504307
- A.M. Navarro-Suárez, J. Carretero-González, T. Rojo, M. Armand, Poly(quinone-amine)/nanocarbon composite electrodes with enhanced proton storage capacity. J. Mater. Chem. A 5(44), 23292–23298 (2017). https://doi.org/10.1039/c7ta08489g
- T. Sun, H. Du, S. Zheng, J. Shi, X. Yuan et al., Bipolar organic polymer for high performance symmetric aqueous proton battery. Small Methods 5(8), 2100367 (2021). https://doi.org/10.1002/smtd.202100367
- Z. Tie, S. Deng, H. Cao, M. Yao, Z. Niu et al., A symmetric all-organic proton battery in mild electrolyte. Angew. Chem. Int. Ed. 61(8), 202115180 (2021). https://doi.org/10.1002/anie.202115180
- A. Mukhopadhyay, Y. Jiao, R. Katahira, P.N. Ciesielski, M. Himmel et al., Heavy metal-free tannin from bark for sustainable energy storage. Nano Lett. 17(12), 7897–7907 (2017). https://doi.org/10.1021/acs.nanolett.7b04242
- H. Yao, F. Zhang, G. Zhang, H. Luo, L. Liu et al., A novel two-dimensional coordination polymer-polypyrrole hybrid material as a high-performance electrode for flexible supercapacitor. Chem. Eng. J. 334, 2547–2557 (2018). https://doi.org/10.1016/j.cej.2017.12.013
- M. Zhu, L. Zhao, Q. Ran, Y. Zhang, R. Peng et al., Bioinspired catechol-grafting pedot cathode for an all-polymer aqueous proton battery with high voltage and outstanding rate capacity. Adv. Sci. 9(4), e2103896 (2021). https://doi.org/10.1002/advs.202103896
- S. Kandambeth, J. Jia, H. Wu, V.S. Kale, P.T. Parvatkar et al., Covalent organic frameworks as negative electrodes for high-performance asymmetric supercapacitors. Adv. Energy Mater. 10(38), 2001673 (2020). https://doi.org/10.1002/aenm.202001673
- S. Haldar, R. Kushwaha, R. Maity, R. Vaidhyanathan, Pyridine-rich covalent organic frameworks as high-performance solid-state supercapacitors. ACS Mater. Lett. 1(4), 490–497 (2019). https://doi.org/10.1021/acsmaterialslett.9b00222
- K. Geng, T. He, R. Liu, S. Dalapati, K.T. Tan et al., Covalent organic frameworks: design, synthesis, and functions. Chem. Rev. 120(16), 8814–8933 (2020). https://doi.org/10.1021/acs.chemrev.9b00550
- Q. Jiang, N. Kurra, M. Alhabeb, Y. Gogotsi, H.N. Alshareef, All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv. Energy Mater. 8(13), 1703043 (2018). https://doi.org/10.1002/aenm.201703043
- M. Boota, Y. Gogotsi, MXene-conducting polymer asymmetric pseudocapacitors. Adv. Energy Mater. 9(7), 1802917 (2019). https://doi.org/10.1002/aenm.201802917
- M. Boota, C. Chen, K.L.V. Aken, J. Jiang, Y. Gogotsi, Organic-inorganic all-pseudocapacitive asymmetric energy storage devices. Nano Energy 65, 104022 (2019). https://doi.org/10.1016/j.nanoen.2019.104022
- T. Xu, Z. Li, D. Wang, M. Zhang, L. Ai et al., A fast proton-induced pseudocapacitive supercapacitor with high energy and power density. Adv. Funct. Mater. 32(5), 2107720 (2021). https://doi.org/10.1002/adfm.202107720
- W. Sun, F. Wang, S. Hou, C. Yang, X. Fan et al., Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 139(29), 9775–9778 (2017). https://doi.org/10.1021/jacs.7b04471
- Z. Tie, L. Liu, S. Deng, D. Zhao, Z. Niu, Proton insertion chemistry of a zinc-organic battery. Angew. Chem. Int. Ed. 59(12), 4920–4924 (2020). https://doi.org/10.1002/anie.201916529
- Z. Zhu, W. Wang, Y. Yin, Y. Meng, Z. Liu et al., An ultrafast and ultra-low-temperature hydrogen gas-proton battery. J. Am. Chem. Soc. 143(48), 20302–20308 (2021). https://doi.org/10.1021/jacs.1c09529
- F. Yue, Z. Tie, S. Deng, S. Wang, M. Yang et al., An ultralow temperature aqueous battery with proton chemistry. Angew. Chem. Int. Ed. 60(25), 13882–13886 (2021). https://doi.org/10.1002/anie.202103722
- T. Sun, H. Du, S. Zheng, J. Shi, Z. Tao, High power and energy density aqueous proton battery operated at –90 C. Adv. Funct. Mater. 31(16), 2010127 (2021). https://doi.org/10.1002/adfm.202010127
- Z. Liu, Y. Huang, Y. Huang, Q. Yang, X. Li et al., Voltage issue of aqueous rechargeable metal-ion batteries. Chem. Soc. Rev. 49(1), 180–232 (2020). https://doi.org/10.1039/c9cs00131j
- S. Wang, X. Zhao, X. Yan, Z. Xiao, C. Liu et al., Regulating fast anionic redox for high-voltage aqueous hydrogen-ion-based energy storage. Angew. Chem. Int. Ed. 58(1), 205–210 (2019). https://doi.org/10.1002/anie.201811220
- Y. Xu, X. Wu, H. Jiang, L. Tang, K.Y. Koga et al., A non-aqueous H3PO4 electrolyte enables stable cycling of proton electrodes. Angew. Chem. Int. Ed. 59(49), 22007–22011 (2020). https://doi.org/10.1002/anie.202010554
- K. Miyazaki, T. Shimada, S. Ito, Y. Yokoyama, T. Fukutsuka et al., Enhanced resistance to oxidative decomposition of aqueous electrolytes for aqueous lithium-ion batteries. Chem. Commun. 52(28), 4979–4982 (2016). https://doi.org/10.1039/c6cc00873a
- Z. Hou, X. Zhang, X. Li, Y. Zhu, J. Liang et al., Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery. J. Mater. Chem. A 5(2), 730–738 (2017). https://doi.org/10.1039/c6ta08736a
- Y. Shao, M.F. El-Kady, J. Sun, Y. Li, Q. Zhang et al., Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 118(18), 9233–9280 (2018). https://doi.org/10.1021/acs.chemrev.8b00252
- H. Wang, J. Li, X. Kuai, L. Bu, L. Gao et al., Enhanced rate capability of ion-accessible Ti3C2Tx-NbN hybrid electrodes. Adv. Energy Mater. 10(35), 2001411 (2020). https://doi.org/10.1002/aenm.202001411
- L.Y. Chen, Y. Hou, J.L. Kang, A. Hirata, T. Fujita et al., Toward the theoretical capacitance of RuO2 reinforced by highly conductive nanoporous gold. Adv. Energy Mater. 3(7), 851–856 (2013). https://doi.org/10.1002/aenm.201300024
- H. Ma, D. Kong, Y. Xu, X. Xie, Y. Tao et al., Disassembly-reassembly approach to RuO2/graphene composites for ultrahigh volumetric capacitance supercapacitor. Small 13(30), 1701026 (2017). https://doi.org/10.1002/smll.201701026
- R. Wang, Y. Sun, A. Brady, S. Fleischmann, T.B. Eldred et al., Fast proton insertion in layered H2W2O7 via selective etching of an aurivillius phase. Adv. Energy Mater. 11(1), 2003335 (2020). https://doi.org/10.1002/aenm.202003335
- X. Chen, Y. Zhu, M. Zhang, J. Sui, W. Peng et al., N-butyllithium-treated Ti3C2Tx MXene with excellent pseudocapacitor performance. ACS Nano 13(8), 9449–9456 (2019). https://doi.org/10.1021/acsnano.9b04301
- J. Tang, T. Mathis, X. Zhong, X. Xiao, H. Wang et al., Optimizing ion pathway in titanium carbide MXene for practical high-rate supercapacitor. Adv. Energy Mater. 11(4), 2003025 (2020). https://doi.org/10.1002/aenm.202003025
- Y. Yang, P. Zhang, L. Hao, P. Cheng, Y. Chen et al., Grotthuss proton-conductive covalent organic frameworks for efficient proton pseudocapacitors. Angew. Chem. Int. Ed. 60(40), 21838–21845 (2021). https://doi.org/10.1002/anie.202105725
- G. Wang, T. Chen, C.J. Gomez-Garcia, F. Zhang, M. Zhang et al., A high-capacity negative electrode for asymmetric supercapacitors based on a PMo12 coordination polymer with novel water-assisted proton channels. Small 16(29), 2001626 (2020). https://doi.org/10.1002/smll.202001626
References
B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
Y. Gogotsi, P. Simon, True performance metrics in electrochemical energy storage. Science 334(6058), 917–918 (2011). https://doi.org/10.1126/science.1213003
Z. Li, B.Y. Guan, J.T. Zhang, X.W. Lou, A compact nanoconfined sulfur cathode for high-performance lithium-sulfur batteries. Joule 1(3), 576–587 (2017). https://doi.org/10.1016/j.joule.2017.06.003
Y.J. Liu, X.Y. Tao, Y. Wang, C. Jiang, C. Ma et al., Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 375(6582), 739–745 (2022). https://doi.org/10.1126/science.abn1818
D.Q. Cao, X.X. Shen, A.P. Wang, F.J. Yu, Y.P. Wu et al., Threshold potentials for fast kinetics during mediated redox catalysis of insulators in Li-O2 and Li-S batteries. Nat. Catal. 5, 193–201 (2022). https://doi.org/10.1038/s41929-022-00752-z
X. Gao, Y. Chen, L.R. Johnson, Z.P. Jovanov, P.G. Bruce, A rechargeable lithium-oxygen battery with dual mediators stabilizing the carbon cathode. Nat. Energy 2(9), 17118 (2017). https://doi.org/10.1038/nenergy.2017.118
D. Wang, J. Yang, P. He, H. Zhou, A low-charge-overpotential lithium-CO2 cell based on a binary molten salt electrolyte. Energy Environ. Sci. 14(7), 4107–4114 (2021). https://doi.org/10.1039/d1ee00068c
K. Baek, W.C. Jeon, S. Woo, J.C. Kim, J.G. Lee et al., Synergistic effect of quinary molten salts and ruthenium catalyst for high-power-density lithium-carbon dioxide cell. Nat. Commun. 11, 456 (2020). https://doi.org/10.1038/s41467-019-14121-1
E. Fan, L. Li, Z. Wang, J. Lin, Y. Huang et al., Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects. Chem. Rev. 120(14), 7020–7063 (2020). https://doi.org/10.1021/acs.chemrev.9b00535
C. Delmas, Sodium and sodium-ion batteries: 50 years of research. Adv. Energy Mater. 8(17), 1703137 (2018). https://doi.org/10.1002/aenm.201703137
T. Hosaka, K. Kubota, A.S. Hameed, S. Komaba, Research development on K-ion batteries. Chem. Rev. 120(14), 6358–6466 (2020). https://doi.org/10.1021/acs.chemrev.9b00463
C. Zhong, B. Liu, J. Ding, X. Liu, Y. Zhong et al., Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc-manganese dioxide batteries. Nat. Energy 5(6), 440–449 (2020). https://doi.org/10.1038/s41560-020-0584-y
A. Du, Z. Zhang, H. Qu, Z. Cui, L. Qiao et al., An efficient organic magnesium borate-based electrolyte with non-nucleophilic characteristics for magnesium-sulfur battery. Energy Environ. Sci. 10(12), 2616–2625 (2017). https://doi.org/10.1039/c7ee02304a
M.C. Lin, M. Gong, B. Lu, Y. Wu, D.Y. Wang et al., An ultrafast rechargeable aluminium-ion battery. Nature 520(7547), 325–328 (2015). https://doi.org/10.1038/nature14340
S. Dong, W. Shin, H. Jiang, X. Wu, Z. Li et al., Ultra-fast NH4+ storage: strong H bonding between NH4+ and bi-layered V2O5. Chem 5(6), 1537–1551 (2019). https://doi.org/10.1016/j.chempr.2019.03.009
G. Liang, Y. Wang, Z. Huang, F. Mo, X. Li et al., Initiating hexagonal MoO3 for superb-stable and fast NH4+ storage based on hydrogen bond chemistry. Adv. Mater. 32(14), 1907802 (2020). https://doi.org/10.1002/adma.201907802
X. Wu, Y. Qi, J.J. Hong, Z. Li, A.S. Hernandez et al., Rocking-chair ammonium-ion battery: a highly reversible aqueous energy storage system. Angew. Chem. Int. Ed. 56(42), 13026–13030 (2017). https://doi.org/10.1002/anie.201707473
M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.L. Taberna et al., Efficient storage mechanisms for building better supercapacitors. Nat. Energy 1(6), 16070 (2016). https://doi.org/10.1038/nenergy.2016.70
P. Simon, Y. Gogotsi, Perspectives for electrochemical capacitors and related devices. Nat. Mater. 19(11), 1151–1163 (2020). https://doi.org/10.1038/s41563-020-0747-z
Y. Xu, X. Wu, X. Ji, The renaissance of proton batteries. Small Struct. 2(5), 2000113 (2021). https://doi.org/10.1002/sstr.202000113
X. Wu, J.J. Hong, W. Shin, L. Ma, T. Liu et al., Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries. Nat. Energy 4(2), 123–130 (2019). https://doi.org/10.1038/s41560-018-0309-7
C. Knight, G.A. Voth, The curious case of the hydrated proton. Acc. Chem. Res. 45(1), 101–109 (2012). https://doi.org/10.1021/ar200140h
C.T. Wolke, J.A. Fournier, L.C. Dzugan, M.R. Fagiani, T.T. Odbadrakh et al., Spectroscopic snapshots of the proton-transfer mechanism in water. Science 354(6316), 1131–1135 (2016). https://doi.org/10.1126/science.aaf8425
S.M.S.E. Adabifiroozjaei, Y. Yao, P. Koshy, S. Lim, R. Webster et al., Proton-assisted creation of controllable volumetric oxygen vacancies in ultrathin CeO2–x for pseudocapacitive energy storage applications. Nat. Commun. 10, 2594 (2019). https://doi.org/10.1038/s41467-019-10621-2
D.W. Lim, M. Sadakiyo, H. Kitagawa, Proton transfer in hydrogen-bonded degenerate systems of water and ammonia in metal-organic frameworks. Chem. Sci. 10(1), 16–33 (2019). https://doi.org/10.1039/c8sc04475a
Z. Chen, Y. Peng, F. Liu, Z. Le, J. Zhu et al., Hierarchical nanostructured WO3 with biomimetic proton channels and mixed ionic-electronic conductivity for electrochemical energy storage. Nano Lett. 15(10), 6802–6808 (2015). https://doi.org/10.1021/acs.nanolett.5b02642
M.R. Lukatskaya, S. Kota, Z. Lin, M.Q. Zhao, N. Shpigel et al., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2(8), 17105 (2017). https://doi.org/10.1038/nenergy.2017.105
X. Wang, Y. Xie, K. Tang, C. Wang, C. Yan, Redox chemistry of molybdenum trioxide for ultrafast hydrogen-ion storage. Angew. Chem. Int. Ed. 57(36), 11569–11573 (2018). https://doi.org/10.1002/anie.201803664
D.P. Dubal, N.R. Chodankar, S. Qiao, Tungsten nitride nanodots embedded phosphorous modified carbon fabric as flexible and robust electrode for asymmetric pseudocapacitor. Small 15(1), 1804104 (2019). https://doi.org/10.1002/smll.201804104
Z. Wu, L. Jiang, W. Tian, Y. Wang, Y. Jiang et al., Novel sub-5 nm layered niobium phosphate nanosheets for high-voltage, cation-intercalation typed electrochemical energy storage in wearable pseudocapacitors. Adv. Energy Mater. 9(20), 1900111 (2019). https://doi.org/10.1002/aenm.201900111
G. Liang, F. Mo, X. Ji, C. Zhi, Non-metallic charge carriers for aqueous batteries. Nat. Rev. Mater. 6(2), 109–123 (2020). https://doi.org/10.1038/s41578-020-00241-4
D.L. Chao, W.H. Zhou, F.X. Xie, C. Ye, H. Li et al., Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv. 6(21), eaba4098 (2020). https://doi.org/10.1126/sciadv.aba4098
Z. Guo, J. Huang, X. Dong, Y. Xia, L. Yan et al., An organic/inorganic electrode-based hydronium-ion battery. Nat. Commun. 11, 959 (2020). https://doi.org/10.1038/s41467-020-14748-5
J. Huang, S. Peng, J. Gu, G. Chen, J. Gao et al., Self-powered integrated system of a strain sensor and flexible all-solid-state supercapacitor by using a high performance ionic organohydrogel. Mater. Horiz. 7(8), 2085–2096 (2020). https://doi.org/10.1039/d0mh00100g
H. Jiang, W. Shin, L. Ma, J.J. Hong, Z. Wei et al., A high-rate aqueous proton battery delivering power below − 78 °C via an unfrozen phosphoric acid. Adv. Energy Mater. 10(28), 2000968 (2020). https://doi.org/10.1002/aenm.202000968
C. Lu, X. Chen, All-temperature flexible supercapacitors enabled by antifreezing and thermally stable hydrogel electrolyte. Nano Lett. 20(3), 1907–1914 (2020). https://doi.org/10.1021/acs.nanolett.9b05148
C. Strietzel, M. Sterby, H. Huang, M. Stromme, R. Emanuelsson et al., An aqueous conducting redox-polymer-based proton battery that can withstand rapid constant-voltage charging and sub-zero temperatures. Angew. Chem. Int. Ed. 59(24), 9631–9638 (2020). https://doi.org/10.1002/anie.202001191
X. Wu, S. Qiu, Y. Xu, L. Ma, X. Bi et al., Hydrous nickel-iron turnbull’s blue as a high-rate and low-temperature proton electrode. ACS Appl. Mater. Interfaces 12(8), 9201–9208 (2020). https://doi.org/10.1021/acsami.9b20320
J. Xu, X. Hu, X. Wang, X. Wang, Y. Ju et al., Low-temperature pseudocapacitive energy storage in Ti3C2Tx MXene. Energy Stor. Mater. 33, 382–389 (2020). https://doi.org/10.1016/j.ensm.2020.08.029
L. Yan, J. Huang, Z. Guo, X. Dong, Z. Wang et al., Solid-state proton battery operated at ultralow temperature. ACS Energy Lett. 5(2), 685–691 (2020). https://doi.org/10.1021/acsenergylett.0c00109
C. Choi, D.S. Ashby, D.M. Butts, R.H. DeBlock, Q. Wei et al., Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 5, 5–19 (2019). https://doi.org/10.1038/s41578-019-0142-z
F. Liu, T. Wang, X. Liu, L.Z. Fan, Challenges and recent progress on key materials for rechargeable magnesium batteries. Adv. Energy Mater. 11(2), 2000787 (2020). https://doi.org/10.1002/aenm.202000787
J.P. Zheng, P.J. Cygan, T.R. Jow, Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J. Electrochem. Soc. 142(8), 2699–2703 (1995). https://doi.org/10.1149/1.2050077
W. Dmowski, T. Egami, K.E. Swider-Lyons, C.T. Love, D.R. Rolison, Local atomic structure and conduction mechanism of nanocrystalline hydrous RuO2 from X-ray scattering. J. Phys. Chem. B 106(49), 12677–12683 (2002). https://doi.org/10.1021/jp026228l
N. Yoshida, Y. Yamada, S. Nishimura, Y. Oba, M. Ohnuma et al., Unveiling the origin of unusual pseudocapacitance of RuO2·nH2O from its hierarchical nanostructure by small-angle X-ray scattering. J. Phys. Chem. C 117(23), 12003–12009 (2013). https://doi.org/10.1021/jp403402k
V. Ozolins, F. Zhou, M. Asta, Ruthenia-based electrochemical supercapacitors: insights from first-principles calculations. Acc. Chem. Res. 46(5), 1084–1093 (2013). https://doi.org/10.1021/ar3002987
Y. Liu, F. Zhou, V. Ozolins, Ab initio study of the charge-storage mechanisms in RuO2-based electrochemical ultracapacitors. J. Phys. Chem. C 116(1), 1450–1457 (2011). https://doi.org/10.1021/jp207616s
C. Costentin, T.R. Porter, J.M. Saveant, How do pseudocapacitors store energy? Theoretical analysis and experimental illustration. ACS Appl. Mater. Interfaces 9(10), 8649–8658 (2017). https://doi.org/10.1021/acsami.6b14100
A. Jadon, S. Prabhudev, G. Buvat, S.G. Patnaik, M. Djafari-Rouhani et al., Rethinking pseudocapacitance: a way to harness charge storage of crystalline RuO2. ACS Appl. Energy Mater. 3(5), 4144–4148 (2020). https://doi.org/10.1021/acsaem.0c00476
H.A. Evans, Y. Wu, R. Seshadri, A.K. Cheetham, Perovskite-related ReO3-type structures. Nat. Rev. Mater. 5(3), 196–213 (2020). https://doi.org/10.1038/s41578-019-0160-x
S. Tanisaki, Crystal structure of monoclinic tungsten trioxide at room temperature. J. Phys. Soc. Jpn. 15(4), 573–581 (1960). https://doi.org/10.1143/JPSJ.15.573
S.H. Lee, R. Deshpande, P.A. Parilla, K.M. Jones, B. To et al., Crystalline WO3 nanops for highly improved electrochromic applications. Adv. Mater. 18(6), 763–766 (2006). https://doi.org/10.1002/adma.200501953
J.D.E. McIntyre, S. Basu, W.F. Peck, W.L. Brown, W.M. Augustyniak, Cation insertion reactions of electrochromic tungsten and iridium oxide films. Phys. Rev. B 25(12), 7242–7254 (1982). https://doi.org/10.1103/PhysRevB.25.7242
P.G. Dickens, S. Crouch-Baker, M.T. Weller, Hydrogen insertion in oxides. Solid State Ion. 18–19, 89–97 (1986). https://doi.org/10.1016/0167-2738(86)90092-5
S.J. Babinec, A quartz crystal microbalance analysis of ion insertion into WO3. Sol. Energy Mater Sol. Cells 25(3–4), 269–291 (1992). https://doi.org/10.1016/0927-0248(92)90073-x
M.S. Whittingham, Hydrogen motion in oxides: from insulators to bronzes. Solid State Ion. 168(3–4), 255–263 (2004). https://doi.org/10.1016/j.ssi.2003.08.056
M. Zhu, W. Meng, Y. Huang, Y. Huang, C. Zhi, Proton-insertion-enhanced pseudocapacitance based on the assembly structure of tungsten oxide. ACS Appl. Mater. Interfaces 6(21), 18901–18910 (2014). https://doi.org/10.1021/am504756u
J.B. Mitchell, W.C. Lo, A. Genc, J. LeBeau, V. Augustyn, Transition from battery to pseudocapacitor behavior via structural water in tungsten oxide. Chem. Mater. 29(9), 3928–3937 (2017). https://doi.org/10.1021/acs.chemmater.6b05485
J. Besnardiere, B. Ma, A. Torres-Pardo, G. Wallez, H. Kabbour et al., Structure and electrochromism of two-dimensional octahedral molecular sieve h’-WO3. Nat. Commun. 10, 327 (2019). https://doi.org/10.1038/s41467-018-07774-x
W. Sun, M.T. Yeung, A.T. Lech, C.W. Lin, C. Lee et al., High surface area tunnels in hexagonal WO3. Nano Lett. 15(7), 4834–4838 (2015). https://doi.org/10.1021/acs.nanolett.5b02013
M. Zhu, Y. Huang, Y. Huang, Z. Pei, Q. Xue et al., Capacitance enhancement in a semiconductor nanostructure-based supercapacitor by solar light and a self-powered supercapacitor-photodetector system. Adv. Funct. Mater. 26(25), 4481–4490 (2016). https://doi.org/10.1002/adfm.201601260
E.V. Miu, J.R. McKone, Comparisons of WO3 reduction to HxWO3 under thermochemical and electrochemical control. J. Mater. Chem. A 7(41), 23756–23761 (2019). https://doi.org/10.1039/c9ta06394c
H. Jiang, J.J. Hong, X. Wu, T.W. Surta, Y. Qi et al., Insights on the proton insertion mechanism in the electrode of hexagonal tungsten oxide hydrate. J. Am. Chem. Soc. 140(37), 11556–11559 (2018). https://doi.org/10.1021/jacs.8b03959
A. Hu, Z. Jiang, C. Kuai, S. McGuigan, D. Nordlund et al., Uncovering phase transformation, morphological evolution, and nanoscale color heterogeneity in tungsten oxide electrochromic materials. J. Mater. Chem. A 8(38), 20000–20010 (2020). https://doi.org/10.1039/d0ta06612e
H. Lin, F. Zhou, C.P. Liu, V. Ozoliņš, Non-grotthuss proton diffusion mechanism in tungsten oxide dihydrate from first-principles calculations. J. Mater. Chem. A 2(31), 12280–12288 (2014). https://doi.org/10.1039/c4ta02465f
R. Wang, J.B. Mitchell, Q. Gao, W.Y. Tsai, S. Boyd et al., Operando atomic force microscopy reveals mechanics of structural water driven battery-to-pseudocapacitor transition. ACS Nano 12(6), 6032–6039 (2018). https://doi.org/10.1021/acsnano.8b02273
J.B. Mitchell, N.R. Geise, A.R. Paterson, N.C. Osti, Y. Sun et al., Confined interlayer water promotes structural stability for high-rate electrochemical proton intercalation in tungsten oxide hydrates. ACS Energy Lett. 4(12), 2805–2812 (2019). https://doi.org/10.1021/acsenergylett.9b02040
A. Zhou, W. Cheng, W. Wang, Q. Zhao, J. Xie et al., Hexacyanoferrate-type Prussian blue analogs: principles and advances toward high-performance sodium and potassium ion batteries. Adv. Energy Mater. 11(2), 2000943 (2020). https://doi.org/10.1002/aenm.202000943
A. Simonov, T.D. Baerdemaeker, H.L.B. Bostrom, M.L.R. Gomez, H.J. Gray et al., Hidden diversity of vacancy networks in Prussian blue analogues. Nature 578(7794), 256–260 (2020). https://doi.org/10.1038/s41586-020-1980-y
X. He, L. Tian, M. Qiao, J. Zhang, W. Geng et al., A novel highly crystalline Fe4(Fe(CN)6)3 concave cube anode material for Li-ion batteries with high capacity and long life. J. Mater. Chem. A 7(18), 11478–11486 (2019). https://doi.org/10.1039/c9ta02265a
L. Jiang, Y. Lu, C. Zhao, L. Liu, J. Zhang et al., Building aqueous K-ion batteries for energy storage. Nat. Energy 4(6), 495–503 (2019). https://doi.org/10.1038/s41560-019-0388-0
J.H. Lee, G. Ali, D.H. Kim, K.Y. Chung, Metal-organic framework cathodes based on a vanadium hexacyanoferrate Prussian blue analogue for high-performance aqueous rechargeable batteries. Adv. Energy Mater. 7(2), 1601491 (2017). https://doi.org/10.1002/aenm.201601491
Z. Li, K. Xiang, W. Xing, W.C. Carter, Y.M. Chiang, Reversible aluminum-ion intercalation in Prussian blue analogs and demonstration of a high-power aluminum-ion asymmetric capacitor. Adv. Energy Mater. 5(5), 1401410 (2015). https://doi.org/10.1002/aenm.201401410
L. Ma, S. Chen, C. Long, X. Li, Y. Zhao et al., Achieving high-voltage and high-capacity aqueous rechargeable zinc ion battery by incorporating two-species redox reaction. Adv. Energy Mater. 9(45), 1902446 (2019). https://doi.org/10.1002/aenm.201902446
X. Peng, H. Guo, W. Ren, Z. Su, C. Zhao, Vanadium hexacyanoferrate as high-capacity cathode for fast proton storage. Chem. Commun. 56(79), 11803–11806 (2020). https://doi.org/10.1039/d0cc03974h
K. Ono, M. Ishizaki, K. Kanaizuka, T. Togashi, T. Yamada et al., Grain-boundary-free super-proton conduction of a solution-processed prussian-blue nanop film. Angew. Chem. Int. Ed. 56(20), 5531–5535 (2017). https://doi.org/10.1002/anie.201701759
S. Ohkoshi, K. Nakagawa, K. Tomono, K. Imoto, Y. Tsunobuchi et al., High proton conductivity in Prussian blue analogues and the interference effect by magnetic ordering. J. Am. Chem. Soc. 132(19), 6620–6621 (2010). https://doi.org/10.1021/ja100385f
P. Higel, F. Villain, M. Verdaguer, E. Riviere, A. Bleuzen, Solid-state magnetic switching triggered by proton-coupled electron-transfer assisted by long-distance proton-alkali cation transport. J. Am. Chem. Soc. 136(17), 6231–6234 (2014). https://doi.org/10.1021/ja502294x
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
Y.T. Liu, P. Zhang, N. Sun, B. Anasori, Q.Z. Zhu et al., Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage. Adv. Mater. 30(23), 1707334 (2018). https://doi.org/10.1002/adma.201707334
Z. Lin, D. Barbara, P.L. Taberna, K.L.V. Aken, B. Anasori et al., Capacitance of Ti3C2Tx MXene in ionic liquid electrolyte. J. Power Sources 326, 575–579 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.035
J. Yu, J. Zhou, P. Yao, H. Xie, M. Zhang et al., Antimonene engineered highly deformable freestanding electrode with extraordinarily improved energy storage performance. Adv. Energy Mater. 9(44), 1902462 (2019). https://doi.org/10.1002/aenm.201902462
M.R. Lukatskaya, S.M. Bak, X. Yu, X.Q. Yang, M.W. Barsoum et al., Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy. Adv. Energy Mater. 5(15), 1500589 (2015). https://doi.org/10.1002/aenm.201500589
M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341(6153), 1502–1505 (2013). https://doi.org/10.1126/science.1241488
X. Mu, D. Wang, F. Du, G. Chen, C. Wang et al., Revealing the pseudo-intercalation charge storage mechanism of MXenes in acidic electrolyte. Adv. Funct. Mater. 29(29), 1902953 (2019). https://doi.org/10.1002/adfm.201902953
H. Shao, K. Xu, Y.C. Wu, A. Iadecola, L. Liu et al., Unraveling the charge storage mechanism of Ti3C2Tx MXene electrode in acidic electrolyte. ACS Energy Lett. 5(9), 2873–2880 (2020). https://doi.org/10.1021/acsenergylett.0c01290
X. Hu, W. Zhang, X. Liu, Y. Mei, Y. Huang, Nanostructured Mo-based electrode materials for electrochemical energy storage. Chem. Soc. Rev. 44(8), 2376–2404 (2015). https://doi.org/10.1039/c4cs00350k
I.A. Castro, R.S. Datta, J.Z. Ou, A. Castellanos-Gomez, S. Sriram et al., Molybdenum oxides–from fundamentals to functionality. Adv. Mater. 29(40), 1701619 (2017). https://doi.org/10.1002/adma.201701619
Z. Su, W. Ren, H. Guo, X. Peng, X. Chen et al., Ultrahigh areal capacity hydrogen-ion batteries with MoO3 loading over 90 mg cm−2. Adv. Funct. Mater. 30(46), 2005477 (2020). https://doi.org/10.1002/adfm.202005477
W. Zheng, J. Halim, A.E. Ghazaly, A.S. Etman, E.N. Tseng et al., Flexible free-standing MoO3/Ti3C2Tz MXene composite films with high gravimetric and volumetric capacities. Adv. Sci. 8(3), 2003656 (2021). https://doi.org/10.1002/advs.202003656
H. Guo, D. Goonetilleke, N. Sharma, W. Ren, Z. Su et al., Two-phase electrochemical proton transport and storage in α-MoO3 for proton batteries. Cell Rep. Phys. Sci. 1(10), 100225 (2020). https://doi.org/10.1016/j.xcrp.2020.100225
Y. Shi, L. Peng, Y. Ding, Y. Zhao, G. Yu, Nanostructured conductive polymers for advanced energy storage. Chem. Soc. Rev. 44(19), 6684–6696 (2015). https://doi.org/10.1039/c5cs00362h
S.K. Kim, J. Cho, J.S. Moore, H.S. Park, P.V. Braun, High-performance mesostructured organic hybrid pseudocapacitor electrodes. Adv. Funct. Mater. 26(6), 903–910 (2016). https://doi.org/10.1002/adfm.201504307
A.M. Navarro-Suárez, J. Carretero-González, T. Rojo, M. Armand, Poly(quinone-amine)/nanocarbon composite electrodes with enhanced proton storage capacity. J. Mater. Chem. A 5(44), 23292–23298 (2017). https://doi.org/10.1039/c7ta08489g
T. Sun, H. Du, S. Zheng, J. Shi, X. Yuan et al., Bipolar organic polymer for high performance symmetric aqueous proton battery. Small Methods 5(8), 2100367 (2021). https://doi.org/10.1002/smtd.202100367
Z. Tie, S. Deng, H. Cao, M. Yao, Z. Niu et al., A symmetric all-organic proton battery in mild electrolyte. Angew. Chem. Int. Ed. 61(8), 202115180 (2021). https://doi.org/10.1002/anie.202115180
A. Mukhopadhyay, Y. Jiao, R. Katahira, P.N. Ciesielski, M. Himmel et al., Heavy metal-free tannin from bark for sustainable energy storage. Nano Lett. 17(12), 7897–7907 (2017). https://doi.org/10.1021/acs.nanolett.7b04242
H. Yao, F. Zhang, G. Zhang, H. Luo, L. Liu et al., A novel two-dimensional coordination polymer-polypyrrole hybrid material as a high-performance electrode for flexible supercapacitor. Chem. Eng. J. 334, 2547–2557 (2018). https://doi.org/10.1016/j.cej.2017.12.013
M. Zhu, L. Zhao, Q. Ran, Y. Zhang, R. Peng et al., Bioinspired catechol-grafting pedot cathode for an all-polymer aqueous proton battery with high voltage and outstanding rate capacity. Adv. Sci. 9(4), e2103896 (2021). https://doi.org/10.1002/advs.202103896
S. Kandambeth, J. Jia, H. Wu, V.S. Kale, P.T. Parvatkar et al., Covalent organic frameworks as negative electrodes for high-performance asymmetric supercapacitors. Adv. Energy Mater. 10(38), 2001673 (2020). https://doi.org/10.1002/aenm.202001673
S. Haldar, R. Kushwaha, R. Maity, R. Vaidhyanathan, Pyridine-rich covalent organic frameworks as high-performance solid-state supercapacitors. ACS Mater. Lett. 1(4), 490–497 (2019). https://doi.org/10.1021/acsmaterialslett.9b00222
K. Geng, T. He, R. Liu, S. Dalapati, K.T. Tan et al., Covalent organic frameworks: design, synthesis, and functions. Chem. Rev. 120(16), 8814–8933 (2020). https://doi.org/10.1021/acs.chemrev.9b00550
Q. Jiang, N. Kurra, M. Alhabeb, Y. Gogotsi, H.N. Alshareef, All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv. Energy Mater. 8(13), 1703043 (2018). https://doi.org/10.1002/aenm.201703043
M. Boota, Y. Gogotsi, MXene-conducting polymer asymmetric pseudocapacitors. Adv. Energy Mater. 9(7), 1802917 (2019). https://doi.org/10.1002/aenm.201802917
M. Boota, C. Chen, K.L.V. Aken, J. Jiang, Y. Gogotsi, Organic-inorganic all-pseudocapacitive asymmetric energy storage devices. Nano Energy 65, 104022 (2019). https://doi.org/10.1016/j.nanoen.2019.104022
T. Xu, Z. Li, D. Wang, M. Zhang, L. Ai et al., A fast proton-induced pseudocapacitive supercapacitor with high energy and power density. Adv. Funct. Mater. 32(5), 2107720 (2021). https://doi.org/10.1002/adfm.202107720
W. Sun, F. Wang, S. Hou, C. Yang, X. Fan et al., Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 139(29), 9775–9778 (2017). https://doi.org/10.1021/jacs.7b04471
Z. Tie, L. Liu, S. Deng, D. Zhao, Z. Niu, Proton insertion chemistry of a zinc-organic battery. Angew. Chem. Int. Ed. 59(12), 4920–4924 (2020). https://doi.org/10.1002/anie.201916529
Z. Zhu, W. Wang, Y. Yin, Y. Meng, Z. Liu et al., An ultrafast and ultra-low-temperature hydrogen gas-proton battery. J. Am. Chem. Soc. 143(48), 20302–20308 (2021). https://doi.org/10.1021/jacs.1c09529
F. Yue, Z. Tie, S. Deng, S. Wang, M. Yang et al., An ultralow temperature aqueous battery with proton chemistry. Angew. Chem. Int. Ed. 60(25), 13882–13886 (2021). https://doi.org/10.1002/anie.202103722
T. Sun, H. Du, S. Zheng, J. Shi, Z. Tao, High power and energy density aqueous proton battery operated at –90 C. Adv. Funct. Mater. 31(16), 2010127 (2021). https://doi.org/10.1002/adfm.202010127
Z. Liu, Y. Huang, Y. Huang, Q. Yang, X. Li et al., Voltage issue of aqueous rechargeable metal-ion batteries. Chem. Soc. Rev. 49(1), 180–232 (2020). https://doi.org/10.1039/c9cs00131j
S. Wang, X. Zhao, X. Yan, Z. Xiao, C. Liu et al., Regulating fast anionic redox for high-voltage aqueous hydrogen-ion-based energy storage. Angew. Chem. Int. Ed. 58(1), 205–210 (2019). https://doi.org/10.1002/anie.201811220
Y. Xu, X. Wu, H. Jiang, L. Tang, K.Y. Koga et al., A non-aqueous H3PO4 electrolyte enables stable cycling of proton electrodes. Angew. Chem. Int. Ed. 59(49), 22007–22011 (2020). https://doi.org/10.1002/anie.202010554
K. Miyazaki, T. Shimada, S. Ito, Y. Yokoyama, T. Fukutsuka et al., Enhanced resistance to oxidative decomposition of aqueous electrolytes for aqueous lithium-ion batteries. Chem. Commun. 52(28), 4979–4982 (2016). https://doi.org/10.1039/c6cc00873a
Z. Hou, X. Zhang, X. Li, Y. Zhu, J. Liang et al., Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery. J. Mater. Chem. A 5(2), 730–738 (2017). https://doi.org/10.1039/c6ta08736a
Y. Shao, M.F. El-Kady, J. Sun, Y. Li, Q. Zhang et al., Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 118(18), 9233–9280 (2018). https://doi.org/10.1021/acs.chemrev.8b00252
H. Wang, J. Li, X. Kuai, L. Bu, L. Gao et al., Enhanced rate capability of ion-accessible Ti3C2Tx-NbN hybrid electrodes. Adv. Energy Mater. 10(35), 2001411 (2020). https://doi.org/10.1002/aenm.202001411
L.Y. Chen, Y. Hou, J.L. Kang, A. Hirata, T. Fujita et al., Toward the theoretical capacitance of RuO2 reinforced by highly conductive nanoporous gold. Adv. Energy Mater. 3(7), 851–856 (2013). https://doi.org/10.1002/aenm.201300024
H. Ma, D. Kong, Y. Xu, X. Xie, Y. Tao et al., Disassembly-reassembly approach to RuO2/graphene composites for ultrahigh volumetric capacitance supercapacitor. Small 13(30), 1701026 (2017). https://doi.org/10.1002/smll.201701026
R. Wang, Y. Sun, A. Brady, S. Fleischmann, T.B. Eldred et al., Fast proton insertion in layered H2W2O7 via selective etching of an aurivillius phase. Adv. Energy Mater. 11(1), 2003335 (2020). https://doi.org/10.1002/aenm.202003335
X. Chen, Y. Zhu, M. Zhang, J. Sui, W. Peng et al., N-butyllithium-treated Ti3C2Tx MXene with excellent pseudocapacitor performance. ACS Nano 13(8), 9449–9456 (2019). https://doi.org/10.1021/acsnano.9b04301
J. Tang, T. Mathis, X. Zhong, X. Xiao, H. Wang et al., Optimizing ion pathway in titanium carbide MXene for practical high-rate supercapacitor. Adv. Energy Mater. 11(4), 2003025 (2020). https://doi.org/10.1002/aenm.202003025
Y. Yang, P. Zhang, L. Hao, P. Cheng, Y. Chen et al., Grotthuss proton-conductive covalent organic frameworks for efficient proton pseudocapacitors. Angew. Chem. Int. Ed. 60(40), 21838–21845 (2021). https://doi.org/10.1002/anie.202105725
G. Wang, T. Chen, C.J. Gomez-Garcia, F. Zhang, M. Zhang et al., A high-capacity negative electrode for asymmetric supercapacitors based on a PMo12 coordination polymer with novel water-assisted proton channels. Small 16(29), 2001626 (2020). https://doi.org/10.1002/smll.202001626