Photo-Energized MoS2/CNT Cathode for High-Performance Li–CO2 Batteries in a Wide-Temperature Range
Corresponding Author: Laifa Shen
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 5
Abstract
Li–CO2 batteries are considered promising energy storage systems in extreme environments such as Mars; however, severe performance degradation will occur at a subzero temperature owning to the sluggish reaction kinetics. Herein, a photo-energized strategy adopting sustainable solar energy in wide working temperature range Li–CO2 battery was achieved with a binder-free MoS2/carbon nanotube (CNT) photo-electrode as cathode. The unique layered structure and excellent photoelectric properties of MoS2 facilitate the abundant generation and rapid transfer of photo-excited carriers, which accelerate the CO2 reduction and Li2CO3 decomposition upon illumination. The illuminated battery at room temperature exhibited high discharge voltage of 2.95 V and mitigated charge voltage of 3.27 V, attaining superior energy efficiency of 90.2% and excellent cycling stability of over 120 cycles. Even at an extremely low temperature of − 30 °C, the battery with same electrolyte can still deliver a small polarization of 0.45 V by the photoelectric and photothermal synergistic mechanism of MoS2/CNT cathode. This work demonstrates the promising potential of the photo-energized wide working temperature range Li–CO2 battery in addressing the obstacle of charge overpotential and energy efficiency.
Highlights:
1 The unique layered structure and excellent photoelectric properties of MoS2 facilitate the abundant generation and rapid transfer of photo-excited carriers, which accelerate the CO2 reduction and Li2CO3 decomposition upon illumination.
2 MoS2-based photo-energized Li–CO2 battery displays ultra-low charge voltage of 3.27 V, high energy efficiency of 90.2%, superior cycling stability after 120 cycles and high rate capability.
3 The low-temperature Li–CO2 battery achieves an ultra-low charge voltage of 3.4 V at –30 °C with a round-trip efficiency of 86.6%.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.T. Dinh, T. Burdyny, M.G. Kibria, A. Seifitokaldani, C.M. Gabardo et al., CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018). https://doi.org/10.1126/science.aas9100
- Z. Zhuo, K. Dai, R. Qiao, R. Wang, J. Wu et al., Cycling mechanism of Li2MnO3: Li–CO2 batteries and commonality on oxygen redox in cathode materials. Joule 5, 975–997 (2021). https://doi.org/10.1016/j.joule.2021.02.004
- H.-D. Lim, B. Lee, Y. Zheng, J. Hong, J. Kim et al., Rational design of redox mediators for advanced Li–O2 batteries. Nat. Energy 1, 16066 (2016). https://doi.org/10.1038/nenergy.2016.66
- S.-M. Xu, Z.-C. Ren, X. Liu, X. Liang, K.-X. Wang et al., Carbonate decomposition: low-overpotential Li–CO2 battery based on interlayer-confined monodisperse catalyst. Energy Storage Mater. 15, 291–298 (2018). https://doi.org/10.1016/j.ensm.2018.05.015
- B. Liu, Y. Sun, L. Liu, J. Chen, B. Yang et al., Recent advances in understanding Li–CO2 electrochemistry. Energy Environ. Sci. 12, 887–922 (2019). https://doi.org/10.1039/c8ee03417f
- Y. Xu, X. Li, Y. Li, Y. Wang, L. Song et al., Reconfiguration of the charge density difference of nitrogen-doped graphene by covalently bonded Cu-N4 active sites boosting thermodynamics and performance in aprotic Li-CO2 battery. Energy Storage Mater. 68, 103354 (2024). https://doi.org/10.1016/j.ensm.2024.103354
- X. Chen, Y. Zhang, C. Chen, H. Li, Y. Lin et al., Atomically dispersed ruthenium catalysts with open hollow structure for lithium–oxygen batteries. Nano-Micro Lett. 16, 27 (2023). https://doi.org/10.1007/s40820-023-01240-0
- Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, Rational design of MOF-based materials for next-generation rechargeable batteries. Nano-Micro Lett. 13, 203 (2021). https://doi.org/10.1007/s40820-021-00726-z
- C. Li, Y. Ji, Y. Wang, C. Liu, Z. Chen et al., Applications of metal-organic frameworks and their derivatives in electrochemical CO2 reduction. Nano-Micro Lett. 15, 113 (2023). https://doi.org/10.1007/s40820-023-01092-8
- L. Qie, Y. Lin, J.W. Connell, J. Xu, L. Dai, Highly rechargeable lithium-CO2 batteries with a boron- and nitrogen-codoped holey-graphene cathode. Angew. Chem. Int. Ed. 56, 6970–6974 (2017). https://doi.org/10.1002/anie.201701826
- C. Wang, Q. Zhang, X. Zhang, X.-G. Wang, Z. Xie et al., Fabricating Ir/C nanofiber networks as free-standing air cathodes for rechargeable Li–CO2 batteries. Small 14, e1800641 (2018). https://doi.org/10.1002/smll.201800641
- X. Mu, H. Pan, P. He, H. Zhou, Li–CO2 and Na–CO2 batteries: toward greener and sustainable electrical energy storage. Adv. Mater. 32, 1903790 (2020). https://doi.org/10.1002/adma.201903790
- Y. Li, J. Zhou, T. Zhang, T. Wang, X. Li et al., Highly surface-wrinkled and N-doped CNTs anchored on metal wire: a novel fiber-shaped cathode toward high-performance flexible Li–CO2 batteries. Adv. Funct. Mater. 29, 1808117 (2019). https://doi.org/10.1002/adfm.201808117
- P.-F. Zhang, J.-Y. Zhang, T. Sheng, Y.-Q. Lu, Z.-W. Yin et al., Synergetic effect of Ru and NiO in the electrocatalytic decomposition of Li2CO3 to enhance the performance of a Li–CO2/O2 battery. ACS Catal. 10, 1640–1651 (2020). https://doi.org/10.1021/acscatal.9b04138
- J. Sun, Y. Lu, H. Yang, M. Han, L. Shao et al., Rechargeable Na–CO2 batteries starting from cathode of Na2CO3 and carbon nanotubes. Research 2018, 6914626 (2018). https://doi.org/10.1155/2018/6914626
- W. Ma, S. Lu, X. Lei, X. Liu, Y. Ding, Porous Mn2O3 cathode for highly durable Li–CO2 batteries. J. Mater. Chem. A 6, 20829–20835 (2018). https://doi.org/10.1039/c8ta06143b
- Z. Lian, Y. Lu, C. Wang, X. Zhu, S. Ma et al., Single-atom Ru implanted on Co3O4 nanosheets as efficient dual-catalyst for Li–CO2 batteries. Adv. Sci. 8, e2102550 (2021). https://doi.org/10.1002/advs.202102550
- L. Fei, Y. Yin, M. Yang, S. Zhang, C. Wang, Wearable solar energy management based on visible solar thermal energy storage for full solar spectrum utilization. Energy Storage Mater. 42, 636–644 (2021). https://doi.org/10.1016/j.ensm.2021.07.049
- W. Feng, L. Zhu, X. Dong, Y. Wang, Y. Xia et al., Enhanced moisture stability of lithium-rich antiperovskites for sustainable all-solid-state lithium batteries. Adv. Mater. 35, e2210365 (2023). https://doi.org/10.1002/adma.202210365
- T. Fang, H. Huang, J. Feng, Y. Hu, Q. Qian et al., Reactive inorganic vapor deposition of perovskite oxynitride films for solar energy conversion. Research 2019, 9282674 (2019). https://doi.org/10.34133/2019/9282674
- Q. Guo, J. Wu, Y. Yang, X. Liu, Z. Lan et al., High-performance and hysteresis-free perovskite solar cells based on rare-earth-doped SnO2 mesoporous scaffold. Research 2019, 4049793 (2019). https://doi.org/10.34133/2019/4049793
- J. Wu, Y. Huang, W. Ye, Y. Li, CO2 reduction: from the electrochemical to photochemical approach. Adv. Sci. 4, 1700194 (2017). https://doi.org/10.1002/advs.201700194
- F. Podjaski, J. Kröger, B.V. Lotsch, Toward an aqueous solar battery: direct electrochemical storage of solar energy in carbon nitrides. Adv. Mater. 30, 1705477 (2018). https://doi.org/10.1002/adma.201705477
- L. Xu, Y. Ren, Y. Fu, M. Liu, F. Zhu et al., Strong photo-thermal coupling effect boosts CO2 reduction into CH4 in a concentrated solar reactor. Chem. Eng. J. 468, 143831 (2023). https://doi.org/10.1016/j.cej.2023.143831
- S. Xu, C. Chen, Y. Kuang, J. Song, W. Gan et al., Flexible lithium–CO2 battery with ultrahigh capacity and stable cycling. Energy Environ. Sci. 11, 3231–3237 (2018). https://doi.org/10.1039/c8ee01468j
- K. Baek, W.C. Jeon, S. Woo, J.C. Kim, J.G. Lee et al., Synergistic effect of quinary molten salts and ruthenium catalyst for high-power-density lithium-carbon dioxide cell. Nat. Commun. 11, 456 (2020). https://doi.org/10.1038/s41467-019-14121-1
- K.M. Naik, A.K. Chourasia, M. Shavez, C.S. Sharma, Bimetallic RuNi electrocatalyst coated MWCNTs cathode for an efficient and stable Li–CO2 and Li–CO2 Mars batteries performance with low overpotential. Chemsuschem 16, e202300734 (2023). https://doi.org/10.1002/cssc.202300734
- J.-H. Kang, J. Park, M. Na, R.H. Choi, H.R. Byon, Low-temperature CO2-assisted lithium–oxygen batteries for improved stability of peroxodicarbonate and excellent cyclability. ACS Energy Lett. 7, 4248–4257 (2022). https://doi.org/10.1021/acsenergylett.2c01796
- W. Cui, C. Ma, X. Lei, Y. Lv, Q. Zhang et al., Gel electrolyte with dimethyl sulfoxide confined in a polymer matrix for Li-air batteries operable at sub-zero temperature. J. Power. Sources 577, 233264 (2023). https://doi.org/10.1016/j.jpowsour.2023.233264
- H. Kim, J.Y. Hwang, Y.G. Ham, H.N. Choi, M.H. Alfaruqi et al., Turning on lithium-sulfur full batteries at -10 °C. ACS Nano 17, 14032–14042 (2023). https://doi.org/10.1021/acsnano.3c04213
- A. Gupta, A. Manthiram, Designing advanced lithium-based batteries for low-temperature conditions. Adv. Energy Mater. 10, 2001972 (2020). https://doi.org/10.1002/aenm.202001972
- J. Li, L. Wang, Y. Zhao, S. Li, X. Fu et al., Li–CO2 batteries efficiently working at ultra-low temperatures. Adv. Funct. Mater. 30, 2001619 (2020). https://doi.org/10.1002/adfm.202001619
- D.-H. Guan, X.-X. Wang, F. Li, L.-J. Zheng, M.-L. Li et al., All-solid-state photo-assisted Li–CO2 battery working at an ultra-wide operation temperature. ACS Nano 16, 12364–12376 (2022). https://doi.org/10.1021/acsnano.2c03534
- D. Zhu, Q. Zhao, G. Fan, S. Zhao, L. Wang et al., Photoinduced oxygen reduction reaction boosts the output voltage of a zinc-air battery. Angew. Chem. Int. Ed. 58, 12460–12464 (2019). https://doi.org/10.1002/anie.201905954
- M. Li, X. Wang, F. Li, L. Zheng, J. Xu et al., A bifunctional photo-assisted Li–O2 battery based on a hierarchical heterostructured cathode. Adv. Mater. 32, e1907098 (2020). https://doi.org/10.1002/adma.201907098
- H. Song, S. Wang, X. Song, J. Wang, K. Jiang et al., Solar-driven all-solid-state lithium–air batteries operating at extreme low temperatures. Energy Environ. Sci. 13, 1205–1211 (2020). https://doi.org/10.1039/c9ee04039k
- H. Zhang, J. Luo, M. Qi, S. Lin, Q. Dong et al., Enabling lithium metal anode in nonflammable phosphate electrolyte with electrochemically induced chemical reactions. Angew. Chem. Int. Ed. 60, 19183–19190 (2021). https://doi.org/10.1002/anie.202103909
- G.M. Carroll, H. Zhang, J.R. Dunklin, E.M. Miller, N.R. Neale et al., Unique interfacial thermodynamics of few-layer 2D MoS2 for (photo)electrochemical catalysis. Energy Environ. Sci. 12, 1648–1656 (2019). https://doi.org/10.1039/c9ee00513g
- S. Song, Z. Xing, K. Wang, H. Zhao, P. Chen et al., 3D flower-like mesoporous Bi4O5I2/MoS2 Z-scheme heterojunction with optimized photothermal-photocatalytic performance. Green Energy Environ. 8, 200–212 (2023). https://doi.org/10.1016/j.gee.2021.03.013
- Y. Liu, R. Wang, Y. Lyu, H. Li, L. Chen, Rechargeable Li/CO2–O2 (2: 1) battery and Li/CO2 battery. Energy Environ. Sci. 7, 677–681 (2014). https://doi.org/10.1039/C3EE43318H
- J. Wang, W. Fang, Y. Hu, Y. Zhang, J. Dang et al., Single atom Ru doping 2H-MoS2 as highly efficient hydrogen evolution reaction electrocatalyst in a wide pH range. Appl. Catal. B Environ. 298, 120490 (2021). https://doi.org/10.1016/j.apcatb.2021.120490
- H.-Y. Lin, K.T. Le, P.-H. Chen, J.M. Wu, Systematic investigation of the piezocatalysis–adsorption duality of polymorphic MoS2 nanoflowers. Appl. Catal. B Environ. 317, 121717 (2022). https://doi.org/10.1016/j.apcatb.2022.121717
- X. Gan, H. Zhao, D. Lei, P. Wang, Improving electrocatalytic activity of 2H-MoS2 nanosheets obtained by liquid phase exfoliation: Covalent surface modification versus interlayer interaction. J. Catal. 391, 424–434 (2020). https://doi.org/10.1016/j.jcat.2020.09.009
- P. Tiwari, D. Janas, R. Chandra, Self-standing MoS2/CNT and MnO2/CNT one dimensional core shell heterostructures for asymmetric supercapacitor application. Carbon 177, 291–303 (2021). https://doi.org/10.1016/j.carbon.2021.02.080
- H. Wang, X. Xu, A. Neville, Facile synthesis of vacancy-induced 2H-MoS2 nanosheets and defect investigation for supercapacitor application. RSC Adv. 11, 26273–26283 (2021). https://doi.org/10.1039/D1RA04902J
- L.X. Chen, Z.W. Chen, Y. Wang, C.C. Yang, Q. Jiang, Design of dual-modified MoS2 with nanoporous Ni and graphene as efficient catalysts for the hydrogen evolution reaction. ACS Catal. 8, 8107–8114 (2018). https://doi.org/10.1021/acscatal.8b01164
- R. Meng, F. Li, D. Li, B. Jin, A green and efficient synthesis method of Benzo[c]cinnolines: electrochemical reduction of 2, 2’-Dinitrobiphenyl in the presence of CO2. ChemElectroChem 9, 2101381 (2022). https://doi.org/10.1002/celc.202101381
- D. Sun, D. Huang, H. Wang, G.-L. Xu, X. Zhang et al., 1T MoS2 nanosheets with extraordinary sodium storage properties via thermal-driven ion intercalation assisted exfoliation of bulky MoS2. Nano Energy 61, 361–369 (2019). https://doi.org/10.1016/j.nanoen.2019.04.063
- Z. Lu, M. Xiao, S. Wang, D. Han, Z. Huang et al., Correction: a rechargeable Li–CO2 battery based on the preservation of dimethyl sulfoxide. J. Mater. Chem. A 10, 15839 (2022). https://doi.org/10.1039/d2ta02586h
- Z. Zhu, X. Shi, G. Fan, F. Li, J. Chen, Photo-energy conversion and storage in an aprotic Li–O2 battery. Angew. Chem. Int. Ed. 58, 19021–19026 (2019). https://doi.org/10.1002/anie.201911228
- D.-H. Guan, X.-X. Wang, M.-L. Li, F. Li, L.-J. Zheng et al., Light/electricity energy conversion and storage for a hierarchical porous In2S3@CNT/SS cathode towards a flexible Li–CO2 battery. Angew. Chem. Int. Ed. 59, 19518–19524 (2020). https://doi.org/10.1002/anie.202005053
- Z. Wang, B. Liu, X. Yang, C. Zhao, P. Dong et al., Dual catalytic sites of alloying effect bloom CO2 catalytic conversion for highly stable Li–CO2 battery. Adv. Funct. Mater. 33, 2213931 (2023). https://doi.org/10.1002/adfm.202213931
- X. Sun, X. Mu, W. Zheng, L. Wang, S. Yang et al., Binuclear Cu complex catalysis enabling Li–CO2 battery with a high discharge voltage above 3.0 V. Nat. Commun. 14, 536 (2023). https://doi.org/10.1038/s41467-023-36276-8
- X. Yu, H. Gong, B. Gao, X. Fan, P. Li et al., Illumination-enhanced oxygen reduction kinetics in hybrid lithium-oxygen battery with p-type semiconductor. Chem. Eng. J. 449, 137774 (2022). https://doi.org/10.1016/j.cej.2022.137774
- H. Gong, T. Wang, K. Chang, P. Li, L. Liu et al., Revealing the illumination effect on the discharge products in high-performance Li–O2 batteries with heterostructured photocatalysts. Carbon Energy 4, 1169–1181 (2022). https://doi.org/10.1002/cey2.208
- K. Zhang, J. Li, W. Zhai, C. Li, Z. Zhu et al., Boosting cycling stability and rate capability of Li–CO2 batteries via synergistic photoelectric effect and plasmonic interaction. Angew. Chem. Int. Ed. 61, e202201718 (2022). https://doi.org/10.1002/anie.202201718
- X.-X. Wang, D.-H. Guan, F. Li, M.-L. Li, L.-J. Zheng et al., A renewable light-promoted flexible Li–CO2 battery with ultrahigh energy efficiency of 97.9%. Small 17, e2100642 (2021). https://doi.org/10.1002/smll.202100642
- J.-N. Chang, S. Li, Q. Li, J.-H. Wang, C. Guo et al., Redox molecular junction metal-covalent organic frameworks for light-assisted CO2 energy storage. Angew. Chem. Int. Ed. 63, e202402458 (2024). https://doi.org/10.1002/anie.202402458
- Z. Li, M.-L. Li, X.-X. Wang, D.-H. Guan, W.-Q. Liu et al., In situ fabricated photo-electro-catalytic hybrid cathode for light-assisted lithium–CO2 batteries. J. Mater. Chem. A 8, 14799–14806 (2020). https://doi.org/10.1039/d0ta05069e
- S. Chen, H. Wang, S. Lu, Y. Xiang, Monolayer MoS2 film supported metal electrocatalysts: a DFT study. RSC Adv. 6, 107836–107839 (2016). https://doi.org/10.1039/C6RA23995A
- Y. Bae, H. Song, H. Park, H.-D. Lim, H.J. Kwon et al., Dual-functioning molecular carrier of superoxide radicals for stable and efficient lithium–oxygen batteries. Adv. Energy Mater. 10, 1904187 (2020). https://doi.org/10.1002/aenm.201904187
- H. Gong, X. Yu, Y. Xu, B. Gao, H. Xue et al., Long-life reversible Li-CO2 batteries with optimized Li2CO3 flakes as discharge products on palladium-copper nanops. Inorg. Chem. Front. 9, 1533–1540 (2022). https://doi.org/10.1039/D1QI01583D
- A. Ahmadiparidari, R.E. Warburton, L. Majidi, M. Asadi, A. Chamaani et al., A long-cycle-life lithium-CO2 battery with carbon neutrality. Adv. Mater. 31, e1902518 (2019). https://doi.org/10.1002/adma.201902518
References
C.T. Dinh, T. Burdyny, M.G. Kibria, A. Seifitokaldani, C.M. Gabardo et al., CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018). https://doi.org/10.1126/science.aas9100
Z. Zhuo, K. Dai, R. Qiao, R. Wang, J. Wu et al., Cycling mechanism of Li2MnO3: Li–CO2 batteries and commonality on oxygen redox in cathode materials. Joule 5, 975–997 (2021). https://doi.org/10.1016/j.joule.2021.02.004
H.-D. Lim, B. Lee, Y. Zheng, J. Hong, J. Kim et al., Rational design of redox mediators for advanced Li–O2 batteries. Nat. Energy 1, 16066 (2016). https://doi.org/10.1038/nenergy.2016.66
S.-M. Xu, Z.-C. Ren, X. Liu, X. Liang, K.-X. Wang et al., Carbonate decomposition: low-overpotential Li–CO2 battery based on interlayer-confined monodisperse catalyst. Energy Storage Mater. 15, 291–298 (2018). https://doi.org/10.1016/j.ensm.2018.05.015
B. Liu, Y. Sun, L. Liu, J. Chen, B. Yang et al., Recent advances in understanding Li–CO2 electrochemistry. Energy Environ. Sci. 12, 887–922 (2019). https://doi.org/10.1039/c8ee03417f
Y. Xu, X. Li, Y. Li, Y. Wang, L. Song et al., Reconfiguration of the charge density difference of nitrogen-doped graphene by covalently bonded Cu-N4 active sites boosting thermodynamics and performance in aprotic Li-CO2 battery. Energy Storage Mater. 68, 103354 (2024). https://doi.org/10.1016/j.ensm.2024.103354
X. Chen, Y. Zhang, C. Chen, H. Li, Y. Lin et al., Atomically dispersed ruthenium catalysts with open hollow structure for lithium–oxygen batteries. Nano-Micro Lett. 16, 27 (2023). https://doi.org/10.1007/s40820-023-01240-0
Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, Rational design of MOF-based materials for next-generation rechargeable batteries. Nano-Micro Lett. 13, 203 (2021). https://doi.org/10.1007/s40820-021-00726-z
C. Li, Y. Ji, Y. Wang, C. Liu, Z. Chen et al., Applications of metal-organic frameworks and their derivatives in electrochemical CO2 reduction. Nano-Micro Lett. 15, 113 (2023). https://doi.org/10.1007/s40820-023-01092-8
L. Qie, Y. Lin, J.W. Connell, J. Xu, L. Dai, Highly rechargeable lithium-CO2 batteries with a boron- and nitrogen-codoped holey-graphene cathode. Angew. Chem. Int. Ed. 56, 6970–6974 (2017). https://doi.org/10.1002/anie.201701826
C. Wang, Q. Zhang, X. Zhang, X.-G. Wang, Z. Xie et al., Fabricating Ir/C nanofiber networks as free-standing air cathodes for rechargeable Li–CO2 batteries. Small 14, e1800641 (2018). https://doi.org/10.1002/smll.201800641
X. Mu, H. Pan, P. He, H. Zhou, Li–CO2 and Na–CO2 batteries: toward greener and sustainable electrical energy storage. Adv. Mater. 32, 1903790 (2020). https://doi.org/10.1002/adma.201903790
Y. Li, J. Zhou, T. Zhang, T. Wang, X. Li et al., Highly surface-wrinkled and N-doped CNTs anchored on metal wire: a novel fiber-shaped cathode toward high-performance flexible Li–CO2 batteries. Adv. Funct. Mater. 29, 1808117 (2019). https://doi.org/10.1002/adfm.201808117
P.-F. Zhang, J.-Y. Zhang, T. Sheng, Y.-Q. Lu, Z.-W. Yin et al., Synergetic effect of Ru and NiO in the electrocatalytic decomposition of Li2CO3 to enhance the performance of a Li–CO2/O2 battery. ACS Catal. 10, 1640–1651 (2020). https://doi.org/10.1021/acscatal.9b04138
J. Sun, Y. Lu, H. Yang, M. Han, L. Shao et al., Rechargeable Na–CO2 batteries starting from cathode of Na2CO3 and carbon nanotubes. Research 2018, 6914626 (2018). https://doi.org/10.1155/2018/6914626
W. Ma, S. Lu, X. Lei, X. Liu, Y. Ding, Porous Mn2O3 cathode for highly durable Li–CO2 batteries. J. Mater. Chem. A 6, 20829–20835 (2018). https://doi.org/10.1039/c8ta06143b
Z. Lian, Y. Lu, C. Wang, X. Zhu, S. Ma et al., Single-atom Ru implanted on Co3O4 nanosheets as efficient dual-catalyst for Li–CO2 batteries. Adv. Sci. 8, e2102550 (2021). https://doi.org/10.1002/advs.202102550
L. Fei, Y. Yin, M. Yang, S. Zhang, C. Wang, Wearable solar energy management based on visible solar thermal energy storage for full solar spectrum utilization. Energy Storage Mater. 42, 636–644 (2021). https://doi.org/10.1016/j.ensm.2021.07.049
W. Feng, L. Zhu, X. Dong, Y. Wang, Y. Xia et al., Enhanced moisture stability of lithium-rich antiperovskites for sustainable all-solid-state lithium batteries. Adv. Mater. 35, e2210365 (2023). https://doi.org/10.1002/adma.202210365
T. Fang, H. Huang, J. Feng, Y. Hu, Q. Qian et al., Reactive inorganic vapor deposition of perovskite oxynitride films for solar energy conversion. Research 2019, 9282674 (2019). https://doi.org/10.34133/2019/9282674
Q. Guo, J. Wu, Y. Yang, X. Liu, Z. Lan et al., High-performance and hysteresis-free perovskite solar cells based on rare-earth-doped SnO2 mesoporous scaffold. Research 2019, 4049793 (2019). https://doi.org/10.34133/2019/4049793
J. Wu, Y. Huang, W. Ye, Y. Li, CO2 reduction: from the electrochemical to photochemical approach. Adv. Sci. 4, 1700194 (2017). https://doi.org/10.1002/advs.201700194
F. Podjaski, J. Kröger, B.V. Lotsch, Toward an aqueous solar battery: direct electrochemical storage of solar energy in carbon nitrides. Adv. Mater. 30, 1705477 (2018). https://doi.org/10.1002/adma.201705477
L. Xu, Y. Ren, Y. Fu, M. Liu, F. Zhu et al., Strong photo-thermal coupling effect boosts CO2 reduction into CH4 in a concentrated solar reactor. Chem. Eng. J. 468, 143831 (2023). https://doi.org/10.1016/j.cej.2023.143831
S. Xu, C. Chen, Y. Kuang, J. Song, W. Gan et al., Flexible lithium–CO2 battery with ultrahigh capacity and stable cycling. Energy Environ. Sci. 11, 3231–3237 (2018). https://doi.org/10.1039/c8ee01468j
K. Baek, W.C. Jeon, S. Woo, J.C. Kim, J.G. Lee et al., Synergistic effect of quinary molten salts and ruthenium catalyst for high-power-density lithium-carbon dioxide cell. Nat. Commun. 11, 456 (2020). https://doi.org/10.1038/s41467-019-14121-1
K.M. Naik, A.K. Chourasia, M. Shavez, C.S. Sharma, Bimetallic RuNi electrocatalyst coated MWCNTs cathode for an efficient and stable Li–CO2 and Li–CO2 Mars batteries performance with low overpotential. Chemsuschem 16, e202300734 (2023). https://doi.org/10.1002/cssc.202300734
J.-H. Kang, J. Park, M. Na, R.H. Choi, H.R. Byon, Low-temperature CO2-assisted lithium–oxygen batteries for improved stability of peroxodicarbonate and excellent cyclability. ACS Energy Lett. 7, 4248–4257 (2022). https://doi.org/10.1021/acsenergylett.2c01796
W. Cui, C. Ma, X. Lei, Y. Lv, Q. Zhang et al., Gel electrolyte with dimethyl sulfoxide confined in a polymer matrix for Li-air batteries operable at sub-zero temperature. J. Power. Sources 577, 233264 (2023). https://doi.org/10.1016/j.jpowsour.2023.233264
H. Kim, J.Y. Hwang, Y.G. Ham, H.N. Choi, M.H. Alfaruqi et al., Turning on lithium-sulfur full batteries at -10 °C. ACS Nano 17, 14032–14042 (2023). https://doi.org/10.1021/acsnano.3c04213
A. Gupta, A. Manthiram, Designing advanced lithium-based batteries for low-temperature conditions. Adv. Energy Mater. 10, 2001972 (2020). https://doi.org/10.1002/aenm.202001972
J. Li, L. Wang, Y. Zhao, S. Li, X. Fu et al., Li–CO2 batteries efficiently working at ultra-low temperatures. Adv. Funct. Mater. 30, 2001619 (2020). https://doi.org/10.1002/adfm.202001619
D.-H. Guan, X.-X. Wang, F. Li, L.-J. Zheng, M.-L. Li et al., All-solid-state photo-assisted Li–CO2 battery working at an ultra-wide operation temperature. ACS Nano 16, 12364–12376 (2022). https://doi.org/10.1021/acsnano.2c03534
D. Zhu, Q. Zhao, G. Fan, S. Zhao, L. Wang et al., Photoinduced oxygen reduction reaction boosts the output voltage of a zinc-air battery. Angew. Chem. Int. Ed. 58, 12460–12464 (2019). https://doi.org/10.1002/anie.201905954
M. Li, X. Wang, F. Li, L. Zheng, J. Xu et al., A bifunctional photo-assisted Li–O2 battery based on a hierarchical heterostructured cathode. Adv. Mater. 32, e1907098 (2020). https://doi.org/10.1002/adma.201907098
H. Song, S. Wang, X. Song, J. Wang, K. Jiang et al., Solar-driven all-solid-state lithium–air batteries operating at extreme low temperatures. Energy Environ. Sci. 13, 1205–1211 (2020). https://doi.org/10.1039/c9ee04039k
H. Zhang, J. Luo, M. Qi, S. Lin, Q. Dong et al., Enabling lithium metal anode in nonflammable phosphate electrolyte with electrochemically induced chemical reactions. Angew. Chem. Int. Ed. 60, 19183–19190 (2021). https://doi.org/10.1002/anie.202103909
G.M. Carroll, H. Zhang, J.R. Dunklin, E.M. Miller, N.R. Neale et al., Unique interfacial thermodynamics of few-layer 2D MoS2 for (photo)electrochemical catalysis. Energy Environ. Sci. 12, 1648–1656 (2019). https://doi.org/10.1039/c9ee00513g
S. Song, Z. Xing, K. Wang, H. Zhao, P. Chen et al., 3D flower-like mesoporous Bi4O5I2/MoS2 Z-scheme heterojunction with optimized photothermal-photocatalytic performance. Green Energy Environ. 8, 200–212 (2023). https://doi.org/10.1016/j.gee.2021.03.013
Y. Liu, R. Wang, Y. Lyu, H. Li, L. Chen, Rechargeable Li/CO2–O2 (2: 1) battery and Li/CO2 battery. Energy Environ. Sci. 7, 677–681 (2014). https://doi.org/10.1039/C3EE43318H
J. Wang, W. Fang, Y. Hu, Y. Zhang, J. Dang et al., Single atom Ru doping 2H-MoS2 as highly efficient hydrogen evolution reaction electrocatalyst in a wide pH range. Appl. Catal. B Environ. 298, 120490 (2021). https://doi.org/10.1016/j.apcatb.2021.120490
H.-Y. Lin, K.T. Le, P.-H. Chen, J.M. Wu, Systematic investigation of the piezocatalysis–adsorption duality of polymorphic MoS2 nanoflowers. Appl. Catal. B Environ. 317, 121717 (2022). https://doi.org/10.1016/j.apcatb.2022.121717
X. Gan, H. Zhao, D. Lei, P. Wang, Improving electrocatalytic activity of 2H-MoS2 nanosheets obtained by liquid phase exfoliation: Covalent surface modification versus interlayer interaction. J. Catal. 391, 424–434 (2020). https://doi.org/10.1016/j.jcat.2020.09.009
P. Tiwari, D. Janas, R. Chandra, Self-standing MoS2/CNT and MnO2/CNT one dimensional core shell heterostructures for asymmetric supercapacitor application. Carbon 177, 291–303 (2021). https://doi.org/10.1016/j.carbon.2021.02.080
H. Wang, X. Xu, A. Neville, Facile synthesis of vacancy-induced 2H-MoS2 nanosheets and defect investigation for supercapacitor application. RSC Adv. 11, 26273–26283 (2021). https://doi.org/10.1039/D1RA04902J
L.X. Chen, Z.W. Chen, Y. Wang, C.C. Yang, Q. Jiang, Design of dual-modified MoS2 with nanoporous Ni and graphene as efficient catalysts for the hydrogen evolution reaction. ACS Catal. 8, 8107–8114 (2018). https://doi.org/10.1021/acscatal.8b01164
R. Meng, F. Li, D. Li, B. Jin, A green and efficient synthesis method of Benzo[c]cinnolines: electrochemical reduction of 2, 2’-Dinitrobiphenyl in the presence of CO2. ChemElectroChem 9, 2101381 (2022). https://doi.org/10.1002/celc.202101381
D. Sun, D. Huang, H. Wang, G.-L. Xu, X. Zhang et al., 1T MoS2 nanosheets with extraordinary sodium storage properties via thermal-driven ion intercalation assisted exfoliation of bulky MoS2. Nano Energy 61, 361–369 (2019). https://doi.org/10.1016/j.nanoen.2019.04.063
Z. Lu, M. Xiao, S. Wang, D. Han, Z. Huang et al., Correction: a rechargeable Li–CO2 battery based on the preservation of dimethyl sulfoxide. J. Mater. Chem. A 10, 15839 (2022). https://doi.org/10.1039/d2ta02586h
Z. Zhu, X. Shi, G. Fan, F. Li, J. Chen, Photo-energy conversion and storage in an aprotic Li–O2 battery. Angew. Chem. Int. Ed. 58, 19021–19026 (2019). https://doi.org/10.1002/anie.201911228
D.-H. Guan, X.-X. Wang, M.-L. Li, F. Li, L.-J. Zheng et al., Light/electricity energy conversion and storage for a hierarchical porous In2S3@CNT/SS cathode towards a flexible Li–CO2 battery. Angew. Chem. Int. Ed. 59, 19518–19524 (2020). https://doi.org/10.1002/anie.202005053
Z. Wang, B. Liu, X. Yang, C. Zhao, P. Dong et al., Dual catalytic sites of alloying effect bloom CO2 catalytic conversion for highly stable Li–CO2 battery. Adv. Funct. Mater. 33, 2213931 (2023). https://doi.org/10.1002/adfm.202213931
X. Sun, X. Mu, W. Zheng, L. Wang, S. Yang et al., Binuclear Cu complex catalysis enabling Li–CO2 battery with a high discharge voltage above 3.0 V. Nat. Commun. 14, 536 (2023). https://doi.org/10.1038/s41467-023-36276-8
X. Yu, H. Gong, B. Gao, X. Fan, P. Li et al., Illumination-enhanced oxygen reduction kinetics in hybrid lithium-oxygen battery with p-type semiconductor. Chem. Eng. J. 449, 137774 (2022). https://doi.org/10.1016/j.cej.2022.137774
H. Gong, T. Wang, K. Chang, P. Li, L. Liu et al., Revealing the illumination effect on the discharge products in high-performance Li–O2 batteries with heterostructured photocatalysts. Carbon Energy 4, 1169–1181 (2022). https://doi.org/10.1002/cey2.208
K. Zhang, J. Li, W. Zhai, C. Li, Z. Zhu et al., Boosting cycling stability and rate capability of Li–CO2 batteries via synergistic photoelectric effect and plasmonic interaction. Angew. Chem. Int. Ed. 61, e202201718 (2022). https://doi.org/10.1002/anie.202201718
X.-X. Wang, D.-H. Guan, F. Li, M.-L. Li, L.-J. Zheng et al., A renewable light-promoted flexible Li–CO2 battery with ultrahigh energy efficiency of 97.9%. Small 17, e2100642 (2021). https://doi.org/10.1002/smll.202100642
J.-N. Chang, S. Li, Q. Li, J.-H. Wang, C. Guo et al., Redox molecular junction metal-covalent organic frameworks for light-assisted CO2 energy storage. Angew. Chem. Int. Ed. 63, e202402458 (2024). https://doi.org/10.1002/anie.202402458
Z. Li, M.-L. Li, X.-X. Wang, D.-H. Guan, W.-Q. Liu et al., In situ fabricated photo-electro-catalytic hybrid cathode for light-assisted lithium–CO2 batteries. J. Mater. Chem. A 8, 14799–14806 (2020). https://doi.org/10.1039/d0ta05069e
S. Chen, H. Wang, S. Lu, Y. Xiang, Monolayer MoS2 film supported metal electrocatalysts: a DFT study. RSC Adv. 6, 107836–107839 (2016). https://doi.org/10.1039/C6RA23995A
Y. Bae, H. Song, H. Park, H.-D. Lim, H.J. Kwon et al., Dual-functioning molecular carrier of superoxide radicals for stable and efficient lithium–oxygen batteries. Adv. Energy Mater. 10, 1904187 (2020). https://doi.org/10.1002/aenm.201904187
H. Gong, X. Yu, Y. Xu, B. Gao, H. Xue et al., Long-life reversible Li-CO2 batteries with optimized Li2CO3 flakes as discharge products on palladium-copper nanops. Inorg. Chem. Front. 9, 1533–1540 (2022). https://doi.org/10.1039/D1QI01583D
A. Ahmadiparidari, R.E. Warburton, L. Majidi, M. Asadi, A. Chamaani et al., A long-cycle-life lithium-CO2 battery with carbon neutrality. Adv. Mater. 31, e1902518 (2019). https://doi.org/10.1002/adma.201902518