Smart Gas Sensors: Recent Developments and Future Prospective
Corresponding Author: Shun Mao
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 54
Abstract
Gas sensor is an indispensable part of modern society with wide applications in environmental monitoring, healthcare, food industry, public safety, etc. With the development of sensor technology, wireless communication, smart monitoring terminal, cloud storage/computing technology, and artificial intelligence, smart gas sensors represent the future of gas sensing due to their merits of real-time multifunctional monitoring, early warning function, and intelligent and automated feature. Various electronic and optoelectronic gas sensors have been developed for high-performance smart gas analysis. With the development of smart terminals and the maturity of integrated technology, flexible and wearable gas sensors play an increasing role in gas analysis. This review highlights recent advances of smart gas sensors in diverse applications. The structural components and fundamental principles of electronic and optoelectronic gas sensors are described, and flexible and wearable gas sensor devices are highlighted. Moreover, sensor array with artificial intelligence algorithms and smart gas sensors in “Internet of Things” paradigm are introduced. Finally, the challenges and perspectives of smart gas sensors are discussed regarding the future need of gas sensors for smart city and healthy living.
Highlights:
1 Recent developments of advanced electronic and optoelectronic gas sensors are introduced.
2 Sensor array with artificial intelligence algorithms and smart gas sensors in “Internet of Things” paradigm are highlighted.
3 Applications of smart gas sensors in environmental monitoring, medical and healthcare applications, food quality control, and public safety are described.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Gellman, Introduction: molecular recognition. Chem. Rev. 97(5), 1231–1232 (1997). https://doi.org/10.1021/cr970328j
- R. Potyrailo, Multivariable sensors for ubiquitous monitoring of gases in the era of internet of things and industrial internet. Chem. Rev. 116(19), 11877–11923 (2016). https://doi.org/10.1021/acs.chemrev.6b00187
- Y. Shen, Y. Wei, C. Zhu, J. Cao, D. Han, Ratiometric fluorescent signals-driven smartphone-based portable sensors for onsite visual detection of food contaminants. Coord. Chem. Rev. 458, 214442 (2022). https://doi.org/10.1016/j.ccr.2022.214442
- Y. Luo, M. Abidian, J. Ahn, D. Akinwande, A. Andrews et al., Technology roadmap for flexible sensors. ACS Nano 17(16), 5211–5295 (2023). https://doi.org/10.1021/acsnano.2c12606
- Y. Ling, T. An, L.W. Yap, B. Zhu, S. Gong, W. Cheng, Disruptive, soft, wearable sensors. Adv. Mater. 32(18), 1904664 (2020). https://doi.org/10.1002/adma.201904664
- W. Jayathilaka, K. Qi, Y. Qin, A. Chinnappan, W. Serrano-García et al., Significance of nanomaterials in wearables: a review on wearable actuators and sensors. Adv. Mater. 31(7), 1805921 (2019). https://doi.org/10.1002/adma.201805921
- S. Wei, Z. Li, K. Murugappan, Z. Li, F. Zhang et al., Self-powered portable nanowire array gas sensor for dynamic NO2 monitoring at room temperature. Adv. Mater. 35(12), 2207199 (2022). https://doi.org/10.1002/adma.202207199
- A. Parichenko, S. Huang, J. Pang, B. Ibarlucea, G. Cuniberti, Recent advances in technologies toward the development of 2D materials-based electronic noses. TrAC-Trends Anal. Chem. 166, 117185 (2023). https://doi.org/10.1016/j.trac.2023.117185
- Z. Song, W. Ye, Z. Chen, Z. Chen, M. Li et al., Wireless self-powered high-performance integrated nanostructured-gas-sensor network for future smart homes. ACS Nano 15(4), 7659–7667 (2021). https://doi.org/10.1021/acsnano.1c01256
- N. Yi, M. Shen, D. Erdely, H. Cheng, Stretchable gas sensors for detecting biomarkers from humans and exposed environments. TrAC-Trends Anal. Chem. 133, 116085 (2020). https://doi.org/10.1016/j.trac.2020.116085
- H. Shin, D. Kim, W. Jung, J. Jang, Y. Kim et al., Surface activity-tuned metal oxide chemiresistor: toward direct and quantitative halitosis diagnosis. ACS Nano 15(9), 14207–14217 (2021). https://doi.org/10.1021/acsnano.1c01350
- S. Guo, D. Yang, S. Zhang, Q. Dong, B. Li et al., Development of a cloud-based epidermal MoSe2 device for hazardous gas sensing. Adv. Funct. Mater. 29(18), 1900138 (2019). https://doi.org/10.1002/adfm.201900138
- G. Zhao, J. Sun, M. Zhang, S. Guo, X. Wang et al., Highly strain-stable intrinsically stretchable olfactory sensors for imperceptible health monitoring. Adv. Sci. 10(29), 2302974 (2023). https://doi.org/10.1002/advs.202302974
- J. Wang, Y. Ren, W. Li, L. Wu, Y. Deng et al., Intelligent multifunctional sensing systems based on ordered macro-microporous metal organic framework and its derivatives. Small Methods 7(7), 2201687 (2023). https://doi.org/10.1002/smtd.202201687
- C. Cai, J. Mo, Y. Lu, N. Zhang, Z. Wu et al., Integration of a porous wood-based triboelectric nanogenerator and gas sensor for real-time wireless food-quality assessment. Nano Energy 83, 105833 (2021). https://doi.org/10.1016/j.nanoen.2021.105833
- Z. Wu, H. Wang, Q. Ding, K. Tao, W. Shi et al., A self-powered, rechargeable, and wearable hydrogel patch for wireless gas detection with extraordinary performance. Adv. Funct. Mater. 33(21), 2300046 (2023). https://doi.org/10.1002/adfm.202300046
- C. Jirayupat, K. Nagashima, T. Hosomi, T. Takahashi, B. Samransuksamer et al., Breath odor-based individual authentication by an artificial olfactory sensor system and machine learning. Chem. Commun. 58, 6377–6380 (2022). https://doi.org/10.1039/D1CC06384G
- H. Jin, J. Yu, D. Cui, S. Gao, H. Yang, X. Zhang, C. Hua, S. Cui, C. Xue, Y. Zhang, Y. Zhou, Remote tracking gas molecular via the standalone-like nanosensor-based tele-monitoring system. Nano-Micro Lett. 13, 1–4 (2021). https://doi.org/10.1007/s40820-020-00551-w
- H. Cheng, Y. Huang, L. Qu, Q. Cheng, G. Shi et al., Flexible in-plane graphene oxide moisture-electric converter for touchless interactive panel. Nano Energy 45, 37–43 (2018). https://doi.org/10.1016/j.nanoen.2017.12.033
- I. Kim, W.S. Kim, K. Kim, M.A. Ansari, M.Q. Mehmood et al., Holographic metasurface gas sensors for instantaneous visual alarms. Sci. Adv. 7(15), eabe9943 (2021). https://doi.org/10.1126/sciadv.abe9943
- Y. Guo, Wearable sensors to monitor plant health. Nat. Food 4, 350–350 (2023). https://doi.org/10.1038/s43016-023-00764-3
- K. Cammann, U. Lemke, A. Rohen, J. Sander, H. Wilken et al., Chemical sensors and biosensors-principles and applications. Angew. Chem. Int. Ed. 30(5), 516–539 (1991). https://doi.org/10.1002/anie.199105161
- T. Swager, K. Mirica, Introduction: chemical sensors. Chem. Rev. 119(1), 1–2 (2019). https://doi.org/10.1021/acs.chemrev.8b00764
- M. Bathaei, R. Singh, H. Mirzajani, E. Istif, M. Akhtar et al., Photolithography-based microfabrication of biodegradable flexible and stretchable sensors. Adv. Mater. 35(6), 2207081 (2023). https://doi.org/10.1002/adma.202207081
- Q. Li, J. Zhang, Q. Li, G. Li, X. Tian et al., Review of printed electrodes for flexible sevices. Front. Mater. 5, 77 (2019). https://doi.org/10.3389/fmats.2018.00077
- E. Lee, C. Park, J. Lee, H. Lee, C. Yang et al., Chemically robust ambipolar organic transistor array directly patterned by photolithography. Adv. Mater. 29(11), 1605282 (2017). https://doi.org/10.1002/adma.201605282
- Y. Kim, N. Kwon, S. Park, C. Kim, H. Chau et al., Patterned sandwich-type silver nanowire-based flexible electrode by photolithography. ACS Appl. Mater. Interf. 13(51), 61463–61472 (2021). https://doi.org/10.1021/acsami.1c19164
- P. Li, Q. Hao, J. Liu, D. Qi, H. Gan et al., Flexible photodetectors based on all-solution-processed Cu electrodes and InSe nanoflakes with high stabilities. Adv. Funct. Mater. 32(10), 2108261 (2022). https://doi.org/10.1002/adfm.202108261
- L. Gomez De Arco, Y. Zhang, C. Schlenker, K. Ryu, M. Thompson et al., Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 4(5), 2865–2873 (2010). https://doi.org/10.1021/nn901587x
- P. Kelly, R. Arnell, Magnetron sputtering: a review of recent developments and applications. Vacuum 56(3), 159–172 (2000). https://doi.org/10.1016/S0042-207X(99)00189-X
- H. Wu, D. Kong, Z. Ruan, P. Hsu, S. Wang et al., A transparent electrode based on a metal nanotrough network. Nat. Nanotech. 8, 421–425 (2013). https://doi.org/10.1038/nnano.2013.84
- D. Kim, J. Jeong, H. Park, Y. Kim, K. Lee et al., Highly concentrated, conductive, defect-free graphene ink for screen-printed sensor application. Nano-Micro Lett. 13, 87 (2021). https://doi.org/10.1007/s40820-021-00617-3
- M. Bariya, Z. Shahpar, H. Park, J. Sun, Y. Jung et al., Roll-to-Roll gravure printed electrochemical sensors for wearable and medical devices. ACS Nano 12(7), 6978–6987 (2018). https://doi.org/10.1021/acsnano.8b02505
- S. Zips, L. Grob, P. Rinklin, K. Terkan, N. Adly et al., Fully printed μ-needle electrode array from conductive polymer ink for bioelectronic applications. ACS Appl. Mater. Interf. 11(36), 32778–32786 (2019). https://doi.org/10.1021/acsami.9b11774
- G. Han, K. Bae, E. Kang, H. Choi, J. Shim et al., Inkjet printing for manufacturing solid oxide fuel cells. ACS Energy Lett. 5(5), 1586–1592 (2020). https://doi.org/10.1021/acsenergylett.0c00721
- Z. Wang, Y. Han, L. Yan, C. Gong, J. Kang et al., High power conversion efficiency of 13.61% for 1 cm2 flexible polymer solar cells based on patternable and mass-producible gravure-printed silver nanowire electrodes. Adv. Funct. Mater. 31(4), 2007276 (2021). https://doi.org/10.1002/adfm.202007276
- W. Gao, H. Ota, D. Kiriya, K. Takei, A. Javey, Flexible electronics toward wearable sensing. Acc. Chem. Res. 52(3), 523–533 (2019). https://doi.org/10.1021/acs.accounts.8b00500
- S. Mahadeva, K. Walus, B. Stoeber, Paper as a platform for sensing applications and other devices: a review. ACS Appl. Mater. Interf. 7(16), 8345–8362 (2015). https://doi.org/10.1021/acsami.5b00373
- J. Dai, O. Ogbeide, N. Macadam, Q. Sun, W. Yu et al., Printed gas sensors. Chem. Soc. Rev. 49, 1756–1789 (2020). https://doi.org/10.1039/C9CS00459A
- V. Sanchez, C. Walsh, R. Wood, Textile technology for soft robotic and autonomous garments. Adv. Funct. Mater. 31(6), 2008278 (2021). https://doi.org/10.1002/adfm.202008278
- B. Zhu, H. Wang, W.R. Leow, Y. Cai, X.J. Loh et al., Silk fibroin for flexible electronic devices. Adv. Mater. 28(22), 4250–4265 (2016). https://doi.org/10.1002/adma.201504276
- C. Wang, K. Xia, Y. Zhang, D. Kaplan, Silk-based advanced materials for soft electronics. Acc. Chem. Res. 52(10), 2916–2927 (2019). https://doi.org/10.1021/acs.accounts.9b00333
- S. Liu, K. Ma, B. Yang, H. Li, X. Tao, Textile electronics for VR/AR applications. Adv. Funct. Mater. 31(39), 2007254 (2021). https://doi.org/10.1002/adfm.202007254
- Q. Shi, B. Dong, T. He, Z. Sun, J. Zhu et al., Progress in wearable electronics/photonics-moving toward the era of artificial intelligence and internet of things. InfoMat 2, 1131–1162 (2020). https://doi.org/10.1002/inf2.12122
- D. Kireev, S. Ameri, A. Nederveld, J. Kampfe, H. Jang et al., Fabrication, characterization and applications of graphene electronic tattoos. Nat. Protoc. 16, 2395–2417 (2021). https://doi.org/10.1038/s41596-020-00489-8
- F. Wen, T. He, H. Liu, H. Chen, T. Zhang et al., Advances in chemical sensing technology for enabling the next-generation self-sustainable integrated wearable system in the IoT era. Nano Energy 78, 105155 (2020). https://doi.org/10.1016/j.nanoen.2020.105155
- H. Yi, S. Lee, H. Ko, D. Lee, W. Bae et al., Ultra-adaptable and wearable photonic skin based on a shape-memory, responsive cellulose derivative. Adv. Funct. Mater. 29, 1902720 (2019). https://doi.org/10.1002/adfm.201902720
- C. Dagdeviren, S. Hwang, Y. Su, S. Kim, H. Cheng et al., Transient, biocompatible electronics and energy harvesters based on ZnO. Small 9(20), 3398–3404 (2013). https://doi.org/10.1002/smll.201300146
- L. Xue, Y. Ren, Y. Li, W. Xie, K. Chen et al., Pt-Pd nanoalloys functionalized mesoporous SnO2 spheres: tailored synthesis, sensing mechanism, and device integration. Small 19(39), 2302327 (2023). https://doi.org/10.1002/smll.202302327
- F. Jiang, Y. Deng, K. Chen, J. Li, X.Y. Huang et al., A straightforward solvent-pair-enabled multicomponent coassembly approach toward noble-metal-nanop-decorated mesoporous tungsten oxide for trace ammonia sensing. Adv. Mater. 36(36), 2313547 (2024). https://doi.org/10.1002/adma.202313547
- X. Huang, K. Chen, W. Xie, Y. Li, F. Yang et al., Chemiresistive gas sensors based on highly permeable Sn-doped bismuth subcarbonate microspheres: facile synthesis, sensing performance, and mechanism study. Adv. Funct. Mater. 33(45), 2304718 (2023). https://doi.org/10.1002/adfm.202304718
- Y. Chyan, R. Ye, Y. Li, S. Singh, C. Arnusch et al., Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food. ACS Nano 12(3), 2176–2183 (2018). https://doi.org/10.1021/acsnano.7b08539
- Y. Xu, G. Zhao, L. Zhu, Q. Fei, Z. Zhang et al., Pencil-paper on-skin electronics. PNAS 117(31), 18292–18301 (2020). https://doi.org/10.1073/pnas.2008422117
- K. Mirica, J. Weis, J. Schnorr, B. Esser, T. Swager, Mechanical drawing of gas sensors on paper. Angew. Chem. Int. Ed. 51(43), 10740–10745 (2012). https://doi.org/10.1002/anie.201206069
- B. Zong, Q. Xu, Q. Li, X. Fang, X. Chen et al., Novel insights into the unique intrinsic sensing behaviors of 2D nanomaterials for volatile organic compounds: from graphene to MoS2 and black phosphorous. J. Mater. Chem. A 9, 14411–14421 (2021). https://doi.org/10.1039/D1TA02383G
- Y. Rao, Z. Li, T. Zhang, Z. Wang, W. Li et al., Synthesis of ordered mesoporous transition metal dichalcogenides by direct organic-inorganic Co-assembly. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202408426
- L. Wang, M. Zhang, B. Yang, J. Tan, X. Ding et al., Recent advances in multidimensional (1D, 2D, and 3D) composite sensors derived from MXene: synthesis, structure, application, and perspective. Small Methods 5(7), 2100409 (2021). https://doi.org/10.1002/smtd.202100409
- W. Zhao, N. Yun, Z. Dai, Y. Li, A high-performance trace level acetone sensor using an indispensable V4C3Tx MXene. RSC Adv. 10, 1261–1270 (2020). https://doi.org/10.1039/C9RA09069J
- S. Cui, H. Pu, S. Wells, Z. Wen, S. Mao et al., Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors. Nat. Commun. 6, 8632 (2015). https://doi.org/10.1038/ncomms9632
- Y. Yang, B. Zong, Q. Xu, Q. Li, Z. Li et al., Discriminative analysis of NOx gases by two-dimensional violet phosphorus field-effect transistors. Anal. Chem. 95(49), 18065–18074 (2023). https://doi.org/10.1021/acs.analchem.3c02894
- M. Campbell, S. Liu, T. Swager, M. Dincă, Chemiresistive sensor arrays from conductive 2D metal-organic frameworks. J. Am. Chem. Soc. 137(43), 13780–13783 (2015). https://doi.org/10.1021/jacs.5b09600
- G. Lu, B. Zong, T. Tao, Y. Yang, Q. Li et al., High-performance Ni3(HHTP)2 film-based flexible field-effect transistor gas sensors. ACS Sens. 9(4), 1916–19264 (2024). https://doi.org/10.1021/acssensors.3c02656
- L. Ascherl, E. Evans, J. Gorman, S. Orsborne, D. Bessinger et al., Perylene-based covalent organic frameworks for acid vapor sensing. J. Am. Chem. Soc. 141(39), 15693–15699 (2019). https://doi.org/10.1021/jacs.9b08079
- F. Xie, H. Wang, J. Li, Flexible hydrogen-bonded organic framework to split ethane and ethylene. Matter 5(8), 2516–2518 (2022). https://doi.org/10.1016/j.matt.2022.06.043
- Q. Huang, W. Li, Z. Mao, L. Qu, Y. Li et al., An exceptionally flexible hydrogen-bonded organic framework with large-scale void regulation and adaptive guest accommodation abilities. Nat. Commun. 10, 3074 (2019). https://doi.org/10.1038/s41467-019-10575-5
- Y. Liang, Z. Wu, Y. Wei, Q. Ding, M. Zilberman et al., Self-healing, self-adhesive and stable organohydrogel-based stretchable oxygen sensor with high performance at room temperature. Nano-Micro Lett. 14, 52 (2022). https://doi.org/10.1007/s40820-021-00787-0
- Y. Luo, J. Li, Q. Ding, H. Wang, C. Liu et al., Functionalized hydrogel-based wearable gas and humidity sensors. Nano-Micro Lett. 15, 136 (2023). https://doi.org/10.1007/s40820-023-01109-2
- W. Huang, Q. Ding, H. Wang, Z. Wu, Y. Luo et al., Design of stretchable and self-powered sensing device for portable and remote trace biomarkers detection. Nat. Commun. 14, 5221 (2023). https://doi.org/10.1038/s41467-023-40953-z
- M. Mannoor, H. Tao, J. Clayton, A. Sengupta, D. Kaplan et al., Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun. 3, 763 (2012). https://doi.org/10.1038/ncomms1767
- M. Smith, K. Mirica, Self-organized frameworks on textiles (SOFT): conductive fabrics for simultaneous sensing, capture, and filtration of gases. J. Am. Chem. Soc. 139(46), 16759–16767 (2017). https://doi.org/10.1021/jacs.7b08840
- L. Tang, J. Shang, X. Jiang, Multilayered electronic transfer tattoo that can enable the crease amplification effect. Sci. Adv. 7(3), eabe3778 (2021). https://doi.org/10.1126/sciadv.abe3778
- M. Daniele, A. Knight, S. Roberts, K. Radom, J. Erickson, Sweet substrate: a polysaccharide nanocomposite for conformal electronic decals. Adv. Mater. 27(9), 1600–1606 (2015). https://doi.org/10.1002/adma.201404445
- H. Lee, S. Choi, A. Jung, S. Ko, Highly conductive aluminum textile and paper for flexible and wearable electronics. Angew. Chem. Int. Ed. 52(30), 7718–7723 (2013). https://doi.org/10.1002/anie.201301941
- B. Lyu, M. Kim, H. Jing, J. Kang, C. Qian et al., Large-area MXene electrode array for flexible electronics. ACS Nano 13(10), 11392–11400 (2019). https://doi.org/10.1021/acsnano.9b04731
- M. Liu, K. Xie, M. Nothling, P. Gurr, S. Tan et al., Ultrathin metal-organic framework nanosheets as a gutter layer for flexible composite gas separation membranes. ACS Nano 12(11), 11591–11599 (2018). https://doi.org/10.1021/acsnano.8b06811
- J. Xu, Y. He, S. Bi, M. Wang, P. Yang et al., An olefin-linked covalent organic framework as a flexible thin-film electrode for a high-performance micro-supercapacitor. Angew. Chem. Int. Ed. 58(35), 12065–12069 (2019). https://doi.org/10.1002/anie.201905713
- Z. Wu, Q. Ding, H. Wang, J. Ye, Y. Luo et al., A humidity-resistant, sensitive, and stretchable hydrogel-based oxygen sensor for wireless health and environmental monitoring. Adv. Funct. Mater. 34(6), 2308280 (2024). https://doi.org/10.1002/adfm.202308280
- P. Peinado, S. Sangiao, J. De Teresa, Focused electron and ion beam induced deposition on flexible and transparent polycarbonate substrates. ACS Nano 9(6), 6139–6146 (2015). https://doi.org/10.1021/acsnano.5b01383
- A. Siegel, S. Phillips, M. Dickey, N. Lu, Z. Suo et al., Foldable printed circuit boards on paper substrates. Adv. Funct. Mater. 20(1), 28–35 (2010). https://doi.org/10.1002/adfm.200901363
- P. Escobedo, M. Fernández-Ramos, N. López-Ruiz, O. Moyano-Rodríguez, A. Martínez-Olmos et al., Smart facemask for wireless CO2 monitoring. Nat. Commun. 13, 72 (2022). https://doi.org/10.1038/s41467-021-27733-3
- K. Lee, J. Park, M. Lee, J. Kim, B. Hyun et al., In-situ synthesis of Carbon nanotube–graphite electronic devices and their integrations onto surfaces of live plants and insects. Nano Lett. 14(5), 2647–2654 (2014). https://doi.org/10.1021/nl500513n
- X. Zhu, M. Liu, X. Qi, H. Li, Y. Zhang et al., Templateless, plating-free fabrication of flexible transparent electrodes with embedded silver mesh by electric-field-driven microscale 3D printing and hybrid hot embossing. Adv. Mater. 33(21), 2007772 (2021). https://doi.org/10.1002/adma.202007772
- J. Huddy, W. Scheideler, Rapid 2D patterning of high-performance perovskites using large area flexography. Adv. Funct. Mater. 33(44), 2306312 (2023). https://doi.org/10.1002/adfm.202306312
- Z. Li, J. Askim, K. Suslick, The optoelectronic nose: colorimetric and fluorometric sensor arrays. Chem. Rev. 119(1), 231–292 (2019). https://doi.org/10.1021/acs.chemrev.8b00226
- Z. Meng, R. Stolz, L. Mendecki, K. Mirica, Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem. Rev. 119(1), 478–598 (2019). https://doi.org/10.1021/acs.chemrev.8b00311
- X. Liu, W. Zheng, R. Kumar, M. Kumar, J. Zhang, Conducting polymer-based nanostructures for gas sensors. Coordin. Chem. Rev. 462, 214517 (2022). https://doi.org/10.1016/j.ccr.2022.214517
- L. Zhu, L. Ou, L. Mao, X. Wu, Y. Liu et al., Advances in noble metal-decorated metal oxide nanomaterials for chemiresistive gas sensors: overview. Nano-Micro Lett. 15, 89 (2023). https://doi.org/10.1007/s40820-023-01047-z
- D. Wales, J. Grand, V. Ting, R. Burke, K. Edler et al., Gas sensing using porous materials for automotive applications. Chem. Soc. Rev. 44, 4290–4321 (2015). https://doi.org/10.1039/C5CS00040H
- X. Fang, B. Zong, S. Mao, Metal-organic framework-based sensors for environmental contaminant sensing. Nano-Micro Lett. 10, 64 (2018). https://doi.org/10.1007/s40820-018-0218-0
- L. Pirondini, E. Dalcanale, Molecular recognition at the gas-solid interface: a powerful tool for chemical sensing. Chem. Soc. Rev. 36, 695–706 (2007). https://doi.org/10.1039/B516256B
- B. Mu, J. Zhang, T. McNicholas, N. Reuel, S. Kruss et al., Recent advances in molecular recognition based on nanoengineered platforms. Acc. Chem. Res. 47(4), 979–988 (2014). https://doi.org/10.1021/ar400162w
- R. Paolesse, S. Nardis, D. Monti, M. Stefanelli, C. Di Natale, Porphyrinoids for chemical sensor applications. Chem. Rev. 117(4), 2517–2583 (2017). https://doi.org/10.1021/acs.chemrev.6b00361
- S. Mao, J. Chang, H. Pu, G. Lu, Q. He et al., Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing. Chem. Soc. Rev. 46, 6872–6904 (2017). https://doi.org/10.1039/C6CS00827E
- T. Ishihara, K. Kometani, Y. Mizuhara, Y. Takita, Mixed oxide capacitor of CuO–BaTiO3 as a new type CO2 gas sensor. J. Am. Ceram. Soc. 75(3), 613–618 (1992). https://doi.org/10.1111/j.1151-2916.1992.tb07850.x
- G. Jiang, M. Goledzinowski, F. Comeau, H. Zarrin, G. Lui et al., Free-standing functionalized graphene oxide solid electrolytes in electrochemical gas sensors. Adv. Funct. Mater. 26(11), 1729–1736 (2016). https://doi.org/10.1002/adfm.201504604
- J. Wang, Y. Ren, H. Liu, Z. Li, X. Liu et al., Ultrathin 2D NbWO6 perovskite semiconductor based gas sensors with ultrahigh selectivity under low working temperature. Adv. Mater. 34(2), 2104958 (2022). https://doi.org/10.1002/adma.202104958
- A. Azzouz, K. Vikrant, K. Kim, E. Ballesteros, T. Rhadfi et al., Advances in colorimetric and optical sensing for gaseous volatile organic compounds. TrAC-Trends Anal. Chem. 118, 502–516 (2019). https://doi.org/10.1016/j.trac.2019.06.017
- R. Askim, M. Mahmoudi, K. Suslick, Optical sensor arrays for chemical sensing: the optoelectronic nose. Chem. Soc. Rev. 42, 8649–8682 (2013). https://doi.org/10.1039/C3CS60179J
- Y. Belmabkhout, P. Bhatt, K. Adil, R. Pillai, A. Cadiau et al., Natural gas upgrading using a fluorinated MOF with tuned H2S and CO2 adsorption selectivity. Nat. Energy 3, 1059–1066 (2018). https://doi.org/10.1038/s41560-018-0267-0
- M. Gao, G. Xu, R. Zhang, Z. Liu, H. Xia et al., Electrospinning superassembled mesoporous AIEgen-organosilica frameworks featuring diversified forms and superstability for wearable and washable solid-state fluorescence smart sensors. Anal. Chem. 93(4), 2367–2376 (2021). https://doi.org/10.1021/acs.analchem.0c04226
- T. Han, J. Yang, R. Miao, K. Liu, J. Li et al., Direct distinguishing of methanol over ethanol with a nanofilm-based fluorescent sensor. Adv. Mater. Technol. 6(2), 2000933 (2021). https://doi.org/10.1002/admt.202000933
- T. Bell, N. Hext, Supramolecular optical chemosensors for organic analytes. Chem. Soc. Rev. 33, 589–598 (2004). https://doi.org/10.1039/B207182G
- H. Jung, P. Verwilst, W. Kim, J. Kim, Fluorescent and colorimetric sensors for the detection of humidity or water content. Chem. Soc. Rev. 45, 1242–1256 (2016). https://doi.org/10.1039/C5CS00494B
- X. Zhou, S. Lee, Z. Xu, J. Yoon, Recent progress on the development of chemosensors for gases. Chem. Rev. 115(15), 7944–8000 (2015). https://doi.org/10.1021/cr500567r
- N. Rakow, K. Suslick, A colorimetric sensor array for odour visualization. Nature 406, 710–713 (2000). https://doi.org/10.1038/35021028
- X. Wang, H. Chen, Y. Zhao, X. Chen, X. Wang et al., Optical oxygen sensors move towards colorimetric determination. TrAC-Trends Anal. Chem. 29(4), 319–338 (2010). https://doi.org/10.1016/j.trac.2010.01.004
- M. Khatib, H. Haick, Sensors for volatile organic compounds. ACS Nano 16(5), 7080–7115 (2022). https://doi.org/10.1021/acsnano.1c10827
- N. McEvoy, Correll, Materials that couple sensing, actuation, computation, and communication. Science 347, 1261689 (2015). https://doi.org/10.1126/science.1261689
- H. Li, Y. Ma, Y. Huang, Material innovation and mechanics design for substrates and encapsulation of flexible electronics: a review. Mater. Horiz. 8, 383–400 (2021). https://doi.org/10.1039/D0MH00483A
- X. Liu, D. Huo, J. Li, Y. Ma, H. Liu et al., Pattern-recognizing-assisted detection of mildewed wheat by dyes/dyes-Cu–MOF paper-based colorimetric sensor array. Food Chem. 415, 135525 (2023). https://doi.org/10.1016/j.foodchem.2023.135525
- V. Doğan, M. Evliya, L.N. Kahyaoglu, V. Kılıç, On-site colorimetric food spoilage monitoring with smartphone embedded machine learning. Talanta 266, 125021 (2024). https://doi.org/10.1016/j.talanta.2023.125021
- S. Jang, S. Son, J. Kim, H. Kim, J. Lim et al., Polydiacetylene-based hydrogel beads as colorimetric sensors for the detection of biogenic amines in spoiled meat. Food Chem. 403, 134317 (2023). https://doi.org/10.1016/j.foodchem.2022.134317
- S. Liu, Y. Rong, Q. Chen, Q. Ouyang, Colorimetric sensor array combined with chemometric methods for the assessment of aroma produced during the drying of tencha. Food Chem. 432, 137190 (2024). https://doi.org/10.1016/j.foodchem.2023.137190
- W. Kang, H. Lin, S.Y. Adade, Z. Wang, Q. Ouyang et al., Advanced sensing of volatile organic compounds in the fermentation of kombucha tea extract enabled by nano-colorimetric sensor array based on density functional theory. Food Chem. 405, 134193 (2023). https://doi.org/10.1016/j.foodchem.2022.134193
- F. Mazur, Z. Han, A.D. Tjandra, R. Chandrawati, Digitalization of colorimetric sensor technologies for food safety. Adv. Mater. (2024). https://doi.org/10.1002/adma.202404274
- D. Christodouleas, A. Nemiroski, A. Kumar, G. Whitesides, Broadly available imaging devices enable high-quality low-cost photometry. Anal. Chem. 87(18), 9170–9178 (2015). https://doi.org/10.1021/acs.analchem.5b01612
- L. Yuan, M. Gao, H. Xiang, Z. Zhou, D. Yu et al., A biomass-based colorimetric sulfur dioxide gas sensor for smart packaging. ACS Nano 17(7), 6849–6856 (2023). https://doi.org/10.1021/acsnano.3c00530
- Z. Li, K. Suslick, A hand-held optoelectronic nose for the identification of liquors. ACS Sens. 3(1), 121–127 (2018). https://doi.org/10.1021/acssensors.7b00709
- Z. Li, K. Suslick, The optoelectronic nose. Acc. Chem. Res. 54(4), 950–960 (2021). https://doi.org/10.1021/acs.accounts.0c00671
- G. Nielsen, S. Larsen, P. Wolkoff, Re-evaluation of the WHO (2010) formaldehyde indoor air quality guideline for cancer risk assessment. Arch. Toxicol. 91, 35–61 (2017). https://doi.org/10.1007/s00204-016-1733-8
- J. van den Broek, D.K. Cerrejon, S.E. Pratsinis, A.T. Güntner, Selective formaldehyde detection at ppb in indoor air with a portable sensor. J. Hazard. Mater. 399, 123052 (2020). https://doi.org/10.1016/j.jhazmat.2020.123052
- Z. Han, Y. Qi, Z. Yang, H. Han, Y. Jiang et al., Recent advances and perspectives on constructing metal oxide semiconductor gas sensing materials for efficient formaldehyde detection. J. Mater. Chem. C 8, 13169–13188 (2020). https://doi.org/10.1039/D0TC03750H
- J. Zhang, F. Lv, Z. Li, G. Jiang, M. Tan et al., Cr-doped Pd metallene endows a practical formaldehyde sensor new limit and high selectivity. Adv. Mater. 34(2), 2105276 (2022). https://doi.org/10.1002/adma.202105276
- S. Jeong, Y. Moon, J. Wang, J. Lee, Exclusive detection of volatile aromatic hydrocarbons using bilayer oxide chemiresistors with catalytic overlayers. Nat. Commun. 14, 233 (2023). https://doi.org/10.1038/s41467-023-35916-3
- B. Zong, Q. Li, X. Chen, C. Liu, L. Li et al., Highly enhanced gas sensing performance using a 1T/2H heterophase MoS2 field-effect transistor at room temperature. ACS Appl. Mater. Interf. 12(45), 50610–50618 (2020). https://doi.org/10.1021/acsami.0c15162
- Q. Xu, B. Zong, Y. Yang, Q. Li, S. Mao, Black phosphorus quantum dots modified monolayer Ti3C2Tx nanosheet for field-effect transistor gas sensor. Sens. Actuat. B-Chem. 373, 132696 (2022). https://doi.org/10.1016/j.snb.2022.132696
- P. Luppa, C. Müller, A. Schlichtiger, H. Schlebusch, Point-of-care testing (POCT): current techniques and future perspectives. TrAC-Trends Analyt. Chem. 30(6), 887–898 (2011). https://doi.org/10.1016/j.trac.2011.01.019
- Y. Su, G. Chen, C. Chen, Q. Gong, G. Xie et al., Self-powered respiration monitoring enabled by a triboelectric nanogenerator. Adv. Mater. 33(35), 2101262 (2021). https://doi.org/10.1002/adma.202101262
- X. Ding, Y. Zhang, Y. Zhang, X. Ding, H. Zhang et al., Modular assembly of MXene frameworks for noninvasive disease diagnosis via urinary volatiles. ACS Nano 16(10), 17376–17388 (2022). https://doi.org/10.1021/acsnano.2c08266
- M. Hakim, Y. Broza, O. Barash, N. Peled, M. Phillips et al., Volatile organic compounds of lung cancer and possible biochemical pathways. Chem. Rev. 112(11), 5949–5966 (2012). https://doi.org/10.1021/cr300174a
- S. Zhang, M. Bick, X. Xiao, G. Chen, A. Nashalian, J. Chen, Leveraging triboelectric nanogenerators for bioengineering. Matter 4(3), 845–887 (2021). https://doi.org/10.1016/j.matt.2021.01.006
- Q. Zhou, Z. Geng, L. Yang, B. Shen, Z. Kan et al., A wearable healthcare platform integrated with biomimetical ions conducted metal-organic framework composites for gas and strain sensing in non-overlapping mode. Adv. Sci. 10(18), 2207663 (2023). https://doi.org/10.1002/advs.202207663
- P. Tseng, B. Napier, L. Garbarini, D. Kaplan, F. Omenetto, Functional, RF-trilayer sensors for tooth-mounted, wireless monitoring of the oral cavity and food consumption. Adv. Mater. 30(18), 1703257 (2018). https://doi.org/10.1002/adma.201703257
- X. Li, C. Luo, Q. Fu, C. Zhou, M. Ruelas et al., A transparent, wearable fluorescent mouthguard for high-sensitive visualization and accurate localization of hidden dental lesion sites. Adv. Mater. 32(21), 2000060 (2020). https://doi.org/10.1002/adma.202000060
- D. Kim, J. Cha, J. Lim, J. Bae, W. Lee et al., Colorimetric dye-loaded nanofiber yarn: eye-readable and weavable gas sensing platform. ACS Nano 14(12), 16907–16918 (2020). https://doi.org/10.1021/acsnano.0c05916
- B. Zong, Q. Xu, S. Mao, Single-atom Pt-functionalized Ti3C2Tx field-effect transistor for volatile organic compound gas detection. ACS Sens. 7(7), 1874–1882 (2022). https://doi.org/10.1021/acssensors.2c00475
- C. Lim, Y.J. Hong, J. Jung, Y. Shin, S.H. Sunwoo et al., Tissue-like skin-device interface for wearable bioelectronics by using ultrasoft, mass-permeable, and low-impedance hydrogels. Sci. Adv. 7(19), eabd3716 (2021). https://doi.org/10.1126/sciadv.abd3716
- D. Doeun, M. Davaatseren, M. Chung, Biogenic amines in foods. Food Sci. Biotechnol. 26, 1463–1474 (2017). https://doi.org/10.1007/s10068-017-0239-3
- E. Shumilina, A. Ciampa, F. Capozzi, T. Rustad, A. Dikiy, NMR approach for monitoring post-mortem changes in Atlantic salmon fillets stored at 0 and 4 °C. Food Chem. 184, 12–22 (2015). https://doi.org/10.1016/j.foodchem.2015.03.037
- S. Khan, J. Monteiro, A. Prasad, C. Filipe, Y. Li et al., Material breakthroughs in smart food monitoring: intelligent packaging and on-site testing technologies for spoilage and contamination detection. Adv. Mater. 36(1), 2300875 (2024). https://doi.org/10.1002/adma.202300875
- N. Matsuhisa, Spoiler alert of foods by your phone. Nat. Food 4, 362–363 (2023). https://doi.org/10.1038/s43016-023-00756-3
- R. Jia, W. Tian, H. Bai, J. Zhang, S. Wang et al., Amine-responsive cellulose-based ratiometric fluorescent materials for real-time and visual detection of shrimp and crab freshness. Nat. Commun. 10, 795 (2019). https://doi.org/10.1038/s41467-019-08675-3
- X. Miao, C. Wu, F. Li, M. Zhang, Fast and visual detection of biogenic amines and food freshness based on ICT-induced ratiometric fluorescent probes. Adv. Funct. Mater. 33(27), 2212980 (2023). https://doi.org/10.1002/adfm.202212980
- S. Jeon, T. Kim, H. Jin, U. Lee, J. Bae et al., Amine-reactive activated esters of meso-CarboxyBODIPY: fluorogenic assays and labeling of amines, amino acids, and proteins. J. Am. Chem. Soc. 142(20), 9231–9239 (2020). https://doi.org/10.1021/jacs.9b13982
- G. Das, B. Garai, T. Prakasam, F. Benyettou, S. Varghese et al., Fluorescence turn on amine detection in a cationic covalent organic framework. Nat. Commun. 13, 3904 (2022). https://doi.org/10.1038/s41467-022-31393-2
- Y. Han, S. Wang, Y. Cao, G. Singh, S. Loh et al., Design of biodegradable, climate-specific packaging materials that sense food spoilage and extend shelf life. ACS Nano 17(9), 8333–8344 (2023). https://doi.org/10.1021/acsnano.2c12747
- Y. Zhang, H. Yang, H. Ma, G. Bian, Q. Zang et al., Excitation wavelength dependent fluorescence of an ESIPT triazole derivative for amine sensing and anti-counterfeiting applications. Angew. Chem. Int. Ed. 58(26), 8773–8778 (2019). https://doi.org/10.1002/anie.201902890
- E. Istif, H. Mirzajani, Ç. Dağ, F. Mirlou, E. Ozuaciksoz et al., Miniaturized wireless sensor enables real-time monitoring of food spoilage. Nat. Food 4, 427–436 (2023). https://doi.org/10.1038/s43016-023-00750-9
- Z. Li, Y. Liu, O. Hossain, R. Paul, S. Yao et al., Real-time monitoring of plant stresses via chemiresistive profiling of leaf volatiles by a wearable sensor. Matter 4(7), 2553–2570 (2021). https://doi.org/10.1016/j.matt.2021.06.009
- G. Lee, Q. Wei, Y. Zhu, Emerging wearable sensors for plant health monitoring. Adv. Funct. Mater. 31(52), 2106475 (2021). https://doi.org/10.1002/adfm.202106475
- J. Giraldo, H. Wu, G. Newkirk, S. Kruss, Nanobiotechnology approaches for engineering smart plant sensors. Nat. Nanotechnol. 14, 541–553 (2019). https://doi.org/10.1038/s41565-019-0470-6
- G. Lee, O. Hossain, S. Jamalzadegan, Y. Liu, H. Wang et al., Abaxial leaf surface-mounted multimodal wearable sensor for continuous plant physiology monitoring. Sci. Adv. 9(15), eade2232 (2023). https://doi.org/10.1126/sciadv.ade2232
- W. Feng, X. Liu, M. Xue, Q. Song, Bifunctional fluorescent probes for the detection of mustard gas and phosgene. Anal. Chem. 95(2), 1755–1763 (2023). https://doi.org/10.1021/acs.analchem.2c05178
- X. Zhao, L. Du, X. Xing, Z. Li, Y. Tian et al., Decorating Pd–Au nanodots around porous In2O3 nanocubes for tolerant H2 sensing against switching response and H2S poisoning. Small 20(32), 2311840 (2024). https://doi.org/10.1002/smll.202311840
- M. Lim, D. Kim, C. Park, Y. Lee, S. Han et al., A new route toward ultrasensitive, flexible chemical sensors: metal nanotubes by wet-chemical synthesis along sacrificial nanowire templates. ACS Nano 6(1), 598–608 (2012). https://doi.org/10.1021/nn204009m
- J. Zhu, M. Cho, Y. Li, I. Cho, J. Suh et al., Biomimetic turbinate-like artificial nose for hydrogen detection based on 3D porous laser-induced graphene. ACS Appl. Mater. Interf. 11(27), 24386–24394 (2019). https://doi.org/10.1021/acsami.9b04495
- C. Kuru, C. Choi, A. Kargar, D. Choi, Y. Kim et al., MoS2 nanosheet-Pd nanop composite for highly sensitive room temperature detection of hydrogen. Adv. Sci. 2(4), 1500004 (2015). https://doi.org/10.1002/advs.201500004
- S. Yuan, S. Zeng, Y. Hu, W. Kong, H. Yang et al., Epitaxial metal-organic framework-mediated electron relay for H2 detection on demand. ACS Nano 18(30), 19723–19731 (2024). https://doi.org/10.1021/acsnano.4c05206
- M. Germain, M. Knapp, Optical explosives detection: from color changes to fluorescence turn-on. Chem. Soc. Rev. 38, 2543–2555 (2009). https://doi.org/10.1039/B809631G
- J. Zhang, J. Xiong, B. Gao, X. Zheng, T. Hu et al., Ultrasensitive and on-site detection of nitroaromatic explosives through a dual-mode hydrogel sensor utilizing portable devices. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202402442
- L. Sydnes, Update the chemical weapons convention. Nature 496, 25–26 (2013). https://doi.org/10.1038/496025a
- M. Safarkhani, H. Kim, S. Han, F. Taghavimandi, Y. Park et al., Advances in sprayable sensors for nerve agent detection. Coord. Chem. Rev. 509, 215804 (2024). https://doi.org/10.1016/j.ccr.2024.215804
- F. Xiao, D. Lei, C. Liu, Y. Li, W. Ren et al., Coherent modulation of the aggregation behavior and intramolecular charge transfer in small molecule probes for sensitive and long-term nerve agent monitoring. Angew. Chem. In. Ed. 63(15), e202400453 (2024). https://doi.org/10.1002/anie.202400453
- R. Puglisi, R. Santonocito, A. Pappalardo, S.G. Trusso, Smart sensing of nerve agents. ChemPlusChem (2024). https://doi.org/10.1002/cplu.202400098
- S. Fan, A. Loch, K. Vongsanga, G. Dennison, P. Burn et al., Differentiating between V- and G-series nerve agent and simulant vapours using fluorescent film responses. Small Methods 8(1), 2301048 (2024). https://doi.org/10.1002/smtd.202301048
- R. Vishinkin, H. Haick, Nanoscale sensor technologies for disease detection via volatolomics. Small 11(46), 6142–6164 (2015). https://doi.org/10.1002/smll.201501904
- N. Van Toan, N.V. Chien, N. Van Duy, H.S. Hong, H. Nguyen et al., Fabrication of highly sensitive and selective H2 gas sensor based on SnO2 thin film sensitized with microsized Pd islands. J. Hazard. Mater. 301, 433–442 (2016). https://doi.org/10.1016/j.jhazmat.2015.09.013
- Q. Xu, B. Zong, Q. Li, X. Fang, S. Mao et al., H2S sensing under various humidity conditions with Ag nanop functionalized Ti3C2Tx MXene field-effect transistors. J. Hazard. Mater. 424, 127492 (2022). https://doi.org/10.1016/j.jhazmat.2021.127492
- H. Li, C. Lee, D. Kim, J. Lee, Flexible room-temperature NH3 sensor for ultrasensitive, selective, and humidity-independent gas detection. ACS Appl. Mater. Interf. 10(33), 27858–27867 (2018). https://doi.org/10.1021/acsami.8b09169
- L. Liu, S. Shu, G. Zhang, S. Liu, Highly selective sensing of C2H6O, HCHO, and C3H6O gases by controlling SnO2 nanop vacancies. ACS Appl. Nano Mater. 1(1), 31–37 (2018). https://doi.org/10.1021/acsanm.7b00150
- Y. Li, N. Chen, D. Deng, X. Xing, X. Xiao et al., Formaldehyde detection: SnO2 microspheres for formaldehyde gas sensor with high sensitivity, fast response/recovery and good selectivity. Sens. Actuat. B-Chem. 238, 264–273 (2017). https://doi.org/10.1016/j.snb.2016.07.051
- I. Weber, H. Braun, F. Krumeich, A. Güntner, S. Pratsinis, Superior acetone selectivity in gas mixtures by catalyst-filtered chemoresistive sensors. Adv. Sci. 7(19), 2001503 (2020). https://doi.org/10.1002/advs.202001503
- F. Röck, N. Barsan, U. Weimar, Electronic nose: current status and future trends. Chem. Rev. 108(2), 705–725 (2008). https://doi.org/10.1021/cr068121q
- O. Ogbeide, G. Bae, W. Yu, E. Morrin, Y. Song et al., Inkjet-printed rGO/binary metal oxide sensor for predictive gas sensing in a mixed environment. Adv. Funct. Mater. 32(25), 2113348 (2022). https://doi.org/10.1002/adfm.202113348
- J. Oh, S. Kim, M. Lee, H. Hwang, W. Ku et al., Machine learning-based discrimination of indoor pollutants using an oxide gas sensor array: high endurance against ambient humidity and temperature. Sens. Actuat. B-Chem. 364, 131894 (2022). https://doi.org/10.1016/j.snb.2022.131894
- M. Tonezzer, D. Le, S. Iannotta, N. Van Hieu, Selective discrimination of hazardous gases using one single metal oxide resistive sensor. Sens. Actuat. B-Chem. 277, 121–128 (2018). https://doi.org/10.1016/j.snb.2018.08.103
- A. Caron, N. Redon, P. Coddeville, B. Hanoune et al., Identification of indoor air quality events using a K-means clustering analysis of gas sensors data. Sens. Actuat. B-Chem. 297, 126709 (2019). https://doi.org/10.1016/j.snb.2019.126709
- H. Honda, M. Yamamoto, S. Arata, H. Kobayashi, M. Inagaki, Decision tree-based identification of staphylococcus aureus via infrared spectral analysis of ambient gas. Anal. Bioanal. Chem. 414, 1049–1059 (2022). https://doi.org/10.1007/s00216-021-03729-2
- S. Acharyya, B. Jana, S. Nag, G. Saha, P. Guha, Single resistive sensor for selective detection of multiple VOCs employing SnO2 hollowspheres and machine learning algorithm: a proof of concept. Sens. Actuat. B-Chem. 321, 128484 (2020). https://doi.org/10.1016/j.snb.2020.128484
- S. Güney, A. Atasoy, Multiclass classification of n-butanol concentrations with k-nearest neighbor algorithm and support vector machine in an electronic nose. Sens. Actuat. B-Chem. 166–167, 721–725 (2012). https://doi.org/10.1016/j.snb.2012.03.047
- E. Nallon, V. Schnee, C. Bright, M. Polcha, Q. Li, Chemical discrimination with an unmodified graphene chemical sensor. ACS Sens. 1(1), 26–31 (2016). https://doi.org/10.1021/acssensors.5b00029
- R. Potyrailo, R. Bonam, J. Hartley, T. Starkey, P. Vukusic et al., Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies. Nat. Commun. 6, 7959 (2015). https://doi.org/10.1038/ncomms8959
- T. Wang, H. Ma, W. Jiang, H. Zhang, M. Zeng et al., Type discrimination and concentration prediction towards ethanol using a machine learning–enhanced gas sensor array with different morphology-tuning characteristics. Phys. Chem. Chem. Phys. 23, 23933–23944 (2021). https://doi.org/10.1039/D1CP02394B
- D. Kwon, G. Jung, W. Shin, Y. Jeong, S. Hong et al., Low-power and reliable gas sensing system based on recurrent neural networks. Sens. Actuat. B-Chem. 340, 129258 (2021). https://doi.org/10.1016/j.snb.2020.129258
- P. Evans, K. Persaud, A. McNeish, R. Sneath, N. Hobson et al., Evaluation of a radial basis function neural network for the determination of wheat quality from electronic nose data. Sens. Actuat. B-Chem. 414, 1049–1059 (2000). https://doi.org/10.1016/S0925-4005(00)00485-8
- D. Kwon, G. Jung, W. Shin, Y. Jeong, S. Hong et al., Efficient fusion of spiking neural networks and FET-type gas sensors for a fast and reliable artificial olfactory system. Sens. Actuat. B-Chem. 345, 130419 (2021). https://doi.org/10.1016/j.snb.2021.130419
- B. Wang, J.C. Cancilla, J. Torrecilla, H. Haick, Artificial sensing intelligence with silicon nanowires for ultraselective detection in the gas phase. Nano Lett. 14(2), 933–938 (2014). https://doi.org/10.1021/nl404335p
- Z. Ballard, C. Brown, A.M. Madni, A. Ozcan, Machine learning and computation-enabled intelligent sensor design. Nat. Mach. Intell. 3, 556–565 (2021). https://doi.org/10.1038/s42256-021-00360-9
- L. Zhang, F. Tian, C. Kadri, B. Xiao, H. Li et al., On-line sensor calibration transfer among electronic nose instruments for monitoring volatile organic chemicals in indoor air quality. Sens. Actuat. B-Chem. 160, 899–909 (2011). https://doi.org/10.1016/j.snb.2011.08.079
- T. Itoh, Y. Koyama, W. Shin, T. Akamatsu, A. Tsuruta et al., Selective detection of target volatile organic compounds in contaminated air using sensor array with machine learning: aging notes and mold smells in simulated automobile interior contaminant gases. Sensors 20(9), 2687 (2020). https://doi.org/10.3390/s20092687
- M. Tonezzer, Selective gas sensor based on one single SnO2 nanowire. Sens. Actuat. B-Chem. 288, 53–59 (2019). https://doi.org/10.1016/j.snb.2019.02.096
- M. Tonezzer, J. Kim, J. Lee, S. Iannotta, S. Kim, Predictive gas sensor based on thermal fingerprints from Pt-SnO2 nanowires. Sens. Actuat. B-Chem. 281, 670–678 (2019). https://doi.org/10.1016/j.snb.2018.10.102
- C. Jaeschke, J. Glöckler, O. Azizi, O. Gonzalez, M. Padilla et al., An innovative modular eNose system based on a unique combination of analog and digital metal oxide sensors. ACS Sens. 4(9), 2277–2281 (2019). https://doi.org/10.1021/acssensors.9b01244
- C. Park, V. Schroeder, B. Kim, T. Swager, Ionic liquid-Carbon nanotube sensor arrays for human breath related volatile organic compounds. ACS Sens. 3(11), 2432–2437 (2018). https://doi.org/10.1021/acssensors.8b00987
- M. Kang, I. Cho, J. Park, J. Jeong, K. Lee et al., High accuracy real-time multi-gas identification by a batch-uniform gas sensor array and deep learning algorithm. ACS Sens. 7(2), 430–440 (2022). https://doi.org/10.1021/acssensors.1c01204
- G. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada et al., Diagnosing lung cancer in exhaled breath using gold nanops. Nat. Nanotechnol. 4, 669–673 (2009). https://doi.org/10.1038/nnano.2009.235
- N. Shehada, G. Brönstrup, K. Funka, S. Christiansen, M. Leja et al., Ultrasensitive silicon nanowire for real-world gas sensing: noninvasive diagnosis of cancer from breath volatolome. Nano Lett. 15(2), 1288–1295 (2015). https://doi.org/10.1021/nl504482t
- Z. Li, Z. Wang, J. Khan, M. LaGasse, K. Suslick, Ultrasensitive monitoring of museum airborne pollutants using a silver nanop sensor array. ACS Sens. 5(9), 2783–2791 (2020). https://doi.org/10.1021/acssensors.0c00583
- Z. Li, J. Yu, D. Dong, G. Yao, G. Wei et al., E-nose based on a high-integrated and low-power metal oxide gas sensor array. Sens. Actuat. B-Chem. 380, 133289 (2023). https://doi.org/10.1016/j.snb.2023.133289
- B. Tozlu, C. Şimşek, O. Aydemir, Y. Karavelioglu, A high performance electronic nose system for the recognition of myocardial infarction and coronary artery diseases. Biomed. Signal Process. 64, 102247 (2021). https://doi.org/10.1016/j.bspc.2020.102247
- Y. Liu, S. Jia, C. Yiu, W. Park, Z. Chen et al., Intelligent wearable olfactory interface for latency-free mixed reality and fast olfactory enhancement. Nat. Commun. 15, 4474 (2024). https://doi.org/10.1038/s41467-024-48884-z
- S. Kim, S. Choi, J. Jang, H. Cho, I. Kim, Innovative nanosensor for disease diagnosis. Acc. Chem. Res. 50(7), 1587–1596 (2017). https://doi.org/10.1021/acs.accounts.7b00047
- T. Saidi, O. Zaim, M. Moufid, N. Bari, R. Ionescu et al., Exhaled breath analysis using electronic nose and gas chromatography–mass spectrometry for non-invasive diagnosis of chronic kidney disease, diabetes mellitus and healthy subjects. Sens. Actuat. B-Chem. 257, 178–188 (2018). https://doi.org/10.1016/j.snb.2017.10.178
- S. Dragonieri, V. Quaranta, P. Carratu, T. Ranieri, O. Resta, Exhaled breath profiling by electronic nose enabled discrimination of allergic rhinitis and extrinsic asthma. Biomarkers 24, 70–75 (2019). https://doi.org/10.1080/1354750X.2018.1508307
- C. Machungo, A. Berna, D. McNevin, R. Wang, J. Harvey et al., Evaluation of performance of metal oxide electronic nose for detection of aflatoxin in artificially and naturally contaminated maize. Sens. Actuat. B-Chem. 381, 133446 (2023). https://doi.org/10.1016/j.snb.2023.133446
- Y. Deng, M. Zhao, Y. Ma, S. Liu, M. Liu et al., A flexible and biomimetic olfactory synapse with gasotransmitter-mediated pasticity. Adv. Funct. Mater. 33(18), 2214139 (2023). https://doi.org/10.1002/adfm.202214139
- V. Schroeder, E.D. Evans, Y.C. Wu, C.C. Voll, B.R. McDonald et al., Chemiresistive sensor array and machine learning classification of food. ACS Sens. 4(8), 2101–2108 (2019). https://doi.org/10.1021/acssensors.9b00825
- X. Jia, P. Ma, K. Tarwa, Y. Mao, Q. Wang, Development of a novel colorimetric sensor array based on oxidized chitin nanocrystals and deep learning for monitoring beef freshness. Sens. Actuat. B-Chem. 390, 133931 (2023). https://doi.org/10.1016/j.snb.2023.133931
- M. Wiederoder, E. Nallon, M. Weiss, S. McGraw, V. Schnee et al., Graphene nanoplatelet-polymer chemiresistive sensor arrays for the detection and discrimination of chemical warfare agent simulants. ACS Sens. 2(11), 1669–1678 (2017). https://doi.org/10.1021/acssensors.7b00550
- Y. Li, S. Guo, B. Wang, J. Sun, L. Zhao et al., Machine learning-assisted wearable sensor array for comprehensive ammonia and nitrogen dioxide detection in wide relative humidity range. InfoMat 6(6), e12544 (2024). https://doi.org/10.1002/inf2.12544
- K. Jin, D. Moon, Y. Chen, J. Park, Comprehensive qualitative and quantitative colorimetric sensing of volatile organic compounds using monolayered metal-organic framework films. Adv. Mater. 36(8), 2309570 (2024). https://doi.org/10.1002/adma.202309570
- C. Wang, Z. Chen, C. Chan, Z. Wan, W. Ye et al., Biomimetic olfactory chips based on large-scale monolithically integrated nanotube sensor arrays. Nat. Electron. 7, 157–167 (2024). https://doi.org/10.1038/s41928-023-01107-7
- D. Diamond, S. Coyle, S. Scarmagnani, J. Hayes, Wireless sensor networks and chemo-/biosensing. Chem. Rev. 108(2), 652–679 (2008). https://doi.org/10.1021/cr0681187
- B. Wang, D. Yang, Z. Chang, R. Zhang, J. Dai et al., Wearable bioelectronic masks for wireless detection of respiratory infectious diseases by gaseous media. Matter 5(12), 4347–4362 (2022). https://doi.org/10.1016/j.matt.2022.08.020
- J. Zhu, M. Cho, Y. Li, T. He, J. Ahn et al., Machine learning-enabled textile-based graphene gas sensing with energy harvesting-assisted IoT application. Nano Energy 86, 106035 (2021). https://doi.org/10.1016/j.nanoen.2021.106035
References
S. Gellman, Introduction: molecular recognition. Chem. Rev. 97(5), 1231–1232 (1997). https://doi.org/10.1021/cr970328j
R. Potyrailo, Multivariable sensors for ubiquitous monitoring of gases in the era of internet of things and industrial internet. Chem. Rev. 116(19), 11877–11923 (2016). https://doi.org/10.1021/acs.chemrev.6b00187
Y. Shen, Y. Wei, C. Zhu, J. Cao, D. Han, Ratiometric fluorescent signals-driven smartphone-based portable sensors for onsite visual detection of food contaminants. Coord. Chem. Rev. 458, 214442 (2022). https://doi.org/10.1016/j.ccr.2022.214442
Y. Luo, M. Abidian, J. Ahn, D. Akinwande, A. Andrews et al., Technology roadmap for flexible sensors. ACS Nano 17(16), 5211–5295 (2023). https://doi.org/10.1021/acsnano.2c12606
Y. Ling, T. An, L.W. Yap, B. Zhu, S. Gong, W. Cheng, Disruptive, soft, wearable sensors. Adv. Mater. 32(18), 1904664 (2020). https://doi.org/10.1002/adma.201904664
W. Jayathilaka, K. Qi, Y. Qin, A. Chinnappan, W. Serrano-García et al., Significance of nanomaterials in wearables: a review on wearable actuators and sensors. Adv. Mater. 31(7), 1805921 (2019). https://doi.org/10.1002/adma.201805921
S. Wei, Z. Li, K. Murugappan, Z. Li, F. Zhang et al., Self-powered portable nanowire array gas sensor for dynamic NO2 monitoring at room temperature. Adv. Mater. 35(12), 2207199 (2022). https://doi.org/10.1002/adma.202207199
A. Parichenko, S. Huang, J. Pang, B. Ibarlucea, G. Cuniberti, Recent advances in technologies toward the development of 2D materials-based electronic noses. TrAC-Trends Anal. Chem. 166, 117185 (2023). https://doi.org/10.1016/j.trac.2023.117185
Z. Song, W. Ye, Z. Chen, Z. Chen, M. Li et al., Wireless self-powered high-performance integrated nanostructured-gas-sensor network for future smart homes. ACS Nano 15(4), 7659–7667 (2021). https://doi.org/10.1021/acsnano.1c01256
N. Yi, M. Shen, D. Erdely, H. Cheng, Stretchable gas sensors for detecting biomarkers from humans and exposed environments. TrAC-Trends Anal. Chem. 133, 116085 (2020). https://doi.org/10.1016/j.trac.2020.116085
H. Shin, D. Kim, W. Jung, J. Jang, Y. Kim et al., Surface activity-tuned metal oxide chemiresistor: toward direct and quantitative halitosis diagnosis. ACS Nano 15(9), 14207–14217 (2021). https://doi.org/10.1021/acsnano.1c01350
S. Guo, D. Yang, S. Zhang, Q. Dong, B. Li et al., Development of a cloud-based epidermal MoSe2 device for hazardous gas sensing. Adv. Funct. Mater. 29(18), 1900138 (2019). https://doi.org/10.1002/adfm.201900138
G. Zhao, J. Sun, M. Zhang, S. Guo, X. Wang et al., Highly strain-stable intrinsically stretchable olfactory sensors for imperceptible health monitoring. Adv. Sci. 10(29), 2302974 (2023). https://doi.org/10.1002/advs.202302974
J. Wang, Y. Ren, W. Li, L. Wu, Y. Deng et al., Intelligent multifunctional sensing systems based on ordered macro-microporous metal organic framework and its derivatives. Small Methods 7(7), 2201687 (2023). https://doi.org/10.1002/smtd.202201687
C. Cai, J. Mo, Y. Lu, N. Zhang, Z. Wu et al., Integration of a porous wood-based triboelectric nanogenerator and gas sensor for real-time wireless food-quality assessment. Nano Energy 83, 105833 (2021). https://doi.org/10.1016/j.nanoen.2021.105833
Z. Wu, H. Wang, Q. Ding, K. Tao, W. Shi et al., A self-powered, rechargeable, and wearable hydrogel patch for wireless gas detection with extraordinary performance. Adv. Funct. Mater. 33(21), 2300046 (2023). https://doi.org/10.1002/adfm.202300046
C. Jirayupat, K. Nagashima, T. Hosomi, T. Takahashi, B. Samransuksamer et al., Breath odor-based individual authentication by an artificial olfactory sensor system and machine learning. Chem. Commun. 58, 6377–6380 (2022). https://doi.org/10.1039/D1CC06384G
H. Jin, J. Yu, D. Cui, S. Gao, H. Yang, X. Zhang, C. Hua, S. Cui, C. Xue, Y. Zhang, Y. Zhou, Remote tracking gas molecular via the standalone-like nanosensor-based tele-monitoring system. Nano-Micro Lett. 13, 1–4 (2021). https://doi.org/10.1007/s40820-020-00551-w
H. Cheng, Y. Huang, L. Qu, Q. Cheng, G. Shi et al., Flexible in-plane graphene oxide moisture-electric converter for touchless interactive panel. Nano Energy 45, 37–43 (2018). https://doi.org/10.1016/j.nanoen.2017.12.033
I. Kim, W.S. Kim, K. Kim, M.A. Ansari, M.Q. Mehmood et al., Holographic metasurface gas sensors for instantaneous visual alarms. Sci. Adv. 7(15), eabe9943 (2021). https://doi.org/10.1126/sciadv.abe9943
Y. Guo, Wearable sensors to monitor plant health. Nat. Food 4, 350–350 (2023). https://doi.org/10.1038/s43016-023-00764-3
K. Cammann, U. Lemke, A. Rohen, J. Sander, H. Wilken et al., Chemical sensors and biosensors-principles and applications. Angew. Chem. Int. Ed. 30(5), 516–539 (1991). https://doi.org/10.1002/anie.199105161
T. Swager, K. Mirica, Introduction: chemical sensors. Chem. Rev. 119(1), 1–2 (2019). https://doi.org/10.1021/acs.chemrev.8b00764
M. Bathaei, R. Singh, H. Mirzajani, E. Istif, M. Akhtar et al., Photolithography-based microfabrication of biodegradable flexible and stretchable sensors. Adv. Mater. 35(6), 2207081 (2023). https://doi.org/10.1002/adma.202207081
Q. Li, J. Zhang, Q. Li, G. Li, X. Tian et al., Review of printed electrodes for flexible sevices. Front. Mater. 5, 77 (2019). https://doi.org/10.3389/fmats.2018.00077
E. Lee, C. Park, J. Lee, H. Lee, C. Yang et al., Chemically robust ambipolar organic transistor array directly patterned by photolithography. Adv. Mater. 29(11), 1605282 (2017). https://doi.org/10.1002/adma.201605282
Y. Kim, N. Kwon, S. Park, C. Kim, H. Chau et al., Patterned sandwich-type silver nanowire-based flexible electrode by photolithography. ACS Appl. Mater. Interf. 13(51), 61463–61472 (2021). https://doi.org/10.1021/acsami.1c19164
P. Li, Q. Hao, J. Liu, D. Qi, H. Gan et al., Flexible photodetectors based on all-solution-processed Cu electrodes and InSe nanoflakes with high stabilities. Adv. Funct. Mater. 32(10), 2108261 (2022). https://doi.org/10.1002/adfm.202108261
L. Gomez De Arco, Y. Zhang, C. Schlenker, K. Ryu, M. Thompson et al., Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 4(5), 2865–2873 (2010). https://doi.org/10.1021/nn901587x
P. Kelly, R. Arnell, Magnetron sputtering: a review of recent developments and applications. Vacuum 56(3), 159–172 (2000). https://doi.org/10.1016/S0042-207X(99)00189-X
H. Wu, D. Kong, Z. Ruan, P. Hsu, S. Wang et al., A transparent electrode based on a metal nanotrough network. Nat. Nanotech. 8, 421–425 (2013). https://doi.org/10.1038/nnano.2013.84
D. Kim, J. Jeong, H. Park, Y. Kim, K. Lee et al., Highly concentrated, conductive, defect-free graphene ink for screen-printed sensor application. Nano-Micro Lett. 13, 87 (2021). https://doi.org/10.1007/s40820-021-00617-3
M. Bariya, Z. Shahpar, H. Park, J. Sun, Y. Jung et al., Roll-to-Roll gravure printed electrochemical sensors for wearable and medical devices. ACS Nano 12(7), 6978–6987 (2018). https://doi.org/10.1021/acsnano.8b02505
S. Zips, L. Grob, P. Rinklin, K. Terkan, N. Adly et al., Fully printed μ-needle electrode array from conductive polymer ink for bioelectronic applications. ACS Appl. Mater. Interf. 11(36), 32778–32786 (2019). https://doi.org/10.1021/acsami.9b11774
G. Han, K. Bae, E. Kang, H. Choi, J. Shim et al., Inkjet printing for manufacturing solid oxide fuel cells. ACS Energy Lett. 5(5), 1586–1592 (2020). https://doi.org/10.1021/acsenergylett.0c00721
Z. Wang, Y. Han, L. Yan, C. Gong, J. Kang et al., High power conversion efficiency of 13.61% for 1 cm2 flexible polymer solar cells based on patternable and mass-producible gravure-printed silver nanowire electrodes. Adv. Funct. Mater. 31(4), 2007276 (2021). https://doi.org/10.1002/adfm.202007276
W. Gao, H. Ota, D. Kiriya, K. Takei, A. Javey, Flexible electronics toward wearable sensing. Acc. Chem. Res. 52(3), 523–533 (2019). https://doi.org/10.1021/acs.accounts.8b00500
S. Mahadeva, K. Walus, B. Stoeber, Paper as a platform for sensing applications and other devices: a review. ACS Appl. Mater. Interf. 7(16), 8345–8362 (2015). https://doi.org/10.1021/acsami.5b00373
J. Dai, O. Ogbeide, N. Macadam, Q. Sun, W. Yu et al., Printed gas sensors. Chem. Soc. Rev. 49, 1756–1789 (2020). https://doi.org/10.1039/C9CS00459A
V. Sanchez, C. Walsh, R. Wood, Textile technology for soft robotic and autonomous garments. Adv. Funct. Mater. 31(6), 2008278 (2021). https://doi.org/10.1002/adfm.202008278
B. Zhu, H. Wang, W.R. Leow, Y. Cai, X.J. Loh et al., Silk fibroin for flexible electronic devices. Adv. Mater. 28(22), 4250–4265 (2016). https://doi.org/10.1002/adma.201504276
C. Wang, K. Xia, Y. Zhang, D. Kaplan, Silk-based advanced materials for soft electronics. Acc. Chem. Res. 52(10), 2916–2927 (2019). https://doi.org/10.1021/acs.accounts.9b00333
S. Liu, K. Ma, B. Yang, H. Li, X. Tao, Textile electronics for VR/AR applications. Adv. Funct. Mater. 31(39), 2007254 (2021). https://doi.org/10.1002/adfm.202007254
Q. Shi, B. Dong, T. He, Z. Sun, J. Zhu et al., Progress in wearable electronics/photonics-moving toward the era of artificial intelligence and internet of things. InfoMat 2, 1131–1162 (2020). https://doi.org/10.1002/inf2.12122
D. Kireev, S. Ameri, A. Nederveld, J. Kampfe, H. Jang et al., Fabrication, characterization and applications of graphene electronic tattoos. Nat. Protoc. 16, 2395–2417 (2021). https://doi.org/10.1038/s41596-020-00489-8
F. Wen, T. He, H. Liu, H. Chen, T. Zhang et al., Advances in chemical sensing technology for enabling the next-generation self-sustainable integrated wearable system in the IoT era. Nano Energy 78, 105155 (2020). https://doi.org/10.1016/j.nanoen.2020.105155
H. Yi, S. Lee, H. Ko, D. Lee, W. Bae et al., Ultra-adaptable and wearable photonic skin based on a shape-memory, responsive cellulose derivative. Adv. Funct. Mater. 29, 1902720 (2019). https://doi.org/10.1002/adfm.201902720
C. Dagdeviren, S. Hwang, Y. Su, S. Kim, H. Cheng et al., Transient, biocompatible electronics and energy harvesters based on ZnO. Small 9(20), 3398–3404 (2013). https://doi.org/10.1002/smll.201300146
L. Xue, Y. Ren, Y. Li, W. Xie, K. Chen et al., Pt-Pd nanoalloys functionalized mesoporous SnO2 spheres: tailored synthesis, sensing mechanism, and device integration. Small 19(39), 2302327 (2023). https://doi.org/10.1002/smll.202302327
F. Jiang, Y. Deng, K. Chen, J. Li, X.Y. Huang et al., A straightforward solvent-pair-enabled multicomponent coassembly approach toward noble-metal-nanop-decorated mesoporous tungsten oxide for trace ammonia sensing. Adv. Mater. 36(36), 2313547 (2024). https://doi.org/10.1002/adma.202313547
X. Huang, K. Chen, W. Xie, Y. Li, F. Yang et al., Chemiresistive gas sensors based on highly permeable Sn-doped bismuth subcarbonate microspheres: facile synthesis, sensing performance, and mechanism study. Adv. Funct. Mater. 33(45), 2304718 (2023). https://doi.org/10.1002/adfm.202304718
Y. Chyan, R. Ye, Y. Li, S. Singh, C. Arnusch et al., Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food. ACS Nano 12(3), 2176–2183 (2018). https://doi.org/10.1021/acsnano.7b08539
Y. Xu, G. Zhao, L. Zhu, Q. Fei, Z. Zhang et al., Pencil-paper on-skin electronics. PNAS 117(31), 18292–18301 (2020). https://doi.org/10.1073/pnas.2008422117
K. Mirica, J. Weis, J. Schnorr, B. Esser, T. Swager, Mechanical drawing of gas sensors on paper. Angew. Chem. Int. Ed. 51(43), 10740–10745 (2012). https://doi.org/10.1002/anie.201206069
B. Zong, Q. Xu, Q. Li, X. Fang, X. Chen et al., Novel insights into the unique intrinsic sensing behaviors of 2D nanomaterials for volatile organic compounds: from graphene to MoS2 and black phosphorous. J. Mater. Chem. A 9, 14411–14421 (2021). https://doi.org/10.1039/D1TA02383G
Y. Rao, Z. Li, T. Zhang, Z. Wang, W. Li et al., Synthesis of ordered mesoporous transition metal dichalcogenides by direct organic-inorganic Co-assembly. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202408426
L. Wang, M. Zhang, B. Yang, J. Tan, X. Ding et al., Recent advances in multidimensional (1D, 2D, and 3D) composite sensors derived from MXene: synthesis, structure, application, and perspective. Small Methods 5(7), 2100409 (2021). https://doi.org/10.1002/smtd.202100409
W. Zhao, N. Yun, Z. Dai, Y. Li, A high-performance trace level acetone sensor using an indispensable V4C3Tx MXene. RSC Adv. 10, 1261–1270 (2020). https://doi.org/10.1039/C9RA09069J
S. Cui, H. Pu, S. Wells, Z. Wen, S. Mao et al., Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors. Nat. Commun. 6, 8632 (2015). https://doi.org/10.1038/ncomms9632
Y. Yang, B. Zong, Q. Xu, Q. Li, Z. Li et al., Discriminative analysis of NOx gases by two-dimensional violet phosphorus field-effect transistors. Anal. Chem. 95(49), 18065–18074 (2023). https://doi.org/10.1021/acs.analchem.3c02894
M. Campbell, S. Liu, T. Swager, M. Dincă, Chemiresistive sensor arrays from conductive 2D metal-organic frameworks. J. Am. Chem. Soc. 137(43), 13780–13783 (2015). https://doi.org/10.1021/jacs.5b09600
G. Lu, B. Zong, T. Tao, Y. Yang, Q. Li et al., High-performance Ni3(HHTP)2 film-based flexible field-effect transistor gas sensors. ACS Sens. 9(4), 1916–19264 (2024). https://doi.org/10.1021/acssensors.3c02656
L. Ascherl, E. Evans, J. Gorman, S. Orsborne, D. Bessinger et al., Perylene-based covalent organic frameworks for acid vapor sensing. J. Am. Chem. Soc. 141(39), 15693–15699 (2019). https://doi.org/10.1021/jacs.9b08079
F. Xie, H. Wang, J. Li, Flexible hydrogen-bonded organic framework to split ethane and ethylene. Matter 5(8), 2516–2518 (2022). https://doi.org/10.1016/j.matt.2022.06.043
Q. Huang, W. Li, Z. Mao, L. Qu, Y. Li et al., An exceptionally flexible hydrogen-bonded organic framework with large-scale void regulation and adaptive guest accommodation abilities. Nat. Commun. 10, 3074 (2019). https://doi.org/10.1038/s41467-019-10575-5
Y. Liang, Z. Wu, Y. Wei, Q. Ding, M. Zilberman et al., Self-healing, self-adhesive and stable organohydrogel-based stretchable oxygen sensor with high performance at room temperature. Nano-Micro Lett. 14, 52 (2022). https://doi.org/10.1007/s40820-021-00787-0
Y. Luo, J. Li, Q. Ding, H. Wang, C. Liu et al., Functionalized hydrogel-based wearable gas and humidity sensors. Nano-Micro Lett. 15, 136 (2023). https://doi.org/10.1007/s40820-023-01109-2
W. Huang, Q. Ding, H. Wang, Z. Wu, Y. Luo et al., Design of stretchable and self-powered sensing device for portable and remote trace biomarkers detection. Nat. Commun. 14, 5221 (2023). https://doi.org/10.1038/s41467-023-40953-z
M. Mannoor, H. Tao, J. Clayton, A. Sengupta, D. Kaplan et al., Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun. 3, 763 (2012). https://doi.org/10.1038/ncomms1767
M. Smith, K. Mirica, Self-organized frameworks on textiles (SOFT): conductive fabrics for simultaneous sensing, capture, and filtration of gases. J. Am. Chem. Soc. 139(46), 16759–16767 (2017). https://doi.org/10.1021/jacs.7b08840
L. Tang, J. Shang, X. Jiang, Multilayered electronic transfer tattoo that can enable the crease amplification effect. Sci. Adv. 7(3), eabe3778 (2021). https://doi.org/10.1126/sciadv.abe3778
M. Daniele, A. Knight, S. Roberts, K. Radom, J. Erickson, Sweet substrate: a polysaccharide nanocomposite for conformal electronic decals. Adv. Mater. 27(9), 1600–1606 (2015). https://doi.org/10.1002/adma.201404445
H. Lee, S. Choi, A. Jung, S. Ko, Highly conductive aluminum textile and paper for flexible and wearable electronics. Angew. Chem. Int. Ed. 52(30), 7718–7723 (2013). https://doi.org/10.1002/anie.201301941
B. Lyu, M. Kim, H. Jing, J. Kang, C. Qian et al., Large-area MXene electrode array for flexible electronics. ACS Nano 13(10), 11392–11400 (2019). https://doi.org/10.1021/acsnano.9b04731
M. Liu, K. Xie, M. Nothling, P. Gurr, S. Tan et al., Ultrathin metal-organic framework nanosheets as a gutter layer for flexible composite gas separation membranes. ACS Nano 12(11), 11591–11599 (2018). https://doi.org/10.1021/acsnano.8b06811
J. Xu, Y. He, S. Bi, M. Wang, P. Yang et al., An olefin-linked covalent organic framework as a flexible thin-film electrode for a high-performance micro-supercapacitor. Angew. Chem. Int. Ed. 58(35), 12065–12069 (2019). https://doi.org/10.1002/anie.201905713
Z. Wu, Q. Ding, H. Wang, J. Ye, Y. Luo et al., A humidity-resistant, sensitive, and stretchable hydrogel-based oxygen sensor for wireless health and environmental monitoring. Adv. Funct. Mater. 34(6), 2308280 (2024). https://doi.org/10.1002/adfm.202308280
P. Peinado, S. Sangiao, J. De Teresa, Focused electron and ion beam induced deposition on flexible and transparent polycarbonate substrates. ACS Nano 9(6), 6139–6146 (2015). https://doi.org/10.1021/acsnano.5b01383
A. Siegel, S. Phillips, M. Dickey, N. Lu, Z. Suo et al., Foldable printed circuit boards on paper substrates. Adv. Funct. Mater. 20(1), 28–35 (2010). https://doi.org/10.1002/adfm.200901363
P. Escobedo, M. Fernández-Ramos, N. López-Ruiz, O. Moyano-Rodríguez, A. Martínez-Olmos et al., Smart facemask for wireless CO2 monitoring. Nat. Commun. 13, 72 (2022). https://doi.org/10.1038/s41467-021-27733-3
K. Lee, J. Park, M. Lee, J. Kim, B. Hyun et al., In-situ synthesis of Carbon nanotube–graphite electronic devices and their integrations onto surfaces of live plants and insects. Nano Lett. 14(5), 2647–2654 (2014). https://doi.org/10.1021/nl500513n
X. Zhu, M. Liu, X. Qi, H. Li, Y. Zhang et al., Templateless, plating-free fabrication of flexible transparent electrodes with embedded silver mesh by electric-field-driven microscale 3D printing and hybrid hot embossing. Adv. Mater. 33(21), 2007772 (2021). https://doi.org/10.1002/adma.202007772
J. Huddy, W. Scheideler, Rapid 2D patterning of high-performance perovskites using large area flexography. Adv. Funct. Mater. 33(44), 2306312 (2023). https://doi.org/10.1002/adfm.202306312
Z. Li, J. Askim, K. Suslick, The optoelectronic nose: colorimetric and fluorometric sensor arrays. Chem. Rev. 119(1), 231–292 (2019). https://doi.org/10.1021/acs.chemrev.8b00226
Z. Meng, R. Stolz, L. Mendecki, K. Mirica, Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem. Rev. 119(1), 478–598 (2019). https://doi.org/10.1021/acs.chemrev.8b00311
X. Liu, W. Zheng, R. Kumar, M. Kumar, J. Zhang, Conducting polymer-based nanostructures for gas sensors. Coordin. Chem. Rev. 462, 214517 (2022). https://doi.org/10.1016/j.ccr.2022.214517
L. Zhu, L. Ou, L. Mao, X. Wu, Y. Liu et al., Advances in noble metal-decorated metal oxide nanomaterials for chemiresistive gas sensors: overview. Nano-Micro Lett. 15, 89 (2023). https://doi.org/10.1007/s40820-023-01047-z
D. Wales, J. Grand, V. Ting, R. Burke, K. Edler et al., Gas sensing using porous materials for automotive applications. Chem. Soc. Rev. 44, 4290–4321 (2015). https://doi.org/10.1039/C5CS00040H
X. Fang, B. Zong, S. Mao, Metal-organic framework-based sensors for environmental contaminant sensing. Nano-Micro Lett. 10, 64 (2018). https://doi.org/10.1007/s40820-018-0218-0
L. Pirondini, E. Dalcanale, Molecular recognition at the gas-solid interface: a powerful tool for chemical sensing. Chem. Soc. Rev. 36, 695–706 (2007). https://doi.org/10.1039/B516256B
B. Mu, J. Zhang, T. McNicholas, N. Reuel, S. Kruss et al., Recent advances in molecular recognition based on nanoengineered platforms. Acc. Chem. Res. 47(4), 979–988 (2014). https://doi.org/10.1021/ar400162w
R. Paolesse, S. Nardis, D. Monti, M. Stefanelli, C. Di Natale, Porphyrinoids for chemical sensor applications. Chem. Rev. 117(4), 2517–2583 (2017). https://doi.org/10.1021/acs.chemrev.6b00361
S. Mao, J. Chang, H. Pu, G. Lu, Q. He et al., Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing. Chem. Soc. Rev. 46, 6872–6904 (2017). https://doi.org/10.1039/C6CS00827E
T. Ishihara, K. Kometani, Y. Mizuhara, Y. Takita, Mixed oxide capacitor of CuO–BaTiO3 as a new type CO2 gas sensor. J. Am. Ceram. Soc. 75(3), 613–618 (1992). https://doi.org/10.1111/j.1151-2916.1992.tb07850.x
G. Jiang, M. Goledzinowski, F. Comeau, H. Zarrin, G. Lui et al., Free-standing functionalized graphene oxide solid electrolytes in electrochemical gas sensors. Adv. Funct. Mater. 26(11), 1729–1736 (2016). https://doi.org/10.1002/adfm.201504604
J. Wang, Y. Ren, H. Liu, Z. Li, X. Liu et al., Ultrathin 2D NbWO6 perovskite semiconductor based gas sensors with ultrahigh selectivity under low working temperature. Adv. Mater. 34(2), 2104958 (2022). https://doi.org/10.1002/adma.202104958
A. Azzouz, K. Vikrant, K. Kim, E. Ballesteros, T. Rhadfi et al., Advances in colorimetric and optical sensing for gaseous volatile organic compounds. TrAC-Trends Anal. Chem. 118, 502–516 (2019). https://doi.org/10.1016/j.trac.2019.06.017
R. Askim, M. Mahmoudi, K. Suslick, Optical sensor arrays for chemical sensing: the optoelectronic nose. Chem. Soc. Rev. 42, 8649–8682 (2013). https://doi.org/10.1039/C3CS60179J
Y. Belmabkhout, P. Bhatt, K. Adil, R. Pillai, A. Cadiau et al., Natural gas upgrading using a fluorinated MOF with tuned H2S and CO2 adsorption selectivity. Nat. Energy 3, 1059–1066 (2018). https://doi.org/10.1038/s41560-018-0267-0
M. Gao, G. Xu, R. Zhang, Z. Liu, H. Xia et al., Electrospinning superassembled mesoporous AIEgen-organosilica frameworks featuring diversified forms and superstability for wearable and washable solid-state fluorescence smart sensors. Anal. Chem. 93(4), 2367–2376 (2021). https://doi.org/10.1021/acs.analchem.0c04226
T. Han, J. Yang, R. Miao, K. Liu, J. Li et al., Direct distinguishing of methanol over ethanol with a nanofilm-based fluorescent sensor. Adv. Mater. Technol. 6(2), 2000933 (2021). https://doi.org/10.1002/admt.202000933
T. Bell, N. Hext, Supramolecular optical chemosensors for organic analytes. Chem. Soc. Rev. 33, 589–598 (2004). https://doi.org/10.1039/B207182G
H. Jung, P. Verwilst, W. Kim, J. Kim, Fluorescent and colorimetric sensors for the detection of humidity or water content. Chem. Soc. Rev. 45, 1242–1256 (2016). https://doi.org/10.1039/C5CS00494B
X. Zhou, S. Lee, Z. Xu, J. Yoon, Recent progress on the development of chemosensors for gases. Chem. Rev. 115(15), 7944–8000 (2015). https://doi.org/10.1021/cr500567r
N. Rakow, K. Suslick, A colorimetric sensor array for odour visualization. Nature 406, 710–713 (2000). https://doi.org/10.1038/35021028
X. Wang, H. Chen, Y. Zhao, X. Chen, X. Wang et al., Optical oxygen sensors move towards colorimetric determination. TrAC-Trends Anal. Chem. 29(4), 319–338 (2010). https://doi.org/10.1016/j.trac.2010.01.004
M. Khatib, H. Haick, Sensors for volatile organic compounds. ACS Nano 16(5), 7080–7115 (2022). https://doi.org/10.1021/acsnano.1c10827
N. McEvoy, Correll, Materials that couple sensing, actuation, computation, and communication. Science 347, 1261689 (2015). https://doi.org/10.1126/science.1261689
H. Li, Y. Ma, Y. Huang, Material innovation and mechanics design for substrates and encapsulation of flexible electronics: a review. Mater. Horiz. 8, 383–400 (2021). https://doi.org/10.1039/D0MH00483A
X. Liu, D. Huo, J. Li, Y. Ma, H. Liu et al., Pattern-recognizing-assisted detection of mildewed wheat by dyes/dyes-Cu–MOF paper-based colorimetric sensor array. Food Chem. 415, 135525 (2023). https://doi.org/10.1016/j.foodchem.2023.135525
V. Doğan, M. Evliya, L.N. Kahyaoglu, V. Kılıç, On-site colorimetric food spoilage monitoring with smartphone embedded machine learning. Talanta 266, 125021 (2024). https://doi.org/10.1016/j.talanta.2023.125021
S. Jang, S. Son, J. Kim, H. Kim, J. Lim et al., Polydiacetylene-based hydrogel beads as colorimetric sensors for the detection of biogenic amines in spoiled meat. Food Chem. 403, 134317 (2023). https://doi.org/10.1016/j.foodchem.2022.134317
S. Liu, Y. Rong, Q. Chen, Q. Ouyang, Colorimetric sensor array combined with chemometric methods for the assessment of aroma produced during the drying of tencha. Food Chem. 432, 137190 (2024). https://doi.org/10.1016/j.foodchem.2023.137190
W. Kang, H. Lin, S.Y. Adade, Z. Wang, Q. Ouyang et al., Advanced sensing of volatile organic compounds in the fermentation of kombucha tea extract enabled by nano-colorimetric sensor array based on density functional theory. Food Chem. 405, 134193 (2023). https://doi.org/10.1016/j.foodchem.2022.134193
F. Mazur, Z. Han, A.D. Tjandra, R. Chandrawati, Digitalization of colorimetric sensor technologies for food safety. Adv. Mater. (2024). https://doi.org/10.1002/adma.202404274
D. Christodouleas, A. Nemiroski, A. Kumar, G. Whitesides, Broadly available imaging devices enable high-quality low-cost photometry. Anal. Chem. 87(18), 9170–9178 (2015). https://doi.org/10.1021/acs.analchem.5b01612
L. Yuan, M. Gao, H. Xiang, Z. Zhou, D. Yu et al., A biomass-based colorimetric sulfur dioxide gas sensor for smart packaging. ACS Nano 17(7), 6849–6856 (2023). https://doi.org/10.1021/acsnano.3c00530
Z. Li, K. Suslick, A hand-held optoelectronic nose for the identification of liquors. ACS Sens. 3(1), 121–127 (2018). https://doi.org/10.1021/acssensors.7b00709
Z. Li, K. Suslick, The optoelectronic nose. Acc. Chem. Res. 54(4), 950–960 (2021). https://doi.org/10.1021/acs.accounts.0c00671
G. Nielsen, S. Larsen, P. Wolkoff, Re-evaluation of the WHO (2010) formaldehyde indoor air quality guideline for cancer risk assessment. Arch. Toxicol. 91, 35–61 (2017). https://doi.org/10.1007/s00204-016-1733-8
J. van den Broek, D.K. Cerrejon, S.E. Pratsinis, A.T. Güntner, Selective formaldehyde detection at ppb in indoor air with a portable sensor. J. Hazard. Mater. 399, 123052 (2020). https://doi.org/10.1016/j.jhazmat.2020.123052
Z. Han, Y. Qi, Z. Yang, H. Han, Y. Jiang et al., Recent advances and perspectives on constructing metal oxide semiconductor gas sensing materials for efficient formaldehyde detection. J. Mater. Chem. C 8, 13169–13188 (2020). https://doi.org/10.1039/D0TC03750H
J. Zhang, F. Lv, Z. Li, G. Jiang, M. Tan et al., Cr-doped Pd metallene endows a practical formaldehyde sensor new limit and high selectivity. Adv. Mater. 34(2), 2105276 (2022). https://doi.org/10.1002/adma.202105276
S. Jeong, Y. Moon, J. Wang, J. Lee, Exclusive detection of volatile aromatic hydrocarbons using bilayer oxide chemiresistors with catalytic overlayers. Nat. Commun. 14, 233 (2023). https://doi.org/10.1038/s41467-023-35916-3
B. Zong, Q. Li, X. Chen, C. Liu, L. Li et al., Highly enhanced gas sensing performance using a 1T/2H heterophase MoS2 field-effect transistor at room temperature. ACS Appl. Mater. Interf. 12(45), 50610–50618 (2020). https://doi.org/10.1021/acsami.0c15162
Q. Xu, B. Zong, Y. Yang, Q. Li, S. Mao, Black phosphorus quantum dots modified monolayer Ti3C2Tx nanosheet for field-effect transistor gas sensor. Sens. Actuat. B-Chem. 373, 132696 (2022). https://doi.org/10.1016/j.snb.2022.132696
P. Luppa, C. Müller, A. Schlichtiger, H. Schlebusch, Point-of-care testing (POCT): current techniques and future perspectives. TrAC-Trends Analyt. Chem. 30(6), 887–898 (2011). https://doi.org/10.1016/j.trac.2011.01.019
Y. Su, G. Chen, C. Chen, Q. Gong, G. Xie et al., Self-powered respiration monitoring enabled by a triboelectric nanogenerator. Adv. Mater. 33(35), 2101262 (2021). https://doi.org/10.1002/adma.202101262
X. Ding, Y. Zhang, Y. Zhang, X. Ding, H. Zhang et al., Modular assembly of MXene frameworks for noninvasive disease diagnosis via urinary volatiles. ACS Nano 16(10), 17376–17388 (2022). https://doi.org/10.1021/acsnano.2c08266
M. Hakim, Y. Broza, O. Barash, N. Peled, M. Phillips et al., Volatile organic compounds of lung cancer and possible biochemical pathways. Chem. Rev. 112(11), 5949–5966 (2012). https://doi.org/10.1021/cr300174a
S. Zhang, M. Bick, X. Xiao, G. Chen, A. Nashalian, J. Chen, Leveraging triboelectric nanogenerators for bioengineering. Matter 4(3), 845–887 (2021). https://doi.org/10.1016/j.matt.2021.01.006
Q. Zhou, Z. Geng, L. Yang, B. Shen, Z. Kan et al., A wearable healthcare platform integrated with biomimetical ions conducted metal-organic framework composites for gas and strain sensing in non-overlapping mode. Adv. Sci. 10(18), 2207663 (2023). https://doi.org/10.1002/advs.202207663
P. Tseng, B. Napier, L. Garbarini, D. Kaplan, F. Omenetto, Functional, RF-trilayer sensors for tooth-mounted, wireless monitoring of the oral cavity and food consumption. Adv. Mater. 30(18), 1703257 (2018). https://doi.org/10.1002/adma.201703257
X. Li, C. Luo, Q. Fu, C. Zhou, M. Ruelas et al., A transparent, wearable fluorescent mouthguard for high-sensitive visualization and accurate localization of hidden dental lesion sites. Adv. Mater. 32(21), 2000060 (2020). https://doi.org/10.1002/adma.202000060
D. Kim, J. Cha, J. Lim, J. Bae, W. Lee et al., Colorimetric dye-loaded nanofiber yarn: eye-readable and weavable gas sensing platform. ACS Nano 14(12), 16907–16918 (2020). https://doi.org/10.1021/acsnano.0c05916
B. Zong, Q. Xu, S. Mao, Single-atom Pt-functionalized Ti3C2Tx field-effect transistor for volatile organic compound gas detection. ACS Sens. 7(7), 1874–1882 (2022). https://doi.org/10.1021/acssensors.2c00475
C. Lim, Y.J. Hong, J. Jung, Y. Shin, S.H. Sunwoo et al., Tissue-like skin-device interface for wearable bioelectronics by using ultrasoft, mass-permeable, and low-impedance hydrogels. Sci. Adv. 7(19), eabd3716 (2021). https://doi.org/10.1126/sciadv.abd3716
D. Doeun, M. Davaatseren, M. Chung, Biogenic amines in foods. Food Sci. Biotechnol. 26, 1463–1474 (2017). https://doi.org/10.1007/s10068-017-0239-3
E. Shumilina, A. Ciampa, F. Capozzi, T. Rustad, A. Dikiy, NMR approach for monitoring post-mortem changes in Atlantic salmon fillets stored at 0 and 4 °C. Food Chem. 184, 12–22 (2015). https://doi.org/10.1016/j.foodchem.2015.03.037
S. Khan, J. Monteiro, A. Prasad, C. Filipe, Y. Li et al., Material breakthroughs in smart food monitoring: intelligent packaging and on-site testing technologies for spoilage and contamination detection. Adv. Mater. 36(1), 2300875 (2024). https://doi.org/10.1002/adma.202300875
N. Matsuhisa, Spoiler alert of foods by your phone. Nat. Food 4, 362–363 (2023). https://doi.org/10.1038/s43016-023-00756-3
R. Jia, W. Tian, H. Bai, J. Zhang, S. Wang et al., Amine-responsive cellulose-based ratiometric fluorescent materials for real-time and visual detection of shrimp and crab freshness. Nat. Commun. 10, 795 (2019). https://doi.org/10.1038/s41467-019-08675-3
X. Miao, C. Wu, F. Li, M. Zhang, Fast and visual detection of biogenic amines and food freshness based on ICT-induced ratiometric fluorescent probes. Adv. Funct. Mater. 33(27), 2212980 (2023). https://doi.org/10.1002/adfm.202212980
S. Jeon, T. Kim, H. Jin, U. Lee, J. Bae et al., Amine-reactive activated esters of meso-CarboxyBODIPY: fluorogenic assays and labeling of amines, amino acids, and proteins. J. Am. Chem. Soc. 142(20), 9231–9239 (2020). https://doi.org/10.1021/jacs.9b13982
G. Das, B. Garai, T. Prakasam, F. Benyettou, S. Varghese et al., Fluorescence turn on amine detection in a cationic covalent organic framework. Nat. Commun. 13, 3904 (2022). https://doi.org/10.1038/s41467-022-31393-2
Y. Han, S. Wang, Y. Cao, G. Singh, S. Loh et al., Design of biodegradable, climate-specific packaging materials that sense food spoilage and extend shelf life. ACS Nano 17(9), 8333–8344 (2023). https://doi.org/10.1021/acsnano.2c12747
Y. Zhang, H. Yang, H. Ma, G. Bian, Q. Zang et al., Excitation wavelength dependent fluorescence of an ESIPT triazole derivative for amine sensing and anti-counterfeiting applications. Angew. Chem. Int. Ed. 58(26), 8773–8778 (2019). https://doi.org/10.1002/anie.201902890
E. Istif, H. Mirzajani, Ç. Dağ, F. Mirlou, E. Ozuaciksoz et al., Miniaturized wireless sensor enables real-time monitoring of food spoilage. Nat. Food 4, 427–436 (2023). https://doi.org/10.1038/s43016-023-00750-9
Z. Li, Y. Liu, O. Hossain, R. Paul, S. Yao et al., Real-time monitoring of plant stresses via chemiresistive profiling of leaf volatiles by a wearable sensor. Matter 4(7), 2553–2570 (2021). https://doi.org/10.1016/j.matt.2021.06.009
G. Lee, Q. Wei, Y. Zhu, Emerging wearable sensors for plant health monitoring. Adv. Funct. Mater. 31(52), 2106475 (2021). https://doi.org/10.1002/adfm.202106475
J. Giraldo, H. Wu, G. Newkirk, S. Kruss, Nanobiotechnology approaches for engineering smart plant sensors. Nat. Nanotechnol. 14, 541–553 (2019). https://doi.org/10.1038/s41565-019-0470-6
G. Lee, O. Hossain, S. Jamalzadegan, Y. Liu, H. Wang et al., Abaxial leaf surface-mounted multimodal wearable sensor for continuous plant physiology monitoring. Sci. Adv. 9(15), eade2232 (2023). https://doi.org/10.1126/sciadv.ade2232
W. Feng, X. Liu, M. Xue, Q. Song, Bifunctional fluorescent probes for the detection of mustard gas and phosgene. Anal. Chem. 95(2), 1755–1763 (2023). https://doi.org/10.1021/acs.analchem.2c05178
X. Zhao, L. Du, X. Xing, Z. Li, Y. Tian et al., Decorating Pd–Au nanodots around porous In2O3 nanocubes for tolerant H2 sensing against switching response and H2S poisoning. Small 20(32), 2311840 (2024). https://doi.org/10.1002/smll.202311840
M. Lim, D. Kim, C. Park, Y. Lee, S. Han et al., A new route toward ultrasensitive, flexible chemical sensors: metal nanotubes by wet-chemical synthesis along sacrificial nanowire templates. ACS Nano 6(1), 598–608 (2012). https://doi.org/10.1021/nn204009m
J. Zhu, M. Cho, Y. Li, I. Cho, J. Suh et al., Biomimetic turbinate-like artificial nose for hydrogen detection based on 3D porous laser-induced graphene. ACS Appl. Mater. Interf. 11(27), 24386–24394 (2019). https://doi.org/10.1021/acsami.9b04495
C. Kuru, C. Choi, A. Kargar, D. Choi, Y. Kim et al., MoS2 nanosheet-Pd nanop composite for highly sensitive room temperature detection of hydrogen. Adv. Sci. 2(4), 1500004 (2015). https://doi.org/10.1002/advs.201500004
S. Yuan, S. Zeng, Y. Hu, W. Kong, H. Yang et al., Epitaxial metal-organic framework-mediated electron relay for H2 detection on demand. ACS Nano 18(30), 19723–19731 (2024). https://doi.org/10.1021/acsnano.4c05206
M. Germain, M. Knapp, Optical explosives detection: from color changes to fluorescence turn-on. Chem. Soc. Rev. 38, 2543–2555 (2009). https://doi.org/10.1039/B809631G
J. Zhang, J. Xiong, B. Gao, X. Zheng, T. Hu et al., Ultrasensitive and on-site detection of nitroaromatic explosives through a dual-mode hydrogel sensor utilizing portable devices. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202402442
L. Sydnes, Update the chemical weapons convention. Nature 496, 25–26 (2013). https://doi.org/10.1038/496025a
M. Safarkhani, H. Kim, S. Han, F. Taghavimandi, Y. Park et al., Advances in sprayable sensors for nerve agent detection. Coord. Chem. Rev. 509, 215804 (2024). https://doi.org/10.1016/j.ccr.2024.215804
F. Xiao, D. Lei, C. Liu, Y. Li, W. Ren et al., Coherent modulation of the aggregation behavior and intramolecular charge transfer in small molecule probes for sensitive and long-term nerve agent monitoring. Angew. Chem. In. Ed. 63(15), e202400453 (2024). https://doi.org/10.1002/anie.202400453
R. Puglisi, R. Santonocito, A. Pappalardo, S.G. Trusso, Smart sensing of nerve agents. ChemPlusChem (2024). https://doi.org/10.1002/cplu.202400098
S. Fan, A. Loch, K. Vongsanga, G. Dennison, P. Burn et al., Differentiating between V- and G-series nerve agent and simulant vapours using fluorescent film responses. Small Methods 8(1), 2301048 (2024). https://doi.org/10.1002/smtd.202301048
R. Vishinkin, H. Haick, Nanoscale sensor technologies for disease detection via volatolomics. Small 11(46), 6142–6164 (2015). https://doi.org/10.1002/smll.201501904
N. Van Toan, N.V. Chien, N. Van Duy, H.S. Hong, H. Nguyen et al., Fabrication of highly sensitive and selective H2 gas sensor based on SnO2 thin film sensitized with microsized Pd islands. J. Hazard. Mater. 301, 433–442 (2016). https://doi.org/10.1016/j.jhazmat.2015.09.013
Q. Xu, B. Zong, Q. Li, X. Fang, S. Mao et al., H2S sensing under various humidity conditions with Ag nanop functionalized Ti3C2Tx MXene field-effect transistors. J. Hazard. Mater. 424, 127492 (2022). https://doi.org/10.1016/j.jhazmat.2021.127492
H. Li, C. Lee, D. Kim, J. Lee, Flexible room-temperature NH3 sensor for ultrasensitive, selective, and humidity-independent gas detection. ACS Appl. Mater. Interf. 10(33), 27858–27867 (2018). https://doi.org/10.1021/acsami.8b09169
L. Liu, S. Shu, G. Zhang, S. Liu, Highly selective sensing of C2H6O, HCHO, and C3H6O gases by controlling SnO2 nanop vacancies. ACS Appl. Nano Mater. 1(1), 31–37 (2018). https://doi.org/10.1021/acsanm.7b00150
Y. Li, N. Chen, D. Deng, X. Xing, X. Xiao et al., Formaldehyde detection: SnO2 microspheres for formaldehyde gas sensor with high sensitivity, fast response/recovery and good selectivity. Sens. Actuat. B-Chem. 238, 264–273 (2017). https://doi.org/10.1016/j.snb.2016.07.051
I. Weber, H. Braun, F. Krumeich, A. Güntner, S. Pratsinis, Superior acetone selectivity in gas mixtures by catalyst-filtered chemoresistive sensors. Adv. Sci. 7(19), 2001503 (2020). https://doi.org/10.1002/advs.202001503
F. Röck, N. Barsan, U. Weimar, Electronic nose: current status and future trends. Chem. Rev. 108(2), 705–725 (2008). https://doi.org/10.1021/cr068121q
O. Ogbeide, G. Bae, W. Yu, E. Morrin, Y. Song et al., Inkjet-printed rGO/binary metal oxide sensor for predictive gas sensing in a mixed environment. Adv. Funct. Mater. 32(25), 2113348 (2022). https://doi.org/10.1002/adfm.202113348
J. Oh, S. Kim, M. Lee, H. Hwang, W. Ku et al., Machine learning-based discrimination of indoor pollutants using an oxide gas sensor array: high endurance against ambient humidity and temperature. Sens. Actuat. B-Chem. 364, 131894 (2022). https://doi.org/10.1016/j.snb.2022.131894
M. Tonezzer, D. Le, S. Iannotta, N. Van Hieu, Selective discrimination of hazardous gases using one single metal oxide resistive sensor. Sens. Actuat. B-Chem. 277, 121–128 (2018). https://doi.org/10.1016/j.snb.2018.08.103
A. Caron, N. Redon, P. Coddeville, B. Hanoune et al., Identification of indoor air quality events using a K-means clustering analysis of gas sensors data. Sens. Actuat. B-Chem. 297, 126709 (2019). https://doi.org/10.1016/j.snb.2019.126709
H. Honda, M. Yamamoto, S. Arata, H. Kobayashi, M. Inagaki, Decision tree-based identification of staphylococcus aureus via infrared spectral analysis of ambient gas. Anal. Bioanal. Chem. 414, 1049–1059 (2022). https://doi.org/10.1007/s00216-021-03729-2
S. Acharyya, B. Jana, S. Nag, G. Saha, P. Guha, Single resistive sensor for selective detection of multiple VOCs employing SnO2 hollowspheres and machine learning algorithm: a proof of concept. Sens. Actuat. B-Chem. 321, 128484 (2020). https://doi.org/10.1016/j.snb.2020.128484
S. Güney, A. Atasoy, Multiclass classification of n-butanol concentrations with k-nearest neighbor algorithm and support vector machine in an electronic nose. Sens. Actuat. B-Chem. 166–167, 721–725 (2012). https://doi.org/10.1016/j.snb.2012.03.047
E. Nallon, V. Schnee, C. Bright, M. Polcha, Q. Li, Chemical discrimination with an unmodified graphene chemical sensor. ACS Sens. 1(1), 26–31 (2016). https://doi.org/10.1021/acssensors.5b00029
R. Potyrailo, R. Bonam, J. Hartley, T. Starkey, P. Vukusic et al., Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies. Nat. Commun. 6, 7959 (2015). https://doi.org/10.1038/ncomms8959
T. Wang, H. Ma, W. Jiang, H. Zhang, M. Zeng et al., Type discrimination and concentration prediction towards ethanol using a machine learning–enhanced gas sensor array with different morphology-tuning characteristics. Phys. Chem. Chem. Phys. 23, 23933–23944 (2021). https://doi.org/10.1039/D1CP02394B
D. Kwon, G. Jung, W. Shin, Y. Jeong, S. Hong et al., Low-power and reliable gas sensing system based on recurrent neural networks. Sens. Actuat. B-Chem. 340, 129258 (2021). https://doi.org/10.1016/j.snb.2020.129258
P. Evans, K. Persaud, A. McNeish, R. Sneath, N. Hobson et al., Evaluation of a radial basis function neural network for the determination of wheat quality from electronic nose data. Sens. Actuat. B-Chem. 414, 1049–1059 (2000). https://doi.org/10.1016/S0925-4005(00)00485-8
D. Kwon, G. Jung, W. Shin, Y. Jeong, S. Hong et al., Efficient fusion of spiking neural networks and FET-type gas sensors for a fast and reliable artificial olfactory system. Sens. Actuat. B-Chem. 345, 130419 (2021). https://doi.org/10.1016/j.snb.2021.130419
B. Wang, J.C. Cancilla, J. Torrecilla, H. Haick, Artificial sensing intelligence with silicon nanowires for ultraselective detection in the gas phase. Nano Lett. 14(2), 933–938 (2014). https://doi.org/10.1021/nl404335p
Z. Ballard, C. Brown, A.M. Madni, A. Ozcan, Machine learning and computation-enabled intelligent sensor design. Nat. Mach. Intell. 3, 556–565 (2021). https://doi.org/10.1038/s42256-021-00360-9
L. Zhang, F. Tian, C. Kadri, B. Xiao, H. Li et al., On-line sensor calibration transfer among electronic nose instruments for monitoring volatile organic chemicals in indoor air quality. Sens. Actuat. B-Chem. 160, 899–909 (2011). https://doi.org/10.1016/j.snb.2011.08.079
T. Itoh, Y. Koyama, W. Shin, T. Akamatsu, A. Tsuruta et al., Selective detection of target volatile organic compounds in contaminated air using sensor array with machine learning: aging notes and mold smells in simulated automobile interior contaminant gases. Sensors 20(9), 2687 (2020). https://doi.org/10.3390/s20092687
M. Tonezzer, Selective gas sensor based on one single SnO2 nanowire. Sens. Actuat. B-Chem. 288, 53–59 (2019). https://doi.org/10.1016/j.snb.2019.02.096
M. Tonezzer, J. Kim, J. Lee, S. Iannotta, S. Kim, Predictive gas sensor based on thermal fingerprints from Pt-SnO2 nanowires. Sens. Actuat. B-Chem. 281, 670–678 (2019). https://doi.org/10.1016/j.snb.2018.10.102
C. Jaeschke, J. Glöckler, O. Azizi, O. Gonzalez, M. Padilla et al., An innovative modular eNose system based on a unique combination of analog and digital metal oxide sensors. ACS Sens. 4(9), 2277–2281 (2019). https://doi.org/10.1021/acssensors.9b01244
C. Park, V. Schroeder, B. Kim, T. Swager, Ionic liquid-Carbon nanotube sensor arrays for human breath related volatile organic compounds. ACS Sens. 3(11), 2432–2437 (2018). https://doi.org/10.1021/acssensors.8b00987
M. Kang, I. Cho, J. Park, J. Jeong, K. Lee et al., High accuracy real-time multi-gas identification by a batch-uniform gas sensor array and deep learning algorithm. ACS Sens. 7(2), 430–440 (2022). https://doi.org/10.1021/acssensors.1c01204
G. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada et al., Diagnosing lung cancer in exhaled breath using gold nanops. Nat. Nanotechnol. 4, 669–673 (2009). https://doi.org/10.1038/nnano.2009.235
N. Shehada, G. Brönstrup, K. Funka, S. Christiansen, M. Leja et al., Ultrasensitive silicon nanowire for real-world gas sensing: noninvasive diagnosis of cancer from breath volatolome. Nano Lett. 15(2), 1288–1295 (2015). https://doi.org/10.1021/nl504482t
Z. Li, Z. Wang, J. Khan, M. LaGasse, K. Suslick, Ultrasensitive monitoring of museum airborne pollutants using a silver nanop sensor array. ACS Sens. 5(9), 2783–2791 (2020). https://doi.org/10.1021/acssensors.0c00583
Z. Li, J. Yu, D. Dong, G. Yao, G. Wei et al., E-nose based on a high-integrated and low-power metal oxide gas sensor array. Sens. Actuat. B-Chem. 380, 133289 (2023). https://doi.org/10.1016/j.snb.2023.133289
B. Tozlu, C. Şimşek, O. Aydemir, Y. Karavelioglu, A high performance electronic nose system for the recognition of myocardial infarction and coronary artery diseases. Biomed. Signal Process. 64, 102247 (2021). https://doi.org/10.1016/j.bspc.2020.102247
Y. Liu, S. Jia, C. Yiu, W. Park, Z. Chen et al., Intelligent wearable olfactory interface for latency-free mixed reality and fast olfactory enhancement. Nat. Commun. 15, 4474 (2024). https://doi.org/10.1038/s41467-024-48884-z
S. Kim, S. Choi, J. Jang, H. Cho, I. Kim, Innovative nanosensor for disease diagnosis. Acc. Chem. Res. 50(7), 1587–1596 (2017). https://doi.org/10.1021/acs.accounts.7b00047
T. Saidi, O. Zaim, M. Moufid, N. Bari, R. Ionescu et al., Exhaled breath analysis using electronic nose and gas chromatography–mass spectrometry for non-invasive diagnosis of chronic kidney disease, diabetes mellitus and healthy subjects. Sens. Actuat. B-Chem. 257, 178–188 (2018). https://doi.org/10.1016/j.snb.2017.10.178
S. Dragonieri, V. Quaranta, P. Carratu, T. Ranieri, O. Resta, Exhaled breath profiling by electronic nose enabled discrimination of allergic rhinitis and extrinsic asthma. Biomarkers 24, 70–75 (2019). https://doi.org/10.1080/1354750X.2018.1508307
C. Machungo, A. Berna, D. McNevin, R. Wang, J. Harvey et al., Evaluation of performance of metal oxide electronic nose for detection of aflatoxin in artificially and naturally contaminated maize. Sens. Actuat. B-Chem. 381, 133446 (2023). https://doi.org/10.1016/j.snb.2023.133446
Y. Deng, M. Zhao, Y. Ma, S. Liu, M. Liu et al., A flexible and biomimetic olfactory synapse with gasotransmitter-mediated pasticity. Adv. Funct. Mater. 33(18), 2214139 (2023). https://doi.org/10.1002/adfm.202214139
V. Schroeder, E.D. Evans, Y.C. Wu, C.C. Voll, B.R. McDonald et al., Chemiresistive sensor array and machine learning classification of food. ACS Sens. 4(8), 2101–2108 (2019). https://doi.org/10.1021/acssensors.9b00825
X. Jia, P. Ma, K. Tarwa, Y. Mao, Q. Wang, Development of a novel colorimetric sensor array based on oxidized chitin nanocrystals and deep learning for monitoring beef freshness. Sens. Actuat. B-Chem. 390, 133931 (2023). https://doi.org/10.1016/j.snb.2023.133931
M. Wiederoder, E. Nallon, M. Weiss, S. McGraw, V. Schnee et al., Graphene nanoplatelet-polymer chemiresistive sensor arrays for the detection and discrimination of chemical warfare agent simulants. ACS Sens. 2(11), 1669–1678 (2017). https://doi.org/10.1021/acssensors.7b00550
Y. Li, S. Guo, B. Wang, J. Sun, L. Zhao et al., Machine learning-assisted wearable sensor array for comprehensive ammonia and nitrogen dioxide detection in wide relative humidity range. InfoMat 6(6), e12544 (2024). https://doi.org/10.1002/inf2.12544
K. Jin, D. Moon, Y. Chen, J. Park, Comprehensive qualitative and quantitative colorimetric sensing of volatile organic compounds using monolayered metal-organic framework films. Adv. Mater. 36(8), 2309570 (2024). https://doi.org/10.1002/adma.202309570
C. Wang, Z. Chen, C. Chan, Z. Wan, W. Ye et al., Biomimetic olfactory chips based on large-scale monolithically integrated nanotube sensor arrays. Nat. Electron. 7, 157–167 (2024). https://doi.org/10.1038/s41928-023-01107-7
D. Diamond, S. Coyle, S. Scarmagnani, J. Hayes, Wireless sensor networks and chemo-/biosensing. Chem. Rev. 108(2), 652–679 (2008). https://doi.org/10.1021/cr0681187
B. Wang, D. Yang, Z. Chang, R. Zhang, J. Dai et al., Wearable bioelectronic masks for wireless detection of respiratory infectious diseases by gaseous media. Matter 5(12), 4347–4362 (2022). https://doi.org/10.1016/j.matt.2022.08.020
J. Zhu, M. Cho, Y. Li, T. He, J. Ahn et al., Machine learning-enabled textile-based graphene gas sensing with energy harvesting-assisted IoT application. Nano Energy 86, 106035 (2021). https://doi.org/10.1016/j.nanoen.2021.106035