Metal–Organic Framework-Based Sensors for Environmental Contaminant Sensing
Corresponding Author: Shun Mao
Nano-Micro Letters,
Vol. 10 No. 4 (2018), Article Number: 64
Abstract
Increasing demand for timely and accurate environmental pollution monitoring and control requires new sensing techniques with outstanding performance, i.e., high sensitivity, high selectivity, and reliability. Metal–organic frameworks (MOFs), also known as porous coordination polymers, are a fascinating class of highly ordered crystalline coordination polymers formed by the coordination of metal ions/clusters and organic bridging linkers/ligands. Owing to their unique structures and properties, i.e., high surface area, tailorable pore size, high density of active sites, and high catalytic activity, various MOF-based sensing platforms have been reported for environmental contaminant detection including anions, heavy metal ions, organic compounds, and gases. In this review, recent progress in MOF-based environmental sensors is introduced with a focus on optical, electrochemical, and field-effect transistor sensors. The sensors have shown unique and promising performance in water and gas contaminant sensing. Moreover, by incorporation with other functional materials, MOF-based composites can greatly improve the sensor performance. The current limitations and future directions of MOF-based sensors are also discussed.
Highlights:
1 Representative metal–organic framework (MOF)-based sensing platforms in environmental contaminant detection are introduced.
2 The unique structures and properties of MOFs lead to high sensing capabilities in environmental contaminant detection.
3 By combining with functional materials, MOF-based composites can improve sensor performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W.P. Lustig, S. Mukherjee, N.D. Rudd, A.V. Desai, J. Li, S.K. Ghosh, Metal–organic frameworks: functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 46(11), 3242–3285 (2017). https://doi.org/10.1039/c6cs00930a
- M. Petrovic, M. Farre, M.L. de Alda, S. Perez, C. Postigo, M. Kock, J. Radjenovic, M. Gros, D. Barcelo, Recent trends in the liquid chromatography–mass spectrometry analysis of organic contaminants in environmental samples. J. Chromatogr. A 1217(25), 4004–4017 (2010). https://doi.org/10.1016/j.chroma.2010.02.059
- A.L.N. van Nuijs, I. Tarcomnicu, A. Covaci, Application of hydrophilic interaction chromatography for the analysis of polar contaminants in food and environmental samples. J. Chromatogr. A 1218(35), 5964–5974 (2011). https://doi.org/10.1016/j.chroma.2011.01.075
- P. Falcaro, R. Ricco, A. Yazdi, I. Imaz, S. Furukawa, D. Maspoch, R. Ameloot, J.D. Evans, C.J. Doonan, Application of metal and metal oxide nanoparticles@MOFs. Coord. Chem. Rev. 307, 237–254 (2016). https://doi.org/10.1016/j.ccr.2015.08.002
- J. Wang, J.T. Jiu, T. Araki, M. Nogi, T. Sugahara, S. Nagao, H. Koga, P. He, K. Suganuma, Silver nanowire electrodes: conductivity improvement without post-treatment and application in capacitive pressure sensors. Nano-Micro Lett. 7(1), 51–58 (2015). https://doi.org/10.1007/s40820-014-0018-0
- Z. Yang, Z.H. Li, M.H. Xu, Y.J. Ma, J. Zhang, Y.J. Su, F. Gao, H. Wei, L.Y. Zhang, Controllable synthesis of fluorescent carbon dots and their detection application as nanoprobes. Nano-Micro Lett. 5(4), 247–259 (2013). https://doi.org/10.5101/nml.v5i4.p247-259
- O. Moldovan, B. Iniguez, M.J. Deen, L.F. Marsal, Graphene electronic sensors—review of recent developments and future challenges. IET Circuits Devices Syst. 9(6), 446–453 (2015). https://doi.org/10.1049/iet-cds.2015.0259
- X. Chen, G. Zhou, S. Mao, J. Chen, Rapid detection of nutrients with electronic sensors: a review. Environ.-Sci. Nano 5(4), 837–862 (2018). https://doi.org/10.1039/c7en01160a
- Y. Fang, E. Wang, Electrochemical biosensors on platforms of graphene. Chem. Commun. 49(83), 9526–9539 (2013). https://doi.org/10.1039/c3cc44735a
- S. Mao, Z.H. Wen, S.Q. Ci, X.R. Guo, K. Ostrikov, J.H. Chen, Perpendicularly oriented MoSe2/graphene nanosheets as advanced electrocatalysts for hydrogen evolution. Small 11(4), 414–419 (2015). https://doi.org/10.1002/smll.201401598
- R. Malhotra, V. Patel, J.P. Vaque, J.S. Gutkind, J.F. Rusling, Ultrasensitive electrochemical immunosensor for oral cancer biomarker IL-6 using carbon nanotube forest electrodes and multilabel amplification. Anal. Chem. 82(8), 3118–3123 (2010). https://doi.org/10.1021/ac902802b
- Z. Bo, M. Yuan, S. Mao, X. Chen, J.H. Yan, K.F. Cen, Decoration of vertical graphene with tin dioxide nanoparticles for highly sensitive room temperature formaldehyde sensing. Sens. Actuators B-Chem. 256, 1011–1020 (2018). https://doi.org/10.1016/j.snb.2017.10.043
- S. Mao, H.H. Pu, J.B. Chang, X.Y. Sui, G.H. Zhou, R. Ren, Y.T. Chen, J.H. Chen, Ultrasensitive detection of orthophosphate ions with reduced graphene oxide/ferritin field-effect transistor sensors. Environ.-Sci. Nano 4(4), 856–863 (2017). https://doi.org/10.1039/c6en00661b
- X. Fang, H.X. Ren, H. Zhao, Z.X. Li, Ultrasensitive visual and colorimetric determination of dopamine based on the prevention of etching of silver nanoprisms by chloride. Microchim. Acta 184(2), 415–421 (2017). https://doi.org/10.1007/s00604-016-2024-z
- Y. Zhou, S.X. Wang, K. Zhang, X.Y. Jiang, Visual detection of copper(II) by azide- and alkyne-functionalized gold nanoparticles using click chemistry. Angew. Chem. Int. Ed. 47(39), 7454–7456 (2008). https://doi.org/10.1002/anie.200802317
- S.K. Arya, S. Saha, J.E. Ramirez-Vick, V. Gupta, S. Bhansali, S.P. Singh, Recent advances in ZnO nanostructures and thin films for biosensor applications: review. Anal. Chim. Acta 737, 1–21 (2012). https://doi.org/10.1016/j.aca.2012.05.048
- X. Huo, P. Liu, J. Zhu, X. Liu, H. Ju, Electrochemical immunosensor constructed using TiO2 nanotubes as immobilization scaffold and tracing tag. Biosens. Bioelectron. 85, 698–706 (2016). https://doi.org/10.1016/j.bios.2016.05.053
- S.L. Liu, J.X. Zhang, W.W. Tu, J.C. Bao, Z.H. Dai, Using ruthenium polypyridyl functionalized ZnO mesocrystals and gold nanoparticle dotted graphene composite for biological recognition and electrochemiluminescence biosensing. Nanoscale 6(4), 2419–2425 (2014). https://doi.org/10.1039/c3nr05944h
- W.H. Zhang, W. Ma, Y.T. Long, Redox-mediated indirect fluorescence immunoassay for the detection of disease biomarkers using dopamine-functionalized quantum dots. Anal. Chem. 88(10), 5131–5136 (2016). https://doi.org/10.1021/acs.analchem.6b00048
- G.Q. Wang, Z.P. Chen, L.X. Chen, Mesoporous silica-coated gold nanorods: towards sensitive colorimetric sensing of ascorbic acid via target-induced silver overcoating. Nanoscale 3(4), 1756–1759 (2011). https://doi.org/10.1039/c0nr00863j
- J.H. Cha, J.I. Han, Y. Choi, D.S. Yoon, K.W. Oh, G. Lim, DNA hybridization electrochemical sensor using conducting polymer. Biosens. Bioelectron. 18(10), 1241–1247 (2003). https://doi.org/10.1016/S0956-5663(03)00088-5
- Y. Xu, J. Meng, L.X. Meng, Y. Dong, Y.X. Cheng, C.J. Zhu, A highly selective fluorescence-based polymer sensor incorporating an (r, r)-salen moiety for Zn2+ detection. Chem. Eur. J. 16(43), 12898–12903 (2010). https://doi.org/10.1002/chem.201001198
- C. Janiak, J.K. Vieth, MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs). New J. Chem. 34(11), 2366–2388 (2010). https://doi.org/10.1039/c0nj00275e
- O.M. Yaghi, G.M. Li, H.L. Li, Selective binding and removal of guests in a microporous metal–organic framework. Nature 378(6558), 703–706 (1995). https://doi.org/10.1038/378703a0
- H. Li, M. Eddaoudi, M. O’Keeffe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402(6759), 276–279 (1999). https://doi.org/10.1038/46248
- S.Z. Li, F.W. Huo, Metal–organic framework composites: from fundamentals to applications. Nanoscale 7(17), 7482–7501 (2015). https://doi.org/10.1039/c5nr00518c
- O.K. Farha, I. Eryazici, N.C. Jeong, B.G. Hauser, C.E. Wilmer et al., Metal–organic framework materials with ultrahigh surface areas: is the sky the limit? J. Am. Chem. Soc. 134(36), 15016–15021 (2012). https://doi.org/10.1021/ja3055639
- Y. Peng, V. Krungleviciute, I. Eryazici, J.T. Hupp, O.K. Farha, T. Yildirim, Methane storage in metal–organic frameworks: current records, surprise findings, and challenges. J. Am. Chem. Soc. 135(32), 11887–11894 (2013). https://doi.org/10.1021/ja4045289
- T.M. McDonald, J.A. Mason, X.Q. Kong, E.D. Bloch, D. Gygi et al., Cooperative insertion of CO2 in diamine-appended metal–organic frameworks. Nature 519(7543), 303–308 (2015). https://doi.org/10.1038/nature14327
- P. Horcajada, C. Serre, M. Vallet-Regi, M. Sebban, F. Taulelle, G. Ferey, Metal–organic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed. 45(36), 5974–5978 (2006). https://doi.org/10.1002/anie.200601878
- A.R. Chowdhuri, D. Laha, S. Chandra, P. Karmakar, S.K. Sahu, Synthesis of multifunctional upconversion NMOFs for targeted antitumor drug delivery and imaging in triple negative breast cancer cells. Chem. Eng. J. 319, 200–211 (2017). https://doi.org/10.1016/j.cej.2017.03.008
- X.L. Cui, K.J. Chen, H.B. Xing, Q.W. Yang, R. Krishna et al., Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science 353(6295), 141–144 (2016). https://doi.org/10.1126/science.aaf2458
- L. Cui, J. Wu, J. Li, H. Ju, Electrochemical sensor for lead cation sensitized with a DNA functionalized porphyrinic metal–organic framework. Anal. Chem. 87(20), 10635–10641 (2015). https://doi.org/10.1021/acs.analchem.5b03287
- Z.C. Hu, B.J. Deibert, J. Li, Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 43(16), 5815–5840 (2014). https://doi.org/10.1039/c4cs00010b
- X. Lian, B. Yan, Phosphonate MOFs composite as off-on fluorescent sensor for detecting purine metabolite uric acid and diagnosing hyperuricuria. Inorg. Chem. 56(12), 6802–6808 (2017). https://doi.org/10.1021/acs.inorgchem.6b03009
- L. Meng, Q.G. Cheng, C. Kim, W.Y. Gao, L. Wojtas, Y.S. Chen, M.J. Zaworotko, X.P. Zhang, S.Q. Ma, Crystal engineering of a microporous, catalytically active fcu topology MOF using a custom-designed metalloporphyrin linker. Angew. Chem. Int. Ed. 51(40), 10082–10085 (2012). https://doi.org/10.1002/anie.201205603
- F.X.L.I. Xamena, O. Casanova, R.G. Tailleur, H. Garcia, A. Corma, Metal organic frameworks (MOFs) as catalysts: a combination of Cu2+ and Co2+ MOFs as an efficient catalyst for tetralin oxidation. J. Catal. 255(2), 220–227 (2008). https://doi.org/10.1016/j.jcat.2008.02.011
- Y. Chen, J. Li, G. Yue, X. Luo, Novel Ag@Nitrogen-doped porous carbon composite with high electrochemical performance as anode materials for lithium-ion batteries. Nano-Micro Lett. 9, 32 (2017). https://doi.org/10.1007/s40820-017-0131-y
- K.M. Park, H. Kim, J. Murray, J. Koo, K. Kim, A facile preparation method for nanosized MOFs as a multifunctional material for cellular imaging and drug delivery. Supramol. Chem. 29(6), 441–445 (2017). https://doi.org/10.1080/10610278.2016.1266359
- D.M. Liu, K.D. Lu, C. Poon, W.B. Lin, Metal–organic frameworks as sensory materials and imaging agents. Inorg. Chem. 53(4), 1916–1924 (2014). https://doi.org/10.1021/ic402194c
- A. Chidambaram, K.C. Stylianou, Electronic metal–organic framework sensors. Inorg. Chem. Front. 5, 979–998 (2018). https://doi.org/10.1039/c7qi00815e
- V. Stavila, A.A. Talin, M.D. Allendorf, MOF-based electronic and opto-electronic devices. Chem. Soc. Rev. 43(16), 5994–6010 (2014). https://doi.org/10.1039/c4cs00096j
- V. Kumar, K.H. Kim, P. Kumar, B.H. Jeon, J.C. Kim, Functional hybrid nanostructure materials: advanced strategies for sensing applications toward volatile organic compounds. Coord. Chem. Rev. 342, 80–105 (2017). https://doi.org/10.1016/j.ccr.2017.04.006
- Y.J. Cui, Y.F. Yue, G.D. Qian, B.L. Chen, Luminescent functional metal–organic frameworks. Chem. Rev. 112(2), 1126–1162 (2012). https://doi.org/10.1021/cr200101d
- X. Li, L. Yang, L. Zhao, X.L. Wang, K.Z. Shao, Z.M. Su, Luminescent metal–organic frameworks with anthracene chromophores: small-molecule sensing and highly selective sensing for nitro explosives. Cryst. Growth Des. 16(8), 4374–4382 (2016). https://doi.org/10.1021/acs.cgd.6b00482
- M. Zhang, G.X. Feng, Z.G. Song, Y.P. Zhou, H.Y. Chao et al., Two-dimensional metal–organic framework with wide channels and responsive turn-on fluorescence for the chemical sensing of volatile organic compounds. J. Am. Chem. Soc. 136(20), 7241–7244 (2014). https://doi.org/10.1021/ja502643p
- S.Y. Zhang, W. Shi, P. Cheng, M.J. Zaworotko, A mixed-crystal lanthanide zeolite-like metal–organic framework as a fluorescent indicator for lysophosphatidic acid, a cancer biomarker. J. Am. Chem. Soc. 137(38), 12203–12206 (2015). https://doi.org/10.1021/jacs.5b06929
- J.M. Zhou, H.H. Li, H. Zhang, H.M. Li, W. Shi, P. Cheng, A bimetallic lanthanide metal–organic material as a self-calibrating color-gradient luminescent sensor. Adv. Mater. 27(44), 7072–7077 (2015). https://doi.org/10.1002/adma.201502760
- H.H. Li, W. Shi, K.N. Zhao, Z. Niu, H.M. Li, P. Cheng, Highly selective sorption and luminescent sensing of small molecules demonstrated in a multifunctional lanthanide microporous metalorganic framework containing 1D honeycomb-type channels. Chem.-Eur. J. 19(10), 3358–3365 (2013). https://doi.org/10.1002/chem.201203487
- B. Zhao, X.Y. Chen, P. Cheng, D.Z. Liao, S.P. Yan, Z.H. Jiang, Coordination polymers containing 1D channels as selective luminescent probes. J. Am. Chem. Soc. 126(47), 15394–15395 (2004). https://doi.org/10.1021/ja047141b
- B. Zhao, P. Cheng, X.Y. Chen, C. Cheng, W. Shi, D.Z. Liao, S.P. Yan, Z.H. Jiang, Design and synthesis of 3d–4f metal-based zeolite-type materials with a 3D nanotubular structure encapsulated “water” pipe. J. Am. Chem. Soc. 126(10), 3012–3013 (2004). https://doi.org/10.1021/ja038784e
- S.Y. Wu, Y.N. Lin, J.W. Liu, W. Shi, G.M. Yang, P. Cheng, Rapid detection of the biomarkers for carcinoid tumors by a water stable luminescent lanthanide metal–organic framework sensor. Adv. Funct. Mater. 28(17), 1707169 (2018). https://doi.org/10.1002/adfm.201707169
- A.V. Kolliopoulos, D.K. Kampouris, C.E. Banks, Rapid and portable electrochemical quantification of phosphorus. Anal. Chem. 87(8), 4269–4274 (2015). https://doi.org/10.1021/ac504602a
- H. Xu, Y.Q. Xiao, X.T. Rao, Z.S. Dou, W.F. Li, Y.J. Cui, Z.Y. Wang, G.D. Qian, A metal–organic framework for selectively sensing of PO4 3− anion in aqueous solution. J. Alloys Compd. 509(5), 2552–2554 (2011). https://doi.org/10.1016/j.jallcom.2010.11.087
- D. Zhao, X.Y. Wan, H.J. Song, L.Y. Hao, Y.Y. Su, Y. Lv, Metal–organic frameworks (MOFs) combined with ZnO quantum dots as a fluorescent sensing platform for phosphate. Sens. Actuators B-Chem. 197, 50–57 (2014). https://doi.org/10.1016/j.snb.2014.02.070
- H. Xu, C.S. Cao, B. Zhao, A water-stable lanthanide-organic framework as a recyclable luminescent probe for detecting pollutant phosphorus anions. Chem. Commun. 51(51), 10280–10283 (2015). https://doi.org/10.1039/c5cc02596f
- T. Lu, L.C. Zhang, M.X. Sun, D.Y. Deng, Y.Y. Su, Y. Lv, Amino-functionalized metal–organic frameworks nanoplates-based energy transfer probe for highly selective fluorescence detection of free chlorine. Anal. Chem. 88(6), 3413–3420 (2016). https://doi.org/10.1021/acs.analchem.6b00253
- A. Karmakar, N. Kumar, P. Samanta, A.V. Desai, S.K. Ghosh, A post-synthetically modified MOF for selective and sensitive aqueous-phase detection of highly toxic cyanide ions. Chem. Eur. J. 22(3), 864–868 (2016). https://doi.org/10.1002/chem.201503323
- X.M. Lin, G.M. Gao, L.Y. Zheng, Y.W. Chi, G.N. Chen, Encapsulation of strongly fluorescent carbon quantum dots in metal–organic frameworks for enhancing chemical sensing. Anal. Chem. 86(2), 1223–1228 (2014). https://doi.org/10.1021/ac403536a
- X. Lin, F. Luo, L. Zheng, G. Gao, Y. Chi, Fast, sensitive, and selective ion-triggered disassembly and release based on tris(bipyridine)ruthenium(II)-functionalized metal–organic frameworks. Anal. Chem. 87(9), 4864–4870 (2015). https://doi.org/10.1021/acs.analchem.5b00391
- Q. Li, C.J. Wang, H.L. Tan, G.E. Tang, J. Gao, C.H. Chen, A turn on fluorescent sensor based on lanthanide coordination polymer nanoparticles for the detection of mercury(II) in biological fluids. RSC Adv. 6(22), 17811–17817 (2016). https://doi.org/10.1039/c5ra26849d
- J. Kesselmeier, M. Staudt, Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J. Atmos. Chem. 33(1), 23–88 (1999). https://doi.org/10.1023/A:1006127516791
- Y. Zhou, B. Yan, A responsive MOF nanocomposite for decoding volatile organic compounds. Chem. Commun. 52(11), 2265–2268 (2016). https://doi.org/10.1039/c5cc09029f
- MathSciNet
- A.A. Tehrani, L. Esrafili, S. Abedi, A. Morsali, L. Carlucci, D.M. Proserpio, J. Wang, P.C. Junk, T.F. Liu, Urea metal–organic frameworks for nitro-substituted compounds sensing. Inorg. Chem. 56(3), 1446–1454 (2017). https://doi.org/10.1021/acs.inorgchem.6b02518
- J.Z. Wei, X.L. Wang, X.J. Sun, Y. Hou, X. Zhang, D.D. Yang, H. Dong, F.M. Zhang, Rapid and large-scale synthesis of IRMOF-3 by electrochemistry method with enhanced fluorescence detection performance for TNP. Inorg. Chem. 57(7), 3818–3824 (2018). https://doi.org/10.1021/acs.inorgchem.7b03174
- Y. Zhou, Q. Yang, D. Zhang, N. Gan, Q. Li, J. Cuan, Detection and removal of antibiotic tetracycline in water with a highly stable luminescent MOF. Sens. Actuators B-Chem. 262, 137–143 (2018). https://doi.org/10.1016/j.snb.2018.01.218
- X. Chen, Y. Wang, Y. Zhang, Z. Chen, Y. Liu, Z. Li, J. Li, Sensitive electrochemical aptamer biosensor for dynamic cell surface N-glycan evaluation featuring multivalent recognition and signal amplification on a dendrimer-graphene electrode interface. Anal. Chem. 86(9), 4278–4286 (2014). https://doi.org/10.1021/ac404070m
- X. Fang, J.F. Liu, J. Wang, H. Zhao, H.X. Ren, Z.X. Li, Dual signal amplification strategy of Au nanopaticles/ZnO nanorods hybridized reduced graphene nanosheet and multienzyme functionalized Au@ZnO composites for ultrasensitive electrochemical detection of tumor biomarker. Biosens. Bioelectron. 97, 218–225 (2017). https://doi.org/10.1016/j.bios.2017.05.055
- Y. Wang, C. Hou, Y. Zhang, F. He, M.Z. Liu, X.L. Li, Preparation of graphene nano-sheet bonded PDA/MOF microcapsules with immobilized glucose oxidase as a mimetic multi-enzyme system for electrochemical sensing of glucose. J. Mater. Chem. B 4(21), 3695–3702 (2016). https://doi.org/10.1039/c6tb00276e
- C. Zhang, X.R. Wang, M. Hou, X.Y. Li, X.L. Wu, J. Ge, Immobilization on metal–organic framework engenders high sensitivity for enzymatic electrochemical detection. ACS Appl. Mater. Interfaces 9(16), 13831–13836 (2017). https://doi.org/10.1021/acsami.7b02803
- X.Q. Wu, J.G. Ma, H. Li, D.M. Chen, W. Gu, G.M. Yang, P. Cheng, Metal–organic framework biosensor with high stability and selectivity in a bio-mimic environment. Chem. Commun. 51(44), 9161–9164 (2015). https://doi.org/10.1039/c5cc02113h
- D. Sheberla, L. Sun, M.A. Blood-Forsythe, S. Er, C.R. Wade, C.K. Brozek, A. Aspuru-Guzik, M. Dinca, High electrical conductivity in Ni(3)(2,3,6,7,10,11-hexaiminotriphenylene)(2), a semiconducting metal–organic graphene analogue. J. Am. Chem. Soc. 136(25), 8859–8862 (2014). https://doi.org/10.1021/ja502765n
- M.G. Campbell, D. Sheberla, S.F. Liu, T.M. Swager, M. Dinca, Cu(3)(hexaiminotriphenylene)(2): an electrically conductive 2D metal–organic framework for chemiresistive sensing. Angew. Chem. Int. Ed. 54(14), 4349–4352 (2015). https://doi.org/10.1002/anie.201411854
- X. Wang, Q.X. Wang, Q.H. Wang, F. Gao, F. Gao, Y.Z. Yang, H.X. Guo, Highly dispersible and stable copper terephthalate metal–organic framework-graphene oxide nanocomposite for an electrochemical sensing application. ACS Appl. Mater. Interfaces 6(14), 11573–11580 (2014). https://doi.org/10.1021/am5019918
- Z.D. Xu, L.Z. Yang, C.L. Xu, Pt@UiO-66 heterostructures for highly selective detection of hydrogen peroxide with an extended linear range. Anal. Chem. 87(6), 3438–3444 (2015). https://doi.org/10.1021/ac5047278
- Y.J. Yu, C. Yu, Y.Z. Niu, J. Chen, Y.L. Zhao, Y.C. Zhang, R.F. Gao, J.L. He, Target triggered cleavage effect of DNAzyme: relying on Pd–Pt alloys functionalized Fe-MOFs for amplified detection of Pb2+. Biosens. Bioelectron. 101, 297–303 (2018). https://doi.org/10.1016/j.bios.2017.10.006
- H.X. Guo, D.F. Wang, J.H. Chen, W. Weng, M.Q. Huang, Z.S. Zheng, Simple fabrication of flake-like NH2-MIL-53(Cr) and its application as an electrochemical sensor for the detection of Pb2+. Chem. Eng. J. 289, 479–485 (2016). https://doi.org/10.1016/j.cej.2015.12.099
- M. Saraf, R. Rajak, S.M. Mobin, A fascinating multitasking Cu-MOF/rGO hybrid for high performance supercapacitors and highly sensitive and selective electrochemical nitrite sensors. J. Mater. Chem. A 4(42), 16432–16445 (2016). https://doi.org/10.1039/c6ta06470a
- D.A. Perry, T.M. Razer, K.M. Primm, T. Chen, J.B. Shamburger et al., Surface-enhanced infrared absorption and density functional theory study of dihydroxybenzene isomer adsorption on silver nanostructures. J. Phys. Chem. C 117(16), 8170–8179 (2013). https://doi.org/10.1021/jp3121462
- Y. Yang, Q. Wang, W. Qiu, H. Guo, F. Gao, Covalent immobilization of Cu3(btc)2 at chitosan–electroreduced graphene oxide hybrid film and its application for simultaneous detection of dihydroxybenzene isomers. J. Phys. Chem. C 120(18), 9794–9803 (2016). https://doi.org/10.1021/acs.jpcc.6b01574
- X. Zhou, X. Yan, Z. Hong, X. Zheng, F. Wang, Design of magnetic core–shell Ni@graphene composites as a novel electrochemical sensing platform. Sens. Actuators B-Chem. 255, 2959–2962 (2018). https://doi.org/10.1016/j.snb.2017.09.117
- J. Li, J. Xia, F. Zhang, Z. Wang, Q. Liu, An electrochemical sensor based on copper-based metal–organic frameworks-graphene composites for determination of dihydroxybenzene isomers in water. Talanta 181, 80–86 (2018). https://doi.org/10.1016/j.talanta.2018.01.002
- S.S. Huang, Y.X. Qu, R.N. Li, J. Shen, L.W. Zhu, Biosensor based on horseradish peroxidase modified carbon nanotubes for determination of 2,4-dichlorophenol. Microchim. Acta 162(1–2), 261–268 (2008). https://doi.org/10.1007/s00604-007-0872-2
- S. Dong, G. Suo, N. Li, Z. Chen, L. Peng, Y. Fu, Q. Yang, T. Huang, A simple strategy to fabricate high sensitive 2,4-dichlorophenol electrochemical sensor based on metal organic framework Cu3(BTC)2. Sens. Actuators B-Chem. 222, 972–979 (2016). https://doi.org/10.1016/j.snb.2015.09.035
- B.A. Kong, A.W. Zhu, Y.P. Luo, Y. Tian, Y.Y. Yu, G.Y. Shi, Sensitive and selective colorimetric visualization of cerebral dopamine based on double molecular recognition. Angew. Chem. Int. Ed. 50(8), 1837–1840 (2011). https://doi.org/10.1002/anie.201007071
- L. Chen, X. Fu, W. Lu, L. Chen, Highly sensitive and selective colorimetric sensing of Hg2+ based on the morphology transition of silver nanoprisms. ACS Appl. Mater. Interfaces. 5(2), 284–290 (2013). https://doi.org/10.1021/am3020857
- Z. Wang, J. Yang, Y. Li, Q. Zhuang, J. Gu, Zr-based MOFs integrated with chromophoric ruthenium complex for specific and reversible Hg2+ sensing. Dalton Trans. 47(16), 5570–5574 (2018). https://doi.org/10.1039/c8dt00569a
- S. Yang, D. Slotcavage, J.D. Mai, F. Guo, S. Li, Y. Zhao, Y. Lei, C.E. Cameron, T.J. Huang, Electrochemically created highly surface roughened Ag nanoplate arrays for SERS biosensing applications. J. Mater. Chem. C 2(39), 8350–8356 (2014). https://doi.org/10.1039/C4TC01276C
- Y. Hu, J. Liao, D. Wang, G. Li, Fabrication of gold nanoparticle-embedded metal–organic framework for highly sensitive surface-enhanced Raman scattering detection. Anal. Chem. 86(8), 3955–3963 (2014). https://doi.org/10.1021/ac5002355
- Y. Lv, H. Yu, P. Xu, J. Xu, X. Li, Metal organic framework of MOF-5 with hierarchical nanopores as micro-gravimetric sensing material for aniline detection. Sens. Actuators B-Chem. 256, 639–647 (2018). https://doi.org/10.1016/j.snb.2017.09.195
- H. Xia, J. Zhang, Z. Yang, S. Guo, S. Guo, Q. Xu, 2D MOF Nanoflake-assembled spherical microstructures for enhanced supercapacitor and electrocatalysis performances. Nano-Micro Lett. 9, 43 (2017). https://doi.org/10.1007/s40820-017-0144-6
- B. Li, H.M. Wen, W. Zhou, B. Chen, Porous metal–organic frameworks for gas storage and separation: what, how, and why? J. Phys. Chem. Lett. 5(20), 3468–3479 (2014). https://doi.org/10.1021/jz501586e
- C.Y. Sun, X.L. Wang, X. Zhang, C. Qin, P. Li et al., Efficient and tunable white-light emission of metal–organic frameworks by iridium-complex encapsulation. Nat. Commun. 4, 2717 (2013). https://doi.org/10.1038/ncomms3717
- H.C. Zhou, J.R. Long, O.M. Yaghi, Introduction to metal–organic frameworks. Chem. Rev. 112(2), 673–674 (2012). https://doi.org/10.1021/cr300014x
- Y. Zhang, X. Bai, X. Wang, K.K. Shiu, Y. Zhu, H. Jiang, Highly sensitive graphene-Pt nanocomposites amperometric biosensor and its application in living cell H2O2 detection. Anal. Chem. 86(19), 9459–9465 (2014). https://doi.org/10.1021/ac5009699
- L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp, Metal–organic framework materials as chemical sensors. Chem. Rev. 112(2), 1105–1125 (2012). https://doi.org/10.1021/cr200324t
- S. Mao, J. Chang, H. Pu, G. Lu, Q. He, H. Zhang, J. Chen, Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing. Chem. Soc. Rev. 46(22), 6872–6904 (2017). https://doi.org/10.1039/c6cs00827e
- S. Mao, G. Lu, J. Chen, Nanocarbon-based gas sensors: progress and challenges. J. Mater. Chem. A 2(16), 5573–5579 (2014). https://doi.org/10.1039/c3ta13823b
- T. George, J.H. Lee, M.S. Islam, R.T.J. Houk, A. Robinson et al., Investigation of microcantilever array with ordered nanoporous coatings for selective chemical detection. Proc. SPIE 7679, 767927–797929 (2010). https://doi.org/10.1117/12.850217
- N. Klein, C. Herzog, M. Sabo, I. Senkovska, J. Getzschmann, S. Paasch, M.R. Lohe, E. Brunner, S. Kaskel, Monitoring adsorption-induced switching by (129)Xe NMR spectroscopy in a new metal–organic framework Ni(2)(2,6-ndc)(2)(dabco). Phys. Chem. Chem. Phys. 12(37), 11778–11784 (2010). https://doi.org/10.1039/c003835k
- A. Venkatasubramanian, J.-H. Lee, V. Stavila, A. Robinson, M.D. Allendorf, P.J. Hesketh, MOF@MEMS: design optimization for high sensitivity chemical detection. Sens. Actuators B-Chem. 168, 256–262 (2012). https://doi.org/10.1016/j.snb.2012.04.019
- M.G. Campbell, S.F. Liu, T.M. Swager, M. Dinca, Chemiresistive sensor arrays from conductive 2D metal–organic frameworks. J. Am. Chem. Soc. 137(43), 13780–13783 (2015). https://doi.org/10.1021/jacs.5b09600
- W.T. Koo, S.J. Choi, J.S. Jang, I.D. Kim, Metal–organic framework templated synthesis of ultrasmall catalyst loaded ZnO/ZnCo2O4 hollow spheres for enhanced gas sensing properties. Sci. Rep. 7, 45074 (2017). https://doi.org/10.1038/srep45074
- D. Wang, Z. Li, J. Zhou, H. Fang, X. He, P. Jena, J.-B. Zeng, W.-N. Wang, Simultaneous detection and removal of formaldehyde at room temperature: janus Au@ZnO@ZIF-8 nanoparticles. Nano-Micro Lett. 10(1), 4 (2018). https://doi.org/10.1007/s40820-017-0158-0
- L. He, Y. Liu, J. Liu, Y. Xiong, J. Zheng, Y. Liu, Z. Tang, Core–shell noble-metal@metal–organic-framework nanoparticles with highly selective sensing property. Angew. Chem. Int. Ed. 52(13), 3741–3745 (2013). https://doi.org/10.1002/anie.201209903
- W.T. Koo, S.J. Choi, S.J. Kim, J.S. Jang, H.L. Tuller, I.D. Kim, Heterogeneous sensitization of metal–organic framework driven metal@metal oxide complex catalysts on an oxide nanofiber scaffold toward superior gas sensors. J. Am. Chem. Soc. 138(40), 13431–13437 (2016). https://doi.org/10.1021/jacs.6b09167
- J. Zhai, L. Wang, D. Wang, H. Li, Y. Zhang, D.Q. He, T. Xie, Enhancement of gas sensing properties of CdS nanowire/ZnO nanosphere composite materials at room temperature by visible-light activation. ACS Appl. Mater. Interfaces 3(7), 2253–2258 (2011). https://doi.org/10.1021/am200008y
- Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, C.L. Lin, Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 84(18), 3654–3656 (2004). https://doi.org/10.1063/1.1738932
- B. Liu, Metal–organic framework-based devices: separation and sensors. J. Mater. Chem. 22(20), 10094–10101 (2012). https://doi.org/10.1039/c2jm15827b
- X. Wu, S. Xiong, Z. Mao, S. Hu, X. Long, A designed ZnO@ZIF-8 core-shell nanorod film as a gas sensor with excellent selectivity for H2 over CO. Chem. Eur. J. 23(33), 7969–7975 (2017). https://doi.org/10.1002/chem.201700320
- E.X. Chen, H. Yang, J. Zhang, Zeolitic imidazolate framework as formaldehyde gas sensor. Inorg. Chem. 53(11), 5411–5413 (2014). https://doi.org/10.1021/ic500474j
- V. Chernikova, O. Yassine, O. Shekhah, M. Eddaoudi, K.N. Salama, Highly sensitive and selective SO2 MOF sensor: the integration of MFM-300 MOF as a sensitive layer on a capacitive interdigitated electrode. J. Mater. Chem. A 6(14), 5550–5554 (2018). https://doi.org/10.1039/c7ta10538j
- Z. Dou, J. Yu, Y. Cui, Y. Yang, Z. Wang, D. Yang, G. Qian, Luminescent metal–organic framework films as highly sensitive and fast-response oxygen sensors. J. Am. Chem. Soc. 136(15), 5527–5530 (2014). https://doi.org/10.1021/ja411224j
- J. Zhang, D. Yue, T. Xia, Y. Cui, Y. Yang, G. Qian, A luminescent metal–organic framework film fabricated on porous Al2O3 substrate for sensitive detecting ammonia. Microporous Mesoporous Mater. 253, 146–150 (2017). https://doi.org/10.1016/j.micromeso.2017.06.053
- O. Yassine, O. Shekhah, A.H. Assen, Y. Belmabkhout, K.N. Salama, M. Eddaoudi, H2S sensors: fumarate-based fcu-MOF thin film grown on a capacitive interdigitated electrode. Angew. Chem. Int. Ed. 55(51), 15879–15883 (2016). https://doi.org/10.1002/anie.201608780
- X.Y. Xu, B. Yan, Intelligent molecular searcher from logic computing network based on Eu(III) functionalized UMOFs for environmental monitoring. Adv. Funct. Mater. 27(23), 1700247 (2017). https://doi.org/10.1002/adfm.201700247
- J. Yang, Y. Dai, X. Zhu, Z. Wang, Y. Li, Q. Zhuang, J. Shi, J. Gu, Metal–organic frameworks with inherent recognition sites for selective phosphate sensing through their coordination-induced fluorescence enhancement effect. J. Mater. Chem. A 3(14), 7445–7452 (2015). https://doi.org/10.1039/c5ta00077g
- L.L. Wu, Z. Wang, S.N. Zhao, X. Meng, X.Z. Song, J. Feng, S.Y. Song, H.J. Zhang, A metal–organic framework/DNA hybrid system as a novel fluorescent biosensor for mercury(II) ion detection. Chem-Eur. J. 22(2), 477–480 (2016). https://doi.org/10.1002/chem.201503335
- J. Hao, F.F. Liu, N. Liu, M.L. Zeng, Y.H. Song, L. Wang, Ratiometric fluorescent detection of Cu2+ with carbon dots chelated Eu-based metal–organic frameworks. Sens. Actuators B-Chem. 245, 641–647 (2017). https://doi.org/10.1016/j.snb.2017.02.029
- P.F. Shi, H.C. Hu, Z.Y. Zhang, G. Xiong, B. Zhao, Heterometal-organic frameworks as highly sensitive and highly selective luminescent probes to detect I− ions in aqueous solutions. Chem. Commun. 51(19), 3985–3988 (2015). https://doi.org/10.1039/c4cc09081k
- J.N. Hao, B. Yan, A water-stable lanthanide-functionalized MOF as a highly selective and sensitive fluorescent probe for Cd2+. Chem. Commun. 51(36), 7737–7740 (2015). https://doi.org/10.1039/c5cc01430a
- D.X. Ma, B.Y. Li, X.J. Zhou, Q. Zhou, K. Liu, G. Zeng, G.H. Li, Z. Shi, S.H. Feng, A dual functional MOF as a luminescent sensor for quantitatively detecting the concentration of nitrobenzene and temperature. Chem. Commun. 49(79), 8964–8966 (2013). https://doi.org/10.1039/c3cc44546a
- Y. Yu, J.P. Ma, C.W. Zhao, J. Yang, X.M. Zhang, Q.K. Liu, Y.B. Dong, Copper(I) metal–organic framework: visual sensor for detecting small polar aliphatic volatile organic compounds. Inorg. Chem. 54(24), 11590–11592 (2015). https://doi.org/10.1021/acs.inorgchem.5b02150
- Y. Wang, Y.C. Wu, J. Xie, X.Y. Hu, Metal–organic framework modified carbon paste electrode for lead sensor. Sens. Actuators B-Chem. 177, 1161–1166 (2013). https://doi.org/10.1016/j.snb.2012.12.048
- J. Yang, L.T. Yang, H.L. Ye, F.Q. Zhao, B.Z. Zeng, Highly dispersed AuPd alloy nanoparticles immobilized on UiO-66-NH2 metal–organic framework for the detection of nitrite. Electrochim. Acta 219, 647–654 (2016). https://doi.org/10.1016/j.electacta.2016.10.071
- J.C. Jin, J. Wu, G.P. Yang, Y.L. Wu, Y.Y. Wang, A microporous anionic metal–organic framework for a highly selective and sensitive electrochemical sensor of Cu2+ ions. Chem. Commun. 52(54), 8475–8478 (2016). https://doi.org/10.1039/c6cc03063g
- J. Zhou, X. Li, L.L. Yang, S.L. Yan, M.M. Wang et al., The Cu-MOF-199/single-walled carbon nanotubes modified electrode for simultaneous determination of hydroquinone and catechol with extended linear ranges and lower detection limits. Anal. Chim. Acta 899, 57–65 (2015). https://doi.org/10.1016/j.aca.2015.09.054
- X.L. Zeng, Y.J. Zhang, J.Y. Zhang, H. Hu, X. Wu, Z. Long, X.D. Hou, Facile colorimetric sensing of Pb2+ using bimetallic lanthanide metal–organic frameworks as luminescent probe for field screen analysis of-lead-polluted environmental water. Microchem. J. 134, 140–145 (2017). https://doi.org/10.1016/j.microc.2017.05.011
- H. Tian, H. Fan, M. Li, L. Ma, Zeolitic imidazolate framework coated ZnO nanorods as molecular sieving to improve selectivity of formaldehyde gas sensor. ACS Sensors 1(3), 243–250 (2015). https://doi.org/10.1021/acssensors.5b00236
References
W.P. Lustig, S. Mukherjee, N.D. Rudd, A.V. Desai, J. Li, S.K. Ghosh, Metal–organic frameworks: functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 46(11), 3242–3285 (2017). https://doi.org/10.1039/c6cs00930a
M. Petrovic, M. Farre, M.L. de Alda, S. Perez, C. Postigo, M. Kock, J. Radjenovic, M. Gros, D. Barcelo, Recent trends in the liquid chromatography–mass spectrometry analysis of organic contaminants in environmental samples. J. Chromatogr. A 1217(25), 4004–4017 (2010). https://doi.org/10.1016/j.chroma.2010.02.059
A.L.N. van Nuijs, I. Tarcomnicu, A. Covaci, Application of hydrophilic interaction chromatography for the analysis of polar contaminants in food and environmental samples. J. Chromatogr. A 1218(35), 5964–5974 (2011). https://doi.org/10.1016/j.chroma.2011.01.075
P. Falcaro, R. Ricco, A. Yazdi, I. Imaz, S. Furukawa, D. Maspoch, R. Ameloot, J.D. Evans, C.J. Doonan, Application of metal and metal oxide nanoparticles@MOFs. Coord. Chem. Rev. 307, 237–254 (2016). https://doi.org/10.1016/j.ccr.2015.08.002
J. Wang, J.T. Jiu, T. Araki, M. Nogi, T. Sugahara, S. Nagao, H. Koga, P. He, K. Suganuma, Silver nanowire electrodes: conductivity improvement without post-treatment and application in capacitive pressure sensors. Nano-Micro Lett. 7(1), 51–58 (2015). https://doi.org/10.1007/s40820-014-0018-0
Z. Yang, Z.H. Li, M.H. Xu, Y.J. Ma, J. Zhang, Y.J. Su, F. Gao, H. Wei, L.Y. Zhang, Controllable synthesis of fluorescent carbon dots and their detection application as nanoprobes. Nano-Micro Lett. 5(4), 247–259 (2013). https://doi.org/10.5101/nml.v5i4.p247-259
O. Moldovan, B. Iniguez, M.J. Deen, L.F. Marsal, Graphene electronic sensors—review of recent developments and future challenges. IET Circuits Devices Syst. 9(6), 446–453 (2015). https://doi.org/10.1049/iet-cds.2015.0259
X. Chen, G. Zhou, S. Mao, J. Chen, Rapid detection of nutrients with electronic sensors: a review. Environ.-Sci. Nano 5(4), 837–862 (2018). https://doi.org/10.1039/c7en01160a
Y. Fang, E. Wang, Electrochemical biosensors on platforms of graphene. Chem. Commun. 49(83), 9526–9539 (2013). https://doi.org/10.1039/c3cc44735a
S. Mao, Z.H. Wen, S.Q. Ci, X.R. Guo, K. Ostrikov, J.H. Chen, Perpendicularly oriented MoSe2/graphene nanosheets as advanced electrocatalysts for hydrogen evolution. Small 11(4), 414–419 (2015). https://doi.org/10.1002/smll.201401598
R. Malhotra, V. Patel, J.P. Vaque, J.S. Gutkind, J.F. Rusling, Ultrasensitive electrochemical immunosensor for oral cancer biomarker IL-6 using carbon nanotube forest electrodes and multilabel amplification. Anal. Chem. 82(8), 3118–3123 (2010). https://doi.org/10.1021/ac902802b
Z. Bo, M. Yuan, S. Mao, X. Chen, J.H. Yan, K.F. Cen, Decoration of vertical graphene with tin dioxide nanoparticles for highly sensitive room temperature formaldehyde sensing. Sens. Actuators B-Chem. 256, 1011–1020 (2018). https://doi.org/10.1016/j.snb.2017.10.043
S. Mao, H.H. Pu, J.B. Chang, X.Y. Sui, G.H. Zhou, R. Ren, Y.T. Chen, J.H. Chen, Ultrasensitive detection of orthophosphate ions with reduced graphene oxide/ferritin field-effect transistor sensors. Environ.-Sci. Nano 4(4), 856–863 (2017). https://doi.org/10.1039/c6en00661b
X. Fang, H.X. Ren, H. Zhao, Z.X. Li, Ultrasensitive visual and colorimetric determination of dopamine based on the prevention of etching of silver nanoprisms by chloride. Microchim. Acta 184(2), 415–421 (2017). https://doi.org/10.1007/s00604-016-2024-z
Y. Zhou, S.X. Wang, K. Zhang, X.Y. Jiang, Visual detection of copper(II) by azide- and alkyne-functionalized gold nanoparticles using click chemistry. Angew. Chem. Int. Ed. 47(39), 7454–7456 (2008). https://doi.org/10.1002/anie.200802317
S.K. Arya, S. Saha, J.E. Ramirez-Vick, V. Gupta, S. Bhansali, S.P. Singh, Recent advances in ZnO nanostructures and thin films for biosensor applications: review. Anal. Chim. Acta 737, 1–21 (2012). https://doi.org/10.1016/j.aca.2012.05.048
X. Huo, P. Liu, J. Zhu, X. Liu, H. Ju, Electrochemical immunosensor constructed using TiO2 nanotubes as immobilization scaffold and tracing tag. Biosens. Bioelectron. 85, 698–706 (2016). https://doi.org/10.1016/j.bios.2016.05.053
S.L. Liu, J.X. Zhang, W.W. Tu, J.C. Bao, Z.H. Dai, Using ruthenium polypyridyl functionalized ZnO mesocrystals and gold nanoparticle dotted graphene composite for biological recognition and electrochemiluminescence biosensing. Nanoscale 6(4), 2419–2425 (2014). https://doi.org/10.1039/c3nr05944h
W.H. Zhang, W. Ma, Y.T. Long, Redox-mediated indirect fluorescence immunoassay for the detection of disease biomarkers using dopamine-functionalized quantum dots. Anal. Chem. 88(10), 5131–5136 (2016). https://doi.org/10.1021/acs.analchem.6b00048
G.Q. Wang, Z.P. Chen, L.X. Chen, Mesoporous silica-coated gold nanorods: towards sensitive colorimetric sensing of ascorbic acid via target-induced silver overcoating. Nanoscale 3(4), 1756–1759 (2011). https://doi.org/10.1039/c0nr00863j
J.H. Cha, J.I. Han, Y. Choi, D.S. Yoon, K.W. Oh, G. Lim, DNA hybridization electrochemical sensor using conducting polymer. Biosens. Bioelectron. 18(10), 1241–1247 (2003). https://doi.org/10.1016/S0956-5663(03)00088-5
Y. Xu, J. Meng, L.X. Meng, Y. Dong, Y.X. Cheng, C.J. Zhu, A highly selective fluorescence-based polymer sensor incorporating an (r, r)-salen moiety for Zn2+ detection. Chem. Eur. J. 16(43), 12898–12903 (2010). https://doi.org/10.1002/chem.201001198
C. Janiak, J.K. Vieth, MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs). New J. Chem. 34(11), 2366–2388 (2010). https://doi.org/10.1039/c0nj00275e
O.M. Yaghi, G.M. Li, H.L. Li, Selective binding and removal of guests in a microporous metal–organic framework. Nature 378(6558), 703–706 (1995). https://doi.org/10.1038/378703a0
H. Li, M. Eddaoudi, M. O’Keeffe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402(6759), 276–279 (1999). https://doi.org/10.1038/46248
S.Z. Li, F.W. Huo, Metal–organic framework composites: from fundamentals to applications. Nanoscale 7(17), 7482–7501 (2015). https://doi.org/10.1039/c5nr00518c
O.K. Farha, I. Eryazici, N.C. Jeong, B.G. Hauser, C.E. Wilmer et al., Metal–organic framework materials with ultrahigh surface areas: is the sky the limit? J. Am. Chem. Soc. 134(36), 15016–15021 (2012). https://doi.org/10.1021/ja3055639
Y. Peng, V. Krungleviciute, I. Eryazici, J.T. Hupp, O.K. Farha, T. Yildirim, Methane storage in metal–organic frameworks: current records, surprise findings, and challenges. J. Am. Chem. Soc. 135(32), 11887–11894 (2013). https://doi.org/10.1021/ja4045289
T.M. McDonald, J.A. Mason, X.Q. Kong, E.D. Bloch, D. Gygi et al., Cooperative insertion of CO2 in diamine-appended metal–organic frameworks. Nature 519(7543), 303–308 (2015). https://doi.org/10.1038/nature14327
P. Horcajada, C. Serre, M. Vallet-Regi, M. Sebban, F. Taulelle, G. Ferey, Metal–organic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed. 45(36), 5974–5978 (2006). https://doi.org/10.1002/anie.200601878
A.R. Chowdhuri, D. Laha, S. Chandra, P. Karmakar, S.K. Sahu, Synthesis of multifunctional upconversion NMOFs for targeted antitumor drug delivery and imaging in triple negative breast cancer cells. Chem. Eng. J. 319, 200–211 (2017). https://doi.org/10.1016/j.cej.2017.03.008
X.L. Cui, K.J. Chen, H.B. Xing, Q.W. Yang, R. Krishna et al., Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science 353(6295), 141–144 (2016). https://doi.org/10.1126/science.aaf2458
L. Cui, J. Wu, J. Li, H. Ju, Electrochemical sensor for lead cation sensitized with a DNA functionalized porphyrinic metal–organic framework. Anal. Chem. 87(20), 10635–10641 (2015). https://doi.org/10.1021/acs.analchem.5b03287
Z.C. Hu, B.J. Deibert, J. Li, Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 43(16), 5815–5840 (2014). https://doi.org/10.1039/c4cs00010b
X. Lian, B. Yan, Phosphonate MOFs composite as off-on fluorescent sensor for detecting purine metabolite uric acid and diagnosing hyperuricuria. Inorg. Chem. 56(12), 6802–6808 (2017). https://doi.org/10.1021/acs.inorgchem.6b03009
L. Meng, Q.G. Cheng, C. Kim, W.Y. Gao, L. Wojtas, Y.S. Chen, M.J. Zaworotko, X.P. Zhang, S.Q. Ma, Crystal engineering of a microporous, catalytically active fcu topology MOF using a custom-designed metalloporphyrin linker. Angew. Chem. Int. Ed. 51(40), 10082–10085 (2012). https://doi.org/10.1002/anie.201205603
F.X.L.I. Xamena, O. Casanova, R.G. Tailleur, H. Garcia, A. Corma, Metal organic frameworks (MOFs) as catalysts: a combination of Cu2+ and Co2+ MOFs as an efficient catalyst for tetralin oxidation. J. Catal. 255(2), 220–227 (2008). https://doi.org/10.1016/j.jcat.2008.02.011
Y. Chen, J. Li, G. Yue, X. Luo, Novel Ag@Nitrogen-doped porous carbon composite with high electrochemical performance as anode materials for lithium-ion batteries. Nano-Micro Lett. 9, 32 (2017). https://doi.org/10.1007/s40820-017-0131-y
K.M. Park, H. Kim, J. Murray, J. Koo, K. Kim, A facile preparation method for nanosized MOFs as a multifunctional material for cellular imaging and drug delivery. Supramol. Chem. 29(6), 441–445 (2017). https://doi.org/10.1080/10610278.2016.1266359
D.M. Liu, K.D. Lu, C. Poon, W.B. Lin, Metal–organic frameworks as sensory materials and imaging agents. Inorg. Chem. 53(4), 1916–1924 (2014). https://doi.org/10.1021/ic402194c
A. Chidambaram, K.C. Stylianou, Electronic metal–organic framework sensors. Inorg. Chem. Front. 5, 979–998 (2018). https://doi.org/10.1039/c7qi00815e
V. Stavila, A.A. Talin, M.D. Allendorf, MOF-based electronic and opto-electronic devices. Chem. Soc. Rev. 43(16), 5994–6010 (2014). https://doi.org/10.1039/c4cs00096j
V. Kumar, K.H. Kim, P. Kumar, B.H. Jeon, J.C. Kim, Functional hybrid nanostructure materials: advanced strategies for sensing applications toward volatile organic compounds. Coord. Chem. Rev. 342, 80–105 (2017). https://doi.org/10.1016/j.ccr.2017.04.006
Y.J. Cui, Y.F. Yue, G.D. Qian, B.L. Chen, Luminescent functional metal–organic frameworks. Chem. Rev. 112(2), 1126–1162 (2012). https://doi.org/10.1021/cr200101d
X. Li, L. Yang, L. Zhao, X.L. Wang, K.Z. Shao, Z.M. Su, Luminescent metal–organic frameworks with anthracene chromophores: small-molecule sensing and highly selective sensing for nitro explosives. Cryst. Growth Des. 16(8), 4374–4382 (2016). https://doi.org/10.1021/acs.cgd.6b00482
M. Zhang, G.X. Feng, Z.G. Song, Y.P. Zhou, H.Y. Chao et al., Two-dimensional metal–organic framework with wide channels and responsive turn-on fluorescence for the chemical sensing of volatile organic compounds. J. Am. Chem. Soc. 136(20), 7241–7244 (2014). https://doi.org/10.1021/ja502643p
S.Y. Zhang, W. Shi, P. Cheng, M.J. Zaworotko, A mixed-crystal lanthanide zeolite-like metal–organic framework as a fluorescent indicator for lysophosphatidic acid, a cancer biomarker. J. Am. Chem. Soc. 137(38), 12203–12206 (2015). https://doi.org/10.1021/jacs.5b06929
J.M. Zhou, H.H. Li, H. Zhang, H.M. Li, W. Shi, P. Cheng, A bimetallic lanthanide metal–organic material as a self-calibrating color-gradient luminescent sensor. Adv. Mater. 27(44), 7072–7077 (2015). https://doi.org/10.1002/adma.201502760
H.H. Li, W. Shi, K.N. Zhao, Z. Niu, H.M. Li, P. Cheng, Highly selective sorption and luminescent sensing of small molecules demonstrated in a multifunctional lanthanide microporous metalorganic framework containing 1D honeycomb-type channels. Chem.-Eur. J. 19(10), 3358–3365 (2013). https://doi.org/10.1002/chem.201203487
B. Zhao, X.Y. Chen, P. Cheng, D.Z. Liao, S.P. Yan, Z.H. Jiang, Coordination polymers containing 1D channels as selective luminescent probes. J. Am. Chem. Soc. 126(47), 15394–15395 (2004). https://doi.org/10.1021/ja047141b
B. Zhao, P. Cheng, X.Y. Chen, C. Cheng, W. Shi, D.Z. Liao, S.P. Yan, Z.H. Jiang, Design and synthesis of 3d–4f metal-based zeolite-type materials with a 3D nanotubular structure encapsulated “water” pipe. J. Am. Chem. Soc. 126(10), 3012–3013 (2004). https://doi.org/10.1021/ja038784e
S.Y. Wu, Y.N. Lin, J.W. Liu, W. Shi, G.M. Yang, P. Cheng, Rapid detection of the biomarkers for carcinoid tumors by a water stable luminescent lanthanide metal–organic framework sensor. Adv. Funct. Mater. 28(17), 1707169 (2018). https://doi.org/10.1002/adfm.201707169
A.V. Kolliopoulos, D.K. Kampouris, C.E. Banks, Rapid and portable electrochemical quantification of phosphorus. Anal. Chem. 87(8), 4269–4274 (2015). https://doi.org/10.1021/ac504602a
H. Xu, Y.Q. Xiao, X.T. Rao, Z.S. Dou, W.F. Li, Y.J. Cui, Z.Y. Wang, G.D. Qian, A metal–organic framework for selectively sensing of PO4 3− anion in aqueous solution. J. Alloys Compd. 509(5), 2552–2554 (2011). https://doi.org/10.1016/j.jallcom.2010.11.087
D. Zhao, X.Y. Wan, H.J. Song, L.Y. Hao, Y.Y. Su, Y. Lv, Metal–organic frameworks (MOFs) combined with ZnO quantum dots as a fluorescent sensing platform for phosphate. Sens. Actuators B-Chem. 197, 50–57 (2014). https://doi.org/10.1016/j.snb.2014.02.070
H. Xu, C.S. Cao, B. Zhao, A water-stable lanthanide-organic framework as a recyclable luminescent probe for detecting pollutant phosphorus anions. Chem. Commun. 51(51), 10280–10283 (2015). https://doi.org/10.1039/c5cc02596f
T. Lu, L.C. Zhang, M.X. Sun, D.Y. Deng, Y.Y. Su, Y. Lv, Amino-functionalized metal–organic frameworks nanoplates-based energy transfer probe for highly selective fluorescence detection of free chlorine. Anal. Chem. 88(6), 3413–3420 (2016). https://doi.org/10.1021/acs.analchem.6b00253
A. Karmakar, N. Kumar, P. Samanta, A.V. Desai, S.K. Ghosh, A post-synthetically modified MOF for selective and sensitive aqueous-phase detection of highly toxic cyanide ions. Chem. Eur. J. 22(3), 864–868 (2016). https://doi.org/10.1002/chem.201503323
X.M. Lin, G.M. Gao, L.Y. Zheng, Y.W. Chi, G.N. Chen, Encapsulation of strongly fluorescent carbon quantum dots in metal–organic frameworks for enhancing chemical sensing. Anal. Chem. 86(2), 1223–1228 (2014). https://doi.org/10.1021/ac403536a
X. Lin, F. Luo, L. Zheng, G. Gao, Y. Chi, Fast, sensitive, and selective ion-triggered disassembly and release based on tris(bipyridine)ruthenium(II)-functionalized metal–organic frameworks. Anal. Chem. 87(9), 4864–4870 (2015). https://doi.org/10.1021/acs.analchem.5b00391
Q. Li, C.J. Wang, H.L. Tan, G.E. Tang, J. Gao, C.H. Chen, A turn on fluorescent sensor based on lanthanide coordination polymer nanoparticles for the detection of mercury(II) in biological fluids. RSC Adv. 6(22), 17811–17817 (2016). https://doi.org/10.1039/c5ra26849d
J. Kesselmeier, M. Staudt, Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J. Atmos. Chem. 33(1), 23–88 (1999). https://doi.org/10.1023/A:1006127516791
Y. Zhou, B. Yan, A responsive MOF nanocomposite for decoding volatile organic compounds. Chem. Commun. 52(11), 2265–2268 (2016). https://doi.org/10.1039/c5cc09029f
MathSciNet
A.A. Tehrani, L. Esrafili, S. Abedi, A. Morsali, L. Carlucci, D.M. Proserpio, J. Wang, P.C. Junk, T.F. Liu, Urea metal–organic frameworks for nitro-substituted compounds sensing. Inorg. Chem. 56(3), 1446–1454 (2017). https://doi.org/10.1021/acs.inorgchem.6b02518
J.Z. Wei, X.L. Wang, X.J. Sun, Y. Hou, X. Zhang, D.D. Yang, H. Dong, F.M. Zhang, Rapid and large-scale synthesis of IRMOF-3 by electrochemistry method with enhanced fluorescence detection performance for TNP. Inorg. Chem. 57(7), 3818–3824 (2018). https://doi.org/10.1021/acs.inorgchem.7b03174
Y. Zhou, Q. Yang, D. Zhang, N. Gan, Q. Li, J. Cuan, Detection and removal of antibiotic tetracycline in water with a highly stable luminescent MOF. Sens. Actuators B-Chem. 262, 137–143 (2018). https://doi.org/10.1016/j.snb.2018.01.218
X. Chen, Y. Wang, Y. Zhang, Z. Chen, Y. Liu, Z. Li, J. Li, Sensitive electrochemical aptamer biosensor for dynamic cell surface N-glycan evaluation featuring multivalent recognition and signal amplification on a dendrimer-graphene electrode interface. Anal. Chem. 86(9), 4278–4286 (2014). https://doi.org/10.1021/ac404070m
X. Fang, J.F. Liu, J. Wang, H. Zhao, H.X. Ren, Z.X. Li, Dual signal amplification strategy of Au nanopaticles/ZnO nanorods hybridized reduced graphene nanosheet and multienzyme functionalized Au@ZnO composites for ultrasensitive electrochemical detection of tumor biomarker. Biosens. Bioelectron. 97, 218–225 (2017). https://doi.org/10.1016/j.bios.2017.05.055
Y. Wang, C. Hou, Y. Zhang, F. He, M.Z. Liu, X.L. Li, Preparation of graphene nano-sheet bonded PDA/MOF microcapsules with immobilized glucose oxidase as a mimetic multi-enzyme system for electrochemical sensing of glucose. J. Mater. Chem. B 4(21), 3695–3702 (2016). https://doi.org/10.1039/c6tb00276e
C. Zhang, X.R. Wang, M. Hou, X.Y. Li, X.L. Wu, J. Ge, Immobilization on metal–organic framework engenders high sensitivity for enzymatic electrochemical detection. ACS Appl. Mater. Interfaces 9(16), 13831–13836 (2017). https://doi.org/10.1021/acsami.7b02803
X.Q. Wu, J.G. Ma, H. Li, D.M. Chen, W. Gu, G.M. Yang, P. Cheng, Metal–organic framework biosensor with high stability and selectivity in a bio-mimic environment. Chem. Commun. 51(44), 9161–9164 (2015). https://doi.org/10.1039/c5cc02113h
D. Sheberla, L. Sun, M.A. Blood-Forsythe, S. Er, C.R. Wade, C.K. Brozek, A. Aspuru-Guzik, M. Dinca, High electrical conductivity in Ni(3)(2,3,6,7,10,11-hexaiminotriphenylene)(2), a semiconducting metal–organic graphene analogue. J. Am. Chem. Soc. 136(25), 8859–8862 (2014). https://doi.org/10.1021/ja502765n
M.G. Campbell, D. Sheberla, S.F. Liu, T.M. Swager, M. Dinca, Cu(3)(hexaiminotriphenylene)(2): an electrically conductive 2D metal–organic framework for chemiresistive sensing. Angew. Chem. Int. Ed. 54(14), 4349–4352 (2015). https://doi.org/10.1002/anie.201411854
X. Wang, Q.X. Wang, Q.H. Wang, F. Gao, F. Gao, Y.Z. Yang, H.X. Guo, Highly dispersible and stable copper terephthalate metal–organic framework-graphene oxide nanocomposite for an electrochemical sensing application. ACS Appl. Mater. Interfaces 6(14), 11573–11580 (2014). https://doi.org/10.1021/am5019918
Z.D. Xu, L.Z. Yang, C.L. Xu, Pt@UiO-66 heterostructures for highly selective detection of hydrogen peroxide with an extended linear range. Anal. Chem. 87(6), 3438–3444 (2015). https://doi.org/10.1021/ac5047278
Y.J. Yu, C. Yu, Y.Z. Niu, J. Chen, Y.L. Zhao, Y.C. Zhang, R.F. Gao, J.L. He, Target triggered cleavage effect of DNAzyme: relying on Pd–Pt alloys functionalized Fe-MOFs for amplified detection of Pb2+. Biosens. Bioelectron. 101, 297–303 (2018). https://doi.org/10.1016/j.bios.2017.10.006
H.X. Guo, D.F. Wang, J.H. Chen, W. Weng, M.Q. Huang, Z.S. Zheng, Simple fabrication of flake-like NH2-MIL-53(Cr) and its application as an electrochemical sensor for the detection of Pb2+. Chem. Eng. J. 289, 479–485 (2016). https://doi.org/10.1016/j.cej.2015.12.099
M. Saraf, R. Rajak, S.M. Mobin, A fascinating multitasking Cu-MOF/rGO hybrid for high performance supercapacitors and highly sensitive and selective electrochemical nitrite sensors. J. Mater. Chem. A 4(42), 16432–16445 (2016). https://doi.org/10.1039/c6ta06470a
D.A. Perry, T.M. Razer, K.M. Primm, T. Chen, J.B. Shamburger et al., Surface-enhanced infrared absorption and density functional theory study of dihydroxybenzene isomer adsorption on silver nanostructures. J. Phys. Chem. C 117(16), 8170–8179 (2013). https://doi.org/10.1021/jp3121462
Y. Yang, Q. Wang, W. Qiu, H. Guo, F. Gao, Covalent immobilization of Cu3(btc)2 at chitosan–electroreduced graphene oxide hybrid film and its application for simultaneous detection of dihydroxybenzene isomers. J. Phys. Chem. C 120(18), 9794–9803 (2016). https://doi.org/10.1021/acs.jpcc.6b01574
X. Zhou, X. Yan, Z. Hong, X. Zheng, F. Wang, Design of magnetic core–shell Ni@graphene composites as a novel electrochemical sensing platform. Sens. Actuators B-Chem. 255, 2959–2962 (2018). https://doi.org/10.1016/j.snb.2017.09.117
J. Li, J. Xia, F. Zhang, Z. Wang, Q. Liu, An electrochemical sensor based on copper-based metal–organic frameworks-graphene composites for determination of dihydroxybenzene isomers in water. Talanta 181, 80–86 (2018). https://doi.org/10.1016/j.talanta.2018.01.002
S.S. Huang, Y.X. Qu, R.N. Li, J. Shen, L.W. Zhu, Biosensor based on horseradish peroxidase modified carbon nanotubes for determination of 2,4-dichlorophenol. Microchim. Acta 162(1–2), 261–268 (2008). https://doi.org/10.1007/s00604-007-0872-2
S. Dong, G. Suo, N. Li, Z. Chen, L. Peng, Y. Fu, Q. Yang, T. Huang, A simple strategy to fabricate high sensitive 2,4-dichlorophenol electrochemical sensor based on metal organic framework Cu3(BTC)2. Sens. Actuators B-Chem. 222, 972–979 (2016). https://doi.org/10.1016/j.snb.2015.09.035
B.A. Kong, A.W. Zhu, Y.P. Luo, Y. Tian, Y.Y. Yu, G.Y. Shi, Sensitive and selective colorimetric visualization of cerebral dopamine based on double molecular recognition. Angew. Chem. Int. Ed. 50(8), 1837–1840 (2011). https://doi.org/10.1002/anie.201007071
L. Chen, X. Fu, W. Lu, L. Chen, Highly sensitive and selective colorimetric sensing of Hg2+ based on the morphology transition of silver nanoprisms. ACS Appl. Mater. Interfaces. 5(2), 284–290 (2013). https://doi.org/10.1021/am3020857
Z. Wang, J. Yang, Y. Li, Q. Zhuang, J. Gu, Zr-based MOFs integrated with chromophoric ruthenium complex for specific and reversible Hg2+ sensing. Dalton Trans. 47(16), 5570–5574 (2018). https://doi.org/10.1039/c8dt00569a
S. Yang, D. Slotcavage, J.D. Mai, F. Guo, S. Li, Y. Zhao, Y. Lei, C.E. Cameron, T.J. Huang, Electrochemically created highly surface roughened Ag nanoplate arrays for SERS biosensing applications. J. Mater. Chem. C 2(39), 8350–8356 (2014). https://doi.org/10.1039/C4TC01276C
Y. Hu, J. Liao, D. Wang, G. Li, Fabrication of gold nanoparticle-embedded metal–organic framework for highly sensitive surface-enhanced Raman scattering detection. Anal. Chem. 86(8), 3955–3963 (2014). https://doi.org/10.1021/ac5002355
Y. Lv, H. Yu, P. Xu, J. Xu, X. Li, Metal organic framework of MOF-5 with hierarchical nanopores as micro-gravimetric sensing material for aniline detection. Sens. Actuators B-Chem. 256, 639–647 (2018). https://doi.org/10.1016/j.snb.2017.09.195
H. Xia, J. Zhang, Z. Yang, S. Guo, S. Guo, Q. Xu, 2D MOF Nanoflake-assembled spherical microstructures for enhanced supercapacitor and electrocatalysis performances. Nano-Micro Lett. 9, 43 (2017). https://doi.org/10.1007/s40820-017-0144-6
B. Li, H.M. Wen, W. Zhou, B. Chen, Porous metal–organic frameworks for gas storage and separation: what, how, and why? J. Phys. Chem. Lett. 5(20), 3468–3479 (2014). https://doi.org/10.1021/jz501586e
C.Y. Sun, X.L. Wang, X. Zhang, C. Qin, P. Li et al., Efficient and tunable white-light emission of metal–organic frameworks by iridium-complex encapsulation. Nat. Commun. 4, 2717 (2013). https://doi.org/10.1038/ncomms3717
H.C. Zhou, J.R. Long, O.M. Yaghi, Introduction to metal–organic frameworks. Chem. Rev. 112(2), 673–674 (2012). https://doi.org/10.1021/cr300014x
Y. Zhang, X. Bai, X. Wang, K.K. Shiu, Y. Zhu, H. Jiang, Highly sensitive graphene-Pt nanocomposites amperometric biosensor and its application in living cell H2O2 detection. Anal. Chem. 86(19), 9459–9465 (2014). https://doi.org/10.1021/ac5009699
L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp, Metal–organic framework materials as chemical sensors. Chem. Rev. 112(2), 1105–1125 (2012). https://doi.org/10.1021/cr200324t
S. Mao, J. Chang, H. Pu, G. Lu, Q. He, H. Zhang, J. Chen, Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing. Chem. Soc. Rev. 46(22), 6872–6904 (2017). https://doi.org/10.1039/c6cs00827e
S. Mao, G. Lu, J. Chen, Nanocarbon-based gas sensors: progress and challenges. J. Mater. Chem. A 2(16), 5573–5579 (2014). https://doi.org/10.1039/c3ta13823b
T. George, J.H. Lee, M.S. Islam, R.T.J. Houk, A. Robinson et al., Investigation of microcantilever array with ordered nanoporous coatings for selective chemical detection. Proc. SPIE 7679, 767927–797929 (2010). https://doi.org/10.1117/12.850217
N. Klein, C. Herzog, M. Sabo, I. Senkovska, J. Getzschmann, S. Paasch, M.R. Lohe, E. Brunner, S. Kaskel, Monitoring adsorption-induced switching by (129)Xe NMR spectroscopy in a new metal–organic framework Ni(2)(2,6-ndc)(2)(dabco). Phys. Chem. Chem. Phys. 12(37), 11778–11784 (2010). https://doi.org/10.1039/c003835k
A. Venkatasubramanian, J.-H. Lee, V. Stavila, A. Robinson, M.D. Allendorf, P.J. Hesketh, MOF@MEMS: design optimization for high sensitivity chemical detection. Sens. Actuators B-Chem. 168, 256–262 (2012). https://doi.org/10.1016/j.snb.2012.04.019
M.G. Campbell, S.F. Liu, T.M. Swager, M. Dinca, Chemiresistive sensor arrays from conductive 2D metal–organic frameworks. J. Am. Chem. Soc. 137(43), 13780–13783 (2015). https://doi.org/10.1021/jacs.5b09600
W.T. Koo, S.J. Choi, J.S. Jang, I.D. Kim, Metal–organic framework templated synthesis of ultrasmall catalyst loaded ZnO/ZnCo2O4 hollow spheres for enhanced gas sensing properties. Sci. Rep. 7, 45074 (2017). https://doi.org/10.1038/srep45074
D. Wang, Z. Li, J. Zhou, H. Fang, X. He, P. Jena, J.-B. Zeng, W.-N. Wang, Simultaneous detection and removal of formaldehyde at room temperature: janus Au@ZnO@ZIF-8 nanoparticles. Nano-Micro Lett. 10(1), 4 (2018). https://doi.org/10.1007/s40820-017-0158-0
L. He, Y. Liu, J. Liu, Y. Xiong, J. Zheng, Y. Liu, Z. Tang, Core–shell noble-metal@metal–organic-framework nanoparticles with highly selective sensing property. Angew. Chem. Int. Ed. 52(13), 3741–3745 (2013). https://doi.org/10.1002/anie.201209903
W.T. Koo, S.J. Choi, S.J. Kim, J.S. Jang, H.L. Tuller, I.D. Kim, Heterogeneous sensitization of metal–organic framework driven metal@metal oxide complex catalysts on an oxide nanofiber scaffold toward superior gas sensors. J. Am. Chem. Soc. 138(40), 13431–13437 (2016). https://doi.org/10.1021/jacs.6b09167
J. Zhai, L. Wang, D. Wang, H. Li, Y. Zhang, D.Q. He, T. Xie, Enhancement of gas sensing properties of CdS nanowire/ZnO nanosphere composite materials at room temperature by visible-light activation. ACS Appl. Mater. Interfaces 3(7), 2253–2258 (2011). https://doi.org/10.1021/am200008y
Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, C.L. Lin, Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 84(18), 3654–3656 (2004). https://doi.org/10.1063/1.1738932
B. Liu, Metal–organic framework-based devices: separation and sensors. J. Mater. Chem. 22(20), 10094–10101 (2012). https://doi.org/10.1039/c2jm15827b
X. Wu, S. Xiong, Z. Mao, S. Hu, X. Long, A designed ZnO@ZIF-8 core-shell nanorod film as a gas sensor with excellent selectivity for H2 over CO. Chem. Eur. J. 23(33), 7969–7975 (2017). https://doi.org/10.1002/chem.201700320
E.X. Chen, H. Yang, J. Zhang, Zeolitic imidazolate framework as formaldehyde gas sensor. Inorg. Chem. 53(11), 5411–5413 (2014). https://doi.org/10.1021/ic500474j
V. Chernikova, O. Yassine, O. Shekhah, M. Eddaoudi, K.N. Salama, Highly sensitive and selective SO2 MOF sensor: the integration of MFM-300 MOF as a sensitive layer on a capacitive interdigitated electrode. J. Mater. Chem. A 6(14), 5550–5554 (2018). https://doi.org/10.1039/c7ta10538j
Z. Dou, J. Yu, Y. Cui, Y. Yang, Z. Wang, D. Yang, G. Qian, Luminescent metal–organic framework films as highly sensitive and fast-response oxygen sensors. J. Am. Chem. Soc. 136(15), 5527–5530 (2014). https://doi.org/10.1021/ja411224j
J. Zhang, D. Yue, T. Xia, Y. Cui, Y. Yang, G. Qian, A luminescent metal–organic framework film fabricated on porous Al2O3 substrate for sensitive detecting ammonia. Microporous Mesoporous Mater. 253, 146–150 (2017). https://doi.org/10.1016/j.micromeso.2017.06.053
O. Yassine, O. Shekhah, A.H. Assen, Y. Belmabkhout, K.N. Salama, M. Eddaoudi, H2S sensors: fumarate-based fcu-MOF thin film grown on a capacitive interdigitated electrode. Angew. Chem. Int. Ed. 55(51), 15879–15883 (2016). https://doi.org/10.1002/anie.201608780
X.Y. Xu, B. Yan, Intelligent molecular searcher from logic computing network based on Eu(III) functionalized UMOFs for environmental monitoring. Adv. Funct. Mater. 27(23), 1700247 (2017). https://doi.org/10.1002/adfm.201700247
J. Yang, Y. Dai, X. Zhu, Z. Wang, Y. Li, Q. Zhuang, J. Shi, J. Gu, Metal–organic frameworks with inherent recognition sites for selective phosphate sensing through their coordination-induced fluorescence enhancement effect. J. Mater. Chem. A 3(14), 7445–7452 (2015). https://doi.org/10.1039/c5ta00077g
L.L. Wu, Z. Wang, S.N. Zhao, X. Meng, X.Z. Song, J. Feng, S.Y. Song, H.J. Zhang, A metal–organic framework/DNA hybrid system as a novel fluorescent biosensor for mercury(II) ion detection. Chem-Eur. J. 22(2), 477–480 (2016). https://doi.org/10.1002/chem.201503335
J. Hao, F.F. Liu, N. Liu, M.L. Zeng, Y.H. Song, L. Wang, Ratiometric fluorescent detection of Cu2+ with carbon dots chelated Eu-based metal–organic frameworks. Sens. Actuators B-Chem. 245, 641–647 (2017). https://doi.org/10.1016/j.snb.2017.02.029
P.F. Shi, H.C. Hu, Z.Y. Zhang, G. Xiong, B. Zhao, Heterometal-organic frameworks as highly sensitive and highly selective luminescent probes to detect I− ions in aqueous solutions. Chem. Commun. 51(19), 3985–3988 (2015). https://doi.org/10.1039/c4cc09081k
J.N. Hao, B. Yan, A water-stable lanthanide-functionalized MOF as a highly selective and sensitive fluorescent probe for Cd2+. Chem. Commun. 51(36), 7737–7740 (2015). https://doi.org/10.1039/c5cc01430a
D.X. Ma, B.Y. Li, X.J. Zhou, Q. Zhou, K. Liu, G. Zeng, G.H. Li, Z. Shi, S.H. Feng, A dual functional MOF as a luminescent sensor for quantitatively detecting the concentration of nitrobenzene and temperature. Chem. Commun. 49(79), 8964–8966 (2013). https://doi.org/10.1039/c3cc44546a
Y. Yu, J.P. Ma, C.W. Zhao, J. Yang, X.M. Zhang, Q.K. Liu, Y.B. Dong, Copper(I) metal–organic framework: visual sensor for detecting small polar aliphatic volatile organic compounds. Inorg. Chem. 54(24), 11590–11592 (2015). https://doi.org/10.1021/acs.inorgchem.5b02150
Y. Wang, Y.C. Wu, J. Xie, X.Y. Hu, Metal–organic framework modified carbon paste electrode for lead sensor. Sens. Actuators B-Chem. 177, 1161–1166 (2013). https://doi.org/10.1016/j.snb.2012.12.048
J. Yang, L.T. Yang, H.L. Ye, F.Q. Zhao, B.Z. Zeng, Highly dispersed AuPd alloy nanoparticles immobilized on UiO-66-NH2 metal–organic framework for the detection of nitrite. Electrochim. Acta 219, 647–654 (2016). https://doi.org/10.1016/j.electacta.2016.10.071
J.C. Jin, J. Wu, G.P. Yang, Y.L. Wu, Y.Y. Wang, A microporous anionic metal–organic framework for a highly selective and sensitive electrochemical sensor of Cu2+ ions. Chem. Commun. 52(54), 8475–8478 (2016). https://doi.org/10.1039/c6cc03063g
J. Zhou, X. Li, L.L. Yang, S.L. Yan, M.M. Wang et al., The Cu-MOF-199/single-walled carbon nanotubes modified electrode for simultaneous determination of hydroquinone and catechol with extended linear ranges and lower detection limits. Anal. Chim. Acta 899, 57–65 (2015). https://doi.org/10.1016/j.aca.2015.09.054
X.L. Zeng, Y.J. Zhang, J.Y. Zhang, H. Hu, X. Wu, Z. Long, X.D. Hou, Facile colorimetric sensing of Pb2+ using bimetallic lanthanide metal–organic frameworks as luminescent probe for field screen analysis of-lead-polluted environmental water. Microchem. J. 134, 140–145 (2017). https://doi.org/10.1016/j.microc.2017.05.011
H. Tian, H. Fan, M. Li, L. Ma, Zeolitic imidazolate framework coated ZnO nanorods as molecular sieving to improve selectivity of formaldehyde gas sensor. ACS Sensors 1(3), 243–250 (2015). https://doi.org/10.1021/acssensors.5b00236