Environmental Analysis with 2D Transition-Metal Dichalcogenide-Based Field-Effect Transistors
Corresponding Author: Shun Mao
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 95
Abstract
Field-effect transistors (FETs) present highly sensitive, rapid, and in situ detection capability in chemical and biological analysis. Recently, two-dimensional (2D) transition-metal dichalcogenides (TMDCs) attract significant attention as FET channel due to their unique structures and outstanding properties. With the booming of studies on TMDC FETs, we aim to give a timely review on TMDC-based FET sensors for environmental analysis in different media. First, theoretical basics on TMDC and FET sensor are introduced. Then, recent advances of TMDC FET sensor for pollutant detection in gaseous and aqueous media are, respectively, discussed. At last, future perspectives and challenges in practical application and commercialization are given for TMDC FET sensors. This article provides an overview on TMDC sensors for a wide variety of analytes with an emphasize on the increasing demand of advanced sensing technologies in environmental analysis.
Article Highlights:
1 Recent advances of two-dimensional (2D) transition-metal dichalcogenide (TMDC)-based field-effect transistor (FET) sensors for environmental analysis are summarized.
2 Representative TMDC FET sensors in gaseous and aqueous media analysis are introduced.
3 Challenges and future research directions of 2D TMDC FET sensors are discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.-P.N. Bui, J. Brockgreitens, S. Ahmed, A. Abbas, Dual detection of nitrate and mercury in water using disposable electrochemical sensors. Biosens. Bioelectron. 85, 280–286 (2016). https://doi.org/10.1016/j.bios.2016.05.017
- R.A. Potyrailo, Multivariable sensors for ubiquitous monitoring of gases in the era of internet of things and industrial internet. Chem. Rev. 116, 11877–11923 (2016). https://doi.org/10.1021/acs.chemrev.6b00187
- S. Mao, J. Chang, H. Pu, G. Lu, Q. He, H. Zhang, J. Chen, Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing. Chem. Soc. Rev. 46, 6872–6904 (2017). https://doi.org/10.1039/C6CS00827E
- L. Torsi, M. Magliulo, K. Manoli, G. Palazzo, Organic field-effect transistor sensors: a tutorial review. Chem. Soc. Rev. 42, 8612–8628 (2013). https://doi.org/10.1039/c3cs60127g
- E. Stern, A. Vacic, M.A. Reed, Semiconducting nanowire field-effect transistor biomolecular sensors. IEEE Trans. Electron. Devices 55, 3119–3130 (2008). https://doi.org/10.1109/TED.2008.2005168
- F. Wang, X. Hu, X. Niu, J. Xie, S. Chu, Q. Gong, Low-dimensional materials-based field-effect transistors. J. Mater. Chem. C 6, 924–941 (2018). https://doi.org/10.1039/C7TC04819J
- I. Meric, M.Y. Han, A.F. Young, B. Ozyilmaz, P. Kim, K.L. Shepard, Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat. Nanotechnol. 3, 654–659 (2008). https://doi.org/10.1038/nnano.2008.268
- J.O. Island, G.A. Steele, H.S.J. van der Zant, A. Castellanos-Gomez, Environmental instability of few-layer black phosphorus. 2D Mater. (2015). https://doi.org/10.1088/2053-1583/2/1/011002
- Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012). https://doi.org/10.1038/nnano.2012.193
- V. Yadav, S. Roy, P. Singh, Z. Khan, A. Jaiswal, 2D MoS2-based nanomaterials for therapeutic, bioimaging, and biosensing applications. Small 15, 1803706 (2019). https://doi.org/10.1002/smll.201803706
- B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011). https://doi.org/10.1038/nnano.2010.279
- S. Cui, Z. Wen, X. Huang, J. Chang, J. Chen, Stabilizing MoS2 nanosheets through sno2 nanocrystal decoration for high-performance gas sensing in air. Small 11, 2305–2313 (2015). https://doi.org/10.1002/smll.201402923
- J. Baek, D. Yin, N. Liu, I. Omkaram, C. Jung et al., A highly sensitive chemical gas detecting transistor based on highly crystalline CVD-grown MoSe2 films. Nano Res. 10, 1861–1871 (2017). https://doi.org/10.1007/s12274-016-1291-7
- Y. Han, D. Huang, Y. Ma, G. He, J. Hu et al., Design of hetero-nanostructures on MoS2 nanosheets to boost NO2 room-temperature sensing. ACS Appl. Mater. Interfaces 10, 22640 (2018). https://doi.org/10.1021/acsami.8b05811
- K.Y. Ko, J.-G. Song, Y. Kim, T. Choi, S. Shin et al., Improvement of gas-sensing performance of large-area tungsten disulfide nanosheets by surface functionalization. ACS Nano 10, 9287–9296 (2016). https://doi.org/10.1021/acsnano.6b03631
- B. Cho, M.G. Hahm, M. Choi, J. Yoon, A.R. Kim et al., Charge-transfer-based gas sensing using atomic-layer MoS2. Sci. Rep. 5, 8052 (2015). https://doi.org/10.1038/srep08052
- D.J. Late, T. Doneux, M. Bougouma, Single-layer MoSe2 based NH3 gas sensor. Appl. Phys. Lett. 105, 233103 (2014). https://doi.org/10.1063/1.4903358
- J.-S. Kim, H.-W. Yoo, H.O. Choi, H.-T. Jung, Tunable volatile organic compounds sensor by using thiolated ligand conjugation on MoS2. Nano Lett. 14, 5941–5947 (2014). https://doi.org/10.1021/nl502906a
- E. Wu, Y. Xie, B. Yuan, D. Hao, C. An et al., Specific and highly sensitive detection of ketone compounds based on p-type MoTe2 under ultraviolet illumination. ACS Appl. Mater. Interfaces 10, 35664–35669 (2018). https://doi.org/10.1021/acsami.8b14142
- S. Jiang, R. Cheng, R. Ng, Y. Huang, X. Duan, Highly sensitive detection of mercury(II) ions with few-layer molybdenum disulfide. Nano Res. 8, 257–262 (2015). https://doi.org/10.1007/s12274-014-0658-x
- G. Zhou, J. Chang, H. Pu, K. Shi, S. Mao et al., Ultrasensitive mercury ion detection using DNA-functionalized molybdenum disulfide nanosheet/gold nanoparticle hybrid field-effect transistor device. ACS Sensors 1, 295–302 (2016). https://doi.org/10.1021/acssensors.5b00241
- P. Li, D. Zhang, Y.E. Sun, H. Chang, J. Liu, N. Yin, Towards intrinsic MoS2 devices for high performance arsenite sensing. Appl. Phys. Lett. 109, 063110 (2016). https://doi.org/10.1063/1.4960967
- J. Shan, J. Li, X. Chu, M. Xu, F. Jin et al., High sensitivity glucose detection at extremely low concentrations using a MoS2-based field-effect transistor. RSC Adv. 8, 7942–7948 (2018). https://doi.org/10.1039/C7RA13614E
- C. Zheng, X. Jin, Y. Li, J. Mei, Y. Sun et al., Sensitive molybdenum disulfide based field effect transistor sensor for real-time monitoring of hydrogen peroxide. Sci. Rep. 9, 759 (2019). https://doi.org/10.1038/s41598-018-36752-y
- H.W. Lee, D.-H. Kang, J.H. Cho, S. Lee, D.-H. Jun, J.-H. Park, Highly sensitive and reusable membraneless field-effect transistor (FET)-type tungsten diselenide (WSe2) biosensors. ACS Appl. Mater. Interfaces 10, 17639–17645 (2018). https://doi.org/10.1021/acsami.8b03432
- J. Liu, X. Chen, Q. Wang, M. Xiao, D. Zhong, W. Sun, G. Zhang, Z. Zhang, Ultrasensitive monolayer MoS2 field-effect transistor based DNA sensors for screening of down syndrome. Nano Lett. 19, 1437–1444 (2019). https://doi.org/10.1021/acs.nanolett.8b03818
- A.B. Farimani, K. Min, N.R. Aluru, DNA base detection using a single-layer MoS2. ACS Nano 8, 7914–7922 (2014). https://doi.org/10.1021/nn5029295
- J. Mei, Y.-T. Li, H. Zhang, M.-M. Xiao, Y. Ning, Z.-Y. Zhang, G.-J. Zhang, Molybdenum disulfide field-effect transistor biosensor for ultrasensitive detection of DNA by employing morpholino as probe. Biosens. Bioelectron. 110, 71–77 (2018). https://doi.org/10.1016/j.bios.2018.03.043
- S.M. Majd, A. Salimi, F. Ghasemi, An ultrasensitive detection of miRNA-155 in breast cancer via direct hybridization assay using two-dimensional molybdenum disulfide field-effect transistor biosensor. Biosens. Bioelectron. 105, 6–13 (2018). https://doi.org/10.1016/j.bios.2018.01.009
- C.H. Naylor, N.J. Kybert, C. Schneier, J. Xi, G. Romero, J.G. Saven, R. Liu, A.T.C. Johnson, Scalable production of molybdenum disulfide based biosensors. ACS Nano 10, 6173–6179 (2016). https://doi.org/10.1021/acsnano.6b02137
- G. Yoo, H. Park, M. Kim, W.G. Song, S. Jeong et al., Real-time electrical detection of epidermal skin MoS2 biosensor for point-of-care diagnostics. Nano Res. 10, 767–775 (2017). https://doi.org/10.1007/s12274-016-1289-1
- L. Wang, Y. Wang, J.I. Wong, T. Palacios, J. Kong, H.Y. Yang, Functionalized MoS2 nanosheet-based field-effect biosensor for label-free sensitive detection of cancer marker proteins in solution. Small 10, 1101–1105 (2014). https://doi.org/10.1002/smll.201302081
- C. Singhal, M. Khanuja, N. Chaudhary, C.S. Pundir, J. Narang, Detection of chikungunya virus DNA using two-dimensional MoS2 nanosheets based disposable biosensor. Sci. Rep. 8, 7734 (2018). https://doi.org/10.1038/s41598-018-25824-8
- B. Sharma, A. Sharma, J.-S. Kim, Recent advances on H2 sensor technologies based on MOX and FET devices: a review. Sens. Actuator B-Chem. 262, 758–770 (2018). https://doi.org/10.1016/j.snb.2018.01.212
- C. Zhang, Y. Luo, J. Xu, M. Debliquy, Room temperature conductive type metal oxide semiconductor gas sensors for NO2 detection. Sens. Actuator A-Phys. 289, 118–133 (2019). https://doi.org/10.1016/j.sna.2019.02.027
- L. Hao, Y. Liu, W. Gao, Y. Liu, Z. Han, L. Yu, Q. Xue, J. Zhu, High hydrogen sensitivity of vertically standing layered MoS2/Si heterojunctions. J. Alloys Compd. 682, 29–34 (2016). https://doi.org/10.1016/j.jallcom.2016.04.277
- C. Kuru, D. Choi, A. Kargar, C.H. Liu, S. Yavuz, C. Choi, S. Jin, P.R. Bandaru, High-performance flexible hydrogen sensor made of WS2 nanosheet–Pd nanoparticle composite film. Nanotechnology 27, 195501 (2016). https://doi.org/10.1088/0957-4484/27/19/195501
- F. Perrozzi, S.M. Emamjomeh, V. Paolucci, G. Taglieri, L. Ottaviano, C. Cantalini, Thermal stability of WS2 flakes and gas sensing properties of WS2/WO3 composite to H2, NH3 and NO2. Sens. Actuator B-Chem. 243, 812–822 (2017). https://doi.org/10.1016/j.snb.2016.12.069
- M. Donarelli, S. Prezioso, F. Perrozzi, F. Bisti, M. Nardone, L. Giancaterini, C. Cantalini, L. Ottaviano, Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors. Sens. Actuator B-Chem. 207, 602–613 (2015). https://doi.org/10.1016/j.snb.2014.10.099
- B. Liu, L. Chen, G. Liu, A.N. Abbas, M. Fathi, C. Zhou, High-performance chemical sensing using schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. ACS Nano 8, 5304–5314 (2014). https://doi.org/10.1021/nn5015215
- R. Guo, Y. Han, C. Su, X. Chen, M. Zeng et al., Ultrasensitive room temperature NO2 sensors based on liquid phase exfoliated WSe2 nanosheets. Sens. Actuator B-Chem. 300, 127013 (2019). https://doi.org/10.1016/j.snb.2019.127013
- Z. Feng, Y. Xie, J. Chen, Y. Yu, S. Zheng et al., Highly sensitive MoTe2 chemical sensor with fast recovery rate through gate biasing. 2D Mater. 4, 025018 (2017). https://doi.org/10.1088/2053-1583/aa57fe
- I. Shackery, A. Pezeshki, J.Y. Park, U. Palanivel, H.J. Kwon et al., Few-layered α-MoTe2 Schottky junction for a high sensitivity chemical-vapour sensor. J. Mater. Chem. C 6, 10714–10722 (2018). https://doi.org/10.1039/C8TC02635A
- A. Pezeshki, S.H. Hosseini Shokouh, S.R.A. Raza, J.S. Kim, S.-W. Min, I. Shackery, S.C. Jun, S. Im, Top and back gate molybdenum disulfide transistors coupled for logic and photo-inverter operation. J. Mater. Chem. C 2, 8023–8028 (2014). https://doi.org/10.1039/C4TC01673D
- Y. Xu, C. Cheng, S. Du, J. Yang, B. Yu et al., Contacts between two- and three-dimensional materials: ohmic, schottky, and p–n heterojunctions. ACS Nano 10, 4895–4919 (2016). https://doi.org/10.1021/acsnano.6b01842
- S. Ahmed, M. Shawkat, M.I. Chowdhury, S. Mominuzzaman, Gate dielectric material dependence of current-voltage characteristics of ballistic Schottky barrier graphene nanoribbon field-effect transistor and carbon nanotube field-effect transistor for different channel lengths. Micro Nano Lett. 10, 523–527 (2015). https://doi.org/10.1049/mnl.2015.0193
- W. Bao, X. Cai, D. Kim, K. Sridhara, M.S. Fuhrer, High mobility ambipolar MoS2 field-effect transistors: substrate and dielectric effects. Appl. Phys. Lett. 102, 042104 (2013). https://doi.org/10.1063/1.4789365
- C. Zhang, P. Chen, W. Hu, Organic field-effect transistor-based gas sensors. Chem. Soc. Rev. 44, 2087–2107 (2015). https://doi.org/10.1039/C4CS00326H
- G. Shalev, Y. Rosenwaks, I. Levy, The interplay between pH sensitivity and label-free protein detection in immunologically modified nano-scaled field-effect transistor. Biosens. Bioelectron. 31, 510–515 (2012). https://doi.org/10.1016/j.bios.2011.11.038
- E. Stern, R. Wagner, F.J. Sigworth, R. Breaker, T.M. Fahmy, M.A. Reed, Importance of the Debye screening length on nanowire field effect transistor sensors. Nano Lett. 7, 3405–3409 (2007). https://doi.org/10.1021/nl071792z
- M. Pumera, A.H. Loo, Layered transition-metal dichalcogenides (MoS2 and WS2) for sensing and biosensing. TrAC Trends Anal. Chem. 61, 49–53 (2014). https://doi.org/10.1016/j.trac.2014.05.009
- B.L. Li, J. Wang, H.L. Zou, S. Garaj, C.T. Lim, J. Xie, N.B. Li, D.T. Leong, Low-dimensional transition metal dichalcogenide nanostructures based sensors. Adv. Funct. Mater. 26, 7034–7056 (2016). https://doi.org/10.1002/adfm.201602136
- J. Ping, Z. Fan, M. Sindoro, Y. Ying, H. Zhang, Recent advances in sensing applications of two-dimensional transition metal dichalcogenide nanosheets and their composites. Adv. Funct. Mater. 27, 1605817 (2017). https://doi.org/10.1002/adfm.201605817
- X. Gan, H. Zhao, X. Quan, Two-dimensional MoS2: a promising building block for biosensors. Biosens. Bioelectron. 89, 56–71 (2017). https://doi.org/10.1016/j.bios.2016.03.042
- W. Zhang, P. Zhang, Z. Su, G. Wei, Synthesis and sensor applications of MoS2-based nanocomposites. Nanoscale 7, 18364–18378 (2015). https://doi.org/10.1039/C5NR06121K
- S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis, 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017). https://doi.org/10.1038/natrevmats.2017.33
- D.M. Andoshe, J.-M. Jeon, S.Y. Kim, H.W. Jang, Two-dimensional transition metal dichalcogenide nanomaterials for solar water splitting. Electron. Mater. Lett. 11, 323–335 (2015). https://doi.org/10.1007/s13391-015-4402-9
- K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102, 10451–10453 (2005). https://doi.org/10.1073/pnas.0502848102
- M. Samadi, N. Sarikhani, M. Zirak, H. Zhang, H.-L. Zhang, A.Z. Moshfegh, Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives. Nanoscale Horiz. 3, 90–204 (2018). https://doi.org/10.1039/C7NH00137A
- S. Ahmed, J. Yi, Two-dimensional transition metal dichalcogenides and their charge carrier mobilities in field-effect transistors. Nano-Micro Lett. 9, 50 (2017). https://doi.org/10.1007/s40820-017-0152-6
- G.S. Duesberg, T. Hallam, M. O'Brien, R. Gatensby, H.-Y. Kim et al., Investigation of 2D transition metal dichalcogenide films for electronic devices. 2015 Joint International Eurosoi Workshop and International Conference on Ultimate Integration on Silicon (Eurosoi-Ulis), pp. 73–76 (2015). https://doi.org/10.1109/ULIS.2015.7063776
- R.H. Friend, A.D. Yoffe, Electronic properties of intercalation complexes of the transition metal dichalcogenides. Adv. Phys. 36, 1–94 (1987). https://doi.org/10.1080/00018738700101951
- H. Li, X. Jia, Q. Zhang, X. Wang, Metallic transition-metal dichalcogenide nanocatalysts for energy conversion. Chem 4, 1510–1537 (2018). https://doi.org/10.1016/j.chempr.2018.03.012
- I.A. Rahman, A. Purqon, First principles study of molybdenum disulfide electronic structure. J. Phys. Conf. Ser. 877, 012026 (2017). https://doi.org/10.1088/1742-6596/877/1/012026
- C. Gong, H. Zhang, W. Wang, L. Colombo, R.M. Wallace, K. Cho, Band alignment of two-dimensional transition metal dichalcogenides: application in tunnel field effect transistors. Appl. Phys. Lett. 103, 053513 (2013). https://doi.org/10.1063/1.4817409
- Y.-W. Son, M.L. Cohen, S.G. Louie, Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006). https://doi.org/10.1103/PhysRevLett.97.216803
- E.V. Castro, K.S. Novoselov, S.V. Morozov, N.M.R. Peres, J.M.B.L. dos Santos et al., Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99, 216802 (2007). https://doi.org/10.1103/PhysRevLett.99.216802
- M.-H. Chiu, W.-H. Tseng, H.-L. Tang, Y.-H. Chang, C.-H. Chen et al., Band alignment of 2D transition metal dichalcogenide heterojunctions. Adv. Funct. Mater. 27, 1603756 (2017). https://doi.org/10.1002/adfm.201603756
- C.R. Kagan, in Molecular Monolayers as Semiconducting Channels in Field Effect Transistors, ed. by R.M. Metzger (Springer, Berlin, 2012), pp. 213–237
- H. Fang, S. Chuang, T.C. Chang, K. Takei, T. Takahashi, A. Javey, High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 12, 3788–3792 (2012). https://doi.org/10.1021/nl301702r
- B. Radisavljevic, M.B. Whitwick, A. Kis, Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 5, 9934–9938 (2011). https://doi.org/10.1021/nn203715c
- S. Chuang, C. Battaglia, A. Azcatl, S. McDonnell, J.S. Kang et al., MoS2 P-type transistors and diodes enabled by high work function MoOx contacts. Nano Lett. 14, 1337–1342 (2014). https://doi.org/10.1021/nl4043505
- I. Ferain, C.A. Colinge, J.-P. Colinge, Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors. Nature 479, 310–316 (2011). https://doi.org/10.1038/nature10676
- G.D. Wilk, R.M. Wallace, J.M. Anthony, High-κ gate dielectrics: current status and materials properties considerations. J. Appl. Phys. 89, 5243–5275 (2001). https://doi.org/10.1063/1.1361065
- Z. Hu, Z. Wu, C. Han, J. He, Z. Ni, W. Chen, Two-dimensional transition metal dichalcogenides: interface and defect engineering. Chem. Soc. Rev. 47, 3100–3128 (2018). https://doi.org/10.1039/C8CS00024G
- B. Radisavljevic, A. Kis, Reply to 'Measurement of mobility in dual-gated MoS2 transistors'. Nat. Nanotechnol. 8, 147–148 (2013). https://doi.org/10.1038/nnano.2013.31
- D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, M.C. Hersam, Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8, 1102–1120 (2014). https://doi.org/10.1021/nn500064s
- X. Li, J. Shan, W. Zhang, S. Su, L. Yuwen, L. Wang, Recent advances in synthesis and biomedical applications of two-dimensional transition metal dichalcogenide nanosheets. Small 13, 1602660 (2017). https://doi.org/10.1002/smll.201602660
- S. Kanungo, Presented at 2018 International Symposium on Devices, Circuits and Systems (ISDCS) Introduction to dielectrically modulated biological field effect transistor, 29–31 March, 2018
- H. Im, X.-J. Huang, B. Gu, Y.-K. Choi, A dielectric-modulated field-effect transistor for biosensing. Nat. Nanotechnol. 2, 430–434 (2007). https://doi.org/10.1038/nnano.2007.180
- D. Sarkar, W. Liu, X. Xie, A.C. Anselmo, S. Mitragotri, K. Banerjee, MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano 8, 3992–4003 (2014). https://doi.org/10.1021/nn5009148
- Y. Ohno, K. Maehashi, K. Matsumoto, Label-free biosensors based on aptamer-modified graphene field-effect transistors. J. Am. Chem. Soc. 132, 18012–18013 (2010). https://doi.org/10.1021/ja108127r
- Q. He, Z. Zeng, Z. Yin, H. Li, S. Wu, X. Huang, H. Zhang, Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. Small 8, 2994–2999 (2012). https://doi.org/10.1002/smll.201201224
- E. Lee, Y.S. Yoon, D.-J. Kim, Two-dimensional transition metal dichalcogenides and metal oxide hybrids for gas sensing. ACS Sensors 3, 2045–2060 (2018). https://doi.org/10.1021/acssensors.8b01077
- Z. Wang, B. Mi, Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets. Environ. Sci. Technol. 51, 8229–8244 (2017). https://doi.org/10.1021/acs.est.7b01466
- Q. Yue, Z. Shao, S. Chang, J. Li, Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field. Nanoscale Res. Lett. 8, 425 (2013). https://doi.org/10.1186/1556-276x-8-425
- W.S. Hwang, M. Remskar, R. Yan, V. Protasenko, K. Tahy et al., Transistors with chemically synthesized layered semiconductor WS2 exhibiting 105 room temperature modulation and ambipolar behavior. Appl. Phys. Lett. 101, 013107 (2012). https://doi.org/10.1063/1.4732522
- H. Li, Z. Yin, Q. He, H. Li, X. Huang et al., Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 8, 63–67 (2012). https://doi.org/10.1002/smll.201101016
- D.J. Late, Y.-K. Huang, B. Liu, J. Acharya, S.N. Shirodkar et al., Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 7, 4879–4891 (2013). https://doi.org/10.1021/nn400026u
- Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, H. Zhang, Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem. Int. Ed. 50, 11093–11097 (2011). https://doi.org/10.1002/anie.201106004
- W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande, Y.H. Lee, Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20, 116–130 (2017). https://doi.org/10.1016/j.mattod.2016.10.002
- H. Im, A. AlMutairi, S. Kim, M. Sritharan, S. Kim, Y. Yoon, On MoS2 thin-film transistor design consideration for a NO2 gas sensor. ACS Sensors 4, 2930–2936 (2019). https://doi.org/10.1021/acssensors.9b01307
- J. Huang, J. Chu, Z. Wang, J. Zhang, A. Yang et al., Chemisorption of NO2 to MoS2 nanostructures and its effects for MoS2 sensors. ChemNanoMat 5, 1123–1130 (2019). https://doi.org/10.1002/cnma.201900350
- N. Huo, S. Yang, Z. Wei, S.-S. Li, J.-B. Xia, J. Li, Photoresponsive and Gas Sensing Field-Effect Transistors based on Multilayer WS2 Nanoflakes. Sci. Rep. 4, 5209 (2014). https://doi.org/10.1038/srep05209
- H. Li, J. Wu, Z. Yin, H. Zhang, Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc. Chem. Res. 47, 1067–1075 (2014). https://doi.org/10.1021/ar4002312
- T. Wang, R. Zhao, X. Zhao, Y. An, X. Dai, C. Xia, Tunable donor and acceptor impurity states in a WSe2 monolayer by adsorption of common gas molecules. RSC Adv. 6, 82793–82800 (2016). https://doi.org/10.1039/C6RA17643G
- Y. Hong, W.-M. Kang, I.-T. Cho, J. Shin, M. Wu, J.-H. Lee, Gas-sensing characteristics of exfoliated WSe2 field-effect transistors. J. Nanosci. Nanotechnol. 17, 3151–3154 (2017). https://doi.org/10.1166/jnn.2017.14039
- K.Y. Ko, K. Park, S. Lee, Y. Kim, W.J. Woo et al., Recovery improvement for large-area tungsten diselenide gas sensors. ACS Appl. Mater. Interfaces 10, 23910–23917 (2018). https://doi.org/10.1021/acsami.8b07034
- Y.-F. Lin, Y. Xu, C.-Y. Lin, Y.-W. Suen, M. Yamamoto, S. Nakaharai, K. Ueno, K. Tsukagoshi, Origin of noise in layered MoTe2 transistors and its possible use for environmental sensors. Adv. Mater. 27, 6612–6619 (2015). https://doi.org/10.1002/adma.201502677
- M. Wu, C.-H. Kim, J. Shin, Y. Hong, X. Jin, J.-H. Lee, Effect of a pre-bias on the adsorption and desorption of oxidizing gases in FET-type sensor. Sens. Actuator B-Chem. 245, 122–128 (2017). https://doi.org/10.1016/j.snb.2017.01.110
- Y. Kim, K.C. Kwon, S. Kang, C. Kim, T.H. Kim et al., Two-dimensional NbS2 gas sensors for selective and reversible NO2 detection at room temperature. ACS Sensors 4, 2395–2402 (2019). https://doi.org/10.1021/acssensors.9b00992
- R. Chaurasiya, A. Dixit, Defect engineered MoSSe Janus monolayer as a promising two dimensional material for NO2 and NO gas sensing. Appl. Surf. Sci. 490, 204–219 (2019). https://doi.org/10.1016/j.apsusc.2019.06.049
- K.Y. Ko, S. Lee, K. Park, Y. Kim, W.J. Woo et al., High-performance gas sensor using a large-area WS2xSe2–2x alloy for low-power operation wearable applications. ACS Appl. Mater. Interfaces 10, 34163–34171 (2018). https://doi.org/10.1021/acsami.8b10455
- H.K. Choi, J. Park, N. Myoung, H.-J. Kim, J.S. Choi et al., Gas molecule sensing of van der Waals tunnel field effect transistors. Nanoscale 9, 18644–18650 (2017). https://doi.org/10.1039/C7NR05712A
- H.S. Hong, N.H. Phuong, N.T. Huong, N.H. Nam, N.T. Hue, Highly sensitive and low detection limit of resistive NO2 gas sensor based on a MoS2/graphene two-dimensional heterostructures. Appl. Surf. Sci. 492, 449–454 (2019). https://doi.org/10.1016/j.apsusc.2019.06.230
- Y. Han, Y. Liu, C. Su, S. Wang, H. Li et al., Interface engineered WS2/ZnS heterostructures for sensitive and reversible NO2 room temperature sensing. Sens. Actuator B-Chem. 296, 126666 (2019). https://doi.org/10.1016/j.snb.2019.126666
- M. Ikram, L. Liu, Y. Liu, L. Ma, H. Lv et al., Fabrication and characterization of a high-surface area MoS2@WS2 heterojunction for the ultra-sensitive NO2 detection at room temperature. J. Mater. Chem. A 7, 14602–14612 (2019). https://doi.org/10.1039/C9TA03452H
- W.-T. Koo, J.-H. Cha, J.-W. Jung, S.-J. Choi, J.-S. Jang, D.-H. Kim, I.-D. Kim, Few-layered WS2 nanoplates confined in Co, N-doped hollow carbon nanocages: abundant WS2 edges for highly sensitive gas sensors. Adv. Funct. Mater. 28, 1802575 (2018). https://doi.org/10.1002/adfm.201802575
- S.-Y. Cho, S.J. Kim, Y. Lee, J.-S. Kim, W.-B. Jung, H.-W. Yoo, J. Kim, H.-T. Jung, Highly enhanced gas adsorption properties in vertically aligned MoS2 layers. ACS Nano 9, 9314–9321 (2015). https://doi.org/10.1021/acsnano.5b04504
- M. Wu, J. Shin, Y. Hong, X. Jin, J. Lee, Pulse biasing scheme for the fast recovery of FET-type gas sensors for reducing gases. IEEE Electron Device Lett. 38, 971–974 (2017). https://doi.org/10.1109/LED.2017.2707592
- M. O’Brien, K. Lee, R. Morrish, N.C. Berner, N. McEvoy, C.A. Wolden, G.S. Duesberg, Plasma assisted synthesis of WS2 for gas sensing applications. Chem. Phys. Lett. 615, 6–10 (2014). https://doi.org/10.1016/j.cplett.2014.09.051
- X. Li, X. Li, Z. Li, J. Wang, J. Zhang, WS2 nanoflakes based selective ammonia sensors at room temperature. Sens. Actuator B-Chem. 240, 273–277 (2017). https://doi.org/10.1016/j.snb.2016.08.163
- Z. Feng, Y. Xie, E. Wu, Y. Yu, S. Zheng et al., Enhanced sensitivity of MoTe2 chemical sensor through light illumination. Micromachines 8, 155 (2017). https://doi.org/10.3390/mi8050155
- X. Huang, Z. Zeng, S. Bao, M. Wang, X. Qi, Z. Fan, H. Zhang, Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 4, 1444 (2013). https://doi.org/10.1038/ncomms2472
- D. Sarkar, X. Xie, J. Kang, H. Zhang, W. Liu, J. Navarrete, M. Moskovits, K. Banerjee, Functionalization of transition metal dichalcogenides with metallic nanoparticles: implications for doping and gas-sensing. Nano Lett. 15, 2852–2862 (2015). https://doi.org/10.1021/nl504454u
- D. Zhang, Y.E. Sun, C. Jiang, Y. Zhang, Room temperature hydrogen gas sensor based on palladium decorated tin oxide/molybdenum disulfide ternary hybrid via hydrothermal route. Sens. Actuator B-Chem. 242, 15–24 (2017). https://doi.org/10.1016/j.snb.2016.11.005
- R. Samnakay, C. Jiang, S.L. Rumyantsev, M.S. Shur, A.A. Balandin, Selective chemical vapor sensing with few-layer MoS2 thin-film transistors: comparison with graphene devices. Appl. Phys. Lett. 106, 023115 (2015). https://doi.org/10.1063/1.4905694
- F.K. Perkins, A.L. Friedman, E. Cobas, P.M. Campbell, G.G. Jernigan, B.T. Jonker, Chemical vapor sensing with monolayer MoS2. Nano Lett. 13, 668–673 (2013). https://doi.org/10.1021/nl3043079
- A.L. Friedman, F. Keith Perkins, E. Cobas, G.G. Jernigan, P.M. Campbell, A.T. Hanbicki, B.T. Jonker, Chemical vapor sensing of two-dimensional MoS2 field effect transistor devices. Solid State Electron. 101, 2–7 (2014). https://doi.org/10.1016/j.sse.2014.06.013
- A.L. Friedman, F.K. Perkins, A.T. Hanbicki, J.C. Culbertson, P.M. Campbell, Dynamics of chemical vapor sensing with MoS2 using 1T/2H phase contacts/channel. Nanoscale 8, 11445–11453 (2016). https://doi.org/10.1039/c6nr01979j
- C.C. Mayorga-Martinez, A. Ambrosi, A.Y.S. Eng, Z. Sofer, M. Pumera, Metallic 1T-WS2 for selective impedimetric vapor sensing. Adv. Funct. Mater. 25, 5611–5616 (2015). https://doi.org/10.1002/adfm.201502223
- G. Liu, S.L. Rumyantsev, C. Jiang, M.S. Shur, A.A. Balandin, Selective gas sensing with h-BN capped MoS2 heterostructure thin-film transistors. IEEE Electron Device Lett. 36, 1202–1204 (2015). https://doi.org/10.1109/LED.2015.2481388
- X. Chen, H. Pu, Z. Fu, X. Sui, J. Chang, J. Chen, S. Mao, Real-time and selective detection of nitrates in water using graphene-based field-effect transistor sensors. Environ. Sci. Nano 5, 1990–1999 (2018). https://doi.org/10.1039/C8EN00588E
- G.A.N. Gowda, D. Djukovic, in Overview of Mass Spectrometry-Based Metabolomics: Opportunities and Challenges, ed. by D. Raftery (Springer, New York, 2014), pp. 3–12
- A. Castellanos-Gomez, M. Poot, G.A. Steele, H.S.J. van der Zant, N. Agraït, G. Rubio-Bollinger, Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater. 24, 772–775 (2012). https://doi.org/10.1002/adma.201103965
- M.-P. Lu, X.-Y. Dai, M.-Y. Lu, Probing electron mobility of monolayer MoS2 field-effect transistors in aqueous environments. Adv. Electron. Mater. 4, 1700418 (2018). https://doi.org/10.1002/aelm.201700418
- H. Wang, P. Zhao, X. Zeng, C.D. Young, W. Hu, High-stability pH sensing with a few-layer MoS2 field-effect transistor. Nanotechnology 30, 375203 (2019). https://doi.org/10.1088/1361-6528/ab277b
- K. Datta, A. Shadman, E. Rahman, Q.D.M. Khosru, Trilayer TMDC heterostructures for MOSFETs and nanobiosensors. J. Electron. Mater. 46, 1248–1260 (2017). https://doi.org/10.1007/s11664-016-5078-0
- P. Li, D. Zhang, Z. Wu, Flexible MoS2 sensor arrays for high performance label-free ion sensing. Sens. Actuator A-Phys. 286, 51–58 (2019). https://doi.org/10.1016/j.sna.2018.12.026
- J.H. An, J. Jang, A highly sensitive FET-type aptasensor using flower-like MoS2 nanospheres for real-time detection of arsenic(III). Nanoscale 9, 7483–7492 (2017). https://doi.org/10.1039/C7NR01661A
- N.M. Vieno, H. Härkki, T. Tuhkanen, L. Kronberg, Occurrence of pharmaceuticals in river water and their elimination in a pilot-scale drinking water treatment plant. Environ. Sci. Technol. 41, 5077–5084 (2007). https://doi.org/10.1021/es062720x
- H.-Y. Park, S.R. Dugasani, D.-H. Kang, G. Yoo, J. Kim et al., M-DNA/transition metal dichalcogenide hybrid structure-based bio-fet sensor with ultra-high sensitivity. Sci. Rep. 6, 35733 (2016). https://doi.org/10.1038/srep35733
- X. Chen, S. Hao, B. Zong, C. Liu, S. Mao, Ultraselective antibiotic sensing with complementary strand DNA assisted aptamer/MoS2 field-effect transistors. Biosens. Bioelectron. 145, 111711 (2019). https://doi.org/10.1016/j.bios.2019.111711
- J. Lee, P. Dak, Y. Lee, H. Park, W. Choi, M.A. Alam, S. Kim, Two-dimensional layered MoS2 biosensors enable highly sensitive detection of biomolecules. Sci. Rep. 4, 7352 (2014). https://doi.org/10.1038/srep07352
- M.H. Kim, H. Park, H. Lee, K. Nam, S. Jeong et al., Research Update: Nanoscale surface potential analysis of MoS2 field-effect transistors for biomolecular detection using Kelvin probe force microscopy. APL Mater. 4, 100701 (2016). https://doi.org/10.1063/1.4964488
- H. Nam, B.-R. Oh, P. Chen, J.S. Yoon, S. Wi, M. Chen, K. Kurabayashi, X. Liang, Two different device physics principles for operating MoS2 transistor biosensors with femtomolar-level detection limits. Appl. Phys. Lett. 107, 012105 (2015). https://doi.org/10.1063/1.4926800
- M. Kukkar, S.K. Tuteja, A.L. Sharma, V. Kumar, A.K. Paul, K.-H. Kim, P. Sabherwal, A. Deep, A new electrolytic synthesis method for few-layered MoS2 nanosheets and their robust biointerfacing with reduced antibodies. ACS Appl. Mater. Interfaces 8, 16555–16563 (2016). https://doi.org/10.1021/acsami.6b03079
- H. Park, G. Han, S.W. Lee, H. Lee, S.H. Jeong et al., Label-free and recalibrated multilayer MoS2 biosensor for point-of-care diagnostics. ACS Appl. Mater. Interfaces 9, 43490–43497 (2017). https://doi.org/10.1021/acsami.7b14479
- H. Nam, B.-R. Oh, M. Chen, S. Wi, D. Li, K. Kurabayashi, X. Liang, Fabrication and comparison of MoS2 and WSe2 field-effect transistor biosensors. J. Vac. Sci. Technol. B 33, 6 (2015). https://doi.org/10.1116/1.4930040
- M. Sajid, A. Osman, G.U. Siddiqui, H.B. Kim, S.W. Kim, J.B. Ko, Y.K. Lim, K.H. Choi, All-printed highly sensitive 2D MoS2 based multi-reagent immunosensor for smartphone based point-of-care diagnosis. Sci. Rep. 7, 5802–5802 (2017). https://doi.org/10.1038/s41598-017-06265-1
- H. Park, H. Lee, S.H. Jeong, E. Lee, W. Lee et al., MoS2 field-effect transistor-amyloid-β1–42 hybrid device for signal amplified detection of MMP-9. Anal. Chem. 91, 8252–8258 (2019). https://doi.org/10.1021/acs.analchem.9b00926
- X. Gong, Y. Liu, H. Xiang, H. Liu, Z. Liu et al., Membraneless reproducible MoS2 field-effect transistor biosensor for high sensitive and selective detection of FGF21. Sci. China Mater. 62, 1479–1487 (2019). https://doi.org/10.1007/s40843-019-9444-y
- B. Ryu, H. Nam, B.-R. Oh, Y. Song, P. Chen et al., Cyclewise operation of printed MoS2 transistor biosensors for rapid biomolecule quantification at femtomolar levels. ACS Sensors 2, 274–281 (2017). https://doi.org/10.1021/acssensors.6b00795
- D.-W. Lee, J. Lee, I.Y. Sohn, B.-Y. Kim, Y.M. Son et al., Field-effect transistor with a chemically synthesized MoS2 sensing channel for label-free and highly sensitive electrical detection of DNA hybridization. Nano Res. 8, 2340–2350 (2015). https://doi.org/10.1007/s12274-015-0744-8
- K. Jin, L. Xie, Y. Tian, D. Liu, Au-modified monolayer MoS2 sensor for DNA detection. J. Phys. Chem. C 120, 11204–11209 (2016). https://doi.org/10.1021/acs.jpcc.6b01193
- K. Liu, J. Feng, A. Kis, A. Radenovic, Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation. ACS Nano 8, 2504–2511 (2014). https://doi.org/10.1021/nn406102h
- L. Liang, F. Liu, Z. Kong, J.-W. Shen, H. Wang, H. Wang, L. Li, Theoretical studies on key factors in DNA sequencing using atomically thin molybdenum disulfide nanopores. Phys. Chem. Chem. Phys. 20, 28886–28893 (2018). https://doi.org/10.1039/C8CP06167J
- W. Si, Y. Zhang, J. Sha, Y. Chen, Controllable and reversible DNA translocation through a single-layer molybdenum disulfide nanopore. Nanoscale 10, 19450–19458 (2018). https://doi.org/10.1039/C8NR05830J
- M. Graf, M. Lihter, D. Altus, S. Marion, A. Radenovic, Transverse detection of DNA using a MoS2 nanopore. Nano Lett. 19, 9075–9083 (2019). https://doi.org/10.1021/acs.nanolett.9b04180
- A. Moudgil, S. Singh, N. Mishra, P. Mishra, S. Das, MoS2/TiO2 hybrid nanostructure-based field-effect transistor for highly sensitive, selective, and rapid detection of gram-positive bacteria. Adv. Mater. Technol. 5, 1900615 (2019). https://doi.org/10.1002/admt.201900615
- P. Zhang, S. Yang, R. Pineda-Gómez, B. Ibarlucea, J. Ma et al., Electrochemically exfoliated high-quality 2H-MoS2 for multiflake thin film flexible biosensors. Small 15, 1901265 (2019). https://doi.org/10.1002/smll.201901265
- X. Li, H. Zhu, Two-dimensional MoS2: properties, preparation, and applications. J. Materiomics. 1, 33–44 (2015). https://doi.org/10.1016/j.jmat.2015.03.003
- H. Yang, A. Giri, S. Moon, S. Shin, J.-M. Myoung, U. Jeong, Highly scalable synthesis of MoS2 thin films with precise thickness control via polymer-assisted deposition. Chem. Mater. 29, 5772–5776 (2017). https://doi.org/10.1021/acs.chemmater.7b01605
- T.H. Kim, Y.H. Kim, S.Y. Park, S.Y. Kim, H.W. Jang, Two-dimensional transition metal disulfides for chemoresistive gas sensing: perspective and challenges. Chemosensors 5, 15 (2017). https://doi.org/10.3390/chemosensors5020015
- H.U. Hassan, J. Mun, B.S. Kang, J.Y. Song, T. Kim, S.-W. Kang, Sensor based on chemical vapour deposition-grown molybdenum disulphide for gas sensing application. RSC Adv. 6, 75839–75843 (2016). https://doi.org/10.1039/C6RA10132A
- D. Zhang, J. Wu, P. Li, Y. Cao, Room-temperature SO2 gas-sensing properties based on a metal-doped MoS2 nanoflower: an experimental and density functional theory investigation. J. Mater. Chem. A 5, 20666–20677 (2017). https://doi.org/10.1039/C7TA07001B
- K. Lee, R. Gatensby, N. McEvoy, T. Hallam, G.S. Duesberg, High-performance sensors based on molybdenum disulfide thin films. Adv. Mater. 25, 6699–6702 (2013). https://doi.org/10.1002/adma.201303230
- D. Zhang, C. Jiang, Y.E. Sun, Room-temperature high-performance ammonia gas sensor based on layer-by-layer self-assembled molybdenum disulfide/zinc oxide nanocomposite film. J. Alloys Compd. 698, 476–483 (2017). https://doi.org/10.1016/j.jallcom.2016.12.222
- Z. Qin, C. Ouyang, J. Zhang, L. Wan, S. Wang, C. Xie, D. Zeng, 2D WS2 nanosheets with TiO2 quantum dots decoration for high-performance ammonia gas sensing at room temperature. Sens. Actuator B-Chem. 253, 1034–1042 (2017). https://doi.org/10.1016/j.snb.2017.07.052
- N.P. Rezende, A.R. Cadore, A.C. Gadelha, C.L. Pereira, V. Ornelas et al., Probing the electronic properties of monolayer MoS2 via interaction with molecular hydrogen. Adv. Electron. Mater. 5, 1800591 (2019). https://doi.org/10.1002/aelm.201800591
- X. Li, J. Wang, D. Xie, J. Xu, Y. Xia, L. Xiang, S. Komarneni, Reduced graphene oxide/MoS2 hybrid films for room-temperature formaldehyde detection. Mater. Lett. 189, 42–45 (2017). https://doi.org/10.1016/j.matlet.2016.11.046
- S.T. Le, N.B. Guros, R.C. Bruce, A. Cardone, N.D. Amin et al., Quantum capacitance-limited MoS2 biosensors enable remote label-free enzyme measurements. Nanoscale 11, 15622–15632 (2019). https://doi.org/10.1039/C9NR03171E
References
M.-P.N. Bui, J. Brockgreitens, S. Ahmed, A. Abbas, Dual detection of nitrate and mercury in water using disposable electrochemical sensors. Biosens. Bioelectron. 85, 280–286 (2016). https://doi.org/10.1016/j.bios.2016.05.017
R.A. Potyrailo, Multivariable sensors for ubiquitous monitoring of gases in the era of internet of things and industrial internet. Chem. Rev. 116, 11877–11923 (2016). https://doi.org/10.1021/acs.chemrev.6b00187
S. Mao, J. Chang, H. Pu, G. Lu, Q. He, H. Zhang, J. Chen, Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing. Chem. Soc. Rev. 46, 6872–6904 (2017). https://doi.org/10.1039/C6CS00827E
L. Torsi, M. Magliulo, K. Manoli, G. Palazzo, Organic field-effect transistor sensors: a tutorial review. Chem. Soc. Rev. 42, 8612–8628 (2013). https://doi.org/10.1039/c3cs60127g
E. Stern, A. Vacic, M.A. Reed, Semiconducting nanowire field-effect transistor biomolecular sensors. IEEE Trans. Electron. Devices 55, 3119–3130 (2008). https://doi.org/10.1109/TED.2008.2005168
F. Wang, X. Hu, X. Niu, J. Xie, S. Chu, Q. Gong, Low-dimensional materials-based field-effect transistors. J. Mater. Chem. C 6, 924–941 (2018). https://doi.org/10.1039/C7TC04819J
I. Meric, M.Y. Han, A.F. Young, B. Ozyilmaz, P. Kim, K.L. Shepard, Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat. Nanotechnol. 3, 654–659 (2008). https://doi.org/10.1038/nnano.2008.268
J.O. Island, G.A. Steele, H.S.J. van der Zant, A. Castellanos-Gomez, Environmental instability of few-layer black phosphorus. 2D Mater. (2015). https://doi.org/10.1088/2053-1583/2/1/011002
Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012). https://doi.org/10.1038/nnano.2012.193
V. Yadav, S. Roy, P. Singh, Z. Khan, A. Jaiswal, 2D MoS2-based nanomaterials for therapeutic, bioimaging, and biosensing applications. Small 15, 1803706 (2019). https://doi.org/10.1002/smll.201803706
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011). https://doi.org/10.1038/nnano.2010.279
S. Cui, Z. Wen, X. Huang, J. Chang, J. Chen, Stabilizing MoS2 nanosheets through sno2 nanocrystal decoration for high-performance gas sensing in air. Small 11, 2305–2313 (2015). https://doi.org/10.1002/smll.201402923
J. Baek, D. Yin, N. Liu, I. Omkaram, C. Jung et al., A highly sensitive chemical gas detecting transistor based on highly crystalline CVD-grown MoSe2 films. Nano Res. 10, 1861–1871 (2017). https://doi.org/10.1007/s12274-016-1291-7
Y. Han, D. Huang, Y. Ma, G. He, J. Hu et al., Design of hetero-nanostructures on MoS2 nanosheets to boost NO2 room-temperature sensing. ACS Appl. Mater. Interfaces 10, 22640 (2018). https://doi.org/10.1021/acsami.8b05811
K.Y. Ko, J.-G. Song, Y. Kim, T. Choi, S. Shin et al., Improvement of gas-sensing performance of large-area tungsten disulfide nanosheets by surface functionalization. ACS Nano 10, 9287–9296 (2016). https://doi.org/10.1021/acsnano.6b03631
B. Cho, M.G. Hahm, M. Choi, J. Yoon, A.R. Kim et al., Charge-transfer-based gas sensing using atomic-layer MoS2. Sci. Rep. 5, 8052 (2015). https://doi.org/10.1038/srep08052
D.J. Late, T. Doneux, M. Bougouma, Single-layer MoSe2 based NH3 gas sensor. Appl. Phys. Lett. 105, 233103 (2014). https://doi.org/10.1063/1.4903358
J.-S. Kim, H.-W. Yoo, H.O. Choi, H.-T. Jung, Tunable volatile organic compounds sensor by using thiolated ligand conjugation on MoS2. Nano Lett. 14, 5941–5947 (2014). https://doi.org/10.1021/nl502906a
E. Wu, Y. Xie, B. Yuan, D. Hao, C. An et al., Specific and highly sensitive detection of ketone compounds based on p-type MoTe2 under ultraviolet illumination. ACS Appl. Mater. Interfaces 10, 35664–35669 (2018). https://doi.org/10.1021/acsami.8b14142
S. Jiang, R. Cheng, R. Ng, Y. Huang, X. Duan, Highly sensitive detection of mercury(II) ions with few-layer molybdenum disulfide. Nano Res. 8, 257–262 (2015). https://doi.org/10.1007/s12274-014-0658-x
G. Zhou, J. Chang, H. Pu, K. Shi, S. Mao et al., Ultrasensitive mercury ion detection using DNA-functionalized molybdenum disulfide nanosheet/gold nanoparticle hybrid field-effect transistor device. ACS Sensors 1, 295–302 (2016). https://doi.org/10.1021/acssensors.5b00241
P. Li, D. Zhang, Y.E. Sun, H. Chang, J. Liu, N. Yin, Towards intrinsic MoS2 devices for high performance arsenite sensing. Appl. Phys. Lett. 109, 063110 (2016). https://doi.org/10.1063/1.4960967
J. Shan, J. Li, X. Chu, M. Xu, F. Jin et al., High sensitivity glucose detection at extremely low concentrations using a MoS2-based field-effect transistor. RSC Adv. 8, 7942–7948 (2018). https://doi.org/10.1039/C7RA13614E
C. Zheng, X. Jin, Y. Li, J. Mei, Y. Sun et al., Sensitive molybdenum disulfide based field effect transistor sensor for real-time monitoring of hydrogen peroxide. Sci. Rep. 9, 759 (2019). https://doi.org/10.1038/s41598-018-36752-y
H.W. Lee, D.-H. Kang, J.H. Cho, S. Lee, D.-H. Jun, J.-H. Park, Highly sensitive and reusable membraneless field-effect transistor (FET)-type tungsten diselenide (WSe2) biosensors. ACS Appl. Mater. Interfaces 10, 17639–17645 (2018). https://doi.org/10.1021/acsami.8b03432
J. Liu, X. Chen, Q. Wang, M. Xiao, D. Zhong, W. Sun, G. Zhang, Z. Zhang, Ultrasensitive monolayer MoS2 field-effect transistor based DNA sensors for screening of down syndrome. Nano Lett. 19, 1437–1444 (2019). https://doi.org/10.1021/acs.nanolett.8b03818
A.B. Farimani, K. Min, N.R. Aluru, DNA base detection using a single-layer MoS2. ACS Nano 8, 7914–7922 (2014). https://doi.org/10.1021/nn5029295
J. Mei, Y.-T. Li, H. Zhang, M.-M. Xiao, Y. Ning, Z.-Y. Zhang, G.-J. Zhang, Molybdenum disulfide field-effect transistor biosensor for ultrasensitive detection of DNA by employing morpholino as probe. Biosens. Bioelectron. 110, 71–77 (2018). https://doi.org/10.1016/j.bios.2018.03.043
S.M. Majd, A. Salimi, F. Ghasemi, An ultrasensitive detection of miRNA-155 in breast cancer via direct hybridization assay using two-dimensional molybdenum disulfide field-effect transistor biosensor. Biosens. Bioelectron. 105, 6–13 (2018). https://doi.org/10.1016/j.bios.2018.01.009
C.H. Naylor, N.J. Kybert, C. Schneier, J. Xi, G. Romero, J.G. Saven, R. Liu, A.T.C. Johnson, Scalable production of molybdenum disulfide based biosensors. ACS Nano 10, 6173–6179 (2016). https://doi.org/10.1021/acsnano.6b02137
G. Yoo, H. Park, M. Kim, W.G. Song, S. Jeong et al., Real-time electrical detection of epidermal skin MoS2 biosensor for point-of-care diagnostics. Nano Res. 10, 767–775 (2017). https://doi.org/10.1007/s12274-016-1289-1
L. Wang, Y. Wang, J.I. Wong, T. Palacios, J. Kong, H.Y. Yang, Functionalized MoS2 nanosheet-based field-effect biosensor for label-free sensitive detection of cancer marker proteins in solution. Small 10, 1101–1105 (2014). https://doi.org/10.1002/smll.201302081
C. Singhal, M. Khanuja, N. Chaudhary, C.S. Pundir, J. Narang, Detection of chikungunya virus DNA using two-dimensional MoS2 nanosheets based disposable biosensor. Sci. Rep. 8, 7734 (2018). https://doi.org/10.1038/s41598-018-25824-8
B. Sharma, A. Sharma, J.-S. Kim, Recent advances on H2 sensor technologies based on MOX and FET devices: a review. Sens. Actuator B-Chem. 262, 758–770 (2018). https://doi.org/10.1016/j.snb.2018.01.212
C. Zhang, Y. Luo, J. Xu, M. Debliquy, Room temperature conductive type metal oxide semiconductor gas sensors for NO2 detection. Sens. Actuator A-Phys. 289, 118–133 (2019). https://doi.org/10.1016/j.sna.2019.02.027
L. Hao, Y. Liu, W. Gao, Y. Liu, Z. Han, L. Yu, Q. Xue, J. Zhu, High hydrogen sensitivity of vertically standing layered MoS2/Si heterojunctions. J. Alloys Compd. 682, 29–34 (2016). https://doi.org/10.1016/j.jallcom.2016.04.277
C. Kuru, D. Choi, A. Kargar, C.H. Liu, S. Yavuz, C. Choi, S. Jin, P.R. Bandaru, High-performance flexible hydrogen sensor made of WS2 nanosheet–Pd nanoparticle composite film. Nanotechnology 27, 195501 (2016). https://doi.org/10.1088/0957-4484/27/19/195501
F. Perrozzi, S.M. Emamjomeh, V. Paolucci, G. Taglieri, L. Ottaviano, C. Cantalini, Thermal stability of WS2 flakes and gas sensing properties of WS2/WO3 composite to H2, NH3 and NO2. Sens. Actuator B-Chem. 243, 812–822 (2017). https://doi.org/10.1016/j.snb.2016.12.069
M. Donarelli, S. Prezioso, F. Perrozzi, F. Bisti, M. Nardone, L. Giancaterini, C. Cantalini, L. Ottaviano, Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors. Sens. Actuator B-Chem. 207, 602–613 (2015). https://doi.org/10.1016/j.snb.2014.10.099
B. Liu, L. Chen, G. Liu, A.N. Abbas, M. Fathi, C. Zhou, High-performance chemical sensing using schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. ACS Nano 8, 5304–5314 (2014). https://doi.org/10.1021/nn5015215
R. Guo, Y. Han, C. Su, X. Chen, M. Zeng et al., Ultrasensitive room temperature NO2 sensors based on liquid phase exfoliated WSe2 nanosheets. Sens. Actuator B-Chem. 300, 127013 (2019). https://doi.org/10.1016/j.snb.2019.127013
Z. Feng, Y. Xie, J. Chen, Y. Yu, S. Zheng et al., Highly sensitive MoTe2 chemical sensor with fast recovery rate through gate biasing. 2D Mater. 4, 025018 (2017). https://doi.org/10.1088/2053-1583/aa57fe
I. Shackery, A. Pezeshki, J.Y. Park, U. Palanivel, H.J. Kwon et al., Few-layered α-MoTe2 Schottky junction for a high sensitivity chemical-vapour sensor. J. Mater. Chem. C 6, 10714–10722 (2018). https://doi.org/10.1039/C8TC02635A
A. Pezeshki, S.H. Hosseini Shokouh, S.R.A. Raza, J.S. Kim, S.-W. Min, I. Shackery, S.C. Jun, S. Im, Top and back gate molybdenum disulfide transistors coupled for logic and photo-inverter operation. J. Mater. Chem. C 2, 8023–8028 (2014). https://doi.org/10.1039/C4TC01673D
Y. Xu, C. Cheng, S. Du, J. Yang, B. Yu et al., Contacts between two- and three-dimensional materials: ohmic, schottky, and p–n heterojunctions. ACS Nano 10, 4895–4919 (2016). https://doi.org/10.1021/acsnano.6b01842
S. Ahmed, M. Shawkat, M.I. Chowdhury, S. Mominuzzaman, Gate dielectric material dependence of current-voltage characteristics of ballistic Schottky barrier graphene nanoribbon field-effect transistor and carbon nanotube field-effect transistor for different channel lengths. Micro Nano Lett. 10, 523–527 (2015). https://doi.org/10.1049/mnl.2015.0193
W. Bao, X. Cai, D. Kim, K. Sridhara, M.S. Fuhrer, High mobility ambipolar MoS2 field-effect transistors: substrate and dielectric effects. Appl. Phys. Lett. 102, 042104 (2013). https://doi.org/10.1063/1.4789365
C. Zhang, P. Chen, W. Hu, Organic field-effect transistor-based gas sensors. Chem. Soc. Rev. 44, 2087–2107 (2015). https://doi.org/10.1039/C4CS00326H
G. Shalev, Y. Rosenwaks, I. Levy, The interplay between pH sensitivity and label-free protein detection in immunologically modified nano-scaled field-effect transistor. Biosens. Bioelectron. 31, 510–515 (2012). https://doi.org/10.1016/j.bios.2011.11.038
E. Stern, R. Wagner, F.J. Sigworth, R. Breaker, T.M. Fahmy, M.A. Reed, Importance of the Debye screening length on nanowire field effect transistor sensors. Nano Lett. 7, 3405–3409 (2007). https://doi.org/10.1021/nl071792z
M. Pumera, A.H. Loo, Layered transition-metal dichalcogenides (MoS2 and WS2) for sensing and biosensing. TrAC Trends Anal. Chem. 61, 49–53 (2014). https://doi.org/10.1016/j.trac.2014.05.009
B.L. Li, J. Wang, H.L. Zou, S. Garaj, C.T. Lim, J. Xie, N.B. Li, D.T. Leong, Low-dimensional transition metal dichalcogenide nanostructures based sensors. Adv. Funct. Mater. 26, 7034–7056 (2016). https://doi.org/10.1002/adfm.201602136
J. Ping, Z. Fan, M. Sindoro, Y. Ying, H. Zhang, Recent advances in sensing applications of two-dimensional transition metal dichalcogenide nanosheets and their composites. Adv. Funct. Mater. 27, 1605817 (2017). https://doi.org/10.1002/adfm.201605817
X. Gan, H. Zhao, X. Quan, Two-dimensional MoS2: a promising building block for biosensors. Biosens. Bioelectron. 89, 56–71 (2017). https://doi.org/10.1016/j.bios.2016.03.042
W. Zhang, P. Zhang, Z. Su, G. Wei, Synthesis and sensor applications of MoS2-based nanocomposites. Nanoscale 7, 18364–18378 (2015). https://doi.org/10.1039/C5NR06121K
S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis, 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017). https://doi.org/10.1038/natrevmats.2017.33
D.M. Andoshe, J.-M. Jeon, S.Y. Kim, H.W. Jang, Two-dimensional transition metal dichalcogenide nanomaterials for solar water splitting. Electron. Mater. Lett. 11, 323–335 (2015). https://doi.org/10.1007/s13391-015-4402-9
K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102, 10451–10453 (2005). https://doi.org/10.1073/pnas.0502848102
M. Samadi, N. Sarikhani, M. Zirak, H. Zhang, H.-L. Zhang, A.Z. Moshfegh, Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives. Nanoscale Horiz. 3, 90–204 (2018). https://doi.org/10.1039/C7NH00137A
S. Ahmed, J. Yi, Two-dimensional transition metal dichalcogenides and their charge carrier mobilities in field-effect transistors. Nano-Micro Lett. 9, 50 (2017). https://doi.org/10.1007/s40820-017-0152-6
G.S. Duesberg, T. Hallam, M. O'Brien, R. Gatensby, H.-Y. Kim et al., Investigation of 2D transition metal dichalcogenide films for electronic devices. 2015 Joint International Eurosoi Workshop and International Conference on Ultimate Integration on Silicon (Eurosoi-Ulis), pp. 73–76 (2015). https://doi.org/10.1109/ULIS.2015.7063776
R.H. Friend, A.D. Yoffe, Electronic properties of intercalation complexes of the transition metal dichalcogenides. Adv. Phys. 36, 1–94 (1987). https://doi.org/10.1080/00018738700101951
H. Li, X. Jia, Q. Zhang, X. Wang, Metallic transition-metal dichalcogenide nanocatalysts for energy conversion. Chem 4, 1510–1537 (2018). https://doi.org/10.1016/j.chempr.2018.03.012
I.A. Rahman, A. Purqon, First principles study of molybdenum disulfide electronic structure. J. Phys. Conf. Ser. 877, 012026 (2017). https://doi.org/10.1088/1742-6596/877/1/012026
C. Gong, H. Zhang, W. Wang, L. Colombo, R.M. Wallace, K. Cho, Band alignment of two-dimensional transition metal dichalcogenides: application in tunnel field effect transistors. Appl. Phys. Lett. 103, 053513 (2013). https://doi.org/10.1063/1.4817409
Y.-W. Son, M.L. Cohen, S.G. Louie, Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006). https://doi.org/10.1103/PhysRevLett.97.216803
E.V. Castro, K.S. Novoselov, S.V. Morozov, N.M.R. Peres, J.M.B.L. dos Santos et al., Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99, 216802 (2007). https://doi.org/10.1103/PhysRevLett.99.216802
M.-H. Chiu, W.-H. Tseng, H.-L. Tang, Y.-H. Chang, C.-H. Chen et al., Band alignment of 2D transition metal dichalcogenide heterojunctions. Adv. Funct. Mater. 27, 1603756 (2017). https://doi.org/10.1002/adfm.201603756
C.R. Kagan, in Molecular Monolayers as Semiconducting Channels in Field Effect Transistors, ed. by R.M. Metzger (Springer, Berlin, 2012), pp. 213–237
H. Fang, S. Chuang, T.C. Chang, K. Takei, T. Takahashi, A. Javey, High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 12, 3788–3792 (2012). https://doi.org/10.1021/nl301702r
B. Radisavljevic, M.B. Whitwick, A. Kis, Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 5, 9934–9938 (2011). https://doi.org/10.1021/nn203715c
S. Chuang, C. Battaglia, A. Azcatl, S. McDonnell, J.S. Kang et al., MoS2 P-type transistors and diodes enabled by high work function MoOx contacts. Nano Lett. 14, 1337–1342 (2014). https://doi.org/10.1021/nl4043505
I. Ferain, C.A. Colinge, J.-P. Colinge, Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors. Nature 479, 310–316 (2011). https://doi.org/10.1038/nature10676
G.D. Wilk, R.M. Wallace, J.M. Anthony, High-κ gate dielectrics: current status and materials properties considerations. J. Appl. Phys. 89, 5243–5275 (2001). https://doi.org/10.1063/1.1361065
Z. Hu, Z. Wu, C. Han, J. He, Z. Ni, W. Chen, Two-dimensional transition metal dichalcogenides: interface and defect engineering. Chem. Soc. Rev. 47, 3100–3128 (2018). https://doi.org/10.1039/C8CS00024G
B. Radisavljevic, A. Kis, Reply to 'Measurement of mobility in dual-gated MoS2 transistors'. Nat. Nanotechnol. 8, 147–148 (2013). https://doi.org/10.1038/nnano.2013.31
D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, M.C. Hersam, Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8, 1102–1120 (2014). https://doi.org/10.1021/nn500064s
X. Li, J. Shan, W. Zhang, S. Su, L. Yuwen, L. Wang, Recent advances in synthesis and biomedical applications of two-dimensional transition metal dichalcogenide nanosheets. Small 13, 1602660 (2017). https://doi.org/10.1002/smll.201602660
S. Kanungo, Presented at 2018 International Symposium on Devices, Circuits and Systems (ISDCS) Introduction to dielectrically modulated biological field effect transistor, 29–31 March, 2018
H. Im, X.-J. Huang, B. Gu, Y.-K. Choi, A dielectric-modulated field-effect transistor for biosensing. Nat. Nanotechnol. 2, 430–434 (2007). https://doi.org/10.1038/nnano.2007.180
D. Sarkar, W. Liu, X. Xie, A.C. Anselmo, S. Mitragotri, K. Banerjee, MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano 8, 3992–4003 (2014). https://doi.org/10.1021/nn5009148
Y. Ohno, K. Maehashi, K. Matsumoto, Label-free biosensors based on aptamer-modified graphene field-effect transistors. J. Am. Chem. Soc. 132, 18012–18013 (2010). https://doi.org/10.1021/ja108127r
Q. He, Z. Zeng, Z. Yin, H. Li, S. Wu, X. Huang, H. Zhang, Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. Small 8, 2994–2999 (2012). https://doi.org/10.1002/smll.201201224
E. Lee, Y.S. Yoon, D.-J. Kim, Two-dimensional transition metal dichalcogenides and metal oxide hybrids for gas sensing. ACS Sensors 3, 2045–2060 (2018). https://doi.org/10.1021/acssensors.8b01077
Z. Wang, B. Mi, Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets. Environ. Sci. Technol. 51, 8229–8244 (2017). https://doi.org/10.1021/acs.est.7b01466
Q. Yue, Z. Shao, S. Chang, J. Li, Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field. Nanoscale Res. Lett. 8, 425 (2013). https://doi.org/10.1186/1556-276x-8-425
W.S. Hwang, M. Remskar, R. Yan, V. Protasenko, K. Tahy et al., Transistors with chemically synthesized layered semiconductor WS2 exhibiting 105 room temperature modulation and ambipolar behavior. Appl. Phys. Lett. 101, 013107 (2012). https://doi.org/10.1063/1.4732522
H. Li, Z. Yin, Q. He, H. Li, X. Huang et al., Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 8, 63–67 (2012). https://doi.org/10.1002/smll.201101016
D.J. Late, Y.-K. Huang, B. Liu, J. Acharya, S.N. Shirodkar et al., Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 7, 4879–4891 (2013). https://doi.org/10.1021/nn400026u
Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, H. Zhang, Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem. Int. Ed. 50, 11093–11097 (2011). https://doi.org/10.1002/anie.201106004
W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande, Y.H. Lee, Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20, 116–130 (2017). https://doi.org/10.1016/j.mattod.2016.10.002
H. Im, A. AlMutairi, S. Kim, M. Sritharan, S. Kim, Y. Yoon, On MoS2 thin-film transistor design consideration for a NO2 gas sensor. ACS Sensors 4, 2930–2936 (2019). https://doi.org/10.1021/acssensors.9b01307
J. Huang, J. Chu, Z. Wang, J. Zhang, A. Yang et al., Chemisorption of NO2 to MoS2 nanostructures and its effects for MoS2 sensors. ChemNanoMat 5, 1123–1130 (2019). https://doi.org/10.1002/cnma.201900350
N. Huo, S. Yang, Z. Wei, S.-S. Li, J.-B. Xia, J. Li, Photoresponsive and Gas Sensing Field-Effect Transistors based on Multilayer WS2 Nanoflakes. Sci. Rep. 4, 5209 (2014). https://doi.org/10.1038/srep05209
H. Li, J. Wu, Z. Yin, H. Zhang, Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc. Chem. Res. 47, 1067–1075 (2014). https://doi.org/10.1021/ar4002312
T. Wang, R. Zhao, X. Zhao, Y. An, X. Dai, C. Xia, Tunable donor and acceptor impurity states in a WSe2 monolayer by adsorption of common gas molecules. RSC Adv. 6, 82793–82800 (2016). https://doi.org/10.1039/C6RA17643G
Y. Hong, W.-M. Kang, I.-T. Cho, J. Shin, M. Wu, J.-H. Lee, Gas-sensing characteristics of exfoliated WSe2 field-effect transistors. J. Nanosci. Nanotechnol. 17, 3151–3154 (2017). https://doi.org/10.1166/jnn.2017.14039
K.Y. Ko, K. Park, S. Lee, Y. Kim, W.J. Woo et al., Recovery improvement for large-area tungsten diselenide gas sensors. ACS Appl. Mater. Interfaces 10, 23910–23917 (2018). https://doi.org/10.1021/acsami.8b07034
Y.-F. Lin, Y. Xu, C.-Y. Lin, Y.-W. Suen, M. Yamamoto, S. Nakaharai, K. Ueno, K. Tsukagoshi, Origin of noise in layered MoTe2 transistors and its possible use for environmental sensors. Adv. Mater. 27, 6612–6619 (2015). https://doi.org/10.1002/adma.201502677
M. Wu, C.-H. Kim, J. Shin, Y. Hong, X. Jin, J.-H. Lee, Effect of a pre-bias on the adsorption and desorption of oxidizing gases in FET-type sensor. Sens. Actuator B-Chem. 245, 122–128 (2017). https://doi.org/10.1016/j.snb.2017.01.110
Y. Kim, K.C. Kwon, S. Kang, C. Kim, T.H. Kim et al., Two-dimensional NbS2 gas sensors for selective and reversible NO2 detection at room temperature. ACS Sensors 4, 2395–2402 (2019). https://doi.org/10.1021/acssensors.9b00992
R. Chaurasiya, A. Dixit, Defect engineered MoSSe Janus monolayer as a promising two dimensional material for NO2 and NO gas sensing. Appl. Surf. Sci. 490, 204–219 (2019). https://doi.org/10.1016/j.apsusc.2019.06.049
K.Y. Ko, S. Lee, K. Park, Y. Kim, W.J. Woo et al., High-performance gas sensor using a large-area WS2xSe2–2x alloy for low-power operation wearable applications. ACS Appl. Mater. Interfaces 10, 34163–34171 (2018). https://doi.org/10.1021/acsami.8b10455
H.K. Choi, J. Park, N. Myoung, H.-J. Kim, J.S. Choi et al., Gas molecule sensing of van der Waals tunnel field effect transistors. Nanoscale 9, 18644–18650 (2017). https://doi.org/10.1039/C7NR05712A
H.S. Hong, N.H. Phuong, N.T. Huong, N.H. Nam, N.T. Hue, Highly sensitive and low detection limit of resistive NO2 gas sensor based on a MoS2/graphene two-dimensional heterostructures. Appl. Surf. Sci. 492, 449–454 (2019). https://doi.org/10.1016/j.apsusc.2019.06.230
Y. Han, Y. Liu, C. Su, S. Wang, H. Li et al., Interface engineered WS2/ZnS heterostructures for sensitive and reversible NO2 room temperature sensing. Sens. Actuator B-Chem. 296, 126666 (2019). https://doi.org/10.1016/j.snb.2019.126666
M. Ikram, L. Liu, Y. Liu, L. Ma, H. Lv et al., Fabrication and characterization of a high-surface area MoS2@WS2 heterojunction for the ultra-sensitive NO2 detection at room temperature. J. Mater. Chem. A 7, 14602–14612 (2019). https://doi.org/10.1039/C9TA03452H
W.-T. Koo, J.-H. Cha, J.-W. Jung, S.-J. Choi, J.-S. Jang, D.-H. Kim, I.-D. Kim, Few-layered WS2 nanoplates confined in Co, N-doped hollow carbon nanocages: abundant WS2 edges for highly sensitive gas sensors. Adv. Funct. Mater. 28, 1802575 (2018). https://doi.org/10.1002/adfm.201802575
S.-Y. Cho, S.J. Kim, Y. Lee, J.-S. Kim, W.-B. Jung, H.-W. Yoo, J. Kim, H.-T. Jung, Highly enhanced gas adsorption properties in vertically aligned MoS2 layers. ACS Nano 9, 9314–9321 (2015). https://doi.org/10.1021/acsnano.5b04504
M. Wu, J. Shin, Y. Hong, X. Jin, J. Lee, Pulse biasing scheme for the fast recovery of FET-type gas sensors for reducing gases. IEEE Electron Device Lett. 38, 971–974 (2017). https://doi.org/10.1109/LED.2017.2707592
M. O’Brien, K. Lee, R. Morrish, N.C. Berner, N. McEvoy, C.A. Wolden, G.S. Duesberg, Plasma assisted synthesis of WS2 for gas sensing applications. Chem. Phys. Lett. 615, 6–10 (2014). https://doi.org/10.1016/j.cplett.2014.09.051
X. Li, X. Li, Z. Li, J. Wang, J. Zhang, WS2 nanoflakes based selective ammonia sensors at room temperature. Sens. Actuator B-Chem. 240, 273–277 (2017). https://doi.org/10.1016/j.snb.2016.08.163
Z. Feng, Y. Xie, E. Wu, Y. Yu, S. Zheng et al., Enhanced sensitivity of MoTe2 chemical sensor through light illumination. Micromachines 8, 155 (2017). https://doi.org/10.3390/mi8050155
X. Huang, Z. Zeng, S. Bao, M. Wang, X. Qi, Z. Fan, H. Zhang, Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 4, 1444 (2013). https://doi.org/10.1038/ncomms2472
D. Sarkar, X. Xie, J. Kang, H. Zhang, W. Liu, J. Navarrete, M. Moskovits, K. Banerjee, Functionalization of transition metal dichalcogenides with metallic nanoparticles: implications for doping and gas-sensing. Nano Lett. 15, 2852–2862 (2015). https://doi.org/10.1021/nl504454u
D. Zhang, Y.E. Sun, C. Jiang, Y. Zhang, Room temperature hydrogen gas sensor based on palladium decorated tin oxide/molybdenum disulfide ternary hybrid via hydrothermal route. Sens. Actuator B-Chem. 242, 15–24 (2017). https://doi.org/10.1016/j.snb.2016.11.005
R. Samnakay, C. Jiang, S.L. Rumyantsev, M.S. Shur, A.A. Balandin, Selective chemical vapor sensing with few-layer MoS2 thin-film transistors: comparison with graphene devices. Appl. Phys. Lett. 106, 023115 (2015). https://doi.org/10.1063/1.4905694
F.K. Perkins, A.L. Friedman, E. Cobas, P.M. Campbell, G.G. Jernigan, B.T. Jonker, Chemical vapor sensing with monolayer MoS2. Nano Lett. 13, 668–673 (2013). https://doi.org/10.1021/nl3043079
A.L. Friedman, F. Keith Perkins, E. Cobas, G.G. Jernigan, P.M. Campbell, A.T. Hanbicki, B.T. Jonker, Chemical vapor sensing of two-dimensional MoS2 field effect transistor devices. Solid State Electron. 101, 2–7 (2014). https://doi.org/10.1016/j.sse.2014.06.013
A.L. Friedman, F.K. Perkins, A.T. Hanbicki, J.C. Culbertson, P.M. Campbell, Dynamics of chemical vapor sensing with MoS2 using 1T/2H phase contacts/channel. Nanoscale 8, 11445–11453 (2016). https://doi.org/10.1039/c6nr01979j
C.C. Mayorga-Martinez, A. Ambrosi, A.Y.S. Eng, Z. Sofer, M. Pumera, Metallic 1T-WS2 for selective impedimetric vapor sensing. Adv. Funct. Mater. 25, 5611–5616 (2015). https://doi.org/10.1002/adfm.201502223
G. Liu, S.L. Rumyantsev, C. Jiang, M.S. Shur, A.A. Balandin, Selective gas sensing with h-BN capped MoS2 heterostructure thin-film transistors. IEEE Electron Device Lett. 36, 1202–1204 (2015). https://doi.org/10.1109/LED.2015.2481388
X. Chen, H. Pu, Z. Fu, X. Sui, J. Chang, J. Chen, S. Mao, Real-time and selective detection of nitrates in water using graphene-based field-effect transistor sensors. Environ. Sci. Nano 5, 1990–1999 (2018). https://doi.org/10.1039/C8EN00588E
G.A.N. Gowda, D. Djukovic, in Overview of Mass Spectrometry-Based Metabolomics: Opportunities and Challenges, ed. by D. Raftery (Springer, New York, 2014), pp. 3–12
A. Castellanos-Gomez, M. Poot, G.A. Steele, H.S.J. van der Zant, N. Agraït, G. Rubio-Bollinger, Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater. 24, 772–775 (2012). https://doi.org/10.1002/adma.201103965
M.-P. Lu, X.-Y. Dai, M.-Y. Lu, Probing electron mobility of monolayer MoS2 field-effect transistors in aqueous environments. Adv. Electron. Mater. 4, 1700418 (2018). https://doi.org/10.1002/aelm.201700418
H. Wang, P. Zhao, X. Zeng, C.D. Young, W. Hu, High-stability pH sensing with a few-layer MoS2 field-effect transistor. Nanotechnology 30, 375203 (2019). https://doi.org/10.1088/1361-6528/ab277b
K. Datta, A. Shadman, E. Rahman, Q.D.M. Khosru, Trilayer TMDC heterostructures for MOSFETs and nanobiosensors. J. Electron. Mater. 46, 1248–1260 (2017). https://doi.org/10.1007/s11664-016-5078-0
P. Li, D. Zhang, Z. Wu, Flexible MoS2 sensor arrays for high performance label-free ion sensing. Sens. Actuator A-Phys. 286, 51–58 (2019). https://doi.org/10.1016/j.sna.2018.12.026
J.H. An, J. Jang, A highly sensitive FET-type aptasensor using flower-like MoS2 nanospheres for real-time detection of arsenic(III). Nanoscale 9, 7483–7492 (2017). https://doi.org/10.1039/C7NR01661A
N.M. Vieno, H. Härkki, T. Tuhkanen, L. Kronberg, Occurrence of pharmaceuticals in river water and their elimination in a pilot-scale drinking water treatment plant. Environ. Sci. Technol. 41, 5077–5084 (2007). https://doi.org/10.1021/es062720x
H.-Y. Park, S.R. Dugasani, D.-H. Kang, G. Yoo, J. Kim et al., M-DNA/transition metal dichalcogenide hybrid structure-based bio-fet sensor with ultra-high sensitivity. Sci. Rep. 6, 35733 (2016). https://doi.org/10.1038/srep35733
X. Chen, S. Hao, B. Zong, C. Liu, S. Mao, Ultraselective antibiotic sensing with complementary strand DNA assisted aptamer/MoS2 field-effect transistors. Biosens. Bioelectron. 145, 111711 (2019). https://doi.org/10.1016/j.bios.2019.111711
J. Lee, P. Dak, Y. Lee, H. Park, W. Choi, M.A. Alam, S. Kim, Two-dimensional layered MoS2 biosensors enable highly sensitive detection of biomolecules. Sci. Rep. 4, 7352 (2014). https://doi.org/10.1038/srep07352
M.H. Kim, H. Park, H. Lee, K. Nam, S. Jeong et al., Research Update: Nanoscale surface potential analysis of MoS2 field-effect transistors for biomolecular detection using Kelvin probe force microscopy. APL Mater. 4, 100701 (2016). https://doi.org/10.1063/1.4964488
H. Nam, B.-R. Oh, P. Chen, J.S. Yoon, S. Wi, M. Chen, K. Kurabayashi, X. Liang, Two different device physics principles for operating MoS2 transistor biosensors with femtomolar-level detection limits. Appl. Phys. Lett. 107, 012105 (2015). https://doi.org/10.1063/1.4926800
M. Kukkar, S.K. Tuteja, A.L. Sharma, V. Kumar, A.K. Paul, K.-H. Kim, P. Sabherwal, A. Deep, A new electrolytic synthesis method for few-layered MoS2 nanosheets and their robust biointerfacing with reduced antibodies. ACS Appl. Mater. Interfaces 8, 16555–16563 (2016). https://doi.org/10.1021/acsami.6b03079
H. Park, G. Han, S.W. Lee, H. Lee, S.H. Jeong et al., Label-free and recalibrated multilayer MoS2 biosensor for point-of-care diagnostics. ACS Appl. Mater. Interfaces 9, 43490–43497 (2017). https://doi.org/10.1021/acsami.7b14479
H. Nam, B.-R. Oh, M. Chen, S. Wi, D. Li, K. Kurabayashi, X. Liang, Fabrication and comparison of MoS2 and WSe2 field-effect transistor biosensors. J. Vac. Sci. Technol. B 33, 6 (2015). https://doi.org/10.1116/1.4930040
M. Sajid, A. Osman, G.U. Siddiqui, H.B. Kim, S.W. Kim, J.B. Ko, Y.K. Lim, K.H. Choi, All-printed highly sensitive 2D MoS2 based multi-reagent immunosensor for smartphone based point-of-care diagnosis. Sci. Rep. 7, 5802–5802 (2017). https://doi.org/10.1038/s41598-017-06265-1
H. Park, H. Lee, S.H. Jeong, E. Lee, W. Lee et al., MoS2 field-effect transistor-amyloid-β1–42 hybrid device for signal amplified detection of MMP-9. Anal. Chem. 91, 8252–8258 (2019). https://doi.org/10.1021/acs.analchem.9b00926
X. Gong, Y. Liu, H. Xiang, H. Liu, Z. Liu et al., Membraneless reproducible MoS2 field-effect transistor biosensor for high sensitive and selective detection of FGF21. Sci. China Mater. 62, 1479–1487 (2019). https://doi.org/10.1007/s40843-019-9444-y
B. Ryu, H. Nam, B.-R. Oh, Y. Song, P. Chen et al., Cyclewise operation of printed MoS2 transistor biosensors for rapid biomolecule quantification at femtomolar levels. ACS Sensors 2, 274–281 (2017). https://doi.org/10.1021/acssensors.6b00795
D.-W. Lee, J. Lee, I.Y. Sohn, B.-Y. Kim, Y.M. Son et al., Field-effect transistor with a chemically synthesized MoS2 sensing channel for label-free and highly sensitive electrical detection of DNA hybridization. Nano Res. 8, 2340–2350 (2015). https://doi.org/10.1007/s12274-015-0744-8
K. Jin, L. Xie, Y. Tian, D. Liu, Au-modified monolayer MoS2 sensor for DNA detection. J. Phys. Chem. C 120, 11204–11209 (2016). https://doi.org/10.1021/acs.jpcc.6b01193
K. Liu, J. Feng, A. Kis, A. Radenovic, Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation. ACS Nano 8, 2504–2511 (2014). https://doi.org/10.1021/nn406102h
L. Liang, F. Liu, Z. Kong, J.-W. Shen, H. Wang, H. Wang, L. Li, Theoretical studies on key factors in DNA sequencing using atomically thin molybdenum disulfide nanopores. Phys. Chem. Chem. Phys. 20, 28886–28893 (2018). https://doi.org/10.1039/C8CP06167J
W. Si, Y. Zhang, J. Sha, Y. Chen, Controllable and reversible DNA translocation through a single-layer molybdenum disulfide nanopore. Nanoscale 10, 19450–19458 (2018). https://doi.org/10.1039/C8NR05830J
M. Graf, M. Lihter, D. Altus, S. Marion, A. Radenovic, Transverse detection of DNA using a MoS2 nanopore. Nano Lett. 19, 9075–9083 (2019). https://doi.org/10.1021/acs.nanolett.9b04180
A. Moudgil, S. Singh, N. Mishra, P. Mishra, S. Das, MoS2/TiO2 hybrid nanostructure-based field-effect transistor for highly sensitive, selective, and rapid detection of gram-positive bacteria. Adv. Mater. Technol. 5, 1900615 (2019). https://doi.org/10.1002/admt.201900615
P. Zhang, S. Yang, R. Pineda-Gómez, B. Ibarlucea, J. Ma et al., Electrochemically exfoliated high-quality 2H-MoS2 for multiflake thin film flexible biosensors. Small 15, 1901265 (2019). https://doi.org/10.1002/smll.201901265
X. Li, H. Zhu, Two-dimensional MoS2: properties, preparation, and applications. J. Materiomics. 1, 33–44 (2015). https://doi.org/10.1016/j.jmat.2015.03.003
H. Yang, A. Giri, S. Moon, S. Shin, J.-M. Myoung, U. Jeong, Highly scalable synthesis of MoS2 thin films with precise thickness control via polymer-assisted deposition. Chem. Mater. 29, 5772–5776 (2017). https://doi.org/10.1021/acs.chemmater.7b01605
T.H. Kim, Y.H. Kim, S.Y. Park, S.Y. Kim, H.W. Jang, Two-dimensional transition metal disulfides for chemoresistive gas sensing: perspective and challenges. Chemosensors 5, 15 (2017). https://doi.org/10.3390/chemosensors5020015
H.U. Hassan, J. Mun, B.S. Kang, J.Y. Song, T. Kim, S.-W. Kang, Sensor based on chemical vapour deposition-grown molybdenum disulphide for gas sensing application. RSC Adv. 6, 75839–75843 (2016). https://doi.org/10.1039/C6RA10132A
D. Zhang, J. Wu, P. Li, Y. Cao, Room-temperature SO2 gas-sensing properties based on a metal-doped MoS2 nanoflower: an experimental and density functional theory investigation. J. Mater. Chem. A 5, 20666–20677 (2017). https://doi.org/10.1039/C7TA07001B
K. Lee, R. Gatensby, N. McEvoy, T. Hallam, G.S. Duesberg, High-performance sensors based on molybdenum disulfide thin films. Adv. Mater. 25, 6699–6702 (2013). https://doi.org/10.1002/adma.201303230
D. Zhang, C. Jiang, Y.E. Sun, Room-temperature high-performance ammonia gas sensor based on layer-by-layer self-assembled molybdenum disulfide/zinc oxide nanocomposite film. J. Alloys Compd. 698, 476–483 (2017). https://doi.org/10.1016/j.jallcom.2016.12.222
Z. Qin, C. Ouyang, J. Zhang, L. Wan, S. Wang, C. Xie, D. Zeng, 2D WS2 nanosheets with TiO2 quantum dots decoration for high-performance ammonia gas sensing at room temperature. Sens. Actuator B-Chem. 253, 1034–1042 (2017). https://doi.org/10.1016/j.snb.2017.07.052
N.P. Rezende, A.R. Cadore, A.C. Gadelha, C.L. Pereira, V. Ornelas et al., Probing the electronic properties of monolayer MoS2 via interaction with molecular hydrogen. Adv. Electron. Mater. 5, 1800591 (2019). https://doi.org/10.1002/aelm.201800591
X. Li, J. Wang, D. Xie, J. Xu, Y. Xia, L. Xiang, S. Komarneni, Reduced graphene oxide/MoS2 hybrid films for room-temperature formaldehyde detection. Mater. Lett. 189, 42–45 (2017). https://doi.org/10.1016/j.matlet.2016.11.046
S.T. Le, N.B. Guros, R.C. Bruce, A. Cardone, N.D. Amin et al., Quantum capacitance-limited MoS2 biosensors enable remote label-free enzyme measurements. Nanoscale 11, 15622–15632 (2019). https://doi.org/10.1039/C9NR03171E