Highly Selective Electrocatalytic CuEDTA Reduction by MoS2 Nanosheets for Efficient Pollutant Removal and Simultaneous Electric Power Output
Corresponding Author: Shun Mao
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 193
Abstract
Electrocatalytic reduction of ethylenediamine tetraacetic acid copper (CuEDTA), a typical refractory heavy metal complexation pollutant, is an environmental benign method that operates at mild condition. Unfortunately, the selective reduction of CuEDTA is still a big challenge in cathodic process. In this work, we report a MoS2 nanosheet/graphite felt (GF) cathode, which achieves an average Faraday efficiency of 29.6% and specific removal rate (SRR) of 0.042 mol/cm2/h for CuEDTA at − 0.65 V vs SCE (saturated calomel electrode), both of which are much higher than those of the commonly reported electrooxidation technology-based removal systems. Moreover, a proof-of-concept CuEDTA/Zn battery with Zn anode and MoS2/GF cathode is demonstrated, which has bifunctions of simultaneous CuEDTA removal and energy output. This is one of the pioneer studies on the electrocatalytic reduction of heavy metal complex and CuEDTA/Zn battery, which brings new insights in developing efficient electrocatalytic reduction system for pollution control and energy output.
Highlights:
1 Highly efficient CuEDTA removal by an electrolyzer with MoS2 nanosheet cathode.
2 Higher removal rate and Faraday efficiency compared with other widely reported electrocatalytic technologies.
3 CuEDTA/Zn primary battery is constructed for the first time to realize CuEDTA removal and synchronous power generation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Guan, B. Zhang, S. Tian, X. Zhao, The synergism between electro-Fenton and electrocoagulation process to remove Cu-EDTA. Appl. Catal. B-Environ. 227, 252–257 (2018). https://doi.org/10.1016/j.apcatb.2017.12.036
- M. Pan, C. Zhang, J. Wang, J.W. Chew, G. Gao et al., Multifunctional piezoelectric heterostructure of BaTiO3@graphene: decomplexation of Cu-EDTA and recovery of Cu. Environ. Sci. Technol. 53(14), 8342–8351 (2019). https://doi.org/10.1021/acs.est.9b02355
- X. Zhao, L. Guo, J. Qu, Photoelectrocatalytic oxidation of Cu-EDTA complex and electrodeposition recovery of Cu in a continuous tubular photoelectrochemical reactor. Chem. Eng. J. 239, 53–59 (2014). https://doi.org/10.1016/j.cej.2013.10.088
- Y. Zhu, W. Fan, T. Zhou, X. Li, Removal of chelated heavy metals from aqueous solution: a review of current methods and mechanisms. Sci. Total Environ. 678, 253–266 (2019). https://doi.org/10.1016/j.scitotenv.2019.04.416
- H. Zeng, S. Tian, H. Liu, B. Chai, X. Zhao, Photo-assisted electrolytic decomplexation of Cu-EDTA and Cu recovery enhanced by H2O2 and electro-generated active chlorine. Chem. Eng. J. 301, 371–379 (2016). https://doi.org/10.1016/j.cej.2016.04.006
- T. Wang, Y. Cao, G. Qu, Q. Sun, T. Xia et al., Novel Cu(II)-EDTA decomplexation by discharge plasma oxidation and coupled Cu removal by alkaline precipitation: underneath mechanisms. Environ. Sci. Technol. 52(14), 7884–7891 (2018). https://doi.org/10.1021/acs.est.8b02039
- T. Wang, Q. Wang, H. Soklun, G. Qu, T. Xia et al., A green strategy for simultaneous Cu(II)-EDTA decomplexation and Cu precipitation from water by bicarbonate-activated hydrogen peroxide/chemical precipitation. Chem. Eng. J. 370, 1298–1309 (2019). https://doi.org/10.1016/j.cej.2019.04.005
- S.S. Lee, H. Bai, Z. Liu, D.D. Sun, Green approach for photocatalytic Cu(II)-EDTA degradation over TiO2: toward environmental sustainability. Environ. Sci. Technol. 49(4), 2541–2548 (2015). https://doi.org/10.1021/es504711e
- H. Zeng, S. Liu, B. Chai, D. Cao, Y. Wang et al., Enhanced photoelectrocatalytic decomplexation of Cu-EDTA and Cu recovery by persulfate activated by UV and cathodic reduction. Environ. Sci. Technol. 50(12), 6459–6466 (2016). https://doi.org/10.1021/acs.est.6b00632
- Y. Cao, X. Qian, Y. Zhang, G. Qu, T. Xia et al., Decomplexation of EDTA-chelated copper and removal of copper ions by non-thermal plasma oxidation/alkaline precipitation. Chem. Eng. J. 362, 487–496 (2019). https://doi.org/10.1016/j.cej.2019.01.061
- X. Huang, Y. Xu, C. Shan, X. Li, W. Zhang et al., Coupled Cu(II)-EDTA degradation and Cu(II) removal from acidic wastewater by ozonation: performance, products and pathways. Chem. Eng. J. 299, 23–29 (2016). https://doi.org/10.1016/j.cej.2016.04.044
- H. Rong, C. Zhang, Y. Sun, L. Wu, B. Lian et al., Electrochemical degradation of Ni-EDTA complexes in electroless plating wastewater using PbO2–Bi electrodes. Chem. Eng. J. 431, 133230 (2022). https://doi.org/10.1016/j.cej.2021.133230
- Y. Sun, C. Zhang, H. Rong, L. Wu, B. Lian et al., Electrochemical Ni-EDTA degradation and Ni removal from electroless plating wastewaters using an innovative Ni-doped PbO2 anode: optimization and mechanism. J. Hazard. Mater. 424, 127655 (2022). https://doi.org/10.1016/j.jhazmat.2021.127655
- Z. Xu, C. Shan, B. Xie, Y. Liu, B. Pan, Decomplexation of Cu(II)-EDTA by UV/persulfate and UV/H2O2: efficiency and mechanism. Appl. Catal. B-Environ. 200, 439–447 (2017). https://doi.org/10.1016/j.apcatb.2016.07.023
- H. Qin, Z. Ye, X. Wei, X. Liu, X. Liu et al., Bifunctional electrolyzation for simultaneous organic pollutant degradation and hydrogen generation. ACS ES&T Eng. 1(9), 1360–1368 (2021). https://doi.org/10.1021/acsestengg.1c00173
- H. Qin, X. Wei, Z. Ye, X. Liu, S. Mao, Promotion of phenol electro-oxidation by oxygen evolution reaction on an active electrode for efficient pollution control and hydrogen evolution. Environ. Sci. Technol. 56(9), 5753–5762 (2022). https://doi.org/10.1021/acs.est.1c08338
- A. Eivazihollagh, J. Bäckström, M. Norgren, H. Edlund, Influences of the operational variables on electrochemical treatment of chelated Cu(II) in alkaline solutions using a membrane cell. J. Chem. Technol. Biotechnol. 92(6), 1436–1445 (2017). https://doi.org/10.1002/jctb.5141
- A. Eivazihollagh, J. Backstrom, M. Norgren, H. Edlund, Electrochemical recovery of copper complexed by DTPA and C12-DTPA from aqueous solution using a membrane cell. J. Chem. Technol. Biotechnol. 93(5), 1421–1431 (2018). https://doi.org/10.1002/jctb.5510
- R.S. Juang, L.C. Lin, Efficiencies of electrolytic treatment of complexed metal solutions in a stirred cell having a membrane separator. J. Membr. Sci. 171(1), 19–29 (2000). https://doi.org/10.1016/s0376-7388(99)00377-4
- R.S. Juang, L.C. Lin, Electrochemical treatment of copper from aqueous citrate solutions using a cation-selective membrane. Sep. Purif. Technol. 22–3(1–3), 627–635 (2001). https://doi.org/10.1016/s1383-5866(00)00168-4
- R.S. Juang, L.C. Lin, Treatment of complexed copper(II) solutions with electrochemical membrane processes. Water Res. 34(1), 43–50 (2000). https://doi.org/10.1016/s0043-1354(99)00112-8
- M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5(4), 263–275 (2013). https://doi.org/10.1038/nchem.1589
- Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012). https://doi.org/10.1038/nnano.2012.193
- M. Tursun, C. Wu, Vacancy-triggered and dopant-assisted NO electrocatalytic reduction over MoS2. Phys. Chem. Chem. Phys. 23(35), 19872–19883 (2021). https://doi.org/10.1039/d1cp02764f
- L. Zhang, J. Liang, Y. Wang, T. Mou, Y. Lin et al., High-performance electrochemical NO reduction into NH3 by MoS2 nanosheet. Angew. Chem. Int. Edit. 60(48), 25263–25268 (2021). https://doi.org/10.1002/anie.202110879
- X. Li, T. Li, Y. Ma, Q. Wei, W. Qiu et al., Boosted electrocatalytic N2 reduction to NH3 by defect-Rich MoS2 nanoflower. Adv. Energy Mater. 8(30), 1801357 (2018). https://doi.org/10.1002/aenm.201801357
- R. Li, J. Liang, T. Li, L. Yue, Q. Liu et al., Recent advances in MoS2-based materials for electrocatalysis. Chem. Commun. 58(14), 2259–2278 (2022). https://doi.org/10.1039/d1cc04004a
- T. Wang, D. Gao, J. Zhuo, Z. Zhu, P. Papakonstantinou et al., Size-dependent enhancement of electrocatalytic oxygen-reduction and hydrogen-evolution performance of MoS2 ps. Chem. Eur. J. 19(36), 11939–11948 (2013). https://doi.org/10.1002/chem.201301406
- I.S. Amiinu, Z. Pu, X. Liu, K.A. Owusu, H.G.R. Monestel et al., Multifunctional Mo-N/C@MoS2 electrocatalysts for HER, OER, ORR, and Zn-Air batteries. Adv. Funct. Mater. 27(44), 1702300 (2017). https://doi.org/10.1002/adfm.201702300
- J. Lee, J. Lim, C.-W. Roh, H.S. Whang, H. Lee, Electrochemical CO2 reduction using alkaline membrane electrode assembly on various metal electrodes. J. CO2 Util. 31, 244–250 (2019). https://doi.org/10.1016/j.jcou.2019.03.022
- P. Song, C. Sun, J. Wang, S. Ai, S. Dong et al., Efficient removal of Cu-EDTA complexes from wastewater by combined electrooxidation and electrocoagulation process: Performance and mechanism study. Chemosphere (2022). https://doi.org/10.1016/j.chemosphere.2021.131971
- Q. Xiang, J. Yu, M. Jaroniec, Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanops. J. Am. Chem. Soc. 134(15), 6575–6578 (2012). https://doi.org/10.1021/ja302846n
- L. Zhang, J. Liang, Y. Wang, T. Mou, Y. Lin et al., High-performance electrochemical NO reduction into NH3 by MoS2 nanosheet. Angew. Chem. Int. Edit. 60(48), 2110879 (2021). https://doi.org/10.1002/anie.202110879
- B. Zong, Q. Li, X. Chen, C. Liu, L. Li et al., Highly enhanced gas sensing performance using a 1T/2H heterophase MoS2 field-effect transistor at room temperature. ACS Appl. Mater. Interfaces 12(45), 50610–50618 (2020). https://doi.org/10.1021/acsami.0c15162
- S. Sarma, S.C. Ray, Magnetic behaviors of single crystal-MoS2 (MoS2-SC) and nanop-MoS2 (MoS2-NP) and bi-layer-MoS2 thin film. J. Magn. Magn. Mater. 546, 168863 (2022). https://doi.org/10.1016/j.jmmm.2021.168863
- P. Song, C. Sun, J. Wang, S. Ai, S. Dong et al., Efficient removal of Cu-EDTA complexes from wastewater by combined electrooxidation and electrocoagulation process: performance and mechanism study. Chemosphere 287, 131–971 (2022). https://doi.org/10.1016/j.chemosphere.2021.131971
- J. Xie, J. Ma, S. Zhao, T.D. Waite, Flow anodic oxidation: towards high-efficiency removal of aqueous contaminants by adsorbed hydroxyl radicals at 1.5 V vs SHE. Water Res. 200(2021). https://doi.org/10.1016/j.watres.2021.117259
- J. Xie, C. Zhang, T.D. Waite, Hydroxyl radicals in anodic oxidation systems: generation, identification and quantification. Water Res. 217, 118425 (2022). https://doi.org/10.1016/j.watres.2022.118425
- X. Zhao, L. Guo, B. Zhang, H. Liu, J. Qu, Photoelectrocatalytic oxidation of Cu-II-EDTA at the TiO2 electrode and simultaneous recovery of Cu-II by electrodeposition. Environ. Sci. Technol. 47(9), 4480–4488 (2013). https://doi.org/10.1021/es3046982
- X. Zhao, J. Zhang, J. Qu, Photoelectrocatalytic oxidation of Cu-cyanides and Cu-EDTA at TiO2 nanotube electrode. Electrochim. Acta 180, 129–137 (2015). https://doi.org/10.1016/j.electacta.2015.08.103
References
W. Guan, B. Zhang, S. Tian, X. Zhao, The synergism between electro-Fenton and electrocoagulation process to remove Cu-EDTA. Appl. Catal. B-Environ. 227, 252–257 (2018). https://doi.org/10.1016/j.apcatb.2017.12.036
M. Pan, C. Zhang, J. Wang, J.W. Chew, G. Gao et al., Multifunctional piezoelectric heterostructure of BaTiO3@graphene: decomplexation of Cu-EDTA and recovery of Cu. Environ. Sci. Technol. 53(14), 8342–8351 (2019). https://doi.org/10.1021/acs.est.9b02355
X. Zhao, L. Guo, J. Qu, Photoelectrocatalytic oxidation of Cu-EDTA complex and electrodeposition recovery of Cu in a continuous tubular photoelectrochemical reactor. Chem. Eng. J. 239, 53–59 (2014). https://doi.org/10.1016/j.cej.2013.10.088
Y. Zhu, W. Fan, T. Zhou, X. Li, Removal of chelated heavy metals from aqueous solution: a review of current methods and mechanisms. Sci. Total Environ. 678, 253–266 (2019). https://doi.org/10.1016/j.scitotenv.2019.04.416
H. Zeng, S. Tian, H. Liu, B. Chai, X. Zhao, Photo-assisted electrolytic decomplexation of Cu-EDTA and Cu recovery enhanced by H2O2 and electro-generated active chlorine. Chem. Eng. J. 301, 371–379 (2016). https://doi.org/10.1016/j.cej.2016.04.006
T. Wang, Y. Cao, G. Qu, Q. Sun, T. Xia et al., Novel Cu(II)-EDTA decomplexation by discharge plasma oxidation and coupled Cu removal by alkaline precipitation: underneath mechanisms. Environ. Sci. Technol. 52(14), 7884–7891 (2018). https://doi.org/10.1021/acs.est.8b02039
T. Wang, Q. Wang, H. Soklun, G. Qu, T. Xia et al., A green strategy for simultaneous Cu(II)-EDTA decomplexation and Cu precipitation from water by bicarbonate-activated hydrogen peroxide/chemical precipitation. Chem. Eng. J. 370, 1298–1309 (2019). https://doi.org/10.1016/j.cej.2019.04.005
S.S. Lee, H. Bai, Z. Liu, D.D. Sun, Green approach for photocatalytic Cu(II)-EDTA degradation over TiO2: toward environmental sustainability. Environ. Sci. Technol. 49(4), 2541–2548 (2015). https://doi.org/10.1021/es504711e
H. Zeng, S. Liu, B. Chai, D. Cao, Y. Wang et al., Enhanced photoelectrocatalytic decomplexation of Cu-EDTA and Cu recovery by persulfate activated by UV and cathodic reduction. Environ. Sci. Technol. 50(12), 6459–6466 (2016). https://doi.org/10.1021/acs.est.6b00632
Y. Cao, X. Qian, Y. Zhang, G. Qu, T. Xia et al., Decomplexation of EDTA-chelated copper and removal of copper ions by non-thermal plasma oxidation/alkaline precipitation. Chem. Eng. J. 362, 487–496 (2019). https://doi.org/10.1016/j.cej.2019.01.061
X. Huang, Y. Xu, C. Shan, X. Li, W. Zhang et al., Coupled Cu(II)-EDTA degradation and Cu(II) removal from acidic wastewater by ozonation: performance, products and pathways. Chem. Eng. J. 299, 23–29 (2016). https://doi.org/10.1016/j.cej.2016.04.044
H. Rong, C. Zhang, Y. Sun, L. Wu, B. Lian et al., Electrochemical degradation of Ni-EDTA complexes in electroless plating wastewater using PbO2–Bi electrodes. Chem. Eng. J. 431, 133230 (2022). https://doi.org/10.1016/j.cej.2021.133230
Y. Sun, C. Zhang, H. Rong, L. Wu, B. Lian et al., Electrochemical Ni-EDTA degradation and Ni removal from electroless plating wastewaters using an innovative Ni-doped PbO2 anode: optimization and mechanism. J. Hazard. Mater. 424, 127655 (2022). https://doi.org/10.1016/j.jhazmat.2021.127655
Z. Xu, C. Shan, B. Xie, Y. Liu, B. Pan, Decomplexation of Cu(II)-EDTA by UV/persulfate and UV/H2O2: efficiency and mechanism. Appl. Catal. B-Environ. 200, 439–447 (2017). https://doi.org/10.1016/j.apcatb.2016.07.023
H. Qin, Z. Ye, X. Wei, X. Liu, X. Liu et al., Bifunctional electrolyzation for simultaneous organic pollutant degradation and hydrogen generation. ACS ES&T Eng. 1(9), 1360–1368 (2021). https://doi.org/10.1021/acsestengg.1c00173
H. Qin, X. Wei, Z. Ye, X. Liu, S. Mao, Promotion of phenol electro-oxidation by oxygen evolution reaction on an active electrode for efficient pollution control and hydrogen evolution. Environ. Sci. Technol. 56(9), 5753–5762 (2022). https://doi.org/10.1021/acs.est.1c08338
A. Eivazihollagh, J. Bäckström, M. Norgren, H. Edlund, Influences of the operational variables on electrochemical treatment of chelated Cu(II) in alkaline solutions using a membrane cell. J. Chem. Technol. Biotechnol. 92(6), 1436–1445 (2017). https://doi.org/10.1002/jctb.5141
A. Eivazihollagh, J. Backstrom, M. Norgren, H. Edlund, Electrochemical recovery of copper complexed by DTPA and C12-DTPA from aqueous solution using a membrane cell. J. Chem. Technol. Biotechnol. 93(5), 1421–1431 (2018). https://doi.org/10.1002/jctb.5510
R.S. Juang, L.C. Lin, Efficiencies of electrolytic treatment of complexed metal solutions in a stirred cell having a membrane separator. J. Membr. Sci. 171(1), 19–29 (2000). https://doi.org/10.1016/s0376-7388(99)00377-4
R.S. Juang, L.C. Lin, Electrochemical treatment of copper from aqueous citrate solutions using a cation-selective membrane. Sep. Purif. Technol. 22–3(1–3), 627–635 (2001). https://doi.org/10.1016/s1383-5866(00)00168-4
R.S. Juang, L.C. Lin, Treatment of complexed copper(II) solutions with electrochemical membrane processes. Water Res. 34(1), 43–50 (2000). https://doi.org/10.1016/s0043-1354(99)00112-8
M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5(4), 263–275 (2013). https://doi.org/10.1038/nchem.1589
Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012). https://doi.org/10.1038/nnano.2012.193
M. Tursun, C. Wu, Vacancy-triggered and dopant-assisted NO electrocatalytic reduction over MoS2. Phys. Chem. Chem. Phys. 23(35), 19872–19883 (2021). https://doi.org/10.1039/d1cp02764f
L. Zhang, J. Liang, Y. Wang, T. Mou, Y. Lin et al., High-performance electrochemical NO reduction into NH3 by MoS2 nanosheet. Angew. Chem. Int. Edit. 60(48), 25263–25268 (2021). https://doi.org/10.1002/anie.202110879
X. Li, T. Li, Y. Ma, Q. Wei, W. Qiu et al., Boosted electrocatalytic N2 reduction to NH3 by defect-Rich MoS2 nanoflower. Adv. Energy Mater. 8(30), 1801357 (2018). https://doi.org/10.1002/aenm.201801357
R. Li, J. Liang, T. Li, L. Yue, Q. Liu et al., Recent advances in MoS2-based materials for electrocatalysis. Chem. Commun. 58(14), 2259–2278 (2022). https://doi.org/10.1039/d1cc04004a
T. Wang, D. Gao, J. Zhuo, Z. Zhu, P. Papakonstantinou et al., Size-dependent enhancement of electrocatalytic oxygen-reduction and hydrogen-evolution performance of MoS2 ps. Chem. Eur. J. 19(36), 11939–11948 (2013). https://doi.org/10.1002/chem.201301406
I.S. Amiinu, Z. Pu, X. Liu, K.A. Owusu, H.G.R. Monestel et al., Multifunctional Mo-N/C@MoS2 electrocatalysts for HER, OER, ORR, and Zn-Air batteries. Adv. Funct. Mater. 27(44), 1702300 (2017). https://doi.org/10.1002/adfm.201702300
J. Lee, J. Lim, C.-W. Roh, H.S. Whang, H. Lee, Electrochemical CO2 reduction using alkaline membrane electrode assembly on various metal electrodes. J. CO2 Util. 31, 244–250 (2019). https://doi.org/10.1016/j.jcou.2019.03.022
P. Song, C. Sun, J. Wang, S. Ai, S. Dong et al., Efficient removal of Cu-EDTA complexes from wastewater by combined electrooxidation and electrocoagulation process: Performance and mechanism study. Chemosphere (2022). https://doi.org/10.1016/j.chemosphere.2021.131971
Q. Xiang, J. Yu, M. Jaroniec, Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanops. J. Am. Chem. Soc. 134(15), 6575–6578 (2012). https://doi.org/10.1021/ja302846n
L. Zhang, J. Liang, Y. Wang, T. Mou, Y. Lin et al., High-performance electrochemical NO reduction into NH3 by MoS2 nanosheet. Angew. Chem. Int. Edit. 60(48), 2110879 (2021). https://doi.org/10.1002/anie.202110879
B. Zong, Q. Li, X. Chen, C. Liu, L. Li et al., Highly enhanced gas sensing performance using a 1T/2H heterophase MoS2 field-effect transistor at room temperature. ACS Appl. Mater. Interfaces 12(45), 50610–50618 (2020). https://doi.org/10.1021/acsami.0c15162
S. Sarma, S.C. Ray, Magnetic behaviors of single crystal-MoS2 (MoS2-SC) and nanop-MoS2 (MoS2-NP) and bi-layer-MoS2 thin film. J. Magn. Magn. Mater. 546, 168863 (2022). https://doi.org/10.1016/j.jmmm.2021.168863
P. Song, C. Sun, J. Wang, S. Ai, S. Dong et al., Efficient removal of Cu-EDTA complexes from wastewater by combined electrooxidation and electrocoagulation process: performance and mechanism study. Chemosphere 287, 131–971 (2022). https://doi.org/10.1016/j.chemosphere.2021.131971
J. Xie, J. Ma, S. Zhao, T.D. Waite, Flow anodic oxidation: towards high-efficiency removal of aqueous contaminants by adsorbed hydroxyl radicals at 1.5 V vs SHE. Water Res. 200(2021). https://doi.org/10.1016/j.watres.2021.117259
J. Xie, C. Zhang, T.D. Waite, Hydroxyl radicals in anodic oxidation systems: generation, identification and quantification. Water Res. 217, 118425 (2022). https://doi.org/10.1016/j.watres.2022.118425
X. Zhao, L. Guo, B. Zhang, H. Liu, J. Qu, Photoelectrocatalytic oxidation of Cu-II-EDTA at the TiO2 electrode and simultaneous recovery of Cu-II by electrodeposition. Environ. Sci. Technol. 47(9), 4480–4488 (2013). https://doi.org/10.1021/es3046982
X. Zhao, J. Zhang, J. Qu, Photoelectrocatalytic oxidation of Cu-cyanides and Cu-EDTA at TiO2 nanotube electrode. Electrochim. Acta 180, 129–137 (2015). https://doi.org/10.1016/j.electacta.2015.08.103