Niobium Tungsten Oxide in a Green Water-in-Salt Electrolyte Enables Ultra-Stable Aqueous Lithium-Ion Capacitors
Corresponding Author: Xiaogang Zhang
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 168
Abstract
Aqueous hybrid supercapacitors are attracting increasing attention due to their potential low cost, high safety and eco-friendliness. However, the narrow operating potential window of aqueous electrolyte and the lack of suitable negative electrode materials seriously hinder its future applications. Here, we explore high concentrated lithium acetate with high ionic conductivity of 65.5 mS cm−1 as a green “water-in-salt” electrolyte, providing wide voltage window up to 2.8 V. It facilitates the reversible function of niobium tungsten oxide, Nb18W16O93, that otherwise only operations in organic electrolytes previously. The Nb18W16O93 with lithium-ion intercalation pseudocapacitive behavior exhibits excellent rate performance, high areal capacity, and ultra-long cycling stability. An aqueous lithium-ion hybrid capacitor is developed by using Nb18W16O93 as negative electrode combined with graphene as positive electrode in lithium acetate-based “water-in-salt” electrolyte, delivering a high energy density of 41.9 W kg−1, high power density of 20,000 W kg−1 and unexceptionable stability of 50,000 cycles.
Highlights:
1 A green water-in-salt electrolyte was developed using lithium acetate as solute with a wide electrochemical stability window of 2.8 V.
2 Molecular dynamics simulation confirmed the nature of water-in-salt electrolyte, where hydrogen bonds of water–water were disrupted and ionic interactions became stronger than dilute solution.
3 Nb18W16O93-based lithium-ion capacitors delivered unexceptionable stability over 50,000 cycles.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Fairley, Energy storage: power revolution. Nature 526, S102–S104 (2015). https://doi.org/10.1038/526S102a
- C.S. Rustomji, Y. Yang, T.K. Kim, J. Mac, Y.J. Kim et al., Liquefied gas electrolytes for electrochemical energy storage devices. Science 365(6345), eaal4263 (2017). https://doi.org/10.1126/science.aal4263
- Z. Liu, Y. Huang, Y. Huang, Q. Yang, X. Li, Z. Huang, C. Zhi, Voltage issue of aqueous rechargeable metal-ion batteries. Chem. Soc. Rev. 49(1), 180–232 (2020). https://doi.org/10.1039/c9cs00131j
- H. Xia, Q. Xu, J. Zhang, Recent progress on two-dimensional nanoflake ensembles for energy storage applications. Nano-Micro Lett. 10, 66 (2018). https://doi.org/10.1007/s40820-018-0219-z
- X. Zeng, C. Zhan, J. Lu, K. Amine, Stabilization of a high-capacity and high-power nickel-based cathode for Li-ion batteries. Chem 4(4), 690–704 (2018). https://doi.org/10.1016/j.chempr.2017.12.027
- Z. Zhao, Z. Hu, R. Jiao, Z. Tang, P. Dong et al., Tailoring multi-layer architectured FeS2@C hybrids for superior sodium-, potassium- and aluminum-ion storage. Energy Storage Mater. 22, 228–234 (2019). https://doi.org/10.1016/j.ensm.2019.01.022
- Y. Huang, J. Mou, W. Liu, X. Wang, L. Dong, F. Kang, C. Xu, Novel insights into energy storage mechanism of aqueous rechargeable Zn/MnO2 Batteries with Participation of Mn2+. Nano-Micro Lett. 11, 49 (2019). https://doi.org/10.1007/s40820-019-0278-9
- S. Dong, W. Shin, H. Jiang, X. Wu, Z. Li et al., Ultra-fast NH4+ storage: strong H bonding between NH4+ and bi-layered V2O5. Chem 5(6), 1537–1551 (2019). https://doi.org/10.1016/j.chempr.2019.03.009
- M.R. Lukatskaya, J.I. Feldblyum, D.G. Mackanic, F. Lissel, D.L. Michels, Y. Cui, Z. Bao, Concentrated mixed cation acetate “water-in-salt” solutions as green and low-cost high voltage electrolytes for aqueous batteries. Energy Environ. Sci. 11(10), 2876–2883 (2018). https://doi.org/10.1039/c8ee00833g
- W. Sun, F. Wang, S. Hou, C. Yang, X. Fan et al., Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 139(29), 9775–9778 (2017). https://doi.org/10.1021/jacs.7b04471
- M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.L. Taberna et al., Efficient storage mechanisms for building better supercapacitors. Nat. Energy 1, 16070 (2016). https://doi.org/10.1038/nenergy.2016.70
- H. Shao, Y.-C. Wu, Z. Lin, P.-L. Taberna, P. Simon, Nanoporous carbon for electrochemical capacitive energy storage. Chem. Soc. Rev. 49, 3005–3039 (2020). https://doi.org/10.1039/d0cs00059k
- M. Xia, J. Nie, Z. Zhang, X. Lu, Z.L. Wang, Suppressing self-discharge of supercapacitors via electrorheological effect of liquid crystals. Nano Energy 47, 43–50 (2018). https://doi.org/10.1016/j.nanoen.2018.02.022
- M. Li, Q. Zhou, C. Ren, N. Shen, Q. Chen et al., Surfacing amorphous Ni-B nanoflakes on NiCo2O4 nanospheres as multifunctional bridges for promoting lithium storage behaviors. Nanoscale 11(46), 22550–22558 (2019). https://doi.org/10.1039/c9nr07733b
- J. Li, N. Shan, L. Wang, Q. Zhou, Y. Yan, M. Li, C. Guo, Surface engineering Co–B nanoflakes on Mn0.33Co0.67CO3 microspheres as multifunctional bridges towards facilitating Li+ storing performance. Ceram. Int. 46(12), 19873–19879 (2020). https://doi.org/10.1016/j.ceramint.2020.05.046
- A. Manthiram, A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 11(1), 1–9 (2020). https://doi.org/10.1038/s41467-020-15355-0
- M.R. Palacín, A. de Guibert, Why do batteries fail? Science 351(6273), 1253292 (2016). https://doi.org/10.1126/science.1253292
- B. Anothumakkool, S. Wiemers-Meyer, D. Guyomard, M. Winter, T. Brousse, J. Gaubicher, Cascade-type prelithiation approach for Li-ion capacitors. Adv. Energy Mater. 9(27), 1900078 (2019). https://doi.org/10.1002/aenm.201900078
- S. Dong, L. Shen, H. Li, G. Pang, H. Dou, X. Zhang, Flexible sodium-ion pseudocapacitors based on 3D Na2Ti3O7 nanosheet arrays/carbon textiles anodes. Adv. Funct. Mater. 26(21), 3703–3710 (2016). https://doi.org/10.1002/adfm.201600264
- J. Wang, S. Dong, B. Ding, Y. Wang, X. Hao et al., Pseudocapacitive materials for electrochemical capacitors: from rational synthesis to capacitance optimization. Natl. Sci. Rev. 4(1), 71–90 (2017). https://doi.org/10.1093/nsr/nww072
- J.M. Campillo-Robles, X. Artetxe, K. del TesoSánchez, C. Gutiérrez, H. Macicior et al., General hybrid asymmetric capacitor model: validation with a commercial lithium ion capacitor. J. Power Sources 425, 110–120 (2019). https://doi.org/10.1016/j.jpowsour.2019.03.121
- J. Ding, W. Hu, E. Paek, D. Mitlin, Review of hybrid ion capacitors: from aqueous to lithium to sodium. Chem. Rev. 118(14), 6457–6498 (2018). https://doi.org/10.1021/acs.chemrev.8b00116
- E. Adelowo, A.R. Baboukani, O. Okpowe, I. Khakpour, M. Safa, C. Chen, C. Wang, A high-energy aqueous on-chip lithium-ion capacitor based on interdigital 3D carbon microelectrode arrays. J. Power Sources 455, 227987 (2020). https://doi.org/10.1016/j.jpowsour.2020.227987
- L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho et al., “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350(6263), 938–943 (2015). https://doi.org/10.1126/science.aab1595
- Y. Yamada, K. Usui, K. Sodeyama, S. Ko, Y. Tateyama, A. Yamada, Hydrate-melt electrolytes for high-energy-density aqueous batteries. Nat. Energy 1(10), 16129 (2016). https://doi.org/10.1038/nenergy.2016.129
- Q. Dou, S. Lei, D.-W. Wang, Q. Zhang, D. Xiao et al., Safe and high-rate supercapacitors based on an “acetonitrile/water in salt” hybrid electrolyte. Energy Environ. Sci. 11(11), 3212–3219 (2018). https://doi.org/10.1039/c8ee01040d
- L. Suo, D. Oh, Y. Lin, Z. Zhuo, O. Borodin et al., How solid-electrolyte interphase forms in aqueous electrolytes. J. Am. Chem. Soc. 139(51), 18670–18680 (2017). https://doi.org/10.1021/jacs.7b10688
- R.-S. Kuehnel, D. Reber, C. Battaglia, Perspective-electrochemical stability of water-in-salt electrolytes. J. Electrochem. Soc. 167(7), 7 (2020). https://doi.org/10.1149/1945-7111/ab7c6f
- D.P. Leonard, Z. Wei, G. Chen, F. Du, X. Ji, Water-in-salt electrolyte for potassium-ion batteries. ACS Energy Lett. 3(2), 373–374 (2018). https://doi.org/10.1021/acsenergylett.8b00009
- J. Han, H. Zhang, A. Varzi, S. Passerini, Fluorine-free water-in-salt electrolyte for green and low-cost aqueous sodium-ion batteries. Chemsuschem 11(21), 3704–3707 (2018). https://doi.org/10.1002/cssc.201801930
- J.J. Holoubek, H. Jiang, D. Leonard, Y. Qi, G.C. Bustamante, X. Ji, Amorphous titanic acid electrode: its electrochemical storage of ammonium in a new water-in-salt electrolyte. Chem. Commun. 54(70), 9805–9808 (2018). https://doi.org/10.1039/c8cc04713h
- K.J. Griffith, K.M. Wiaderek, G. Cibin, L.E. Marbella, C.P. Grey, Niobium tungsten oxides for high-rate lithium-ion energy storage. Nature 559(7715), 556–563 (2018). https://doi.org/10.1038/s41586-018-0347-0
- G. Tan, J. Zheng, F. Pan, Molecular dynamics study on the microstructure of CH3COOLi solutions with different concentrations. Funct. Mater. Lett. 11(4), 1850075 (2018). https://doi.org/10.1142/s1793604718500753
- J. Zheng, S. Chen, W. Zhao, J. Song, M.H. Engelhard, J.-G. Zhang, Extremely stable sodium metal batteries enabled by localized high-concentration electrolytes. ACS Energy Lett. 3(2), 315–321 (2018). https://doi.org/10.1021/acsenergylett.7b01213
- X. Wang, A.Y. Mehandzhiyski, B. Arstad, K.L. Van Aken, T.S. Mathis et al., Selective charging behavior in an ionic mixture electrolyte-supercapacitor system for higher energy and power. J. Am. Chem. Soc. 139(51), 18681–18687 (2017). https://doi.org/10.1021/jacs.7b10693
- W. Ye, H. Yu, X. Cheng, H. Zhu, R. Zheng et al., Highly efficient lithium container based on non-wadsley-roth structure Nb18W16O93 nanowires for electrochemical energy storage. Electrochim. Acta 292, 331–338 (2018). https://doi.org/10.1016/j.electacta.2018.09.169
- J. Billaud, F. Bouville, T. Magrini, C. Villevieille, A.R. Studart, Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries. Nat. Energy 1, 16097 (2016). https://doi.org/10.1038/nenergy.2016.97
- H. Wu, G. Chan, J.W. Choi, I. Ryu, Y. Yao et al., Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control. Nat. Nanotechnol. 7, 310–315 (2012). https://doi.org/10.1038/nnano.2012.35
- Y. Li, K. Yan, H.-W. Lee, Z. Lu, N. Liu, Y. Cui, Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat. Energy 1, 15029 (2016). https://doi.org/10.1038/nenergy.2015.29
- V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.-L. Taberna et al., High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518–522 (2013). https://doi.org/10.1038/nmat3601
- E. Lim, C. Jo, H. Kim, M.-H. Kim, Y. Mun et al., Facile synthesis of Nb2O5@carbon core–shell nanocrystals with controlled crystalline structure for high-power anodes in hybrid supercapacitors. ACS Nano 9(7), 7497–7505 (2015). https://doi.org/10.1021/acsnano.5b02601
- Y. Xiong, J. Qian, Y. Cao, X. Ai, H. Yang, Electrospun TiO2/C nanofibers as a high-capacity and cycle-stable anode for sodium-ion batteries. ACS Appl. Mater. Interfaces 8(26), 16684–16689 (2016). https://doi.org/10.1021/acsami.6b03757
- H. Ye, L. Wang, S. Deng, X. Zeng, K. Nie et al., Amorphous MoS3 infiltrated with carbon nanotubes as an advanced anode material of sodium-ion batteries with large gravimetric, areal, and volumetric capacities. Adv. Energy Mater. 7(5), 1601602 (2017). https://doi.org/10.1002/aenm.201601602
- S.H. Choi, Y.N. Ko, J.-K. Lee, Y.C. Kang, 3D MoS2–graphene microspheres consisting of multiple nanospheres with superior sodium ion storage properties. Adv. Funct. Mater. 25(12), 1780–1788 (2015). https://doi.org/10.1002/adfm.201402428
- X. Wang, S. Kajiyama, H. Iinuma, E. Hosono, S. Oro et al., Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nat. Commun. 6, 6544 (2015). https://doi.org/10.1038/ncomms7544
- J. Park, M. Lee, D. Feng, Z. Huang, A.C. Hinckley et al., Stabilization of hexaaminobenzene in a 2D conductive metal-organic framework for high power sodium storage. J. Am. Chem. Soc. 140(32), 10315–10323 (2018). https://doi.org/10.1021/jacs.8b06020
- B. Guo, X. Yu, X.-G. Sun, M. Chi, Z.-A. Qiao et al., A long-life lithium-ion battery with a highly porous TiNb2O7 anode for large-scale electrical energy storage. Energy Environ. Sci. 7(7), 2220–2226 (2014). https://doi.org/10.1039/C4EE00508B
- L. Li, S. Peng, H.B. Wu, L. Yu, S. Madhavi, X.W. Lou, A flexible quasi-solid-state asymmetric electrochemical capacitor based on hierarchical porous V2O5 nanosheets on carbon nanofibers. Adv. Energy Mater. 5(17), 1500753 (2015). https://doi.org/10.1002/aenm.201500753
- C. Zhou, Y. Zhang, Y. Li, J. Liu, Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett. 13(5), 2078–2085 (2013). https://doi.org/10.1021/nl400378j
- W. Chen, C. Xia, H.N. Alshareef, One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors. ACS Nano 8(9), 9531–9541 (2014). https://doi.org/10.1021/nn503814y
- P. Wang, R. Wang, J. Lang, X. Zhang, Z. Chen, X. Yan, Porous niobium nitride as a capacitive anode material for advanced li-ion hybrid capacitors with superior cycling stability. J. Mater. Chem. A 4(25), 9760–9766 (2016). https://doi.org/10.1039/c6ta02971j
- J.H. Kim, J.-S. Kim, Y.-G. Lim, J.-G. Lee, Y.-J. Kim, Effect of carbon types on the electrochemical properties of negative electrodes for Li-ion capacitors. J. Power Sources 196(23), 10490–10495 (2011). https://doi.org/10.1016/j.jpowsour.2011.08.081
- H. Wang, Y. Zhang, H. Ang, Y. Zhang, H.T. Tan et al., A high-energy lithium-ion capacitor by integration of a 3D interconnected titanium carbide nanoparticle chain anode with a pyridine-derived porous nitrogen-doped carbon cathode. Adv. Funct. Mater. 26(18), 3082–3093 (2016). https://doi.org/10.1002/adfm.201505240
- L. Chen, W. Zhai, L. Chen, D. Li, X. Ma et al., Nanostructured LiMn2O4 composite as high-rate cathode for high performance aqueous Li-ion hybrid supercapacitors. J. Power Sources 392, 116–122 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.103
- T. Zhai, X. Lu, Y. Ling, M. Yu, G. Wang et al., A new benchmark capacitance for supercapacitor anodes by mixed-valence sulfur-doped V6O13-x. Adv. Mater. 26(33), 5869–5875 (2014). https://doi.org/10.1002/adma.201402041
- H. Kim, M.-Y. Cho, M.-H. Kim, K.-Y. Park, H. Gwon et al., A novel high-energy hybrid supercapacitor with an anatase TiO2-reduced graphene oxide anode and an activated carbon cathode. Adv. Energy Mater. 3(11), 1500–1506 (2013). https://doi.org/10.1002/aenm.201300467
- C. Liu, C. Zhang, H. Song, X. Nan, H. Fu, G. Cao, MnO nanoparticles with cationic vacancies and discrepant crystallinity dispersed into porous carbon for Li-ion capacitors. J. Mater. Chem. A 4(9), 3362–3370 (2016). https://doi.org/10.1039/c5ta10002j
References
P. Fairley, Energy storage: power revolution. Nature 526, S102–S104 (2015). https://doi.org/10.1038/526S102a
C.S. Rustomji, Y. Yang, T.K. Kim, J. Mac, Y.J. Kim et al., Liquefied gas electrolytes for electrochemical energy storage devices. Science 365(6345), eaal4263 (2017). https://doi.org/10.1126/science.aal4263
Z. Liu, Y. Huang, Y. Huang, Q. Yang, X. Li, Z. Huang, C. Zhi, Voltage issue of aqueous rechargeable metal-ion batteries. Chem. Soc. Rev. 49(1), 180–232 (2020). https://doi.org/10.1039/c9cs00131j
H. Xia, Q. Xu, J. Zhang, Recent progress on two-dimensional nanoflake ensembles for energy storage applications. Nano-Micro Lett. 10, 66 (2018). https://doi.org/10.1007/s40820-018-0219-z
X. Zeng, C. Zhan, J. Lu, K. Amine, Stabilization of a high-capacity and high-power nickel-based cathode for Li-ion batteries. Chem 4(4), 690–704 (2018). https://doi.org/10.1016/j.chempr.2017.12.027
Z. Zhao, Z. Hu, R. Jiao, Z. Tang, P. Dong et al., Tailoring multi-layer architectured FeS2@C hybrids for superior sodium-, potassium- and aluminum-ion storage. Energy Storage Mater. 22, 228–234 (2019). https://doi.org/10.1016/j.ensm.2019.01.022
Y. Huang, J. Mou, W. Liu, X. Wang, L. Dong, F. Kang, C. Xu, Novel insights into energy storage mechanism of aqueous rechargeable Zn/MnO2 Batteries with Participation of Mn2+. Nano-Micro Lett. 11, 49 (2019). https://doi.org/10.1007/s40820-019-0278-9
S. Dong, W. Shin, H. Jiang, X. Wu, Z. Li et al., Ultra-fast NH4+ storage: strong H bonding between NH4+ and bi-layered V2O5. Chem 5(6), 1537–1551 (2019). https://doi.org/10.1016/j.chempr.2019.03.009
M.R. Lukatskaya, J.I. Feldblyum, D.G. Mackanic, F. Lissel, D.L. Michels, Y. Cui, Z. Bao, Concentrated mixed cation acetate “water-in-salt” solutions as green and low-cost high voltage electrolytes for aqueous batteries. Energy Environ. Sci. 11(10), 2876–2883 (2018). https://doi.org/10.1039/c8ee00833g
W. Sun, F. Wang, S. Hou, C. Yang, X. Fan et al., Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 139(29), 9775–9778 (2017). https://doi.org/10.1021/jacs.7b04471
M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.L. Taberna et al., Efficient storage mechanisms for building better supercapacitors. Nat. Energy 1, 16070 (2016). https://doi.org/10.1038/nenergy.2016.70
H. Shao, Y.-C. Wu, Z. Lin, P.-L. Taberna, P. Simon, Nanoporous carbon for electrochemical capacitive energy storage. Chem. Soc. Rev. 49, 3005–3039 (2020). https://doi.org/10.1039/d0cs00059k
M. Xia, J. Nie, Z. Zhang, X. Lu, Z.L. Wang, Suppressing self-discharge of supercapacitors via electrorheological effect of liquid crystals. Nano Energy 47, 43–50 (2018). https://doi.org/10.1016/j.nanoen.2018.02.022
M. Li, Q. Zhou, C. Ren, N. Shen, Q. Chen et al., Surfacing amorphous Ni-B nanoflakes on NiCo2O4 nanospheres as multifunctional bridges for promoting lithium storage behaviors. Nanoscale 11(46), 22550–22558 (2019). https://doi.org/10.1039/c9nr07733b
J. Li, N. Shan, L. Wang, Q. Zhou, Y. Yan, M. Li, C. Guo, Surface engineering Co–B nanoflakes on Mn0.33Co0.67CO3 microspheres as multifunctional bridges towards facilitating Li+ storing performance. Ceram. Int. 46(12), 19873–19879 (2020). https://doi.org/10.1016/j.ceramint.2020.05.046
A. Manthiram, A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 11(1), 1–9 (2020). https://doi.org/10.1038/s41467-020-15355-0
M.R. Palacín, A. de Guibert, Why do batteries fail? Science 351(6273), 1253292 (2016). https://doi.org/10.1126/science.1253292
B. Anothumakkool, S. Wiemers-Meyer, D. Guyomard, M. Winter, T. Brousse, J. Gaubicher, Cascade-type prelithiation approach for Li-ion capacitors. Adv. Energy Mater. 9(27), 1900078 (2019). https://doi.org/10.1002/aenm.201900078
S. Dong, L. Shen, H. Li, G. Pang, H. Dou, X. Zhang, Flexible sodium-ion pseudocapacitors based on 3D Na2Ti3O7 nanosheet arrays/carbon textiles anodes. Adv. Funct. Mater. 26(21), 3703–3710 (2016). https://doi.org/10.1002/adfm.201600264
J. Wang, S. Dong, B. Ding, Y. Wang, X. Hao et al., Pseudocapacitive materials for electrochemical capacitors: from rational synthesis to capacitance optimization. Natl. Sci. Rev. 4(1), 71–90 (2017). https://doi.org/10.1093/nsr/nww072
J.M. Campillo-Robles, X. Artetxe, K. del TesoSánchez, C. Gutiérrez, H. Macicior et al., General hybrid asymmetric capacitor model: validation with a commercial lithium ion capacitor. J. Power Sources 425, 110–120 (2019). https://doi.org/10.1016/j.jpowsour.2019.03.121
J. Ding, W. Hu, E. Paek, D. Mitlin, Review of hybrid ion capacitors: from aqueous to lithium to sodium. Chem. Rev. 118(14), 6457–6498 (2018). https://doi.org/10.1021/acs.chemrev.8b00116
E. Adelowo, A.R. Baboukani, O. Okpowe, I. Khakpour, M. Safa, C. Chen, C. Wang, A high-energy aqueous on-chip lithium-ion capacitor based on interdigital 3D carbon microelectrode arrays. J. Power Sources 455, 227987 (2020). https://doi.org/10.1016/j.jpowsour.2020.227987
L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho et al., “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350(6263), 938–943 (2015). https://doi.org/10.1126/science.aab1595
Y. Yamada, K. Usui, K. Sodeyama, S. Ko, Y. Tateyama, A. Yamada, Hydrate-melt electrolytes for high-energy-density aqueous batteries. Nat. Energy 1(10), 16129 (2016). https://doi.org/10.1038/nenergy.2016.129
Q. Dou, S. Lei, D.-W. Wang, Q. Zhang, D. Xiao et al., Safe and high-rate supercapacitors based on an “acetonitrile/water in salt” hybrid electrolyte. Energy Environ. Sci. 11(11), 3212–3219 (2018). https://doi.org/10.1039/c8ee01040d
L. Suo, D. Oh, Y. Lin, Z. Zhuo, O. Borodin et al., How solid-electrolyte interphase forms in aqueous electrolytes. J. Am. Chem. Soc. 139(51), 18670–18680 (2017). https://doi.org/10.1021/jacs.7b10688
R.-S. Kuehnel, D. Reber, C. Battaglia, Perspective-electrochemical stability of water-in-salt electrolytes. J. Electrochem. Soc. 167(7), 7 (2020). https://doi.org/10.1149/1945-7111/ab7c6f
D.P. Leonard, Z. Wei, G. Chen, F. Du, X. Ji, Water-in-salt electrolyte for potassium-ion batteries. ACS Energy Lett. 3(2), 373–374 (2018). https://doi.org/10.1021/acsenergylett.8b00009
J. Han, H. Zhang, A. Varzi, S. Passerini, Fluorine-free water-in-salt electrolyte for green and low-cost aqueous sodium-ion batteries. Chemsuschem 11(21), 3704–3707 (2018). https://doi.org/10.1002/cssc.201801930
J.J. Holoubek, H. Jiang, D. Leonard, Y. Qi, G.C. Bustamante, X. Ji, Amorphous titanic acid electrode: its electrochemical storage of ammonium in a new water-in-salt electrolyte. Chem. Commun. 54(70), 9805–9808 (2018). https://doi.org/10.1039/c8cc04713h
K.J. Griffith, K.M. Wiaderek, G. Cibin, L.E. Marbella, C.P. Grey, Niobium tungsten oxides for high-rate lithium-ion energy storage. Nature 559(7715), 556–563 (2018). https://doi.org/10.1038/s41586-018-0347-0
G. Tan, J. Zheng, F. Pan, Molecular dynamics study on the microstructure of CH3COOLi solutions with different concentrations. Funct. Mater. Lett. 11(4), 1850075 (2018). https://doi.org/10.1142/s1793604718500753
J. Zheng, S. Chen, W. Zhao, J. Song, M.H. Engelhard, J.-G. Zhang, Extremely stable sodium metal batteries enabled by localized high-concentration electrolytes. ACS Energy Lett. 3(2), 315–321 (2018). https://doi.org/10.1021/acsenergylett.7b01213
X. Wang, A.Y. Mehandzhiyski, B. Arstad, K.L. Van Aken, T.S. Mathis et al., Selective charging behavior in an ionic mixture electrolyte-supercapacitor system for higher energy and power. J. Am. Chem. Soc. 139(51), 18681–18687 (2017). https://doi.org/10.1021/jacs.7b10693
W. Ye, H. Yu, X. Cheng, H. Zhu, R. Zheng et al., Highly efficient lithium container based on non-wadsley-roth structure Nb18W16O93 nanowires for electrochemical energy storage. Electrochim. Acta 292, 331–338 (2018). https://doi.org/10.1016/j.electacta.2018.09.169
J. Billaud, F. Bouville, T. Magrini, C. Villevieille, A.R. Studart, Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries. Nat. Energy 1, 16097 (2016). https://doi.org/10.1038/nenergy.2016.97
H. Wu, G. Chan, J.W. Choi, I. Ryu, Y. Yao et al., Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control. Nat. Nanotechnol. 7, 310–315 (2012). https://doi.org/10.1038/nnano.2012.35
Y. Li, K. Yan, H.-W. Lee, Z. Lu, N. Liu, Y. Cui, Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat. Energy 1, 15029 (2016). https://doi.org/10.1038/nenergy.2015.29
V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.-L. Taberna et al., High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518–522 (2013). https://doi.org/10.1038/nmat3601
E. Lim, C. Jo, H. Kim, M.-H. Kim, Y. Mun et al., Facile synthesis of Nb2O5@carbon core–shell nanocrystals with controlled crystalline structure for high-power anodes in hybrid supercapacitors. ACS Nano 9(7), 7497–7505 (2015). https://doi.org/10.1021/acsnano.5b02601
Y. Xiong, J. Qian, Y. Cao, X. Ai, H. Yang, Electrospun TiO2/C nanofibers as a high-capacity and cycle-stable anode for sodium-ion batteries. ACS Appl. Mater. Interfaces 8(26), 16684–16689 (2016). https://doi.org/10.1021/acsami.6b03757
H. Ye, L. Wang, S. Deng, X. Zeng, K. Nie et al., Amorphous MoS3 infiltrated with carbon nanotubes as an advanced anode material of sodium-ion batteries with large gravimetric, areal, and volumetric capacities. Adv. Energy Mater. 7(5), 1601602 (2017). https://doi.org/10.1002/aenm.201601602
S.H. Choi, Y.N. Ko, J.-K. Lee, Y.C. Kang, 3D MoS2–graphene microspheres consisting of multiple nanospheres with superior sodium ion storage properties. Adv. Funct. Mater. 25(12), 1780–1788 (2015). https://doi.org/10.1002/adfm.201402428
X. Wang, S. Kajiyama, H. Iinuma, E. Hosono, S. Oro et al., Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nat. Commun. 6, 6544 (2015). https://doi.org/10.1038/ncomms7544
J. Park, M. Lee, D. Feng, Z. Huang, A.C. Hinckley et al., Stabilization of hexaaminobenzene in a 2D conductive metal-organic framework for high power sodium storage. J. Am. Chem. Soc. 140(32), 10315–10323 (2018). https://doi.org/10.1021/jacs.8b06020
B. Guo, X. Yu, X.-G. Sun, M. Chi, Z.-A. Qiao et al., A long-life lithium-ion battery with a highly porous TiNb2O7 anode for large-scale electrical energy storage. Energy Environ. Sci. 7(7), 2220–2226 (2014). https://doi.org/10.1039/C4EE00508B
L. Li, S. Peng, H.B. Wu, L. Yu, S. Madhavi, X.W. Lou, A flexible quasi-solid-state asymmetric electrochemical capacitor based on hierarchical porous V2O5 nanosheets on carbon nanofibers. Adv. Energy Mater. 5(17), 1500753 (2015). https://doi.org/10.1002/aenm.201500753
C. Zhou, Y. Zhang, Y. Li, J. Liu, Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett. 13(5), 2078–2085 (2013). https://doi.org/10.1021/nl400378j
W. Chen, C. Xia, H.N. Alshareef, One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors. ACS Nano 8(9), 9531–9541 (2014). https://doi.org/10.1021/nn503814y
P. Wang, R. Wang, J. Lang, X. Zhang, Z. Chen, X. Yan, Porous niobium nitride as a capacitive anode material for advanced li-ion hybrid capacitors with superior cycling stability. J. Mater. Chem. A 4(25), 9760–9766 (2016). https://doi.org/10.1039/c6ta02971j
J.H. Kim, J.-S. Kim, Y.-G. Lim, J.-G. Lee, Y.-J. Kim, Effect of carbon types on the electrochemical properties of negative electrodes for Li-ion capacitors. J. Power Sources 196(23), 10490–10495 (2011). https://doi.org/10.1016/j.jpowsour.2011.08.081
H. Wang, Y. Zhang, H. Ang, Y. Zhang, H.T. Tan et al., A high-energy lithium-ion capacitor by integration of a 3D interconnected titanium carbide nanoparticle chain anode with a pyridine-derived porous nitrogen-doped carbon cathode. Adv. Funct. Mater. 26(18), 3082–3093 (2016). https://doi.org/10.1002/adfm.201505240
L. Chen, W. Zhai, L. Chen, D. Li, X. Ma et al., Nanostructured LiMn2O4 composite as high-rate cathode for high performance aqueous Li-ion hybrid supercapacitors. J. Power Sources 392, 116–122 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.103
T. Zhai, X. Lu, Y. Ling, M. Yu, G. Wang et al., A new benchmark capacitance for supercapacitor anodes by mixed-valence sulfur-doped V6O13-x. Adv. Mater. 26(33), 5869–5875 (2014). https://doi.org/10.1002/adma.201402041
H. Kim, M.-Y. Cho, M.-H. Kim, K.-Y. Park, H. Gwon et al., A novel high-energy hybrid supercapacitor with an anatase TiO2-reduced graphene oxide anode and an activated carbon cathode. Adv. Energy Mater. 3(11), 1500–1506 (2013). https://doi.org/10.1002/aenm.201300467
C. Liu, C. Zhang, H. Song, X. Nan, H. Fu, G. Cao, MnO nanoparticles with cationic vacancies and discrepant crystallinity dispersed into porous carbon for Li-ion capacitors. J. Mater. Chem. A 4(9), 3362–3370 (2016). https://doi.org/10.1039/c5ta10002j