An Efficient and Flexible Bifunctional Dual-Band Electrochromic Device Integrating with Energy Storage
Corresponding Author: Xiaogang Zhang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 98
Abstract
Dual-band electrochromic devices capable of the spectral-selective modulation of visible (VIS) light and near-infrared (NIR) can notably reduce the energy consumption of buildings and improve the occupants' visual and thermal comfort. However, the low optical modulation and poor durability of these devices severely limit its practical applications. Herein, we demonstrate an efficient and flexible bifunctional dual-band electrochromic device which not only shows excellent spectral-selective electrochromic performance with a high optical modulation and a long cycle life, but also displays a high capacitance and a high energy recycling efficiency of 51.4%, integrating energy-saving with energy-storage. The nanowires structure and abundant oxygen-vacancies of oxygen-deficient tungsten oxide nanowires endows it high flexibility and a high optical modulation of 73.1% and 85.3% at 633 and 1200 nm respectively. The prototype device assembled can modulate the VIS light and NIR independently and effectively through three distinct modes with a long cycle life (3.3% capacity loss after 10,000 cycles) and a high energy-saving performance (8.8 °C lower than the common glass). Furthermore, simulations also demonstrate that our device outperforms the commercial low-emissivity glass in terms of energy-saving in most climatic zones around the world. Such windows represent an intriguing potential technology to improve the building energy efficiency.
Highlights:
1 A flexible dual-band electrochromic device with a high optical modulation and a long cycle life was reported.
2 The device assembled can modulate the visible light and near-infrared independently and effectively, showing higher energy-saving performance than commercial low-emissivity glass in most climatic zones around the world.
3 The flexible device also shows good energy storage and energy recycling performances, recycling 51.4% of the energy consumed in the coloration process for local reusing.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Wang, T. Jiang, Y. Meng, R. Yang, G. Tan et al., Scalable thermochromic smart windows with passive radiative cooling regulation. Science 374, 1501–1504 (2021). https://doi.org/10.1126/science.abg0291
- Z. Shao, A. Huang, C. Cao, X. Ji, W. Hu et al., Tri-band electrochromic smart window for energy savings in buildings. Nat. Sustain. 7, 796–803 (2024). https://doi.org/10.1038/s41893-024-01349-z
- N.C. Bhoumik, D.C. Madu, C.W. Moon, L.S. Arvisu, M.D. McGehee et al., Nonaqueous electrolytes for reversible zinc electrodeposition for dynamic windows with excellent optical contrast and durability. Joule 8, 1036–1049 (2024). https://doi.org/10.1016/j.joule.2024.01.023
- P. Lei, J. Wang, Y. Gao, C. Hu, S. Zhang et al., An electrochromic nickel phosphate film for large-area smart window with ultra-large optical modulation. Nano-Micro Lett. 15, 34 (2023). https://doi.org/10.1007/s40820-022-01002-4
- Z. Shao, A. Huang, C. Ming, J. Bell, P. Yu et al., All-solid-state proton-based tandem structures for fast-switching electrochromic devices. Nat. Electron. 5, 45–52 (2022). https://doi.org/10.1038/s41928-021-00697-4
- S.-Z. Sheng, J.-L. Wang, B. Zhao, Z. He, X.-F. Feng et al., Nanowire-based smart windows combining electro- and thermochromics for dynamic regulation of solar radiation. Nat. Commun. 14, 3231 (2023). https://doi.org/10.1038/s41467-023-38353-4
- J. Chen, G. Song, S. Cong, Z. Zhao, Resonant-cavity-enhanced electrochromic materials and devices. Adv. Mater. 35, e2300179 (2023). https://doi.org/10.1002/adma.202300179202300179
- H. Zhang, X. Zhang, W. Sun, M. Chen, Y. Xiao et al., All-solid-state transparent variable infrared emissivity devices for multi-mode smart windows. Adv. Funct. Mater. 34, 2307356 (2024). https://doi.org/10.1002/adfm.202307356
- W. Wu, W.C. Poh, J. Lv, S. Chen, D. Gao et al., Self-powered and light-adaptable stretchable electrochromic display. Adv. Energy Mater. 13, 2370071 (2023). https://doi.org/10.1002/aenm.202370071
- Q. Liu, L. Liu, Y. Zheng, M. Li, B. Ding et al., On-demand engineerable visible spectrum by fine control of electrochemical reactions. Natl. Sci. Rev. 11, nwad323 (2023). https://doi.org/10.1093/nsr/nwad323
- Q. Fan, H. Fan, H. Han, Z. Bai, X. Wu et al., Dynamic thermoregulatory textiles woven from scalable-manufactured radiative electrochromic fibers. Adv. Funct. Mater. 34, 2310858 (2024). https://doi.org/10.1002/adfm.202310858
- X. Wu, Z. Bai, B. Bao, Q. Zhang, W. Jiang et al., A lithium-salt-free, hydrophobic, solid-state poly(ionic liquid) electrolyte enables rapid assembly of unencapsulated, removable electrochromic “window tint film” Adv. Funct. Mater. 34, 2312358 (2024). https://doi.org/10.1002/adfm.202312358
- Y. Wang, R. Shen, S. Wang, Y.M. Zhang, S.X. Zhang, Dynamic metal-ligand interaction of synergistic polymers for bistable see-through electrochromic devices. Adv. Mater. 34, e2104413 (2022). https://doi.org/10.1002/adma.202104413
- R. Zhang, Q. Zhou, S. Huang, Y. Zhang, R.-T. Wen, Capturing ion trapping and detrapping dynamics in electrochromic thin films. Nat. Commun. 15, 2294 (2024). https://doi.org/10.1038/s41467-024-46500-8
- R. Ren, S. Liu, Y. Gao, P. Lei, J. Wang et al., Tunable interaction between Zn2+ and superstructured Nb18W16O93 bimetallic oxide for multistep tinted electrochromic device. ACS Energy Lett. 8, 2300–2307 (2023). https://doi.org/10.1021/acsenergylett.3c00484
- Q. Zhao, Z. Pan, B. Liu, C. Bao, X. Liu et al., Electrochromic-induced rechargeable aqueous batteries: an integrated multifunctional system for cross-domain applications. Nano-Micro Lett. 15, 87 (2023). https://doi.org/10.1007/s40820-023-01056-y
- J. Zhong, B. Huang, J. Song, X. Zhang, L. Du et al., Stable WO3 electrochromic system based on NH4+ hydrogen bond chemistry. Chem. Eng. J. 480, 148098 (2024). https://doi.org/10.1016/j.cej.2023.148098
- D. Ma, H. Niu, J. Huang, Q. Li, J. Sun et al., Porous NiMoO4 nanosheet films and a device with ultralarge optical modulation for electrochromic energy-storage applications. Nano Lett. 24, 814–821 (2024). https://doi.org/10.1021/acs.nanolett.3c03270
- T. Zhang, X. Mu, Y. Li, S. Cong, S. Zheng et al., Optical-cavity-incorporated colorful all-solid-state electrochromic devices for dual anti-counterfeiting. Adv. Mater. 36, e2402670 (2024). https://doi.org/10.1002/adma.202402670
- Z. Huang, L. Feng, X. Xia, J. Zhao, P. Qi et al., Advanced inorganic nanomaterials for high-performance electrochromic applications. Nanoscale 16, 2078–2096 (2024). https://doi.org/10.1039/d3nr05461f
- W. Zhao, J. Wang, B. Tam, H. Zhang, F. Li et al., Structural water in amorphous tungsten oxide hydrate enables fast and ultrastable regulation of near-infrared light transmittance. Adv. Opt. Mater. 11, 2202774 (2023). https://doi.org/10.1002/adom.202202774
- B. Wang, W. Zhang, F. Zhao, W.W. Yu, A.Y. Elezzabi et al., An overview of recent progress in the development of flexible electrochromic devices. Nano Mater. Sci. 5, 369–391 (2023). https://doi.org/10.1016/j.nanoms.2022.08.002
- W. Wu, S. Guo, J. Bian, X. He, H. Li et al., Viologen-based flexible electrochromic devices. J. Energy Chem. 93, 453–470 (2024). https://doi.org/10.1016/j.jechem.2024.02.027
- B. Deng, Y. Zhu, X. Wang, J. Zhu, M. Liu et al., An ultrafast, energy-efficient electrochromic and thermochromic device for smart windows. Adv. Mater. 35, e2302685 (2023). https://doi.org/10.1002/adma.202302685
- Z. Song, B. Wang, W. Zhang, Q. Zhu, A.Y. Elezzabi et al., Fast and stable zinc anode-based electrochromic displays enabled by bimetallically doped vanadate and aqueous Zn2+/Na+ hybrid electrolytes. Nano-Micro Lett. 15, 229 (2023). https://doi.org/10.1007/s40820-023-01209-z
- Y. Zhai, J. Li, S. Shen, Z. Zhu, S. Mao et al., Recent advances on dual-band electrochromic materials and devices. Adv. Funct. Mater. 32, 2109848 (2022). https://doi.org/10.1002/adfm.202109848
- J. Wang, Z. Wang, M. Zhang, X. Huo, M. Guo, Toward next-generation smart windows: an in-depth analysis of dual-band electrochromic materials and devices. Adv. Opt. Mater. 12(11), 2302344 (2024). https://doi.org/10.1002/adom.202302344
- A. Llordés, G. Garcia, J. Gazquez, D.J. Milliron, Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature 500, 323–326 (2013). https://doi.org/10.1038/nature12398
- H.-C. Lu, N. Katyal, G. Henkelman, D.J. Milliron, Controlling the shape anisotropy of monoclinic Nb12O29 nanocrystals enables tunable electrochromic spectral range. J. Am. Chem. Soc. 143, 15745–15755 (2021). https://doi.org/10.1021/jacs.1c06901
- S. Cao, S. Zhang, T. Zhang, Q. Yao, J.Y. Lee, A visible light-near-infrared dual-band smart window with internal energy storage. Joule 3, 1152–1162 (2019). https://doi.org/10.1016/j.joule.2018.12.010
- S. Zhang, S. Cao, T. Zhang, J.Y. Lee, Plasmonic oxygen-deficient TiO2-x nanocrystals for dual-band electrochromic smart windows with efficient energy recycling. Adv. Mater. 32, e2004686 (2020). https://doi.org/10.1002/adma.202004686
- Q. Meng, S. Cao, J. Guo, Q. Wang, K. Wang et al., Sol-gel-based porous Ti-doped tungsten oxide films for high-performance dual-band electrochromic smart windows. J. Energy Chem. 77, 137–143 (2023). https://doi.org/10.1016/j.jechem.2022.10.047
- M. Chen, X. Zhang, D. Yan, J. Deng, W. Sun et al., Oxygen vacancy modulated amorphous tungsten oxide films for fast-switching and ultra-stable dual-band electrochromic energy storage smart windows. Mater. Horiz. 10, 2191–2203 (2023). https://doi.org/10.1039/d2mh01472f
- F. Zhao, C. Li, S. Li, B. Wang, B. Huang et al., Continuous solar energy conversion windows integrating zinc anode-based electrochromic device and IoT system. Adv. Mater. 36, e2405035 (2024). https://doi.org/10.1002/adma.202405035
- D. Ma, T. Yang, X. Feng, P. Wang, J. Huang et al., Quadruple control electrochromic devices utilizing Ce4W9O33 electrodes for visible and near-infrared transmission intelligent modulation. Adv. Sci. 11, e2307223 (2024). https://doi.org/10.1002/advs.202307223
- S. Zhao, B. Wang, N. Zhu, Y. Huang, F. Wang et al., Dual-band electrochromic materials for energy-saving smart windows. Carbon Neutralization 2, 4–27 (2023). https://doi.org/10.1002/cnl2.38
- Y. Huang, B. Wang, P. Lyu, S. Zhao, X. Wu et al., Oxygen-deficient tungsten oxide nanoflowers for dynamically tunable near-infrared light transmittance of smart windows. Nano Res. 16, 12165–12172 (2023). https://doi.org/10.1007/s12274-023-5600-7
- T. Bai, W. Li, G. Fu, Y. Shen, Q. Zhang et al., Dual-band electrochromic optical modulation improved by a precise control of lithium content in Li4+ xTi5O12. ACS Appl. Mater. Interfaces 14, 52193–52203 (2022). https://doi.org/10.1021/acsami.2c16654
- S. Zhang, Y. Peng, J. Zhao, Z. Fan, B. Ding et al., Amorphous and porous tungsten oxide films for fast-switching dual-band electrochromic smart windows. Adv. Opt. Mater. 11, 2202115 (2023). https://doi.org/10.1002/adom.202202115
- J. Zhao, S. Zhang, S. Chang, C. Li, C. Fang et al., A flexible electrochromic device with variable infrared emissivity based on W18O49 nanowire cathode and MXene infrared transparent conducting electrode. Chem. Eng. J. 480, 148010 (2024). https://doi.org/10.1016/j.cej.2023.148010
- T. Xu, D. Wang, Z. Li, Z. Chen, J. Zhang et al., Electrochemical proton storage: from fundamental understanding to materials to devices. Nano-Micro Lett. 14, 126 (2022). https://doi.org/10.1007/s40820-022-00864-y
References
S. Wang, T. Jiang, Y. Meng, R. Yang, G. Tan et al., Scalable thermochromic smart windows with passive radiative cooling regulation. Science 374, 1501–1504 (2021). https://doi.org/10.1126/science.abg0291
Z. Shao, A. Huang, C. Cao, X. Ji, W. Hu et al., Tri-band electrochromic smart window for energy savings in buildings. Nat. Sustain. 7, 796–803 (2024). https://doi.org/10.1038/s41893-024-01349-z
N.C. Bhoumik, D.C. Madu, C.W. Moon, L.S. Arvisu, M.D. McGehee et al., Nonaqueous electrolytes for reversible zinc electrodeposition for dynamic windows with excellent optical contrast and durability. Joule 8, 1036–1049 (2024). https://doi.org/10.1016/j.joule.2024.01.023
P. Lei, J. Wang, Y. Gao, C. Hu, S. Zhang et al., An electrochromic nickel phosphate film for large-area smart window with ultra-large optical modulation. Nano-Micro Lett. 15, 34 (2023). https://doi.org/10.1007/s40820-022-01002-4
Z. Shao, A. Huang, C. Ming, J. Bell, P. Yu et al., All-solid-state proton-based tandem structures for fast-switching electrochromic devices. Nat. Electron. 5, 45–52 (2022). https://doi.org/10.1038/s41928-021-00697-4
S.-Z. Sheng, J.-L. Wang, B. Zhao, Z. He, X.-F. Feng et al., Nanowire-based smart windows combining electro- and thermochromics for dynamic regulation of solar radiation. Nat. Commun. 14, 3231 (2023). https://doi.org/10.1038/s41467-023-38353-4
J. Chen, G. Song, S. Cong, Z. Zhao, Resonant-cavity-enhanced electrochromic materials and devices. Adv. Mater. 35, e2300179 (2023). https://doi.org/10.1002/adma.202300179202300179
H. Zhang, X. Zhang, W. Sun, M. Chen, Y. Xiao et al., All-solid-state transparent variable infrared emissivity devices for multi-mode smart windows. Adv. Funct. Mater. 34, 2307356 (2024). https://doi.org/10.1002/adfm.202307356
W. Wu, W.C. Poh, J. Lv, S. Chen, D. Gao et al., Self-powered and light-adaptable stretchable electrochromic display. Adv. Energy Mater. 13, 2370071 (2023). https://doi.org/10.1002/aenm.202370071
Q. Liu, L. Liu, Y. Zheng, M. Li, B. Ding et al., On-demand engineerable visible spectrum by fine control of electrochemical reactions. Natl. Sci. Rev. 11, nwad323 (2023). https://doi.org/10.1093/nsr/nwad323
Q. Fan, H. Fan, H. Han, Z. Bai, X. Wu et al., Dynamic thermoregulatory textiles woven from scalable-manufactured radiative electrochromic fibers. Adv. Funct. Mater. 34, 2310858 (2024). https://doi.org/10.1002/adfm.202310858
X. Wu, Z. Bai, B. Bao, Q. Zhang, W. Jiang et al., A lithium-salt-free, hydrophobic, solid-state poly(ionic liquid) electrolyte enables rapid assembly of unencapsulated, removable electrochromic “window tint film” Adv. Funct. Mater. 34, 2312358 (2024). https://doi.org/10.1002/adfm.202312358
Y. Wang, R. Shen, S. Wang, Y.M. Zhang, S.X. Zhang, Dynamic metal-ligand interaction of synergistic polymers for bistable see-through electrochromic devices. Adv. Mater. 34, e2104413 (2022). https://doi.org/10.1002/adma.202104413
R. Zhang, Q. Zhou, S. Huang, Y. Zhang, R.-T. Wen, Capturing ion trapping and detrapping dynamics in electrochromic thin films. Nat. Commun. 15, 2294 (2024). https://doi.org/10.1038/s41467-024-46500-8
R. Ren, S. Liu, Y. Gao, P. Lei, J. Wang et al., Tunable interaction between Zn2+ and superstructured Nb18W16O93 bimetallic oxide for multistep tinted electrochromic device. ACS Energy Lett. 8, 2300–2307 (2023). https://doi.org/10.1021/acsenergylett.3c00484
Q. Zhao, Z. Pan, B. Liu, C. Bao, X. Liu et al., Electrochromic-induced rechargeable aqueous batteries: an integrated multifunctional system for cross-domain applications. Nano-Micro Lett. 15, 87 (2023). https://doi.org/10.1007/s40820-023-01056-y
J. Zhong, B. Huang, J. Song, X. Zhang, L. Du et al., Stable WO3 electrochromic system based on NH4+ hydrogen bond chemistry. Chem. Eng. J. 480, 148098 (2024). https://doi.org/10.1016/j.cej.2023.148098
D. Ma, H. Niu, J. Huang, Q. Li, J. Sun et al., Porous NiMoO4 nanosheet films and a device with ultralarge optical modulation for electrochromic energy-storage applications. Nano Lett. 24, 814–821 (2024). https://doi.org/10.1021/acs.nanolett.3c03270
T. Zhang, X. Mu, Y. Li, S. Cong, S. Zheng et al., Optical-cavity-incorporated colorful all-solid-state electrochromic devices for dual anti-counterfeiting. Adv. Mater. 36, e2402670 (2024). https://doi.org/10.1002/adma.202402670
Z. Huang, L. Feng, X. Xia, J. Zhao, P. Qi et al., Advanced inorganic nanomaterials for high-performance electrochromic applications. Nanoscale 16, 2078–2096 (2024). https://doi.org/10.1039/d3nr05461f
W. Zhao, J. Wang, B. Tam, H. Zhang, F. Li et al., Structural water in amorphous tungsten oxide hydrate enables fast and ultrastable regulation of near-infrared light transmittance. Adv. Opt. Mater. 11, 2202774 (2023). https://doi.org/10.1002/adom.202202774
B. Wang, W. Zhang, F. Zhao, W.W. Yu, A.Y. Elezzabi et al., An overview of recent progress in the development of flexible electrochromic devices. Nano Mater. Sci. 5, 369–391 (2023). https://doi.org/10.1016/j.nanoms.2022.08.002
W. Wu, S. Guo, J. Bian, X. He, H. Li et al., Viologen-based flexible electrochromic devices. J. Energy Chem. 93, 453–470 (2024). https://doi.org/10.1016/j.jechem.2024.02.027
B. Deng, Y. Zhu, X. Wang, J. Zhu, M. Liu et al., An ultrafast, energy-efficient electrochromic and thermochromic device for smart windows. Adv. Mater. 35, e2302685 (2023). https://doi.org/10.1002/adma.202302685
Z. Song, B. Wang, W. Zhang, Q. Zhu, A.Y. Elezzabi et al., Fast and stable zinc anode-based electrochromic displays enabled by bimetallically doped vanadate and aqueous Zn2+/Na+ hybrid electrolytes. Nano-Micro Lett. 15, 229 (2023). https://doi.org/10.1007/s40820-023-01209-z
Y. Zhai, J. Li, S. Shen, Z. Zhu, S. Mao et al., Recent advances on dual-band electrochromic materials and devices. Adv. Funct. Mater. 32, 2109848 (2022). https://doi.org/10.1002/adfm.202109848
J. Wang, Z. Wang, M. Zhang, X. Huo, M. Guo, Toward next-generation smart windows: an in-depth analysis of dual-band electrochromic materials and devices. Adv. Opt. Mater. 12(11), 2302344 (2024). https://doi.org/10.1002/adom.202302344
A. Llordés, G. Garcia, J. Gazquez, D.J. Milliron, Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature 500, 323–326 (2013). https://doi.org/10.1038/nature12398
H.-C. Lu, N. Katyal, G. Henkelman, D.J. Milliron, Controlling the shape anisotropy of monoclinic Nb12O29 nanocrystals enables tunable electrochromic spectral range. J. Am. Chem. Soc. 143, 15745–15755 (2021). https://doi.org/10.1021/jacs.1c06901
S. Cao, S. Zhang, T. Zhang, Q. Yao, J.Y. Lee, A visible light-near-infrared dual-band smart window with internal energy storage. Joule 3, 1152–1162 (2019). https://doi.org/10.1016/j.joule.2018.12.010
S. Zhang, S. Cao, T. Zhang, J.Y. Lee, Plasmonic oxygen-deficient TiO2-x nanocrystals for dual-band electrochromic smart windows with efficient energy recycling. Adv. Mater. 32, e2004686 (2020). https://doi.org/10.1002/adma.202004686
Q. Meng, S. Cao, J. Guo, Q. Wang, K. Wang et al., Sol-gel-based porous Ti-doped tungsten oxide films for high-performance dual-band electrochromic smart windows. J. Energy Chem. 77, 137–143 (2023). https://doi.org/10.1016/j.jechem.2022.10.047
M. Chen, X. Zhang, D. Yan, J. Deng, W. Sun et al., Oxygen vacancy modulated amorphous tungsten oxide films for fast-switching and ultra-stable dual-band electrochromic energy storage smart windows. Mater. Horiz. 10, 2191–2203 (2023). https://doi.org/10.1039/d2mh01472f
F. Zhao, C. Li, S. Li, B. Wang, B. Huang et al., Continuous solar energy conversion windows integrating zinc anode-based electrochromic device and IoT system. Adv. Mater. 36, e2405035 (2024). https://doi.org/10.1002/adma.202405035
D. Ma, T. Yang, X. Feng, P. Wang, J. Huang et al., Quadruple control electrochromic devices utilizing Ce4W9O33 electrodes for visible and near-infrared transmission intelligent modulation. Adv. Sci. 11, e2307223 (2024). https://doi.org/10.1002/advs.202307223
S. Zhao, B. Wang, N. Zhu, Y. Huang, F. Wang et al., Dual-band electrochromic materials for energy-saving smart windows. Carbon Neutralization 2, 4–27 (2023). https://doi.org/10.1002/cnl2.38
Y. Huang, B. Wang, P. Lyu, S. Zhao, X. Wu et al., Oxygen-deficient tungsten oxide nanoflowers for dynamically tunable near-infrared light transmittance of smart windows. Nano Res. 16, 12165–12172 (2023). https://doi.org/10.1007/s12274-023-5600-7
T. Bai, W. Li, G. Fu, Y. Shen, Q. Zhang et al., Dual-band electrochromic optical modulation improved by a precise control of lithium content in Li4+ xTi5O12. ACS Appl. Mater. Interfaces 14, 52193–52203 (2022). https://doi.org/10.1021/acsami.2c16654
S. Zhang, Y. Peng, J. Zhao, Z. Fan, B. Ding et al., Amorphous and porous tungsten oxide films for fast-switching dual-band electrochromic smart windows. Adv. Opt. Mater. 11, 2202115 (2023). https://doi.org/10.1002/adom.202202115
J. Zhao, S. Zhang, S. Chang, C. Li, C. Fang et al., A flexible electrochromic device with variable infrared emissivity based on W18O49 nanowire cathode and MXene infrared transparent conducting electrode. Chem. Eng. J. 480, 148010 (2024). https://doi.org/10.1016/j.cej.2023.148010
T. Xu, D. Wang, Z. Li, Z. Chen, J. Zhang et al., Electrochemical proton storage: from fundamental understanding to materials to devices. Nano-Micro Lett. 14, 126 (2022). https://doi.org/10.1007/s40820-022-00864-y