Regulating the Solvation Structure of Li+ Enables Chemical Prelithiation of Silicon-Based Anodes Toward High-Energy Lithium-Ion Batteries
Corresponding Author: Xiaogang Zhang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 107
Abstract
The solvation structure of Li+ in chemical prelithiation reagent plays a key role in improving the low initial Coulombic efficiency (ICE) and poor cycle performance of silicon-based materials. Nevertheless, the chemical prelithiation agent is difficult to dope active Li+ in silicon-based anodes because of their low working voltage and sluggish Li+ diffusion rate. By selecting the lithium–arene complex reagent with 4-methylbiphenyl as an anion ligand and 2-methyltetrahydrofuran as a solvent, the as-prepared micro-sized SiO/C anode can achieve an ICE of nearly 100%. Interestingly, the best prelithium efficiency does not correspond to the lowest redox half-potential (E1/2), and the prelithiation efficiency is determined by the specific influencing factors (E1/2, Li+ concentration, desolvation energy, and ion diffusion path). In addition, molecular dynamics simulations demonstrate that the ideal prelithiation efficiency can be achieved by choosing appropriate anion ligand and solvent to regulate the solvation structure of Li+. Furthermore, the positive effect of prelithiation on cycle performance has been verified by using an in-situ electrochemical dilatometry and solid electrolyte interphase film characterizations.
Highlights:
1 By selecting 4-methylbiphenyl as an anion ligand and 2-methyltetrahydrofuran as a solvent, the as-prepared micro-sized SiO/C anode can achieve an initial Coulombic efficiency of ~100%.
2 Molecular dynamics simulations demonstrate that the ideal prelithiation efficiency can be achieved by choosing appropriate anion ligand and solvent to regulate the solvation structure of Li+.
3 The positive effect of pre-lithiation on cycle performance has been verified by using an in-situ electrochemical dilatometry and solid electrolyte interphase film.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Ge, C. Cao, G.M. Biesold, C.D. Sewell, S.M. Hao et al., Recent advances in silicon-based electrodes: from fundamental research toward practical applications. Adv. Mater. 33, 2004577 (2021). https://doi.org/10.1002/adma.202004577
- P. Li, H. Kim, S. Myung, Y. Sun, Diverting exploration of silicon anode into practical way: a review focused on silicon-graphite composite for lithium ion batteries. Energy Storage Mater. 35, 550–576 (2021). https://doi.org/10.1016/j.ensm.2020.11.028
- Z. Liu, Q. Yu, Y. Zhao, R. He, M. Xu et al., Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chem. Soc. Rev. 48, 285–309 (2019). https://doi.org/10.1039/C8CS00441B
- C. Zhang, F. Wang, J. Han, S. Bai, J. Tan et al., Challenges and recent progress on silicon-based anode materials for next-generation lithium-ion batteries. Small Struct. 2, 2100009 (2021). https://doi.org/10.1002/sstr.202170015
- H. Zhang, L. Wang, H. Li, X. He, Criterion for identifying anodes for practically accessible high-energy-density lithium-ion batteries. ACS Energy Lett. 6, 3719–3724 (2021). https://doi.org/10.1021/acsenergylett.1c01713
- J. Wu, F. Ma, X. Liu, X. Fan, L. Shen et al., Recent progress in advanced characterization methods for silicon-based lithium-ion batteries. Small Methods 3, 1900158 (2019). https://doi.org/10.1002/smtd.201900158
- G. Yang, S. Frisco, R. Tao, N. Philip, T.H. Bennett et al., Robust solid/electrolyte interphase (SEI) formation on Si anodes using glyme-based electrolytes. ACS Energy Lett. 6, 1684–1693 (2021). https://doi.org/10.1021/acsenergylett.0c02629
- H. Jia, L. Zou, P. Gao, X. Cao, W. Zhao et al., High-performance silicon anodes enabled by nonflammable localized high-concentration electrolytes. Adv. Energy Mater. 9, 1900784 (2019). https://doi.org/10.1002/aenm.201900784
- Z. Hu, L. Zhao, T. Jiang, J. Liu, A. Rashid et al., Trifluoropropylene carbonate-driven interface regulation enabling greatly enhanced lithium storage durability of silicon-based anodes. Adv. Funct. Mater. 29, 1906548 (2019). https://doi.org/10.1002/adfm.201906548
- J. Chen, X. Fan, Q. Li, H. Yang, M.R. Khoshi et al., Electrolyte design for LiF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 5, 386–397 (2020). https://doi.org/10.1038/s41560-020-0601-1
- P. Li, G. Zhao, X. Zheng, X. Xu, C. Yao et al., Recent progress on silicon-based anode materials for practical lithium-ion battery applications. Energy Storage Mater. 15, 422–446 (2018). https://doi.org/10.1016/j.ensm.2018.07.014
- T. Chen, J. Wu, Q. Zhang, X. Su, Recent advancement of SiOx based anodes for lithium-ion batteries. J. Power Sources 363, 126–144 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.073
- Y. Jin, B. Zhu, Z. Lu, N. Liu, J. Zhu, Challenges and recent progress in the development of Si anodes for lithium-ion battery. Adv. Energy Mater. 7, 1700715 (2017). https://doi.org/10.1002/aenm.201700715
- M. Jiang, P. Mu, H. Zhang, T. Dong, B. Tang et al., An endotenon sheath-inspired double-network binder enables superior cycling performance of silicon electrodes. Nano-Micro Lett. 14, 87 (2022). https://doi.org/10.1007/s40820-022-00833-5
- J. Wu, Y. Cao, H. Zhao, J. Mao, Z. Guo, The critical role of carbon in marrying silicon and graphite anodes for high-energy lithium-ion batteries. Carbon Energy 1, 57–76 (2019). https://doi.org/10.1002/cey2.2
- J. Zhong, T. Wang, L. Wang, L. Peng, S. Fu et al., A silicon monoxide lithium-ion battery anode with ultrahigh areal capacity. Nano-Micro Lett. 14, 50 (2022). https://doi.org/10.1007/s40820-022-00790-z
- X. Chen, H. Li, Z. Yan, F. Cheng, J. Chen, Structure design and mechanism analysis of silicon anode for lithium-ion batteries. Sci. China Mater. 62, 1515–1536 (2019). https://doi.org/10.1007/s40843-019-9464-0
- G. Zhu, D. Chao, W. Xu, M. Wu, H. Zhang, Microscale silicon-based anodes: fundamental understanding and industrial prospects for practical high-energy lithium-ion batteries. ACS Nano 15, 15567–15593 (2021). https://doi.org/10.1021/acsnano.1c05898
- D. Wang, C. Zhou, B. Cao, Y. Xu, D. Zhang et al., One-step synthesis of spherical Si/C composites with onion-like buffer structure as high-performance anodes for lithium-ion batteries. Energy Storage Mater. 24, 312–318 (2020). https://doi.org/10.1016/j.ensm.2019.07.045
- W. He, T. Zhang, J. Jiang, C. Chen, Y. Zhang et al., Efficient synthesis of N-doped SiOx/C composite based on the defect-enriched graphite flake for lithium-ion battery. ACS Appl. Energy Mater. 3, 4394–4402 (2020). https://doi.org/10.1021/acsaem.0c00090
- F. Wang, B. Wang, T. Ruan, T. Gao, R. Song et al., Construction of structure-tunable Si@void@C anode materials for lithium-ion batteries through controlling the growth kinetics of resin. ACS Nano 13, 12219–12229 (2019). https://doi.org/10.1021/acsnano.9b07241
- Y. Xiang, L. Xu, L. Yang, Y. Ye, Z. Ge et al., Natural stibnite for lithium-/sodium-ion batteries: carbon dots evoked high initial coulombic efficiency. Nano-Micro Lett. 14, 136 (2022). https://doi.org/10.1007/s40820-022-00873-x
- K. Zou, Z. Song, X. Gao, H. Liu, Z. Luo et al., Molecularly compensated pre-metallation strategy for metal-ion batteries and capacitors. Angew. Chem. Int. Ed. 60, 17070–17079 (2021). https://doi.org/10.1002/anie.202103569
- K. Zou, Z. Song, H. Liu, Y. Wang, A. Massoudi et al., Electronic effect and regiochemistry of substitution in pre-sodiation chemistry. J. Phys. Chem. Lett. 12, 11968–11979 (2021). https://doi.org/10.1021/acs.jpclett.1c03078
- J. Zhao, H. Lee, J. Sun, K. Yan, Y. Liu et al., Metallurgically lithiated SiOx anode with high capacity and ambient air compatibility. Proc. Natl. Acad. Sci. 113, 7408–7413 (2016). https://doi.org/10.1073/pnas.1603810113
- M. Xu, M. Liu, Z. Yang, C. Wu, J. Qian, Research progress on presodiation strategies for high energy sodium-ion batteries. Acta Phys. Chim. Sin. 39, 2210043 (2022). https://doi.org/10.3866/pku.whxb202210043
- K. Lin, X. Xu, X. Qin, M. Liu, L. Zhao et al., Commercially viable hybrid Li-ion/metal batteries with high energy density realized by symbiotic anode and prelithiated cathode. Nano-Micro Lett. 14, 149 (2022). https://doi.org/10.1007/s40820-022-00899-1
- F. Wang, B. Wang, J. Li, B. Wang, Y. Zhou et al., Prelithiation: a crucial strategy for boosting the practical application of next-generation lithium ion battery. ACS Nano 15, 2197–2218 (2021). https://doi.org/10.1021/acsnano.0c10664
- H.J. Kim, S. Choi, S.J. Lee, M.W. Seo, J.G. Lee et al., Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells. Nano Lett. 16, 282–288 (2015). https://doi.org/10.1021/acs.nanolett.5b03776
- Y. An, Y. Tian, H. Wei, B. Xi, S. Xiong et al., Porosity- and graphitization-controlled fabrication of nanoporous silicon@carbon for lithium storage and its conjugation with mxene for lithium-metal anode. Adv. Funct. Mater. 30, 1908721 (2019). https://doi.org/10.1002/adfm.201908721
- L. Jin, C. Shen, Q. Wu, A. Shellikeri, J. Zheng et al., Pre-lithiation strategies for next-generation practical lithium-ion batteries. Adv. Sci. 8, 2005031 (2021). https://doi.org/10.1002/advs.202005031
- Y. Li, Y. Qian, J. Zhou, N. Lin, Y. Qian, Molten-LiCl induced thermochemical prelithiation of SiOx: regulating the active Si/O ratio for high initial coulombic efficiency. Nano Res. 15, 230–237 (2022). https://doi.org/10.1007/s12274-021-3464-2
- Q. Wang, M. Zhu, G. Chen, N. Dudko, Y. Li et al., High-performance microsized Si anodes for lithium-ion batteries: insights into the polymer configuration conversion mechanism. Adv. Mater. 34, 2109658 (2022). https://doi.org/10.1002/adma.202109658
- H. Wang, M. Zhang, Q. Jia, D. Du, F. Liu et al., Exploiting the capacity merits of Si anodes in the energy-dense prototypes via a homogeneous prelithiation therapy. Nano Energy 95, 107026 (2022). https://doi.org/10.1016/j.nanoen.2022.107026
- X. Liu, T. Liu, R. Wang, Z. Cai, W. Wang et al., Prelithiated Li-enriched gradient interphase toward practical high-energy NMC–silicon full cell. ACS Energy Lett. 6, 320–328 (2021). https://doi.org/10.1021/acsenergylett.0c02487
- Y. Shen, X. Shen, M. Yang, J. Qian, Y. Cao et al., Achieving desirable initial coulombic efficiencies and full capacity utilization of Li-ion batteries by chemical prelithiation of graphite anode. Adv. Funct. Mater. 31, 2101181 (2021). https://doi.org/10.1002/adfm.202101181
- X. Liu, Y. Tan, T. Liu, W. Wang, C. Li et al., A simple electrode-level chemical presodiation route by solution spraying to improve the energy density of sodium-ion batteries. Adv. Funct. Mater. 29, 1903795 (2019). https://doi.org/10.1002/adfm.201903795
- Y. Shen, J. Zhang, Y. Pu, H. Wang, B. Wang et al., Effective chemical prelithiation strategy for building a silicon/sulfur Li-ion battery. ACS Energy Lett. 4, 1717–1724 (2019). https://doi.org/10.1021/acsenergylett.9b00889
- J. Jang, I. Kang, J. Choi, H. Jeong, K.W. Yi et al., Molecularly tailored lithium–arene complex enables chemical prelithiation of high-capacity lithium-ion battery anodes. Angew. Chem. Int. Ed. 59, 14473–14480 (2020). https://doi.org/10.1002/anie.202002411
- X. Zhang, H. Qu, W. Ji, D. Zheng, T. Ding et al., An electrode-level prelithiation of SiO anodes with organolithium compounds for lithium-ion batteries. J. Power Sources 478, 229067 (2020). https://doi.org/10.1016/j.jpowsour.2020.229067
- J. Choi, H. Jeong, J. Jang, A. Jeon, I. Kang et al., Weakly solvating solution enables chemical prelithiation of graphite–SiOx anodes for high-energy Li-ion batteries. J. Am. Chem. Soc. 143, 9169–9176 (2021). https://doi.org/10.1021/jacs.1c03648
- W. He, T. Zhang, Z. Li, J. Jiang, C. Chen et al., B-doped SiOx composite with three dimensional conductive network for high performance lithium-ion battery anode. J. Materiomic 7, 802–809 (2021). https://doi.org/10.1016/j.jmat.2020.12.016
- H. Deng, Z. Chang, F. Qiu, Y. Qiao, H. Yang et al., A safe organic oxygen battery built with Li-based liquid anode and MOFs separator. Adv. Energy Mater. 10, 1903953 (2020). https://doi.org/10.1002/aenm.201903953
- Y. Shen, J. Qian, H. Yang, F. Zhong, X. Ai, Chemically prelithiated hard-carbon anode for high power and high capacity Li-ion batteries. Small 16, 1907602 (2020). https://doi.org/10.1002/smll.201907602
- H.J. Reich, Role of organolithium aggregates and mixed aggregates in organolithium mechanisms. Chem. Rev. 113, 7130–7178 (2013). https://doi.org/10.1021/cr400187u
- Y. Huang, C. Liu, F. Wei, G. Wang, L. Xiao et al., Chemical prelithiation of Al for use as an ambient air compatible and polysulfide resistant anode for Li-ion/S batteries. J. Mater. Chem. A 8, 18715 (2020). https://doi.org/10.1039/d0ta06694j
- G. Wang, B. Huang, D. Liu, D. Zheng, J. Harris et al., Exploring polycyclic aromatic hydrocarbons as an anolyte for nonaqueous redox flow batteries. J. Mater. Chem A 6, 13286–13293 (2018). https://doi.org/10.1039/c8ta03221a
- P.G. Bruce, B. Scrosati, J. Tarascon, Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008). https://doi.org/10.1002/anie.200702505
- S. Jung, I. Hwang, D. Chang, K. Park, S.J. Kim et al., Nanoscale phenomena in lithium-ion batteries. Chem. Rev. 120, 6684–6737 (2020). https://doi.org/10.1021/acs.chemrev.9b00405
- S. Fang, L. Shen, S. Li, G. Kim, D. Bresser et al., Alloying reaction confinement enables high-capacity and stable anodes for lithium-ion batteries. ACS Nano 13, 9511–9519 (2019). https://doi.org/10.1021/acsnano.9b04495
- D. Yoon, M. Marinaro, P. Axmann, M. Wohlfahrt-Mehrens, Study of the binder influence on expansion/contraction behavior of silicon alloy negative electrodes for lithium-ion batteries. J. Electrochem. Soc. 167, 160537 (2020). https://doi.org/10.1149/1945-7111/abcf4f
- C. Chen, T. Zhou, D.L. Danilov, L. Gao, S. Benning et al., Impact of dual-layer solid-electrolyte interphase inhomogeneities on early-stage defect formation in Si electrodes. Nat. Commun. 11, 3283 (2020). https://doi.org/10.1038/s41467-020-17104-9
- M. Yan, G. Li, J. Zhang, Y. Tian, Y. Yin et al., Enabling SiOx/C anode with high initial coulombic efficiency through a chemical pre-lithiation strategy for high-energy-density lithium-ion batteries. ACS Appl. Mater. Interfaces 12, 27202–27209 (2020). https://doi.org/10.1021/acsami.0c05153
- X. Zhang, H. Qu, W. Ji, D. Zheng, T. Ding et al., Fast and controllable prelithiation of hard carbon anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 12, 11589–11599 (2020). https://doi.org/10.1021/acsami.9b21417
- Z. Piao, P. Xiao, R. Luo, J. Ma, R. Gao et al., Constructing a stable interface layer by tailoring solvation chemistry in carbonate electrolytes for high performance lithium metal batteries. Adv. Mater. 34, 2108400 (2021). https://doi.org/10.1002/adma.202108400
- F. Aupperle, N. von Aspern, D. Berghus, F. Weber, G.G. Eshetu et al., The role of electrolyte additives on the interfacial chemistry and thermal reactivity of Si-anode-based Li-ion battery. ACS Appl. Energ. Mater. 2, 6513–6527 (2019). https://doi.org/10.1021/acsaem.9b01094
References
M. Ge, C. Cao, G.M. Biesold, C.D. Sewell, S.M. Hao et al., Recent advances in silicon-based electrodes: from fundamental research toward practical applications. Adv. Mater. 33, 2004577 (2021). https://doi.org/10.1002/adma.202004577
P. Li, H. Kim, S. Myung, Y. Sun, Diverting exploration of silicon anode into practical way: a review focused on silicon-graphite composite for lithium ion batteries. Energy Storage Mater. 35, 550–576 (2021). https://doi.org/10.1016/j.ensm.2020.11.028
Z. Liu, Q. Yu, Y. Zhao, R. He, M. Xu et al., Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chem. Soc. Rev. 48, 285–309 (2019). https://doi.org/10.1039/C8CS00441B
C. Zhang, F. Wang, J. Han, S. Bai, J. Tan et al., Challenges and recent progress on silicon-based anode materials for next-generation lithium-ion batteries. Small Struct. 2, 2100009 (2021). https://doi.org/10.1002/sstr.202170015
H. Zhang, L. Wang, H. Li, X. He, Criterion for identifying anodes for practically accessible high-energy-density lithium-ion batteries. ACS Energy Lett. 6, 3719–3724 (2021). https://doi.org/10.1021/acsenergylett.1c01713
J. Wu, F. Ma, X. Liu, X. Fan, L. Shen et al., Recent progress in advanced characterization methods for silicon-based lithium-ion batteries. Small Methods 3, 1900158 (2019). https://doi.org/10.1002/smtd.201900158
G. Yang, S. Frisco, R. Tao, N. Philip, T.H. Bennett et al., Robust solid/electrolyte interphase (SEI) formation on Si anodes using glyme-based electrolytes. ACS Energy Lett. 6, 1684–1693 (2021). https://doi.org/10.1021/acsenergylett.0c02629
H. Jia, L. Zou, P. Gao, X. Cao, W. Zhao et al., High-performance silicon anodes enabled by nonflammable localized high-concentration electrolytes. Adv. Energy Mater. 9, 1900784 (2019). https://doi.org/10.1002/aenm.201900784
Z. Hu, L. Zhao, T. Jiang, J. Liu, A. Rashid et al., Trifluoropropylene carbonate-driven interface regulation enabling greatly enhanced lithium storage durability of silicon-based anodes. Adv. Funct. Mater. 29, 1906548 (2019). https://doi.org/10.1002/adfm.201906548
J. Chen, X. Fan, Q. Li, H. Yang, M.R. Khoshi et al., Electrolyte design for LiF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 5, 386–397 (2020). https://doi.org/10.1038/s41560-020-0601-1
P. Li, G. Zhao, X. Zheng, X. Xu, C. Yao et al., Recent progress on silicon-based anode materials for practical lithium-ion battery applications. Energy Storage Mater. 15, 422–446 (2018). https://doi.org/10.1016/j.ensm.2018.07.014
T. Chen, J. Wu, Q. Zhang, X. Su, Recent advancement of SiOx based anodes for lithium-ion batteries. J. Power Sources 363, 126–144 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.073
Y. Jin, B. Zhu, Z. Lu, N. Liu, J. Zhu, Challenges and recent progress in the development of Si anodes for lithium-ion battery. Adv. Energy Mater. 7, 1700715 (2017). https://doi.org/10.1002/aenm.201700715
M. Jiang, P. Mu, H. Zhang, T. Dong, B. Tang et al., An endotenon sheath-inspired double-network binder enables superior cycling performance of silicon electrodes. Nano-Micro Lett. 14, 87 (2022). https://doi.org/10.1007/s40820-022-00833-5
J. Wu, Y. Cao, H. Zhao, J. Mao, Z. Guo, The critical role of carbon in marrying silicon and graphite anodes for high-energy lithium-ion batteries. Carbon Energy 1, 57–76 (2019). https://doi.org/10.1002/cey2.2
J. Zhong, T. Wang, L. Wang, L. Peng, S. Fu et al., A silicon monoxide lithium-ion battery anode with ultrahigh areal capacity. Nano-Micro Lett. 14, 50 (2022). https://doi.org/10.1007/s40820-022-00790-z
X. Chen, H. Li, Z. Yan, F. Cheng, J. Chen, Structure design and mechanism analysis of silicon anode for lithium-ion batteries. Sci. China Mater. 62, 1515–1536 (2019). https://doi.org/10.1007/s40843-019-9464-0
G. Zhu, D. Chao, W. Xu, M. Wu, H. Zhang, Microscale silicon-based anodes: fundamental understanding and industrial prospects for practical high-energy lithium-ion batteries. ACS Nano 15, 15567–15593 (2021). https://doi.org/10.1021/acsnano.1c05898
D. Wang, C. Zhou, B. Cao, Y. Xu, D. Zhang et al., One-step synthesis of spherical Si/C composites with onion-like buffer structure as high-performance anodes for lithium-ion batteries. Energy Storage Mater. 24, 312–318 (2020). https://doi.org/10.1016/j.ensm.2019.07.045
W. He, T. Zhang, J. Jiang, C. Chen, Y. Zhang et al., Efficient synthesis of N-doped SiOx/C composite based on the defect-enriched graphite flake for lithium-ion battery. ACS Appl. Energy Mater. 3, 4394–4402 (2020). https://doi.org/10.1021/acsaem.0c00090
F. Wang, B. Wang, T. Ruan, T. Gao, R. Song et al., Construction of structure-tunable Si@void@C anode materials for lithium-ion batteries through controlling the growth kinetics of resin. ACS Nano 13, 12219–12229 (2019). https://doi.org/10.1021/acsnano.9b07241
Y. Xiang, L. Xu, L. Yang, Y. Ye, Z. Ge et al., Natural stibnite for lithium-/sodium-ion batteries: carbon dots evoked high initial coulombic efficiency. Nano-Micro Lett. 14, 136 (2022). https://doi.org/10.1007/s40820-022-00873-x
K. Zou, Z. Song, X. Gao, H. Liu, Z. Luo et al., Molecularly compensated pre-metallation strategy for metal-ion batteries and capacitors. Angew. Chem. Int. Ed. 60, 17070–17079 (2021). https://doi.org/10.1002/anie.202103569
K. Zou, Z. Song, H. Liu, Y. Wang, A. Massoudi et al., Electronic effect and regiochemistry of substitution in pre-sodiation chemistry. J. Phys. Chem. Lett. 12, 11968–11979 (2021). https://doi.org/10.1021/acs.jpclett.1c03078
J. Zhao, H. Lee, J. Sun, K. Yan, Y. Liu et al., Metallurgically lithiated SiOx anode with high capacity and ambient air compatibility. Proc. Natl. Acad. Sci. 113, 7408–7413 (2016). https://doi.org/10.1073/pnas.1603810113
M. Xu, M. Liu, Z. Yang, C. Wu, J. Qian, Research progress on presodiation strategies for high energy sodium-ion batteries. Acta Phys. Chim. Sin. 39, 2210043 (2022). https://doi.org/10.3866/pku.whxb202210043
K. Lin, X. Xu, X. Qin, M. Liu, L. Zhao et al., Commercially viable hybrid Li-ion/metal batteries with high energy density realized by symbiotic anode and prelithiated cathode. Nano-Micro Lett. 14, 149 (2022). https://doi.org/10.1007/s40820-022-00899-1
F. Wang, B. Wang, J. Li, B. Wang, Y. Zhou et al., Prelithiation: a crucial strategy for boosting the practical application of next-generation lithium ion battery. ACS Nano 15, 2197–2218 (2021). https://doi.org/10.1021/acsnano.0c10664
H.J. Kim, S. Choi, S.J. Lee, M.W. Seo, J.G. Lee et al., Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells. Nano Lett. 16, 282–288 (2015). https://doi.org/10.1021/acs.nanolett.5b03776
Y. An, Y. Tian, H. Wei, B. Xi, S. Xiong et al., Porosity- and graphitization-controlled fabrication of nanoporous silicon@carbon for lithium storage and its conjugation with mxene for lithium-metal anode. Adv. Funct. Mater. 30, 1908721 (2019). https://doi.org/10.1002/adfm.201908721
L. Jin, C. Shen, Q. Wu, A. Shellikeri, J. Zheng et al., Pre-lithiation strategies for next-generation practical lithium-ion batteries. Adv. Sci. 8, 2005031 (2021). https://doi.org/10.1002/advs.202005031
Y. Li, Y. Qian, J. Zhou, N. Lin, Y. Qian, Molten-LiCl induced thermochemical prelithiation of SiOx: regulating the active Si/O ratio for high initial coulombic efficiency. Nano Res. 15, 230–237 (2022). https://doi.org/10.1007/s12274-021-3464-2
Q. Wang, M. Zhu, G. Chen, N. Dudko, Y. Li et al., High-performance microsized Si anodes for lithium-ion batteries: insights into the polymer configuration conversion mechanism. Adv. Mater. 34, 2109658 (2022). https://doi.org/10.1002/adma.202109658
H. Wang, M. Zhang, Q. Jia, D. Du, F. Liu et al., Exploiting the capacity merits of Si anodes in the energy-dense prototypes via a homogeneous prelithiation therapy. Nano Energy 95, 107026 (2022). https://doi.org/10.1016/j.nanoen.2022.107026
X. Liu, T. Liu, R. Wang, Z. Cai, W. Wang et al., Prelithiated Li-enriched gradient interphase toward practical high-energy NMC–silicon full cell. ACS Energy Lett. 6, 320–328 (2021). https://doi.org/10.1021/acsenergylett.0c02487
Y. Shen, X. Shen, M. Yang, J. Qian, Y. Cao et al., Achieving desirable initial coulombic efficiencies and full capacity utilization of Li-ion batteries by chemical prelithiation of graphite anode. Adv. Funct. Mater. 31, 2101181 (2021). https://doi.org/10.1002/adfm.202101181
X. Liu, Y. Tan, T. Liu, W. Wang, C. Li et al., A simple electrode-level chemical presodiation route by solution spraying to improve the energy density of sodium-ion batteries. Adv. Funct. Mater. 29, 1903795 (2019). https://doi.org/10.1002/adfm.201903795
Y. Shen, J. Zhang, Y. Pu, H. Wang, B. Wang et al., Effective chemical prelithiation strategy for building a silicon/sulfur Li-ion battery. ACS Energy Lett. 4, 1717–1724 (2019). https://doi.org/10.1021/acsenergylett.9b00889
J. Jang, I. Kang, J. Choi, H. Jeong, K.W. Yi et al., Molecularly tailored lithium–arene complex enables chemical prelithiation of high-capacity lithium-ion battery anodes. Angew. Chem. Int. Ed. 59, 14473–14480 (2020). https://doi.org/10.1002/anie.202002411
X. Zhang, H. Qu, W. Ji, D. Zheng, T. Ding et al., An electrode-level prelithiation of SiO anodes with organolithium compounds for lithium-ion batteries. J. Power Sources 478, 229067 (2020). https://doi.org/10.1016/j.jpowsour.2020.229067
J. Choi, H. Jeong, J. Jang, A. Jeon, I. Kang et al., Weakly solvating solution enables chemical prelithiation of graphite–SiOx anodes for high-energy Li-ion batteries. J. Am. Chem. Soc. 143, 9169–9176 (2021). https://doi.org/10.1021/jacs.1c03648
W. He, T. Zhang, Z. Li, J. Jiang, C. Chen et al., B-doped SiOx composite with three dimensional conductive network for high performance lithium-ion battery anode. J. Materiomic 7, 802–809 (2021). https://doi.org/10.1016/j.jmat.2020.12.016
H. Deng, Z. Chang, F. Qiu, Y. Qiao, H. Yang et al., A safe organic oxygen battery built with Li-based liquid anode and MOFs separator. Adv. Energy Mater. 10, 1903953 (2020). https://doi.org/10.1002/aenm.201903953
Y. Shen, J. Qian, H. Yang, F. Zhong, X. Ai, Chemically prelithiated hard-carbon anode for high power and high capacity Li-ion batteries. Small 16, 1907602 (2020). https://doi.org/10.1002/smll.201907602
H.J. Reich, Role of organolithium aggregates and mixed aggregates in organolithium mechanisms. Chem. Rev. 113, 7130–7178 (2013). https://doi.org/10.1021/cr400187u
Y. Huang, C. Liu, F. Wei, G. Wang, L. Xiao et al., Chemical prelithiation of Al for use as an ambient air compatible and polysulfide resistant anode for Li-ion/S batteries. J. Mater. Chem. A 8, 18715 (2020). https://doi.org/10.1039/d0ta06694j
G. Wang, B. Huang, D. Liu, D. Zheng, J. Harris et al., Exploring polycyclic aromatic hydrocarbons as an anolyte for nonaqueous redox flow batteries. J. Mater. Chem A 6, 13286–13293 (2018). https://doi.org/10.1039/c8ta03221a
P.G. Bruce, B. Scrosati, J. Tarascon, Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008). https://doi.org/10.1002/anie.200702505
S. Jung, I. Hwang, D. Chang, K. Park, S.J. Kim et al., Nanoscale phenomena in lithium-ion batteries. Chem. Rev. 120, 6684–6737 (2020). https://doi.org/10.1021/acs.chemrev.9b00405
S. Fang, L. Shen, S. Li, G. Kim, D. Bresser et al., Alloying reaction confinement enables high-capacity and stable anodes for lithium-ion batteries. ACS Nano 13, 9511–9519 (2019). https://doi.org/10.1021/acsnano.9b04495
D. Yoon, M. Marinaro, P. Axmann, M. Wohlfahrt-Mehrens, Study of the binder influence on expansion/contraction behavior of silicon alloy negative electrodes for lithium-ion batteries. J. Electrochem. Soc. 167, 160537 (2020). https://doi.org/10.1149/1945-7111/abcf4f
C. Chen, T. Zhou, D.L. Danilov, L. Gao, S. Benning et al., Impact of dual-layer solid-electrolyte interphase inhomogeneities on early-stage defect formation in Si electrodes. Nat. Commun. 11, 3283 (2020). https://doi.org/10.1038/s41467-020-17104-9
M. Yan, G. Li, J. Zhang, Y. Tian, Y. Yin et al., Enabling SiOx/C anode with high initial coulombic efficiency through a chemical pre-lithiation strategy for high-energy-density lithium-ion batteries. ACS Appl. Mater. Interfaces 12, 27202–27209 (2020). https://doi.org/10.1021/acsami.0c05153
X. Zhang, H. Qu, W. Ji, D. Zheng, T. Ding et al., Fast and controllable prelithiation of hard carbon anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 12, 11589–11599 (2020). https://doi.org/10.1021/acsami.9b21417
Z. Piao, P. Xiao, R. Luo, J. Ma, R. Gao et al., Constructing a stable interface layer by tailoring solvation chemistry in carbonate electrolytes for high performance lithium metal batteries. Adv. Mater. 34, 2108400 (2021). https://doi.org/10.1002/adma.202108400
F. Aupperle, N. von Aspern, D. Berghus, F. Weber, G.G. Eshetu et al., The role of electrolyte additives on the interfacial chemistry and thermal reactivity of Si-anode-based Li-ion battery. ACS Appl. Energ. Mater. 2, 6513–6527 (2019). https://doi.org/10.1021/acsaem.9b01094