Waste-Derived Catalysts for Water Electrolysis: Circular Economy-Driven Sustainable Green Hydrogen Energy
Corresponding Author: Bing‑Jie Ni
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 4
Abstract
The sustainable production of green hydrogen via water electrolysis necessitates cost-effective electrocatalysts. By following the circular economy principle, the utilization of waste-derived catalysts significantly promotes the sustainable development of green hydrogen energy. Currently, diverse waste-derived catalysts have exhibited excellent catalytic performance toward hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and overall water electrolysis (OWE). Herein, we systematically examine recent achievements in waste-derived electrocatalysts for water electrolysis. The general principles of water electrolysis and design principles of efficient electrocatalysts are discussed, followed by the illustration of current strategies for transforming wastes into electrocatalysts. Then, applications of waste-derived catalysts (i.e., carbon-based catalysts, transitional metal-based catalysts, and carbon-based heterostructure catalysts) in HER, OER, and OWE are reviewed successively. An emphasis is put on correlating the catalysts’ structure–performance relationship. Also, challenges and research directions in this booming field are finally highlighted. This review would provide useful insights into the design, synthesis, and applications of waste-derived electrocatalysts, and thus accelerate the development of the circular economy-driven green hydrogen energy scheme.
Highlights:
1 Critical strategies for converting wastes to catalysts are summarized.
2 Applications of waste-derived catalysts in hydrogen evolution reaction, oxygen evolution reaction, and overall water electrolysis are comprehensively reviewed.
3 Perspectives in the development of waste-derived catalysts are analyzed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Burton, R. Padilla, A. Rose, H. Habibullah, Increasing the efficiency of hydrogen production from solar powered water electrolysis. Renew. Sustain. Energy Rev. 135, 110255 (2021). https://doi.org/10.1016/j.rser.2020.110255
- J. Huang, Y. Xie, L. Yan, B. Wang, T. Kong et al., Decoupled amphoteric water electrolysis and its integration with Mn–Zn battery for flexible utilization of renewables. Energy Environ. Sci. 14, 883–889 (2021). https://doi.org/10.1039/D0EE03639K
- J. Song, C. Wei, Z.F. Huang, C. Liu, L. Zeng et al., A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 49(7), 2196–2214 (2020). https://doi.org/10.1039/C9CS00607A
- G. Qian, J. Chen, T. Yu, L. Luo, S. Yin, N-doped graphene-decorated NiCo alloy coupled with mesoporous NiCoMoO nano-sheet heterojunction for enhanced water electrolysis activity at high current density. Nano-Micro Lett. 13, 77 (2021). https://doi.org/10.1007/s40820-021-00607-5
- X. Huang, L. Li, S. Zhao, L. Tong, Z. Li et al., MOF-like 3D graphene-based catalytic membrane fabricated by one-step laser scribing for robust water purification and green energy production. Nano-Micro Lett. 14, 174 (2022). https://doi.org/10.1007/s40820-022-00923-4
- A.I. Osman, T.J. Deka, D.C. Baruah, D.W. Rooney, Critical challenges in biohydrogen production processes from the organic feedstocks. Biomass Conv. Bioref. (2020). https://doi.org/10.1007/s13399-020-00965-x
- G. Fu, X. Kang, Y. Zhang, X. Yang, L. Wang et al., Coordination effect-promoted durable Ni(OH)2 for energy-saving hydrogen evolution from water/methanol co-electrocatalysis. Nano-Micro Lett. 14, 200 (2022). https://doi.org/10.1007/s40820-022-00940-3
- Y. Liu, P. Vijayakumar, Q. Liu, T. Sakthivel, F. Chen et al., Shining light on anion-mixed nanocatalysts for efficient water electrolysis: fundamentals, progress, and perspectives. Nano-Micro Lett. 14, 43 (2022). https://doi.org/10.1007/s40820-021-00785-2
- A.I. Osman, N. Mehta, A.M. Elgarahy, M. Hefny, A. Al-Hinai et al., Hydrogen production, storage, utilisation and environmental impacts: a review. Environ. Chem. Lett. 20, 153–188 (2022). https://doi.org/10.1007/s10311-021-01322-8
- N. Han, P. Liu, J. Jiang, L. Ai, Z. Shao et al., Recent advances in nanostructured metal nitrides for water splitting. J. Mater. Chem. A 6(41), 19912–19933 (2018). https://doi.org/10.1039/C8TA06529B
- J. Wang, Y. Gao, H. Kong, J. Kim, S. Choi et al., Non-precious-metal catalysts for alkaline water electrolysis: operando characterizations, theoretical calculations, and recent advances. Chem. Soc. Rev. 49(24), 9154–9196 (2020). https://doi.org/10.1039/D0CS00575D
- X. Liu, B. Li, F.A. Soto, X. Li, R.R. Unocic et al., Enhancing hydrogen evolution activity of monolayer molybdenum disulfide via a molecular proton mediator. ACS Catal. 11(19), 12159–12169 (2021). https://doi.org/10.1021/acscatal.1c03016
- K. Chen, Z. Wang, L. Wang, X. Wu, B. Hu et al., Boron nanosheet-supported Rh catalysts for hydrogen evolution: a new territory for the strong metal-support interaction effect. Nano-Micro Lett. 13, 138 (2021). https://doi.org/10.1007/s40820-021-00662-y
- H. Ding, H. Liu, W. Chu, C. Wu, Y. Xie, Structural transformation of heterogeneous materials for electrocatalytic oxygen evolution reaction. Chem. Rev. 121, 13174–13212 (2021). https://doi.org/10.1021/acs.chemrev.1c00234
- Q. Liu, S. Sun, L. Zhang, Y. Luo, Q. Yang et al., O-doped carbon foam as metal-free electrocatalyst for efficient hydrogen production from seawater. Nano Res. 15, 8922–8927 (2022). https://doi.org/10.1007/s12274-022-4869-2
- C. Niether, S. Faure, A. Bordet, J. Deseure, M. Chatenet et al., Improved water electrolysis using magnetic heating of FeC–Ni core–shell nanops. Nat. Energy 3, 476–483 (2018). https://doi.org/10.1038/s41560-018-0132-1
- R. Li, H. Xu, P. Yang, D. Wang, Y. Li et al., Synergistic interfacial and doping engineering of heterostructured NiCo(OH)x-CoyW as an efficient alkaline hydrogen evolution electrocatalyst. Nano-Micro Lett. 13, 120 (2021). https://doi.org/10.1007/s40820-021-00639-x
- Z. Chen, Y. Liu, W. Wei, B.J. Ni, Recent advances in electrocatalysts for halogenated organic pollutant degradation. Environ. Sci. Nano 6, 2332–2366 (2019). https://doi.org/10.1039/C9EN00411D
- Y. Pan, R. Abazari, Y. Wu, J. Gao, Q. Zhang, Advances in metal–organic frameworks and their derivatives for diverse electrocatalytic applications. Electrochem. Commun. 126, 107024 (2021). https://doi.org/10.1016/j.elecom.2021.107024
- U. Khan, A. Nairan, J. Gao, Q. Zhang, Current progress in 2D metal–organic frameworks for electrocatalysis. Small Struct. (2022). https://doi.org/10.1002/sstr.202200109
- S. Ruidas, B. Mohanty, P. Bhanja, E. Erakulan, R. Thapa et al., Metal-free triazine-based 2D Covalent organic framework for efficient H2 evolution by electrochemical water splitting. Chemsuschem 14, 5057–5064 (2021). https://doi.org/10.1002/cssc.202101663
- Y. Zhou, J. Li, X. Gao, W. Chu, G. Gao et al., Recent advances in single-atom electrocatalysts supported on two-dimensional materials for the oxygen evolution reaction. J. Mater. Chem. A 9(16), 9979–9999 (2021). https://doi.org/10.1039/D1TA00154J
- Z. Ma, H. Yuan, J. Sun, J. Yang, B. Tang et al., Versatile construction of a hierarchical porous electrode and its application in electrochemical hydrogen production: a mini review. Mater. Adv. 2(4), 1177–1189 (2021). https://doi.org/10.1039/D0MA00825G
- Y. Li, M. Lu, Y. Wu, Q. Ji, H. Xu et al., Morphology regulation of metal–organic framework-derived nanostructures for efficient oxygen evolution electrocatalysis. J. Mater. Chem. A 8(35), 18215–18219 (2020). https://doi.org/10.1039/D0TA05866A
- Z. Chen, W. Wei, H. Chen, B. Ni, Recent advances in waste-derived functional materials for wastewater remediation. Eco-Environ. Health 1, 86–104 (2022). https://doi.org/10.1016/j.eehl.2022.05.001
- H.B. Sharma, K.R. Vanapalli, B. Samal, V.R.S. Cheela, B.K. Dubey et al., Circular economy approach in solid waste management system to achieve UN-SDGs: solutions for post-COVID recovery. Sci. Total Environ. 800, 149605 (2021). https://doi.org/10.1016/j.scitotenv.2021.149605
- Z. Chen, W. Wei, B.J. Ni, H. Chen, Plastic wastes derived carbon materials for green energy and sustainable environmental applications. Environ. Funct. Mater. 1, 34–48 (2022). https://doi.org/10.1016/j.efmat.2022.05.005
- L. Chen, G. Msigwa, M. Yang, A.I. Osman, S. Fawzy et al., Strategies to achieve a carbon neutral society: a review. Environ. Chem. Lett. 20, 2277–2310 (2022). https://doi.org/10.1007/s10311-022-01435-8
- M. Yang, L. Chen, J. Wang, G. Msigwa, A.I. Osman et al., Circular economy strategies for combating climate change and other environmental issues. Environ. Chem. Lett. (2022). https://doi.org/10.1007/s10311-022-01499-6
- H. Ala’a, F. Jamil, A.I. Osman, M.T.Z. Myint, H.H. Kyaw et al., State-of-the-art novel catalyst synthesised from waste glassware and eggshells for cleaner fuel production. Fuel 330, 125526 (2022). https://doi.org/10.1016/j.fuel.2022.125526
- S.A. Halawy, A.I. Osman, N. Mehta, A. Abdelkader, D.V.N. Vo et al., Adsorptive removal of some Cl-VOC’s as dangerous environmental pollutants using feather-like γ-Al2O3 derived from aluminium waste with life cycle analysis. Chemosphere 295, 133795 (2022). https://doi.org/10.1016/j.chemosphere.2022.133795
- W. Zou, J. Li, R. Wang, J. Ma, Z. Chen et al., Hydroxylamine mediated Fenton-like interfacial reaction dynamics on sea urchin-like catalyst derived from spent LiFePO4 battery. J. Hazard. Mater. 431, 128590 (2022). https://doi.org/10.1016/j.jhazmat.2022.128590
- J. Lee, H.S. Kim, J.H. Jang, E.H. Lee, H.W. Jeong et al., Atomic-scale engineered Fe single-atom electrocatalyst based on waste pig blood for high-performance AEMFCs. ACS Sustain. Chem. Eng. 9(23), 7863–7872 (2021). https://doi.org/10.1021/acssuschemeng.1c01590
- P.E. Karthik, H. Rajan, V.R. Jothi, B.I. Sang, S.C. Yi, Electronic wastes: a near inexhaustible and an unimaginably wealthy resource for water splitting electrocatalysts. J. Hazard. Mater. 421, 126687 (2022). https://doi.org/10.1016/j.jhazmat.2021.126687
- P. Kaur, G. Verma, S. Sekhon, Biomass derived hierarchical porous carbon materials as oxygen reduction reaction electrocatalysts in fuel cells. Prog. Mater. Sci. 102, 1–71 (2019). https://doi.org/10.1016/j.pmatsci.2018.12.002
- D. Rodríguez-Padrón, Z.A. ALOthman, S.M. Osman, R. Luque, Recycling electronic waste: prospects in green catalysts design. Curr. Opin. Green Sustain. Chem. 25(2020), 100357 (2020). https://doi.org/10.1016/j.cogsc.2020.100357
- M. Graś, Ł Kolanowski, Z. Chen, K. Lota, K. Jurak et al., Partial inhibition of borohydride hydrolysis using porous activated carbon as an effective method to improve the electrocatalytic activity of the DBFC anode. Sustain. Energy Fuels 5, 4401–4413 (2021). https://doi.org/10.1039/D1SE00999K
- X. Cao, Z. Li, H. Chen, C. Zhang, Y. Zhang et al., Synthesis of biomass porous carbon materials from bean sprouts for hydrogen evolution reaction electrocatalysis and supercapacitor electrode. Int. J. Hydrogen Energy 46, 18887–18897 (2021). https://doi.org/10.1016/j.ijhydene.2021.03.038
- H. Chen, Z. Chen, W. Wei, W. Zou, J. Li et al., Integrating electrodeposition with electrolysis for closing loop resource utilization of battery industrial wastewater. Green Chem. 24, 3208–3217 (2022). https://doi.org/10.1039/D1GC04891K
- J. Guan, Z. Zhang, J. Ji, M. Dou, F. Wang, Hydrothermal synthesis of highly dispersed Co3O4 nanops on biomass-derived nitrogen-doped hierarchically porous carbon networks as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions. ACS Appl. Mater. Interfaces 9(36), 30662–30669 (2017). https://doi.org/10.1021/acsami.7b08533
- C.M. Cova, A. Zuliani, A.R.P. Santiago, A. Caballero, M.J. Muñoz-Batista et al., Microwave-assisted preparation of Ag/Ag2S carbon hybrid structures from pig bristles as efficient HER catalysts. J. Mater. Chem. A 6(43), 21516–21523 (2018). https://doi.org/10.1039/C8TA06417B
- Z. Chen, W. Wei, H. Chen, B.J. Ni, Eco-designed electrocatalysts for water splitting: a path toward carbon neutrality. Int. J. Hydrogen Energy (2022). https://doi.org/10.1016/j.ijhydene.2022.03.046
- F. Lai, Y.E. Miao, Y. Huang, Y. Zhang, T. Liu, Nitrogen-doped carbon nanofiber/molybdenum disulfide nanocomposites derived from bacterial cellulose for high-efficiency electrocatalytic hydrogen evolution reaction. ACS Appl. Mater. Interfaces 8(6), 3558–3566 (2016). https://doi.org/10.1021/acsami.5b06274
- J. Li, W. Pan, Q. Liu, Z. Chen, Z. Chen et al., Interfacial engineering of Bi19Br3S27 nanowires promotes metallic photocatalytic CO2 reduction activity under near-infrared light irradiation. J. Am. Chem. Soc. 143(17), 6551–6559 (2021). https://doi.org/10.1021/jacs.1c01109
- Z. Chen, R. Zheng, W. Zou, W. Wei, J. Li et al., Integrating high-efficiency oxygen evolution catalysts featuring accelerated surface reconstruction from waste printed circuit boards via a boriding recycling strategy. Appl. Catal. B Environ. 298, 120583 (2021). https://doi.org/10.1016/j.apcatb.2021.120583
- S. Upadhyay, O. Pandey, Low-temperature synthesized Mo2C and novel Mo2C–MnO2 heterostructure for highly efficient hydrogen evolution reaction and high-performance capacitors. J. Power Sources 535, 231450 (2022). https://doi.org/10.1016/j.jpowsour.2022.231450
- H.J. Son, Y.R. Cho, Y.E. Park, S.H. Ahn, Flexible, compressible, versatile biomass-derived freestanding carbon monoliths as binder- and substrate-free tri-functional electrodes for solid-state zinc-air batteries and overall water splitting. Appl. Catal. B Environ. 304, 120977 (2022). https://doi.org/10.1016/j.apcatb.2021.120977
- Y. Zou, B. Xiao, J.W. Shi, H. Hao, D. Ma et al., 3D hierarchical heterostructure assembled by NiFe LDH/(NiFe)Sx on biomass-derived hollow carbon microtubes as bifunctional electrocatalysts for overall water splitting. Electrochim. Acta 348, 136339 (2020). https://doi.org/10.1016/j.electacta.2020.136339
- H. Saleem, M. Khosravi, S. Maroufi, V. Sahajwalla, A.P. O’Mullane, Repurposing metal containing wastes and mass-produced materials as electrocatalysts for water electrolysis. Sustain. Energy Fuels (2022). https://doi.org/10.1039/D2SE01068B
- Z. Chen, H. Yang, Z. Kang, M. Driess, P.W. Menezes, The pivotal role of S-, P-, and F-block metals in water electrolysis: status quo and perspectives. Adv. Mater. 34(18), 2108432 (2022). https://doi.org/10.1002/adma.202108432
- Z. Chen, X. Duan, W. Wei, S. Wang, B.J. Ni, Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution. J. Mater. Chem. A 7(25), 14971–15005 (2019). https://doi.org/10.1039/C9TA03220G
- L. Zhang, Y. Lei, D. Zhou, C. Xiong, Z. Jiang et al., Interfacial engineering of 3D hollow CoSe2@ ultrathin MoSe2 core@shell heterostructure for efficient pH-universal hydrogen evolution reaction. Nano Res. 15, 2895–2904 (2022). https://doi.org/10.1007/s12274-021-3887-9
- J.S. Yoo, X. Rong, Y. Liu, A.M. Kolpak, Role of lattice oxygen participation in understanding trends in the oxygen evolution reaction on perovskites. ACS Catal. 8(5), 4628–4636 (2018). https://doi.org/10.1021/acscatal.8b00612
- N. Zhang, Y. Chai, Lattice oxygen redox chemistry in solid-state electrocatalysts for water oxidation. Energy Environ. Sci. 14, 4647–4671 (2021). https://doi.org/10.1039/D1EE01277K
- A. Zagalskaya, V. Alexandrov, Role of defects in the interplay between adsorbate evolving and lattice oxygen mechanisms of the oxygen evolution reaction in RuO2 and IrO2. ACS Catal. 10(6), 3650–3657 (2020). https://doi.org/10.1021/acscatal.9b05544
- Z. Chen, X. Duan, W. Wei, S. Wang, B.J. Ni, Electrocatalysts for acidic oxygen evolution reaction: achievements and perspectives. Nano Energy 78, 105392 (2020). https://doi.org/10.1016/j.nanoen.2020.105392
- Y. Li, T. Zhao, M. Lu, Y. Wu, Y. Xie et al., Enhancing oxygen evolution reaction through modulating electronic structure of trimetallic electrocatalysts derived from metal–organic frameworks. Small 15(43), 1901940 (2019). https://doi.org/10.1002/smll.201901940
- L. Han, S. Dong, E. Wang, Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv. Mater. 28(42), 9266–9291 (2016). https://doi.org/10.1002/adma.201602270
- Y. Guo, T. Park, J.W. Yi, J. Henzie, J. Kim et al., Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Adv. Mater. 31(17), e1807134 (2019). https://doi.org/10.1002/adma.201807134
- J. Gao, J. Cong, Y. Wu, L. Sun, J. Yao et al., Bimetallic Hofmann-type metal–organic framework nanops for efficient electrocatalysis of oxygen evolution reaction. ACS Appl. Energy Mater. 1(10), 5140–5144 (2018). https://doi.org/10.1021/acsaem.8b01229
- Z. Chen, X. Duan, W. Wei, S. Wang, Z. Zhang et al., Boride-based electrocatalysts: emerging candidates for water splitting. Nano Res. 13, 293–314 (2020). https://doi.org/10.1007/s12274-020-2618-y
- F. Hu, H. Wang, Y. Zhang, X. Shen, G. Zhang et al., Designing highly efficient and long-term durable electrocatalyst for oxygen evolution by coupling B and P into amorphous porous NiFe-based material. Small 15(28), 1901020 (2019). https://doi.org/10.1002/smll.201901020
- J. Meng, H. Guo, C. Niu, Y. Zhao, L. Xu et al., Advances in structure and property optimizations of battery electrode materials. Joule 1, 522–547 (2017). https://doi.org/10.1016/j.joule.2017.08.001
- S.J. Yuan, X.H. Dai, Efficient sewage sludge-derived bi-functional electrocatalyst for oxygen reduction and evolution reaction. Green Chem. 18, 4004–4011 (2016). https://doi.org/10.1039/C5GC02729B
- J. Chen, J. Wu, P.C. Sherrell, J. Chen, H. Wang et al., How to build a microplastics-free environment: strategies for microplastics degradation and plastics recycling. Adv. Sci. 9(6), 2103764 (2022). https://doi.org/10.1002/advs.202103764
- M. Muhyuddin, J. Filippi, L. Zoia, S. Bonizzoni, R. Lorenzi et al., Waste face surgical mask transformation into crude oil and nanostructured electrocatalysts for fuel cells and electrolyzers. Chemsuschem 15, 202102351 (2022). https://doi.org/10.1002/cssc.202102351
- S. Sekar, D.H. Sim, S. Lee, Excellent electrocatalytic hydrogen evolution reaction performances of partially graphitized activated-carbon nanobundles derived from biomass human hair wastes. Nanomaterials 12, 531 (2022). https://doi.org/10.3390/nano12030531
- K.A. Saravanan, N. Prabu, M. Sasidharan, G. Maduraiveeran, Nitrogen-self doped activated carbon nanosheets derived from peanut shells for enhanced hydrogen evolution reaction. Appl. Surf. Sci. 489, 725–733 (2019). https://doi.org/10.1016/j.apsusc.2019.06.040
- A.I. Osman, C. Farrell, A.H. Al-Muhtaseb, J. Harrison, D.W. Rooney, The production and application of carbon nanomaterials from high alkali silicate herbaceous biomass. Sci. Rep. 10, 2563 (2020). https://doi.org/10.1038/s41598-020-59481-7
- A.I. Osman, E. O’Connor, G. McSpadden, J.K. Abu-Dahrieh, C. Farrell et al., Upcycling brewer’s spent grain waste into activated carbon and carbon nanotubes for energy and other applications via two-stage activation. J. Chem. Technol. Biotechnol. 95, 183–195 (2020). https://doi.org/10.1002/jctb.6220
- Q. Kang, Y. Qin, Q. Lu, F. Gao, Waste leather-derived (Cr, N)-co-doped carbon cloth coupling with Mo2C nanops as a self-supported electrode for highly active hydrogen evolution reaction performances. J. Power Sources 476, 228706 (2020). https://doi.org/10.1016/j.jpowsour.2020.228706
- Q. Yan, X. Yang, T. Wei, C. Zhou, W. Wu et al., Porous-Mo2C nanop clusters supported on walnut shell powders derived carbon matrix for hydrogen evolution reaction. J. Colloid Interface Sci. 563, 104–111 (2020). https://doi.org/10.1016/j.jcis.2019.12.059
- L. Song, J. Chang, Y. Ma, X. Tan, Y. Xu et al., Cobalt/nitrogen codoped carbon nanosheets derived from catkins as a high performance non-noble metal electrocatalyst for oxygen reduction reaction and hydrogen evolution reaction. RSC Adv. 10(71), 43248–43255 (2020). https://doi.org/10.1039/D0RA08750E
- S. Jiang, H. Shao, G. Cao, H. Li, W. Xu et al., Waste cotton fabric derived porous carbon containing Fe3O4/NiS nanops for electrocatalytic oxygen evolution. J. Mater. Sci. Technol. 59, 92–99 (2020). https://doi.org/10.1016/j.jmst.2020.04.055
- C. Cui, X. Lai, R. Guo, E. Ren, W. Qin et al., Waste paper-based carbon aerogel supported ZIF-67 derived hollow NiCo phosphate nanocages for electrocatalytic oxygen evolution reaction. Electrochim. Acta 393, 139076 (2021). https://doi.org/10.1016/j.electacta.2021.139076
- B. Cui, C. Liu, J. Zhang, J. Lu, S. Liu et al., Waste to wealth: defect-rich Ni-incorporated spent LiFePO4 for efficient oxygen evolution reaction. Sci. China Mater. 64, 2710–2718 (2021). https://doi.org/10.1007/s40843-021-1682-0
- V.R. Jothi, R. Bose, H. Rajan, C. Jung, S.C. Yi, Harvesting electronic waste for the development of highly efficient eco-design electrodes for electrocatalytic water splitting. Adv. Energy Mater. 8(34), 1802615 (2018). https://doi.org/10.1002/aenm.201802615
- P. Babar, A. Lokhande, V. Karade, B. Pawar, M.G. Gang et al., Towards highly efficient and low-cost oxygen evolution reaction electrocatalysts: an effective method of electronic waste management by utilizing waste Cu cable wires. J. Colloid Interface Sci. 537, 43–49 (2019). https://doi.org/10.1016/j.jcis.2018.10.079
- C. Huang, H. Lv, Z. Yang, C. Lian, J. Du et al., Exfoliating spent cathode materials with robust interlayer interactions into atomic-thin nanosheets for boosting the oxygen evolution reaction. J. Mater. Chem. A 10(7), 3359–3372 (2022). https://doi.org/10.1039/D1TA08046F
- S. Lu, M. Hummel, Z. Gu, Y. Gu, Z. Cen et al., Trash to treasure: a novel chemical route to synthesis of NiO/C for hydrogen production. Int. J. Hydrogen Energy 44, 16144–16153 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.191
- Q. Ji, X. Yu, L. Chen, O.P.N. Yarley, C. Zhou, Facile preparation of sugarcane bagasse-derived carbon supported MoS2 nanosheets for hydrogen evolution reaction. Ind. Crops Prod. 172, 114064 (2021). https://doi.org/10.1016/j.indcrop.2021.114064
- V.C.B. Pegoretti, P.V.M. Dixini, L. Magnago, A.K.S. Rocha, M.F.F. Lelis et al., High-temperature (HT) LiCoO2 recycled from spent lithium ion batteries as catalyst for oxygen evolution reaction. Mater. Res. Bull. 110, 97–101 (2019). https://doi.org/10.1016/j.materresbull.2018.10.022
- B. Huang, Y. Liu, Z. Xie, Biomass derived 2D carbons via a hydrothermal carbonization method as efficient bifunctional ORR/HER electrocatalysts. J. Mater. Chem. A 5(45), 23481–23488 (2017). https://doi.org/10.1039/C7TA08052B
- L.J. Foruzin, Z. Rezvani, B. Habibi, New ternary-component layered double hydroxide as a low-cost and efficient electrocatalyst for water oxidation: NiCaFe-LDH from eggshell bio-waste. Appl. Clay Sci. 188, 105511 (2020). https://doi.org/10.1016/j.clay.2020.105511
- S. Yun, J. Shi, Y. Si, M. Sun, Y. Zhang et al., Insight into electrocatalytic activity and mechanism of bimetal niobium-based oxides in situ embedded into biomass-derived porous carbon skeleton nanohybrids for photovoltaics and alkaline hydrogen evolution. J. Colloid Interface Sci. 601, 12–29 (2021). https://doi.org/10.1016/j.jcis.2021.05.060
- T.Q. Zhang, J. Liu, L.B. Huang, X.D. Zhang, Y.G. Sun et al., Microbial-phosphorus-enabled synthesis of phosphide nanocomposites for efficient electrocatalysts. J. Am. Chem. Soc. 139(32), 11248–11253 (2017). https://doi.org/10.1021/jacs.7b06123
- H. Chen, H. Jiang, X. Cao, Y. Zhang, X. Zhang et al., Castoff derived biomass-carbon supported MoS2 nanosheets for hydrogen evolution reaction. Mater. Chem. Phys. 252, 123244 (2020). https://doi.org/10.1016/j.matchemphys.2020.123244
- M. Yang, F. Feng, K. Wang, S. Li, X. Huang et al., Synthesis of metal phosphide nanops supported on porous N-doped carbon derived from spirulina for universal-pH hydrogen evolution. Chemsuschem 13(2), 351–359 (2020). https://doi.org/10.1002/cssc.201902920
- Y. Xiao, S. Deng, M. Li, Q. Zhou, L. Xu et al., Immobilization of Fe-doped Ni2P ps within biomass agarose-derived porous N, P-Carbon nanosheets for efficient bifunctional oxygen electrocatalysis. Front. Chem. 7, 523 (2019). https://doi.org/10.3389/fchem.2019.00523
- Z. Chen, R. Zheng, W. Wei, W. Wei, W. Zou et al., Recycling spent water treatment adsorbents for efficient electrocatalytic water oxidation reaction. Resour. Conserv. Recycl. 178, 106037 (2022). https://doi.org/10.1016/j.resconrec.2021.106037
- Z. Zhang, D. Zhou, J. Liao, X. Bao, S. Luo, One-pot synthesis of Fe3O4/Fe/C by microwave sintering as an efficient bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. J. Alloys Compd. 786, 134–138 (2019). https://doi.org/10.1016/j.jallcom.2019.01.318
- S. Wang, J. Zhu, X. Wu, L. Feng, Microwave-assisted hydrothermal synthesis of NiMoO4 nanorods for high-performance urea electrooxidation. Chin. Chem. Lett. 33, 1105–1109 (2022). https://doi.org/10.1016/j.cclet.2021.08.042
- J. Miao, X. Zhao, H.Y. Hu, Z.H. Liu, Hierarchical ultrathin NiFe-borate layered double hydroxide nanosheets encapsulated into biomass-derived nitrogen-doped carbon for efficient electrocatalytic oxygen evolution. Colloid Surf. A 635, 128092 (2022). https://doi.org/10.1016/j.colsurfa.2021.128092
- A. Zuliani, M. Cano, F. Calsolaro, A.R.P. Santiago, J.J. Giner-Casares et al., Improving the electrocatalytic performance of sustainable Co/carbon materials for the oxygen evolution reaction by ultrasound and microwave assisted synthesis. Sustain. Energy Fuels 5, 720–731 (2021). https://doi.org/10.1039/D0SE01505A
- T. Zahra, K.S. Ahmad, C. Zequine, R.K. Gupta, A.G. Thomas et al., Evaluation of electrochemical properties for water splitting by NiO nano-cubes synthesized using Olea ferruginea Royle. Sustain. Energy Technol. Assess. 40, 100753 (2020). https://doi.org/10.1016/j.seta.2020.100753
- Z. Han, G. Wang, J. Zhang, Z. Tang, Direct photo-curing 3D printing of nickel-based electrocatalysts for highly-efficient hydrogen evolution. Nano Energy 102, 107615 (2022). https://doi.org/10.1016/j.nanoen.2022.107615
- X. Zhang, R. Zheng, M. Jin, R. Shi, Z. Ai et al., NiCoSx@cobalt carbonate hydroxide obtained by surface sulfurization for efficient and stable hydrogen evolution at large current densities. ACS Appl. Mater. Interfaces 13(30), 35647–35656 (2021). https://doi.org/10.1021/acsami.1c07504
- A. Arshad, S. Yun, J. Shi, M. Sun, N. Zafar et al., N-coordinated bimetallic defect-rich nanocarbons as highly efficient electrocatalysts in advanced energy conversion applications. Chem. Eng. J. 435, 134913 (2022). https://doi.org/10.1016/j.cej.2022.134913
- S. Sekar, A.T.A. Ahmed, D.H. Sim, S. Lee, Extraordinarily high hydrogen-evolution-reaction activity of corrugated graphene nanosheets derived from biomass rice husks. Int. J. Hydrogen Energy (2022). https://doi.org/10.1016/j.ijhydene.2022.02.233
- V. Thirumal, R. Yuvakkumar, B. Saravanakumar, G. Ravi, M. Isacfranklin et al., Carbonization and optimization of biomass waste for HER application. Fuel 324, 124466 (2022). https://doi.org/10.1016/j.fuel.2022.124466
- J. Sun, Z. Wu, C. Ma, M. Xu, S. Luo et al., Biomass-derived tubular carbon materials: progress in synthesis and applications. J. Mater. Chem. A 9(24), 13822–13850 (2021). https://doi.org/10.1039/D1TA02412D
- H. Wang, S. Xu, W. Dong, D. Sun, S. Zhang et al., Solid base assisted dual-promoted heterogeneous conversion of PVC to metal-free porous carbon catalyst. Chem. Eur. J. 28, e202200124 (2022). https://doi.org/10.1002/chem.202200124
- K.M. Wyss, W. Chen, J.L. Beckham, P.E. Savas, J.M. Tour, Holey and wrinkled flash graphene from mixed plastic waste. ACS Nano 16(5), 7804–7815 (2022). https://doi.org/10.1021/acsnano.2c00379
- J. Niu, A. Domenech-Carbó, A. Primo, H. Garcia, Uniform nanoporous graphene sponge from natural polysaccharides as a metal-free electrocatalyst for hydrogen generation. RSC Adv. 9, 99–106 (2019). https://doi.org/10.1039/C8RA08745H
- Z. Chen, W. Wei, L. Song, B.J. Ni, Hybrid water electrolysis: a new sustainable avenue for energy-saving hydrogen production. Sustain. Horiz. 1, 100002 (2022). https://doi.org/10.1016/j.horiz.2021.100002
- R. Paul, F. Du, L. Dai, Y. Ding, Z.L. Wang et al., 3D heteroatom-doped carbon nanomaterials as multifunctional metal-free catalysts for integrated energy devices. Adv. Mater. 31(13), 1805598 (2019). https://doi.org/10.1002/adma.201805598
- K. Qu, Y. Zheng, Y. Jiao, X. Zhang, S. Dai et al., Polydopamine-inspired, dual heteroatom-doped carbon nanotubes for highly efficient overall water splitting. Adv. Energy Mater. 7(9), 1602068 (2017). https://doi.org/10.1002/aenm.201602068
- H. Jiang, J. Gu, X. Zheng, M. Liu, X. Qiu et al., Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR OER and HER. Energy Environ. Sci. 12, 322–333 (2019). https://doi.org/10.1039/C8EE03276A
- N. Prabu, R.S.A. Saravanan, T. Kesavan, G. Maduraiveeran, M. Sasidharan, An efficient palm waste derived hierarchical porous carbon for electrocatalytic hydrogen evolution reaction. Carbon 152, 188–197 (2019). https://doi.org/10.1016/j.carbon.2019.06.016
- Y. Zhou, Y. Leng, W. Zhou, J. Huang, M. Zhao et al., Sulfur and nitrogen self-doped carbon nanosheets derived from peanut root nodules as high-efficiency non-metal electrocatalyst for hydrogen evolution reaction. Nano Energy 16, 357–366 (2015). https://doi.org/10.1016/j.nanoen.2015.07.008
- E. Jiang, N. Song, S. Hong, C. She, C. Li et al., Zn, S, N self-doped carbon material derived from waste tires for electrocatalytic hydrogen evolution. Int. J. Hydrogen Energy 47, 16544–16551 (2022). https://doi.org/10.1016/j.ijhydene.2022.03.172
- H. Sun, L. Xue, Y. Shi, J. Dong, Q. Wu et al., Waste paper derived Co, N co-doped carbon as an efficient electrocatalyst for hydrogen evolution. React. Kinet. Mech. Catal. 132, 1137–1150 (2021). https://doi.org/10.1007/s11144-021-01956-3
- M. Muhyuddin, N. Zocche, R. Lorenzi, C. Ferrara, F. Poli et al., Valorization of the inedible pistachio shells into nanoscale transition metal and nitrogen codoped carbon-based electrocatalysts for hydrogen evolution reaction and oxygen reduction reaction. Mater. Renew. Sustain. Energy 11, 131–141 (2022). https://doi.org/10.1007/s40243-022-00212-5
- M. Muhyuddin, J. Filippi, L. Zoia, S. Bonizzoni, R. Lorenzi et al., Waste face surgical mask transformation into crude oil and nanostructured electrocatalysts for fuel cells and electrolyzers. Chemsuschem 15, e202102351 (2022). https://doi.org/10.1002/cssc.202102351
- L. Deng, Y. Zhang, Y. Wang, H. Yuan, Y. Chen et al., In situ N-, P-and Ca-codoped biochar derived from animal bones to boost the electrocatalytic hydrogen evolution reaction. Resour. Conserv. Recycl. 170, 105568 (2021). https://doi.org/10.1016/j.resconrec.2021.105568
- A. Roy, D. Hursán, K. Artyushkova, P. Atanassov, C. Janáky et al., Nanostructured metal-NC electrocatalysts for CO2 reduction and hydrogen evolution reactions. Appl. Catal. B Environ. 232, 512–520 (2018). https://doi.org/10.1016/j.apcatb.2018.03.093
- C. Dang, S. Yun, Y. Zhang, J. Dang, Y. Wang et al., A tailored interface engineering strategy designed to enhance the electrocatalytic activity of NiFe2O4/NiTe heterogeneous structure for advanced energy conversion applications. Mater. Today Nano 20, 100242 (2022). https://doi.org/10.1016/j.mtnano.2022.100242
- G. Humagain, K. MacDougal, J. MacInnis, J.M. Lowe, R.H. Coridan et al., Highly efficient, biochar-derived molybdenum carbide hydrogen evolution electrocatalyst. Adv. Energy Mater. 8(29), 1801461 (2018). https://doi.org/10.1002/aenm.201801461
- Y. Lin, L. He, T. Chen, D. Zhou, L. Wu et al., Cost-effective and environmentally friendly synthesis of 3D Ni2P from scrap nickel for highly efficient hydrogen evolution in both acidic and alkaline media. J. Mater. Chem. A 6(9), 4088–4094 (2018). https://doi.org/10.1039/C7TA09524D
- T. Altalhi, A. Mezni, M.M. Ibrahim, M.S. Refat, A.A. Gobouri et al., Cathodic activation of titania-fly ash cenospheres for efficient electrochemical hydrogen production: a proposed solution to treat fly ash waste. Catalysts 12, 466 (2022). https://doi.org/10.3390/catal12050466
- B. Sukhbaatar, S. Yoon, B. Yoo, Simple synthesis of a CoO nanop-decorated nitrogen-doped carbon catalyst from spent coffee grounds for alkaline hydrogen evolution. J. Mater. Sci. (2022). https://doi.org/10.1007/s10853-022-07436-w
- M.A. Ahsan, A.R.P. Santiago, A. Rodriguez, V. Maturano-Rojas, B. Alvarado-Tenorio et al., Biomass-derived ultrathin carbon-shell coated iron nanops as high-performance tri-functional HER, ORR and Fenton-like catalysts. J. Cleaner Prod. 275, 124141 (2020). https://doi.org/10.1016/j.jclepro.2020.124141
- W. Zhou, T. Xiong, C. Shi, J. Zhou, K. Zhou et al., Bioreduction of precious metals by microorganism: efficient gold@N-doped carbon electrocatalysts for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 55(29), 8416–8420 (2016). https://doi.org/10.1002/anie.201602627
- R.A. Mir, G. Kaur, O. Pandey, Facile process to utilize carbonaceous waste as a carbon source for the synthesis of low cost electrocatalyst for hydrogen production. Int. J. Hydrogen Energy 45, 23908–23919 (2020). https://doi.org/10.1016/j.ijhydene.2019.11.239
- Q. Yan, X. Yang, T. Wei, C. Zhou, W. Wu et al., Porous β-Mo2C nanop clusters supported on walnut shell powders derived carbon matrix for hydrogen evolution reaction. J. Colloid Interface Sci. 563, 104–111 (2020). https://doi.org/10.1016/j.jcis.2019.12.059
- J. Yu, W. Yu, B. Chang, X. Li, J. Jia et al., Waste-yeast biomass as nitrogen/phosphorus sources and carbon template: environment-friendly synthesis of N, P-Mo2C nanops on porous carbon matrix for efficient hydrogen evolution. Chin. Chem. Lett. 33, 3231–3235 (2022). https://doi.org/10.1016/j.cclet.2021.10.046
- T. Guo, X. Zhang, T. Liu, Z. Wu, D. Wang, N, K Co-activated biochar-derived molybdenum carbide as efficient electrocatalysts for hydrogen evolution. Appl. Surf. Sci. 509, 144879 (2020). https://doi.org/10.1016/j.apsusc.2019.144879
- Y. Zhou, W. Zhou, D. Hou, G. Li, J. Wan et al., Metal–carbon hybrid electrocatalysts derived from ion-exchange resin containing heavy metals for efficient hydrogen evolution reaction. Small 12(20), 2768–2774 (2016). https://doi.org/10.1002/smll.201503100
- F. Han, S. Yun, J. Shi, Y. Zhang, Y. Si et al., Efficient dual-function catalysts for triiodide reduction reaction and hydrogen evolution reaction using unique 3D network aloe waste-derived carbon-supported molybdenum-based bimetallic oxide nanohybrids. Appl. Catal. B Environ. 273, 119004 (2020). https://doi.org/10.1016/j.apcatb.2020.119004
- X. Zhang, F. Jia, S. Song, Recent advances in structural engineering of molybdenum disulfide for electrocatalytic hydrogen evolution reaction. Chem. Eng. J. 405, 127013 (2020). https://doi.org/10.1016/j.cej.2020.127013
- Y. Zhao, J. Zhao, Q. Li, C. Gu, B. Zhang et al., Degradation-resistant waste plastics derived carbon supported MoS2 electrocatalyst: high-nitrogen dependent activity for hydrogen evolution reaction. Electrochim. Acta 331, 135436 (2020). https://doi.org/10.1016/j.electacta.2019.135436
- A. Wu, A. Xu, J. Yang, X. Li, L. Wang et al., Modulating Schottky barrier of MoS2 to enhance hydrogen evolution reaction activity by incorporating with vertical graphene nanosheets derived from organic liquid waste. ChemElectroChem 5, 3841–3846 (2018). https://doi.org/10.1002/celc.201801279
- Q. Ji, X. Yu, L. Chen, C.E. Okonkwo, C. Zhou, Effect of cobalt doping and sugarcane bagasse carbon on the electrocatalytic performance of MoS2 nanocomposites. Fuel 324, 124814 (2022). https://doi.org/10.1016/j.fuel.2022.124814
- Z. Chen, R. Zheng, S. Deng, W. Wei, W. Wei et al., Modular design of an efficient heterostructured FeS2/TiO2 oxygen evolution electrocatalyst via sulfidation of natural ilmenites. J. Mater. Chem. A 9(44), 25032–25041 (2021). https://doi.org/10.1039/D1TA08168C
- L. Li, P. Wang, Q. Shao, X. Huang, Recent progress in advanced electrocatalyst design for acidic oxygen evolution reaction. Adv. Mater. 33(50), 2004243 (2021). https://doi.org/10.1002/adma.202004243
- C. Murugesan, B. Senthilkumar, P. Barpanda, Biowaste-derived highly porous N-doped carbon as a low-cost bifunctional electrocatalyst for hybrid sodium–air batteries. ACS Sustain. Chem. Eng. 10(28), 9077–9086 (2022). https://doi.org/10.1021/acssuschemeng.2c01300
- J. Xuan, Z. Liu, High-performance N-doped bifunctional carbon electrocatalysts derived from polymer waste for oxygen reduction and evolution reaction. Int. J. Electrochem. Sci. 12, 10471–10483 (2017). https://doi.org/10.20964/2017.11.42
- Y. Huang, D. Wu, D. Cao, D. Cheng, Facile preparation of biomass-derived bifunctional electrocatalysts for oxygen reduction and evolution reactions. Int. J. Hydrogen Energy 43, 8611–8622 (2018). https://doi.org/10.1016/j.ijhydene.2018.03.136
- L.L. Ma, X. Hu, W.J. Liu, H.C. Li, P.K. Lam et al., Constructing N, P-dually doped biochar materials from biomass wastes for high-performance bifunctional oxygen electrocatalysts. Chemosphere 278, 130508 (2021). https://doi.org/10.1016/j.chemosphere.2021.130508
- Y. Li, Y. Qu, C. Liu, J. Cui, K. Xu et al., Processing agricultural cornstalks toward high-efficient stable bifunctional ORR/OER electrocatalysts. Adv. Sustain. Syst. 6, 2100343 (2022). https://doi.org/10.1002/adsu.202100343
- X. Luo, Z. Liu, Y. Ma, Y. Nan, Y. Gu et al., Biomass derived Fe, N-doped carbon material as bifunctional electrocatalysts for rechargeable Zn-air batteries. J. Alloys Compd. 888, 161464 (2022). https://doi.org/10.1016/j.jallcom.2021.161464
- Z. Chen, R. Zheng, W. Wei, W. Wei, B.J. Ni et al., Unlocking the electrocatalytic activity of natural chalcopyrite using mechanochemistry. J. Energy Chem. 68, 275–283 (2022). https://doi.org/10.1016/j.jechem.2021.11.005
- V. Maruthapandian, S. Muralidharan, V. Saraswathy, From waste high speed steel alloy to valuable oxygen evolution reaction catalyst in alkaline medium. Electrochim. Acta 371, 137848 (2021). https://doi.org/10.1016/j.electacta.2021.137848
- A.K. Gomaa, B.S. Shaheen, G.E. Khedr, A.M. Mokhtar, N.K. Allam, Facile surface treatment of industrial stainless steel waste meshes at mild conditions to produce efficient oxygen evolution catalysts. Energy Fuels 36, 7025–7034 (2022). https://doi.org/10.1021/acs.energyfuels.2c01562
- H. Zhong, J. Wang, F. Meng, X. Zhang, In situ activating ubiquitous rust towards low-cost, efficient, free-standing, and recoverable oxygen evolution electrodes. Angew. Chem. Int. Ed. 55(34), 9937–9941 (2016). https://doi.org/10.1002/anie.201604040
- S. Natarajan, S. Anantharaj, R.J. Tayade, H.C. Bajaj, S. Kundu, Recovered spinel MnCo2O4 from spent lithium-ion batteries for enhanced electrocatalytic oxygen evolution in alkaline medium. Dalton Trans. 46, 14382–14392 (2017). https://doi.org/10.1039/C7DT02613G
- N. Chen, J. Qi, X. Du, Y. Wang, W. Zhang et al., Recycled LiCoO2 in spent lithium-ion battery as an oxygen evolution electrocatalyst. RSC Adv. 6, 103541–103545 (2016). https://doi.org/10.1039/C6RA23483F
- A. Arif, M. Xu, J. Rashid, C.S. Saraj, W. Li et al., Efficient recovery of lithium cobaltate from spent lithium-ion batteries for oxygen evolution reaction. Nanomaterials 11, 3343 (2021). https://doi.org/10.3390/nano11123343
- H. Lv, H. Huang, C. Huang, Q. Gao, Z. Yang et al., Electric field driven de-lithiation: a strategy towards comprehensive and efficient recycling of electrode materials from spent lithium ion batteries. Appl. Catal. B Environ. 283, 119634 (2021). https://doi.org/10.1016/j.apcatb.2020.119634
- Z. Chen, W. Zou, R. Zheng, W. Wei, W. Wei et al., Synergistic recycling and conversion of spent Li-ion battery leachate into highly efficient oxygen evolution catalysts. Green Chem. 23, 6538–6547 (2021). https://doi.org/10.1039/D1GC01578H
- T. Zhao, X. Shen, Y. Wang, R.K. Hocking, Y. Li et al., In situ reconstruction of V-doped Ni2P pre-catalysts with tunable electronic structures for water oxidation. Adv. Funct. Mater. 31(25), 2100614 (2021). https://doi.org/10.1002/adfm.202100614
- Z. Chen, R. Zheng, S. Li, R. Wang, W. Wei et al., Dual-anion etching induced in situ interfacial engineering for high-efficiency oxygen evolution. Chem. Eng. J. 431, 134304 (2022). https://doi.org/10.1016/j.cej.2021.134304
- Q. Xu, H. Jiang, X. Duan, Z. Jiang, Y. Hu et al., Fluorination-enabled reconstruction of NiFe electrocatalysts for efficient water oxidation. Nano Lett. 21(1), 492–499 (2021). https://doi.org/10.1021/acs.nanolett.0c03950
- J. Wang, S.J. Kim, J. Liu, Y. Gao, S. Choi et al., Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation. Nat. Catal. 4, 212–222 (2021). https://doi.org/10.1038/s41929-021-00578-1
- Z. Chen, W. Wei, B.J. Ni, Transition metal chalcogenides as emerging electrocatalysts for urea electrolysis. Curr. Opin. Electrochem. 31, 100888 (2022). https://doi.org/10.1016/j.coelec.2021.100888
- J. Xu, D. Liu, C. Lee, P. Feydi, M. Chapuis et al., Efficient electrocatalyst nanops from upcycled class II capacitors. Nanomaterials 12, 2697 (2022). https://doi.org/10.3390/nano12152697
- Y. Yang, H. Yang, H. Cao, Z. Wang, C. Liu et al., Direct preparation of efficient catalyst for oxygen evolution reaction and high-purity Li2CO3 from spent LiNi0.5Mn0.3Co0.2O2 batteries. J. Cleaner Prod. 236, 117–576 (2019). https://doi.org/10.1016/j.jclepro.2019.07.051
- R. Lu, D.K. Sam, W. Wang, S. Gong, J. Liu et al., Boron, nitrogen co-doped biomass-derived carbon aerogel embedded nickel-cobalt-iron nanops as a promising electrocatalyst for oxygen evolution reaction. J. Colloid Interface Sci. 613, 126–135 (2022). https://doi.org/10.1016/j.jcis.2022.01.029
- J. Chen, S. Yang, Z. Zhang, F. Wang, Biomass-derived cobalt/carbon hierarchically structured composites for efficient oxygen electrocatalysis and zinc–air batteries. Catal. Sci. Technol. 12, 4365–4371 (2022). https://doi.org/10.1039/D2CY00720G
- C. Sathiskumar, L. Meesala, P. Kumar, B.R. Rao, N.S. John et al., Waste to wealth: spent catalyst as an efficient and stable bifunctional oxygen electrocatalyst for zinc–air batteries. Sustain. Energy Fuels 5, 1406–1414 (2021). https://doi.org/10.1039/D1SE00007A
- L. Yang, X. Zeng, D. Wang, D. Cao, Biomass-derived FeNi alloy and nitrogen-codoped porous carbons as highly efficient oxygen reduction and evolution bifunctional electrocatalysts for rechargeable Zn-air battery. Energy Storage Mater. 12, 277–283 (2018). https://doi.org/10.1016/j.ensm.2018.02.011
- F. Hof, A. Boni, G. Valenti, K. Huang, F. Paolucci et al., From food waste to efficient bifunctional nonprecious electrocatalyst. Chem. Eur. J. 23, 15283–15288 (2017). https://doi.org/10.1002/chem.201704041
- X. Chen, L. Wei, Y. Wang, S. Zhai, Z. Chen et al., Milk powder-derived bifunctional oxygen electrocatalysts for rechargeable Zn-air battery. Energy Storage Mater. 11, 134–143 (2018). https://doi.org/10.1016/j.ensm.2017.10.011
- C. Zhang, M. Antonietti, T.P. Fellinger, Blood ties: Co3O4 decorated blood derived carbon as a superior bifunctional electrocatalyst. Adv. Funct. Mater. 24(48), 7655–7665 (2014). https://doi.org/10.1002/adfm.201402770
- M. Jiao, Q. Zhang, C. Ye, Z. Liu, X. Zhong et al., Recycling spent LiNi1-x-yMnxCoyO2 cathodes to bifunctional NiMnCo catalysts for zinc-air batteries. PNAS 119, e2202202119 (2022). https://doi.org/10.1073/pnas.2202202119
- Y. Peng, F. Zhang, Y. Zhang, X. Luo, L. Chen et al., ZnS modified N, S dual-doped interconnected porous carbon derived from dye sludge waste as high-efficient ORR/OER catalyst for rechargeable zinc-air battery. J. Colloid Interface Sci. 616, 659–667 (2022). https://doi.org/10.1016/j.jcis.2022.02.102
- H. Wang, F. Chang, J. Gu, X. Xie, H. Chen et al., Highly efficient catalytic CoS1.097 embedded in biomass nanosheets for oxygen evolution reaction. Int. J. Hydrogen Energy 45, 2765–2773 (2020). https://doi.org/10.1016/j.ijhydene.2019.11.170
- A. Nairan, C. Liang, S.W. Chiang, Y. Wu, P. Zou et al., Proton selective adsorption on Pt–Ni nano-thorn array electrodes for superior hydrogen evolution activity. Energy Environ. Sci. 14, 1594–1601 (2021). https://doi.org/10.1039/D1EE00106J
- M. Wang, X. Du, M. Zhang, K. Su, Z. Li, From S-rich polyphenylene sulfide to honeycomb-like porous carbon with ultrahigh specific surface area as bifunctional electrocatalysts for rechargeable Zn-air batteries. Carbon 198, 264–274 (2022). https://doi.org/10.1016/j.carbon.2022.07.042
- Z. Chen, X. Duan, W. Wei, S. Wang, B.J. Ni, Iridium-based nanomaterials for electrochemical water splitting. Nano Energy 78, 105270 (2020). https://doi.org/10.1016/j.nanoen.2020.105270
- W. Xin, W.J. Jiang, Y. Lian, H. Li, S. Hong et al., NiS2 nanodotted carnation-like CoS2 for enhanced electrocatalytic water splitting. Chem. Commun. 55, 3781–3784 (2019). https://doi.org/10.1039/C9CC01235D
- Z. Chen, I. Ibrahim, D. Hao, X. Liu, L. Wu et al., Controllable design of nanoworm-like nickel sulfides for efficient electrochemical water splitting in alkaline media. Mater. Today Energy 18, 100573 (2020). https://doi.org/10.1016/j.mtener.2020.100573
- Z. Liu, Q. Zhou, B. Zhao, S. Li, Y. Xiong et al., Few-layer N-doped porous carbon nanosheets derived from corn stalks as a bifunctional electrocatalyst for overall water splitting. Fuel 280, 118567 (2020). https://doi.org/10.1016/j.fuel.2020.118567
- C. Xia, S. Surendran, S. Ji, D. Kim, Y. Chae et al., A sulfur self-doped multifunctional biochar catalyst for overall water splitting and a supercapacitor from camellia japonica flowers. Carbon Energy 4, 491–505 (2022). https://doi.org/10.1002/cey2.207
- Z. Chen, W. Wei, B.J. Ni, Cost-effective catalysts for renewable hydrogen production via electrochemical water splitting: recent advances. Curr. Opin. Green Sustain. Chem. 27, 100398 (2021). https://doi.org/10.1016/j.cogsc.2020.100398
- B. Zhou, M. Zhang, W. He, H. Wang, M. Jian et al., Blue rose-inspired approach towards highly graphitic carbons for efficient electrocatalytic water splitting. Carbon 150, 21–26 (2019). https://doi.org/10.1016/j.carbon.2019.05.009
- Y. Zhang, Y. Shi, B. Yan, F. Zhang, S. Wang et al., A novel iron-based composite flocculant for enhanced wastewater treatment and upcycling hazardous sludge into trifunctional electrocatalyst. Appl. Surf. Sci. 569, 151034 (2021). https://doi.org/10.1016/j.apsusc.2021.151034
- X. Zheng, X. Zhao, J. Lu, J. Li, Z. Miao et al., Regeneration of spent cathodes of Li-ion batteries into multifunctional electrodes for overall water splitting and rechargeable Zn-air batteries by ultrafast carbothermal shock. Sci. China Mater. 65, 2393–2400 (2022). https://doi.org/10.1007/s40843-021-1984-8
- E. Jiang, N. Song, S. Hong, M. Xiao, D. Zhu et al., Cobalt supported on biomass carbon tubes derived from cotton fibers towards high-efficient electrocatalytic overall water-splitting. Electrochim. Acta 407, 139895 (2022). https://doi.org/10.1016/j.electacta.2022.139895
- F. He, Y. Han, Y. Tong, M. Zhong, Q. Wang et al., NiFe Alloys@N-doped graphene-like carbon anchored on n-doped graphitized carbon as a highly efficient bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. ACS Sustain. Chem. Eng. 10(18), 6094–6105 (2022). https://doi.org/10.1021/acssuschemeng.2c01381
- A. Kumar, D.K. Chaudhary, S. Parvin, S. Bhattacharyya, High performance duckweed-derived carbon support to anchor NiFe electrocatalysts for efficient solar energy driven water splitting. J. Mater. Chem. A 6(39), 18948–18959 (2018). https://doi.org/10.1039/C8TA06946H
- J. Wang, Y. Gao, T.L. You, F. Ciucci, Bimetal-decorated nanocarbon as a superior electrocatalyst for overall water splitting. J. Power Sources 401, 312–321 (2018). https://doi.org/10.1016/j.jpowsour.2018.09.011
- Z. Yang, C. Yan, M. Xiang, Y. Shi, M. Ding et al., Biomass carbon dual-doped with iron and nitrogen for high-performance electrocatalyst in water splitting. Int. J. Energy Res. 45, 8474–8483 (2021). https://doi.org/10.1002/er.6381
- B. Wang, L. Xu, G. Liu, P. Zhang, W. Zhu et al., Biomass willow catkin-derived Co3O4/N-doped hollow hierarchical porous carbon microtubes as an effective tri-functional electrocatalyst. J. Mater. Chem. A 5(38), 20170–20179 (2017). https://doi.org/10.1039/C7TA05002J
- B. Abdolahi, M.B. Gholivand, M. Shamsipur, M. Amiri, Engineering of nickel-cobalt oxide nanostructures based on biomass material for high performance supercapacitor and catalytic water splitting. Int. J. Energy Res. 45, 12879–12897 (2021). https://doi.org/10.1002/er.6618
- W. Yaseen, M. Xie, B.A. Yusuf, Y. Xu, M. Rafiq et al., Hierarchical Co/MoO2@N-doped carbon nanosheets derived from waste lotus leaves for electrocatalytic water splitting. Int. J. Hydrogen Energy 47, 15673–15686 (2022). https://doi.org/10.1016/j.ijhydene.2022.03.037
- M. Yang, D. Wu, D. Cheng, Biomass-derived porous carbon supported Co-CoO yolk-shell nanops as enhanced multifunctional electrocatalysts. Int. J. Hydrogen Energy 44, 6525–6534 (2019). https://doi.org/10.1016/j.ijhydene.2019.01.155
- V.C. Hoang, K.N. Dinh, V.G. Gomes, Hybrid Ni/NiO composite with N-doped activated carbon from waste cauliflower leaves: a sustainable bifunctional electrocatalyst for efficient water splitting. Carbon 157, 515–524 (2020). https://doi.org/10.1016/j.carbon.2019.09.080
- C. Lin, M. Kang, L. Zheng, X. Fu, S. Wang, Ammonium nitrate-assisted low-temperature synthesis of Co, Co2P@CoP embedded in biomass-derived carbons as efficient electrocatalysts for hydrogen and oxygen evolution reaction. ChemistrySelect 5, 7338–7346 (2020). https://doi.org/10.1002/slct.202001810
- D. Li, Z. Li, J. Ma, X. Peng, C. Liu, One-step construction of Co2P nanops encapsulated in N, P co-doped biomass-based porous carbon as bifunctional efficient electrocatalysts for overall water splitting. Sustain. Energy Fuels 5, 2477–2485 (2021). https://doi.org/10.1039/D1SE00062D
- Y. Zhang, L. Chen, B. Yan, F. Zhang, Y. Shi et al., Regeneration of textile sludge into Cu8S5 decorated N, S self-doped interconnected porous carbon as an advanced bifunctional electrocatalyst for overall water splitting. Chem. Eng. J. 451, 138497 (2023). https://doi.org/10.1016/j.cej.2022.138497
- I.S. Amiinu, Z. Pu, D. He, H.G.R. Monestel, S. Mu, Scalable cellulose-sponsored functionalized carbon nanorods induced by cobalt for efficient overall water splitting. Carbon 137, 274–281 (2018). https://doi.org/10.1016/j.carbon.2018.05.025
- B. Vedhanarayanan, J. Shi, J.Y. Lin, S. Yun, T.W. Lin, Enhanced activity and stability of MoS2 through enriching 1T-phase by covalent functionalization for energy conversion applications. Chem. Eng. J. 403, 126318 (2021). https://doi.org/10.1016/j.cej.2020.126318
- J. Liu, S. Zhao, C. Wang, Y. Ma, L. He et al., Catkin-derived mesoporous carbon-supported molybdenum disulfide and nickelhydroxyloxide hybrid as a bifunctional electrocatalyst for driving overall water splitting. J. Colloid Interface Sci. 608, 1627–1637 (2022). https://doi.org/10.1016/j.jcis.2021.10.069
- T. Liu, S. Cai, G. Zhao, Z. Gao, S. Liu et al., Recycling valuable cobalt from spent lithium ion batteries for controllably designing a novel sea-urchin-like cobalt nitride-graphene hybrid catalyst: towards efficient overall water splitting. J. Energy Chem. 62, 440–450 (2021). https://doi.org/10.1016/j.jechem.2021.03.052
- Y. Zhao, W. Chen, F. Liu, P. Zhao, Hydrothermal pretreatment of cotton textile wastes: biofuel characteristics and biochar electrocatalytic performance. Fuel 316, 123327 (2022). https://doi.org/10.1016/j.fuel.2022.123327
- G. Han, M. Hu, Y. Liu, J. Gao, L. Han et al., Efficient carbon-based catalyst derived from natural cattail fiber for hydrogen evolution reaction. J. Solid State Chem. 274, 207–214 (2019). https://doi.org/10.1016/j.jssc.2019.03.027
- O.A. Fakayode, B.A. Yusuf, C. Zhou, Y. Xu, Q. Ji et al., Simplistic two-step fabrication of porous carbon-based biomass-derived electrocatalyst for efficient hydrogen evolution reaction. Energy Convers. Manage. 227, 113628 (2021). https://doi.org/10.1016/j.enconman.2020.113628
- V. Kandathil, A. Moolakkil, P. Kulkarni, A.K. Veetil, M. Kempasiddaiah et al., Pd/Fe3O4 supported on bio-waste derived cellulosic-carbon as a nanocatalyst for CC coupling and electrocatalytic application. Front. Chem. Sci. Eng. (2022). https://doi.org/10.1007/s11705-022-2158-y
- R.A. Mir, O. Pandey, An ecofriendly route to synthesize C-Mo2C and C/N-Mo2C utilizing waste polyethene for efficient hydrogen evolution reaction (HER) activity and high performance capacitors. Sustain. Energy Fuels 4, 655–669 (2020). https://doi.org/10.1039/C9SE00516A
- A.L. Remmel, S. Ratso, G. Divitini, M. Danilson, V. Mikli et al., Nickel and nitrogen-doped bifunctional ORR and HER electrocatalysts derived from CO2. ACS Sustain. Chem. Eng. 10(1), 134–145 (2022). https://doi.org/10.1021/acssuschemeng.1c05250
- X. Mu, L. Gong, G. Yang, Y. Xiong, J. Wan et al., Biomass-based transition metal phosphides supported on carbon matrix as efficient and stable electrocatalyst for hydrogen evolution reaction. Int. J. Energy Res. 46, 3502–3511 (2022). https://doi.org/10.1002/er.7400
- D.K. Sam, W. Wang, S. Gong, E.K. Sam, X. Lv et al., CO2 assisted synthesis of silk fibroin driven robust N-doped carbon aerogels coupled with nickel–cobalt ps as highly active electrocatalysts for HER. Int. J. Hydrogen Energy 46, 21525–21533 (2021). https://doi.org/10.1016/j.ijhydene.2021.03.243
- Q. Li, T. He, Y.Q. Zhang, H. Wu, J. Liu et al., Biomass waste-derived 3D metal-free porous carbon as a bifunctional electrocatalyst for rechargeable zinc–air batteries. ACS Sustain. Chem. Eng. 7(20), 17039–17046 (2019). https://doi.org/10.1021/acssuschemeng.9b02964
- N. Murugan, S. Thangarasu, G.B. Choi, J. Choi, T.H. Oh et al., Interconnected hierarchical nanoarchitectonics of porous carbon nanosheets derived from renewable biomass for efficient oxygen evolution reaction. J. Alloys Compd. 923, 166321 (2022). https://doi.org/10.1016/j.jallcom.2022.166321
- M. Devi, K. Ojha, A. Ganguli, M. Jha, Transformation of waste tin-plated steel to iron nanosheets and their application in generation of oxygen. Int. J. Environ. Sci. Technol. 16, 3669–3678 (2019). https://doi.org/10.1007/s13762-018-1778-8
- R. Farzana, M.A. Sayeed, J. Joseph, K. Ostrikov, A.P. O’Mullane et al., Manganese oxide derived from a spent Zn–C battery as a catalyst for the oxygen evolution reaction. ChemElectroChem 7, 2073–2080 (2020). https://doi.org/10.1002/celc.202000422
- R. Atchudan, N.C.S. Selvam, T.N.J.I. Edison, S. Perumal, R. Vinodh et al., Synthetic disposable material derived-carbon supported NiO: efficient hybrid electrocatalyst for water oxidation process. Fuel 294, 120558 (2021). https://doi.org/10.1016/j.fuel.2021.120558
- H.A. Bandal, A.A. Pawar, H. Kim, Transformation of waste onion peels into core-shell Fe3C@N-doped carbon as a robust electrocatalyst for oxygen evolution reaction. Electrochim. Acta 422, 140545 (2022). https://doi.org/10.1016/j.electacta.2022.140545
- J. Wang, H. Zhao, Y. Gao, D. Chen, C. Chen et al., Ba0.5Sr0.5Co0.8Fe0.2O3−δ on N-doped mesoporous carbon derived from organic waste as a bi-functional oxygen catalyst. Int. J. Hydrogen Energy 41, 10744–10754 (2016). https://doi.org/10.1016/j.ijhydene.2016.04.049
- Z. Rong, C. Dong, S. Zhang, W. Dong, F. Huang, Co5.47N loaded N-doped carbon as an efficient bifunctional oxygen electrocatalyst for a Zn–air battery. Nanoscale 12, 6089–6095 (2020). https://doi.org/10.1039/D0NR00731E
- C. Yang, Z. Jin, X. Zhang, X. Zheng, X. He, Ultrafast regenerating spent LiCoO2 lithium-ion batteries into bifunctional electrodes for rechargeable Zn-air batteries. ChemElectroChem 9, e202101494 (2022). https://doi.org/10.1002/celc.202101494
- S. Sekar, D.Y. Kim, S. Lee, Excellent oxygen evolution reaction of activated carbon-anchored NiO nanotablets prepared by green routes. Nanomaterials 10, 1382 (2020). https://doi.org/10.3390/nano10071382
- G. Li, T. Zhu, Y. Ye, S. Liang, W. Duan et al., Transforming Ni-coagulated polyferriertic sulfate sludge into porous heteroatom-doped carbon-supported transition metal phosphide: an efficient catalyst for oxygen evolution reaction. Energy Technol. 8, 1900995 (2020). https://doi.org/10.1002/ente.201900995
- J. Xing, Y. Li, S. Guo, T. Jin, H. Li et al., Molybdenum carbide in-situ embedded into carbon nanosheets as efficient bifunctional electrocatalysts for overall water splitting. Electrochim. Acta 298, 305–312 (2019). https://doi.org/10.1016/j.electacta.2018.12.091
- X. Li, X. Qian, Y. Xu, F. Duan, Q. Yu et al., Electrodeposited cobalt phosphides with hierarchical nanostructure on biomass carbon for bifunctional water splitting in alkaline solution. J. Alloys Compd. 829, 154535 (2020). https://doi.org/10.1016/j.jallcom.2020.154535
References
N. Burton, R. Padilla, A. Rose, H. Habibullah, Increasing the efficiency of hydrogen production from solar powered water electrolysis. Renew. Sustain. Energy Rev. 135, 110255 (2021). https://doi.org/10.1016/j.rser.2020.110255
J. Huang, Y. Xie, L. Yan, B. Wang, T. Kong et al., Decoupled amphoteric water electrolysis and its integration with Mn–Zn battery for flexible utilization of renewables. Energy Environ. Sci. 14, 883–889 (2021). https://doi.org/10.1039/D0EE03639K
J. Song, C. Wei, Z.F. Huang, C. Liu, L. Zeng et al., A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 49(7), 2196–2214 (2020). https://doi.org/10.1039/C9CS00607A
G. Qian, J. Chen, T. Yu, L. Luo, S. Yin, N-doped graphene-decorated NiCo alloy coupled with mesoporous NiCoMoO nano-sheet heterojunction for enhanced water electrolysis activity at high current density. Nano-Micro Lett. 13, 77 (2021). https://doi.org/10.1007/s40820-021-00607-5
X. Huang, L. Li, S. Zhao, L. Tong, Z. Li et al., MOF-like 3D graphene-based catalytic membrane fabricated by one-step laser scribing for robust water purification and green energy production. Nano-Micro Lett. 14, 174 (2022). https://doi.org/10.1007/s40820-022-00923-4
A.I. Osman, T.J. Deka, D.C. Baruah, D.W. Rooney, Critical challenges in biohydrogen production processes from the organic feedstocks. Biomass Conv. Bioref. (2020). https://doi.org/10.1007/s13399-020-00965-x
G. Fu, X. Kang, Y. Zhang, X. Yang, L. Wang et al., Coordination effect-promoted durable Ni(OH)2 for energy-saving hydrogen evolution from water/methanol co-electrocatalysis. Nano-Micro Lett. 14, 200 (2022). https://doi.org/10.1007/s40820-022-00940-3
Y. Liu, P. Vijayakumar, Q. Liu, T. Sakthivel, F. Chen et al., Shining light on anion-mixed nanocatalysts for efficient water electrolysis: fundamentals, progress, and perspectives. Nano-Micro Lett. 14, 43 (2022). https://doi.org/10.1007/s40820-021-00785-2
A.I. Osman, N. Mehta, A.M. Elgarahy, M. Hefny, A. Al-Hinai et al., Hydrogen production, storage, utilisation and environmental impacts: a review. Environ. Chem. Lett. 20, 153–188 (2022). https://doi.org/10.1007/s10311-021-01322-8
N. Han, P. Liu, J. Jiang, L. Ai, Z. Shao et al., Recent advances in nanostructured metal nitrides for water splitting. J. Mater. Chem. A 6(41), 19912–19933 (2018). https://doi.org/10.1039/C8TA06529B
J. Wang, Y. Gao, H. Kong, J. Kim, S. Choi et al., Non-precious-metal catalysts for alkaline water electrolysis: operando characterizations, theoretical calculations, and recent advances. Chem. Soc. Rev. 49(24), 9154–9196 (2020). https://doi.org/10.1039/D0CS00575D
X. Liu, B. Li, F.A. Soto, X. Li, R.R. Unocic et al., Enhancing hydrogen evolution activity of monolayer molybdenum disulfide via a molecular proton mediator. ACS Catal. 11(19), 12159–12169 (2021). https://doi.org/10.1021/acscatal.1c03016
K. Chen, Z. Wang, L. Wang, X. Wu, B. Hu et al., Boron nanosheet-supported Rh catalysts for hydrogen evolution: a new territory for the strong metal-support interaction effect. Nano-Micro Lett. 13, 138 (2021). https://doi.org/10.1007/s40820-021-00662-y
H. Ding, H. Liu, W. Chu, C. Wu, Y. Xie, Structural transformation of heterogeneous materials for electrocatalytic oxygen evolution reaction. Chem. Rev. 121, 13174–13212 (2021). https://doi.org/10.1021/acs.chemrev.1c00234
Q. Liu, S. Sun, L. Zhang, Y. Luo, Q. Yang et al., O-doped carbon foam as metal-free electrocatalyst for efficient hydrogen production from seawater. Nano Res. 15, 8922–8927 (2022). https://doi.org/10.1007/s12274-022-4869-2
C. Niether, S. Faure, A. Bordet, J. Deseure, M. Chatenet et al., Improved water electrolysis using magnetic heating of FeC–Ni core–shell nanops. Nat. Energy 3, 476–483 (2018). https://doi.org/10.1038/s41560-018-0132-1
R. Li, H. Xu, P. Yang, D. Wang, Y. Li et al., Synergistic interfacial and doping engineering of heterostructured NiCo(OH)x-CoyW as an efficient alkaline hydrogen evolution electrocatalyst. Nano-Micro Lett. 13, 120 (2021). https://doi.org/10.1007/s40820-021-00639-x
Z. Chen, Y. Liu, W. Wei, B.J. Ni, Recent advances in electrocatalysts for halogenated organic pollutant degradation. Environ. Sci. Nano 6, 2332–2366 (2019). https://doi.org/10.1039/C9EN00411D
Y. Pan, R. Abazari, Y. Wu, J. Gao, Q. Zhang, Advances in metal–organic frameworks and their derivatives for diverse electrocatalytic applications. Electrochem. Commun. 126, 107024 (2021). https://doi.org/10.1016/j.elecom.2021.107024
U. Khan, A. Nairan, J. Gao, Q. Zhang, Current progress in 2D metal–organic frameworks for electrocatalysis. Small Struct. (2022). https://doi.org/10.1002/sstr.202200109
S. Ruidas, B. Mohanty, P. Bhanja, E. Erakulan, R. Thapa et al., Metal-free triazine-based 2D Covalent organic framework for efficient H2 evolution by electrochemical water splitting. Chemsuschem 14, 5057–5064 (2021). https://doi.org/10.1002/cssc.202101663
Y. Zhou, J. Li, X. Gao, W. Chu, G. Gao et al., Recent advances in single-atom electrocatalysts supported on two-dimensional materials for the oxygen evolution reaction. J. Mater. Chem. A 9(16), 9979–9999 (2021). https://doi.org/10.1039/D1TA00154J
Z. Ma, H. Yuan, J. Sun, J. Yang, B. Tang et al., Versatile construction of a hierarchical porous electrode and its application in electrochemical hydrogen production: a mini review. Mater. Adv. 2(4), 1177–1189 (2021). https://doi.org/10.1039/D0MA00825G
Y. Li, M. Lu, Y. Wu, Q. Ji, H. Xu et al., Morphology regulation of metal–organic framework-derived nanostructures for efficient oxygen evolution electrocatalysis. J. Mater. Chem. A 8(35), 18215–18219 (2020). https://doi.org/10.1039/D0TA05866A
Z. Chen, W. Wei, H. Chen, B. Ni, Recent advances in waste-derived functional materials for wastewater remediation. Eco-Environ. Health 1, 86–104 (2022). https://doi.org/10.1016/j.eehl.2022.05.001
H.B. Sharma, K.R. Vanapalli, B. Samal, V.R.S. Cheela, B.K. Dubey et al., Circular economy approach in solid waste management system to achieve UN-SDGs: solutions for post-COVID recovery. Sci. Total Environ. 800, 149605 (2021). https://doi.org/10.1016/j.scitotenv.2021.149605
Z. Chen, W. Wei, B.J. Ni, H. Chen, Plastic wastes derived carbon materials for green energy and sustainable environmental applications. Environ. Funct. Mater. 1, 34–48 (2022). https://doi.org/10.1016/j.efmat.2022.05.005
L. Chen, G. Msigwa, M. Yang, A.I. Osman, S. Fawzy et al., Strategies to achieve a carbon neutral society: a review. Environ. Chem. Lett. 20, 2277–2310 (2022). https://doi.org/10.1007/s10311-022-01435-8
M. Yang, L. Chen, J. Wang, G. Msigwa, A.I. Osman et al., Circular economy strategies for combating climate change and other environmental issues. Environ. Chem. Lett. (2022). https://doi.org/10.1007/s10311-022-01499-6
H. Ala’a, F. Jamil, A.I. Osman, M.T.Z. Myint, H.H. Kyaw et al., State-of-the-art novel catalyst synthesised from waste glassware and eggshells for cleaner fuel production. Fuel 330, 125526 (2022). https://doi.org/10.1016/j.fuel.2022.125526
S.A. Halawy, A.I. Osman, N. Mehta, A. Abdelkader, D.V.N. Vo et al., Adsorptive removal of some Cl-VOC’s as dangerous environmental pollutants using feather-like γ-Al2O3 derived from aluminium waste with life cycle analysis. Chemosphere 295, 133795 (2022). https://doi.org/10.1016/j.chemosphere.2022.133795
W. Zou, J. Li, R. Wang, J. Ma, Z. Chen et al., Hydroxylamine mediated Fenton-like interfacial reaction dynamics on sea urchin-like catalyst derived from spent LiFePO4 battery. J. Hazard. Mater. 431, 128590 (2022). https://doi.org/10.1016/j.jhazmat.2022.128590
J. Lee, H.S. Kim, J.H. Jang, E.H. Lee, H.W. Jeong et al., Atomic-scale engineered Fe single-atom electrocatalyst based on waste pig blood for high-performance AEMFCs. ACS Sustain. Chem. Eng. 9(23), 7863–7872 (2021). https://doi.org/10.1021/acssuschemeng.1c01590
P.E. Karthik, H. Rajan, V.R. Jothi, B.I. Sang, S.C. Yi, Electronic wastes: a near inexhaustible and an unimaginably wealthy resource for water splitting electrocatalysts. J. Hazard. Mater. 421, 126687 (2022). https://doi.org/10.1016/j.jhazmat.2021.126687
P. Kaur, G. Verma, S. Sekhon, Biomass derived hierarchical porous carbon materials as oxygen reduction reaction electrocatalysts in fuel cells. Prog. Mater. Sci. 102, 1–71 (2019). https://doi.org/10.1016/j.pmatsci.2018.12.002
D. Rodríguez-Padrón, Z.A. ALOthman, S.M. Osman, R. Luque, Recycling electronic waste: prospects in green catalysts design. Curr. Opin. Green Sustain. Chem. 25(2020), 100357 (2020). https://doi.org/10.1016/j.cogsc.2020.100357
M. Graś, Ł Kolanowski, Z. Chen, K. Lota, K. Jurak et al., Partial inhibition of borohydride hydrolysis using porous activated carbon as an effective method to improve the electrocatalytic activity of the DBFC anode. Sustain. Energy Fuels 5, 4401–4413 (2021). https://doi.org/10.1039/D1SE00999K
X. Cao, Z. Li, H. Chen, C. Zhang, Y. Zhang et al., Synthesis of biomass porous carbon materials from bean sprouts for hydrogen evolution reaction electrocatalysis and supercapacitor electrode. Int. J. Hydrogen Energy 46, 18887–18897 (2021). https://doi.org/10.1016/j.ijhydene.2021.03.038
H. Chen, Z. Chen, W. Wei, W. Zou, J. Li et al., Integrating electrodeposition with electrolysis for closing loop resource utilization of battery industrial wastewater. Green Chem. 24, 3208–3217 (2022). https://doi.org/10.1039/D1GC04891K
J. Guan, Z. Zhang, J. Ji, M. Dou, F. Wang, Hydrothermal synthesis of highly dispersed Co3O4 nanops on biomass-derived nitrogen-doped hierarchically porous carbon networks as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions. ACS Appl. Mater. Interfaces 9(36), 30662–30669 (2017). https://doi.org/10.1021/acsami.7b08533
C.M. Cova, A. Zuliani, A.R.P. Santiago, A. Caballero, M.J. Muñoz-Batista et al., Microwave-assisted preparation of Ag/Ag2S carbon hybrid structures from pig bristles as efficient HER catalysts. J. Mater. Chem. A 6(43), 21516–21523 (2018). https://doi.org/10.1039/C8TA06417B
Z. Chen, W. Wei, H. Chen, B.J. Ni, Eco-designed electrocatalysts for water splitting: a path toward carbon neutrality. Int. J. Hydrogen Energy (2022). https://doi.org/10.1016/j.ijhydene.2022.03.046
F. Lai, Y.E. Miao, Y. Huang, Y. Zhang, T. Liu, Nitrogen-doped carbon nanofiber/molybdenum disulfide nanocomposites derived from bacterial cellulose for high-efficiency electrocatalytic hydrogen evolution reaction. ACS Appl. Mater. Interfaces 8(6), 3558–3566 (2016). https://doi.org/10.1021/acsami.5b06274
J. Li, W. Pan, Q. Liu, Z. Chen, Z. Chen et al., Interfacial engineering of Bi19Br3S27 nanowires promotes metallic photocatalytic CO2 reduction activity under near-infrared light irradiation. J. Am. Chem. Soc. 143(17), 6551–6559 (2021). https://doi.org/10.1021/jacs.1c01109
Z. Chen, R. Zheng, W. Zou, W. Wei, J. Li et al., Integrating high-efficiency oxygen evolution catalysts featuring accelerated surface reconstruction from waste printed circuit boards via a boriding recycling strategy. Appl. Catal. B Environ. 298, 120583 (2021). https://doi.org/10.1016/j.apcatb.2021.120583
S. Upadhyay, O. Pandey, Low-temperature synthesized Mo2C and novel Mo2C–MnO2 heterostructure for highly efficient hydrogen evolution reaction and high-performance capacitors. J. Power Sources 535, 231450 (2022). https://doi.org/10.1016/j.jpowsour.2022.231450
H.J. Son, Y.R. Cho, Y.E. Park, S.H. Ahn, Flexible, compressible, versatile biomass-derived freestanding carbon monoliths as binder- and substrate-free tri-functional electrodes for solid-state zinc-air batteries and overall water splitting. Appl. Catal. B Environ. 304, 120977 (2022). https://doi.org/10.1016/j.apcatb.2021.120977
Y. Zou, B. Xiao, J.W. Shi, H. Hao, D. Ma et al., 3D hierarchical heterostructure assembled by NiFe LDH/(NiFe)Sx on biomass-derived hollow carbon microtubes as bifunctional electrocatalysts for overall water splitting. Electrochim. Acta 348, 136339 (2020). https://doi.org/10.1016/j.electacta.2020.136339
H. Saleem, M. Khosravi, S. Maroufi, V. Sahajwalla, A.P. O’Mullane, Repurposing metal containing wastes and mass-produced materials as electrocatalysts for water electrolysis. Sustain. Energy Fuels (2022). https://doi.org/10.1039/D2SE01068B
Z. Chen, H. Yang, Z. Kang, M. Driess, P.W. Menezes, The pivotal role of S-, P-, and F-block metals in water electrolysis: status quo and perspectives. Adv. Mater. 34(18), 2108432 (2022). https://doi.org/10.1002/adma.202108432
Z. Chen, X. Duan, W. Wei, S. Wang, B.J. Ni, Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution. J. Mater. Chem. A 7(25), 14971–15005 (2019). https://doi.org/10.1039/C9TA03220G
L. Zhang, Y. Lei, D. Zhou, C. Xiong, Z. Jiang et al., Interfacial engineering of 3D hollow CoSe2@ ultrathin MoSe2 core@shell heterostructure for efficient pH-universal hydrogen evolution reaction. Nano Res. 15, 2895–2904 (2022). https://doi.org/10.1007/s12274-021-3887-9
J.S. Yoo, X. Rong, Y. Liu, A.M. Kolpak, Role of lattice oxygen participation in understanding trends in the oxygen evolution reaction on perovskites. ACS Catal. 8(5), 4628–4636 (2018). https://doi.org/10.1021/acscatal.8b00612
N. Zhang, Y. Chai, Lattice oxygen redox chemistry in solid-state electrocatalysts for water oxidation. Energy Environ. Sci. 14, 4647–4671 (2021). https://doi.org/10.1039/D1EE01277K
A. Zagalskaya, V. Alexandrov, Role of defects in the interplay between adsorbate evolving and lattice oxygen mechanisms of the oxygen evolution reaction in RuO2 and IrO2. ACS Catal. 10(6), 3650–3657 (2020). https://doi.org/10.1021/acscatal.9b05544
Z. Chen, X. Duan, W. Wei, S. Wang, B.J. Ni, Electrocatalysts for acidic oxygen evolution reaction: achievements and perspectives. Nano Energy 78, 105392 (2020). https://doi.org/10.1016/j.nanoen.2020.105392
Y. Li, T. Zhao, M. Lu, Y. Wu, Y. Xie et al., Enhancing oxygen evolution reaction through modulating electronic structure of trimetallic electrocatalysts derived from metal–organic frameworks. Small 15(43), 1901940 (2019). https://doi.org/10.1002/smll.201901940
L. Han, S. Dong, E. Wang, Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv. Mater. 28(42), 9266–9291 (2016). https://doi.org/10.1002/adma.201602270
Y. Guo, T. Park, J.W. Yi, J. Henzie, J. Kim et al., Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Adv. Mater. 31(17), e1807134 (2019). https://doi.org/10.1002/adma.201807134
J. Gao, J. Cong, Y. Wu, L. Sun, J. Yao et al., Bimetallic Hofmann-type metal–organic framework nanops for efficient electrocatalysis of oxygen evolution reaction. ACS Appl. Energy Mater. 1(10), 5140–5144 (2018). https://doi.org/10.1021/acsaem.8b01229
Z. Chen, X. Duan, W. Wei, S. Wang, Z. Zhang et al., Boride-based electrocatalysts: emerging candidates for water splitting. Nano Res. 13, 293–314 (2020). https://doi.org/10.1007/s12274-020-2618-y
F. Hu, H. Wang, Y. Zhang, X. Shen, G. Zhang et al., Designing highly efficient and long-term durable electrocatalyst for oxygen evolution by coupling B and P into amorphous porous NiFe-based material. Small 15(28), 1901020 (2019). https://doi.org/10.1002/smll.201901020
J. Meng, H. Guo, C. Niu, Y. Zhao, L. Xu et al., Advances in structure and property optimizations of battery electrode materials. Joule 1, 522–547 (2017). https://doi.org/10.1016/j.joule.2017.08.001
S.J. Yuan, X.H. Dai, Efficient sewage sludge-derived bi-functional electrocatalyst for oxygen reduction and evolution reaction. Green Chem. 18, 4004–4011 (2016). https://doi.org/10.1039/C5GC02729B
J. Chen, J. Wu, P.C. Sherrell, J. Chen, H. Wang et al., How to build a microplastics-free environment: strategies for microplastics degradation and plastics recycling. Adv. Sci. 9(6), 2103764 (2022). https://doi.org/10.1002/advs.202103764
M. Muhyuddin, J. Filippi, L. Zoia, S. Bonizzoni, R. Lorenzi et al., Waste face surgical mask transformation into crude oil and nanostructured electrocatalysts for fuel cells and electrolyzers. Chemsuschem 15, 202102351 (2022). https://doi.org/10.1002/cssc.202102351
S. Sekar, D.H. Sim, S. Lee, Excellent electrocatalytic hydrogen evolution reaction performances of partially graphitized activated-carbon nanobundles derived from biomass human hair wastes. Nanomaterials 12, 531 (2022). https://doi.org/10.3390/nano12030531
K.A. Saravanan, N. Prabu, M. Sasidharan, G. Maduraiveeran, Nitrogen-self doped activated carbon nanosheets derived from peanut shells for enhanced hydrogen evolution reaction. Appl. Surf. Sci. 489, 725–733 (2019). https://doi.org/10.1016/j.apsusc.2019.06.040
A.I. Osman, C. Farrell, A.H. Al-Muhtaseb, J. Harrison, D.W. Rooney, The production and application of carbon nanomaterials from high alkali silicate herbaceous biomass. Sci. Rep. 10, 2563 (2020). https://doi.org/10.1038/s41598-020-59481-7
A.I. Osman, E. O’Connor, G. McSpadden, J.K. Abu-Dahrieh, C. Farrell et al., Upcycling brewer’s spent grain waste into activated carbon and carbon nanotubes for energy and other applications via two-stage activation. J. Chem. Technol. Biotechnol. 95, 183–195 (2020). https://doi.org/10.1002/jctb.6220
Q. Kang, Y. Qin, Q. Lu, F. Gao, Waste leather-derived (Cr, N)-co-doped carbon cloth coupling with Mo2C nanops as a self-supported electrode for highly active hydrogen evolution reaction performances. J. Power Sources 476, 228706 (2020). https://doi.org/10.1016/j.jpowsour.2020.228706
Q. Yan, X. Yang, T. Wei, C. Zhou, W. Wu et al., Porous-Mo2C nanop clusters supported on walnut shell powders derived carbon matrix for hydrogen evolution reaction. J. Colloid Interface Sci. 563, 104–111 (2020). https://doi.org/10.1016/j.jcis.2019.12.059
L. Song, J. Chang, Y. Ma, X. Tan, Y. Xu et al., Cobalt/nitrogen codoped carbon nanosheets derived from catkins as a high performance non-noble metal electrocatalyst for oxygen reduction reaction and hydrogen evolution reaction. RSC Adv. 10(71), 43248–43255 (2020). https://doi.org/10.1039/D0RA08750E
S. Jiang, H. Shao, G. Cao, H. Li, W. Xu et al., Waste cotton fabric derived porous carbon containing Fe3O4/NiS nanops for electrocatalytic oxygen evolution. J. Mater. Sci. Technol. 59, 92–99 (2020). https://doi.org/10.1016/j.jmst.2020.04.055
C. Cui, X. Lai, R. Guo, E. Ren, W. Qin et al., Waste paper-based carbon aerogel supported ZIF-67 derived hollow NiCo phosphate nanocages for electrocatalytic oxygen evolution reaction. Electrochim. Acta 393, 139076 (2021). https://doi.org/10.1016/j.electacta.2021.139076
B. Cui, C. Liu, J. Zhang, J. Lu, S. Liu et al., Waste to wealth: defect-rich Ni-incorporated spent LiFePO4 for efficient oxygen evolution reaction. Sci. China Mater. 64, 2710–2718 (2021). https://doi.org/10.1007/s40843-021-1682-0
V.R. Jothi, R. Bose, H. Rajan, C. Jung, S.C. Yi, Harvesting electronic waste for the development of highly efficient eco-design electrodes for electrocatalytic water splitting. Adv. Energy Mater. 8(34), 1802615 (2018). https://doi.org/10.1002/aenm.201802615
P. Babar, A. Lokhande, V. Karade, B. Pawar, M.G. Gang et al., Towards highly efficient and low-cost oxygen evolution reaction electrocatalysts: an effective method of electronic waste management by utilizing waste Cu cable wires. J. Colloid Interface Sci. 537, 43–49 (2019). https://doi.org/10.1016/j.jcis.2018.10.079
C. Huang, H. Lv, Z. Yang, C. Lian, J. Du et al., Exfoliating spent cathode materials with robust interlayer interactions into atomic-thin nanosheets for boosting the oxygen evolution reaction. J. Mater. Chem. A 10(7), 3359–3372 (2022). https://doi.org/10.1039/D1TA08046F
S. Lu, M. Hummel, Z. Gu, Y. Gu, Z. Cen et al., Trash to treasure: a novel chemical route to synthesis of NiO/C for hydrogen production. Int. J. Hydrogen Energy 44, 16144–16153 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.191
Q. Ji, X. Yu, L. Chen, O.P.N. Yarley, C. Zhou, Facile preparation of sugarcane bagasse-derived carbon supported MoS2 nanosheets for hydrogen evolution reaction. Ind. Crops Prod. 172, 114064 (2021). https://doi.org/10.1016/j.indcrop.2021.114064
V.C.B. Pegoretti, P.V.M. Dixini, L. Magnago, A.K.S. Rocha, M.F.F. Lelis et al., High-temperature (HT) LiCoO2 recycled from spent lithium ion batteries as catalyst for oxygen evolution reaction. Mater. Res. Bull. 110, 97–101 (2019). https://doi.org/10.1016/j.materresbull.2018.10.022
B. Huang, Y. Liu, Z. Xie, Biomass derived 2D carbons via a hydrothermal carbonization method as efficient bifunctional ORR/HER electrocatalysts. J. Mater. Chem. A 5(45), 23481–23488 (2017). https://doi.org/10.1039/C7TA08052B
L.J. Foruzin, Z. Rezvani, B. Habibi, New ternary-component layered double hydroxide as a low-cost and efficient electrocatalyst for water oxidation: NiCaFe-LDH from eggshell bio-waste. Appl. Clay Sci. 188, 105511 (2020). https://doi.org/10.1016/j.clay.2020.105511
S. Yun, J. Shi, Y. Si, M. Sun, Y. Zhang et al., Insight into electrocatalytic activity and mechanism of bimetal niobium-based oxides in situ embedded into biomass-derived porous carbon skeleton nanohybrids for photovoltaics and alkaline hydrogen evolution. J. Colloid Interface Sci. 601, 12–29 (2021). https://doi.org/10.1016/j.jcis.2021.05.060
T.Q. Zhang, J. Liu, L.B. Huang, X.D. Zhang, Y.G. Sun et al., Microbial-phosphorus-enabled synthesis of phosphide nanocomposites for efficient electrocatalysts. J. Am. Chem. Soc. 139(32), 11248–11253 (2017). https://doi.org/10.1021/jacs.7b06123
H. Chen, H. Jiang, X. Cao, Y. Zhang, X. Zhang et al., Castoff derived biomass-carbon supported MoS2 nanosheets for hydrogen evolution reaction. Mater. Chem. Phys. 252, 123244 (2020). https://doi.org/10.1016/j.matchemphys.2020.123244
M. Yang, F. Feng, K. Wang, S. Li, X. Huang et al., Synthesis of metal phosphide nanops supported on porous N-doped carbon derived from spirulina for universal-pH hydrogen evolution. Chemsuschem 13(2), 351–359 (2020). https://doi.org/10.1002/cssc.201902920
Y. Xiao, S. Deng, M. Li, Q. Zhou, L. Xu et al., Immobilization of Fe-doped Ni2P ps within biomass agarose-derived porous N, P-Carbon nanosheets for efficient bifunctional oxygen electrocatalysis. Front. Chem. 7, 523 (2019). https://doi.org/10.3389/fchem.2019.00523
Z. Chen, R. Zheng, W. Wei, W. Wei, W. Zou et al., Recycling spent water treatment adsorbents for efficient electrocatalytic water oxidation reaction. Resour. Conserv. Recycl. 178, 106037 (2022). https://doi.org/10.1016/j.resconrec.2021.106037
Z. Zhang, D. Zhou, J. Liao, X. Bao, S. Luo, One-pot synthesis of Fe3O4/Fe/C by microwave sintering as an efficient bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. J. Alloys Compd. 786, 134–138 (2019). https://doi.org/10.1016/j.jallcom.2019.01.318
S. Wang, J. Zhu, X. Wu, L. Feng, Microwave-assisted hydrothermal synthesis of NiMoO4 nanorods for high-performance urea electrooxidation. Chin. Chem. Lett. 33, 1105–1109 (2022). https://doi.org/10.1016/j.cclet.2021.08.042
J. Miao, X. Zhao, H.Y. Hu, Z.H. Liu, Hierarchical ultrathin NiFe-borate layered double hydroxide nanosheets encapsulated into biomass-derived nitrogen-doped carbon for efficient electrocatalytic oxygen evolution. Colloid Surf. A 635, 128092 (2022). https://doi.org/10.1016/j.colsurfa.2021.128092
A. Zuliani, M. Cano, F. Calsolaro, A.R.P. Santiago, J.J. Giner-Casares et al., Improving the electrocatalytic performance of sustainable Co/carbon materials for the oxygen evolution reaction by ultrasound and microwave assisted synthesis. Sustain. Energy Fuels 5, 720–731 (2021). https://doi.org/10.1039/D0SE01505A
T. Zahra, K.S. Ahmad, C. Zequine, R.K. Gupta, A.G. Thomas et al., Evaluation of electrochemical properties for water splitting by NiO nano-cubes synthesized using Olea ferruginea Royle. Sustain. Energy Technol. Assess. 40, 100753 (2020). https://doi.org/10.1016/j.seta.2020.100753
Z. Han, G. Wang, J. Zhang, Z. Tang, Direct photo-curing 3D printing of nickel-based electrocatalysts for highly-efficient hydrogen evolution. Nano Energy 102, 107615 (2022). https://doi.org/10.1016/j.nanoen.2022.107615
X. Zhang, R. Zheng, M. Jin, R. Shi, Z. Ai et al., NiCoSx@cobalt carbonate hydroxide obtained by surface sulfurization for efficient and stable hydrogen evolution at large current densities. ACS Appl. Mater. Interfaces 13(30), 35647–35656 (2021). https://doi.org/10.1021/acsami.1c07504
A. Arshad, S. Yun, J. Shi, M. Sun, N. Zafar et al., N-coordinated bimetallic defect-rich nanocarbons as highly efficient electrocatalysts in advanced energy conversion applications. Chem. Eng. J. 435, 134913 (2022). https://doi.org/10.1016/j.cej.2022.134913
S. Sekar, A.T.A. Ahmed, D.H. Sim, S. Lee, Extraordinarily high hydrogen-evolution-reaction activity of corrugated graphene nanosheets derived from biomass rice husks. Int. J. Hydrogen Energy (2022). https://doi.org/10.1016/j.ijhydene.2022.02.233
V. Thirumal, R. Yuvakkumar, B. Saravanakumar, G. Ravi, M. Isacfranklin et al., Carbonization and optimization of biomass waste for HER application. Fuel 324, 124466 (2022). https://doi.org/10.1016/j.fuel.2022.124466
J. Sun, Z. Wu, C. Ma, M. Xu, S. Luo et al., Biomass-derived tubular carbon materials: progress in synthesis and applications. J. Mater. Chem. A 9(24), 13822–13850 (2021). https://doi.org/10.1039/D1TA02412D
H. Wang, S. Xu, W. Dong, D. Sun, S. Zhang et al., Solid base assisted dual-promoted heterogeneous conversion of PVC to metal-free porous carbon catalyst. Chem. Eur. J. 28, e202200124 (2022). https://doi.org/10.1002/chem.202200124
K.M. Wyss, W. Chen, J.L. Beckham, P.E. Savas, J.M. Tour, Holey and wrinkled flash graphene from mixed plastic waste. ACS Nano 16(5), 7804–7815 (2022). https://doi.org/10.1021/acsnano.2c00379
J. Niu, A. Domenech-Carbó, A. Primo, H. Garcia, Uniform nanoporous graphene sponge from natural polysaccharides as a metal-free electrocatalyst for hydrogen generation. RSC Adv. 9, 99–106 (2019). https://doi.org/10.1039/C8RA08745H
Z. Chen, W. Wei, L. Song, B.J. Ni, Hybrid water electrolysis: a new sustainable avenue for energy-saving hydrogen production. Sustain. Horiz. 1, 100002 (2022). https://doi.org/10.1016/j.horiz.2021.100002
R. Paul, F. Du, L. Dai, Y. Ding, Z.L. Wang et al., 3D heteroatom-doped carbon nanomaterials as multifunctional metal-free catalysts for integrated energy devices. Adv. Mater. 31(13), 1805598 (2019). https://doi.org/10.1002/adma.201805598
K. Qu, Y. Zheng, Y. Jiao, X. Zhang, S. Dai et al., Polydopamine-inspired, dual heteroatom-doped carbon nanotubes for highly efficient overall water splitting. Adv. Energy Mater. 7(9), 1602068 (2017). https://doi.org/10.1002/aenm.201602068
H. Jiang, J. Gu, X. Zheng, M. Liu, X. Qiu et al., Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR OER and HER. Energy Environ. Sci. 12, 322–333 (2019). https://doi.org/10.1039/C8EE03276A
N. Prabu, R.S.A. Saravanan, T. Kesavan, G. Maduraiveeran, M. Sasidharan, An efficient palm waste derived hierarchical porous carbon for electrocatalytic hydrogen evolution reaction. Carbon 152, 188–197 (2019). https://doi.org/10.1016/j.carbon.2019.06.016
Y. Zhou, Y. Leng, W. Zhou, J. Huang, M. Zhao et al., Sulfur and nitrogen self-doped carbon nanosheets derived from peanut root nodules as high-efficiency non-metal electrocatalyst for hydrogen evolution reaction. Nano Energy 16, 357–366 (2015). https://doi.org/10.1016/j.nanoen.2015.07.008
E. Jiang, N. Song, S. Hong, C. She, C. Li et al., Zn, S, N self-doped carbon material derived from waste tires for electrocatalytic hydrogen evolution. Int. J. Hydrogen Energy 47, 16544–16551 (2022). https://doi.org/10.1016/j.ijhydene.2022.03.172
H. Sun, L. Xue, Y. Shi, J. Dong, Q. Wu et al., Waste paper derived Co, N co-doped carbon as an efficient electrocatalyst for hydrogen evolution. React. Kinet. Mech. Catal. 132, 1137–1150 (2021). https://doi.org/10.1007/s11144-021-01956-3
M. Muhyuddin, N. Zocche, R. Lorenzi, C. Ferrara, F. Poli et al., Valorization of the inedible pistachio shells into nanoscale transition metal and nitrogen codoped carbon-based electrocatalysts for hydrogen evolution reaction and oxygen reduction reaction. Mater. Renew. Sustain. Energy 11, 131–141 (2022). https://doi.org/10.1007/s40243-022-00212-5
M. Muhyuddin, J. Filippi, L. Zoia, S. Bonizzoni, R. Lorenzi et al., Waste face surgical mask transformation into crude oil and nanostructured electrocatalysts for fuel cells and electrolyzers. Chemsuschem 15, e202102351 (2022). https://doi.org/10.1002/cssc.202102351
L. Deng, Y. Zhang, Y. Wang, H. Yuan, Y. Chen et al., In situ N-, P-and Ca-codoped biochar derived from animal bones to boost the electrocatalytic hydrogen evolution reaction. Resour. Conserv. Recycl. 170, 105568 (2021). https://doi.org/10.1016/j.resconrec.2021.105568
A. Roy, D. Hursán, K. Artyushkova, P. Atanassov, C. Janáky et al., Nanostructured metal-NC electrocatalysts for CO2 reduction and hydrogen evolution reactions. Appl. Catal. B Environ. 232, 512–520 (2018). https://doi.org/10.1016/j.apcatb.2018.03.093
C. Dang, S. Yun, Y. Zhang, J. Dang, Y. Wang et al., A tailored interface engineering strategy designed to enhance the electrocatalytic activity of NiFe2O4/NiTe heterogeneous structure for advanced energy conversion applications. Mater. Today Nano 20, 100242 (2022). https://doi.org/10.1016/j.mtnano.2022.100242
G. Humagain, K. MacDougal, J. MacInnis, J.M. Lowe, R.H. Coridan et al., Highly efficient, biochar-derived molybdenum carbide hydrogen evolution electrocatalyst. Adv. Energy Mater. 8(29), 1801461 (2018). https://doi.org/10.1002/aenm.201801461
Y. Lin, L. He, T. Chen, D. Zhou, L. Wu et al., Cost-effective and environmentally friendly synthesis of 3D Ni2P from scrap nickel for highly efficient hydrogen evolution in both acidic and alkaline media. J. Mater. Chem. A 6(9), 4088–4094 (2018). https://doi.org/10.1039/C7TA09524D
T. Altalhi, A. Mezni, M.M. Ibrahim, M.S. Refat, A.A. Gobouri et al., Cathodic activation of titania-fly ash cenospheres for efficient electrochemical hydrogen production: a proposed solution to treat fly ash waste. Catalysts 12, 466 (2022). https://doi.org/10.3390/catal12050466
B. Sukhbaatar, S. Yoon, B. Yoo, Simple synthesis of a CoO nanop-decorated nitrogen-doped carbon catalyst from spent coffee grounds for alkaline hydrogen evolution. J. Mater. Sci. (2022). https://doi.org/10.1007/s10853-022-07436-w
M.A. Ahsan, A.R.P. Santiago, A. Rodriguez, V. Maturano-Rojas, B. Alvarado-Tenorio et al., Biomass-derived ultrathin carbon-shell coated iron nanops as high-performance tri-functional HER, ORR and Fenton-like catalysts. J. Cleaner Prod. 275, 124141 (2020). https://doi.org/10.1016/j.jclepro.2020.124141
W. Zhou, T. Xiong, C. Shi, J. Zhou, K. Zhou et al., Bioreduction of precious metals by microorganism: efficient gold@N-doped carbon electrocatalysts for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 55(29), 8416–8420 (2016). https://doi.org/10.1002/anie.201602627
R.A. Mir, G. Kaur, O. Pandey, Facile process to utilize carbonaceous waste as a carbon source for the synthesis of low cost electrocatalyst for hydrogen production. Int. J. Hydrogen Energy 45, 23908–23919 (2020). https://doi.org/10.1016/j.ijhydene.2019.11.239
Q. Yan, X. Yang, T. Wei, C. Zhou, W. Wu et al., Porous β-Mo2C nanop clusters supported on walnut shell powders derived carbon matrix for hydrogen evolution reaction. J. Colloid Interface Sci. 563, 104–111 (2020). https://doi.org/10.1016/j.jcis.2019.12.059
J. Yu, W. Yu, B. Chang, X. Li, J. Jia et al., Waste-yeast biomass as nitrogen/phosphorus sources and carbon template: environment-friendly synthesis of N, P-Mo2C nanops on porous carbon matrix for efficient hydrogen evolution. Chin. Chem. Lett. 33, 3231–3235 (2022). https://doi.org/10.1016/j.cclet.2021.10.046
T. Guo, X. Zhang, T. Liu, Z. Wu, D. Wang, N, K Co-activated biochar-derived molybdenum carbide as efficient electrocatalysts for hydrogen evolution. Appl. Surf. Sci. 509, 144879 (2020). https://doi.org/10.1016/j.apsusc.2019.144879
Y. Zhou, W. Zhou, D. Hou, G. Li, J. Wan et al., Metal–carbon hybrid electrocatalysts derived from ion-exchange resin containing heavy metals for efficient hydrogen evolution reaction. Small 12(20), 2768–2774 (2016). https://doi.org/10.1002/smll.201503100
F. Han, S. Yun, J. Shi, Y. Zhang, Y. Si et al., Efficient dual-function catalysts for triiodide reduction reaction and hydrogen evolution reaction using unique 3D network aloe waste-derived carbon-supported molybdenum-based bimetallic oxide nanohybrids. Appl. Catal. B Environ. 273, 119004 (2020). https://doi.org/10.1016/j.apcatb.2020.119004
X. Zhang, F. Jia, S. Song, Recent advances in structural engineering of molybdenum disulfide for electrocatalytic hydrogen evolution reaction. Chem. Eng. J. 405, 127013 (2020). https://doi.org/10.1016/j.cej.2020.127013
Y. Zhao, J. Zhao, Q. Li, C. Gu, B. Zhang et al., Degradation-resistant waste plastics derived carbon supported MoS2 electrocatalyst: high-nitrogen dependent activity for hydrogen evolution reaction. Electrochim. Acta 331, 135436 (2020). https://doi.org/10.1016/j.electacta.2019.135436
A. Wu, A. Xu, J. Yang, X. Li, L. Wang et al., Modulating Schottky barrier of MoS2 to enhance hydrogen evolution reaction activity by incorporating with vertical graphene nanosheets derived from organic liquid waste. ChemElectroChem 5, 3841–3846 (2018). https://doi.org/10.1002/celc.201801279
Q. Ji, X. Yu, L. Chen, C.E. Okonkwo, C. Zhou, Effect of cobalt doping and sugarcane bagasse carbon on the electrocatalytic performance of MoS2 nanocomposites. Fuel 324, 124814 (2022). https://doi.org/10.1016/j.fuel.2022.124814
Z. Chen, R. Zheng, S. Deng, W. Wei, W. Wei et al., Modular design of an efficient heterostructured FeS2/TiO2 oxygen evolution electrocatalyst via sulfidation of natural ilmenites. J. Mater. Chem. A 9(44), 25032–25041 (2021). https://doi.org/10.1039/D1TA08168C
L. Li, P. Wang, Q. Shao, X. Huang, Recent progress in advanced electrocatalyst design for acidic oxygen evolution reaction. Adv. Mater. 33(50), 2004243 (2021). https://doi.org/10.1002/adma.202004243
C. Murugesan, B. Senthilkumar, P. Barpanda, Biowaste-derived highly porous N-doped carbon as a low-cost bifunctional electrocatalyst for hybrid sodium–air batteries. ACS Sustain. Chem. Eng. 10(28), 9077–9086 (2022). https://doi.org/10.1021/acssuschemeng.2c01300
J. Xuan, Z. Liu, High-performance N-doped bifunctional carbon electrocatalysts derived from polymer waste for oxygen reduction and evolution reaction. Int. J. Electrochem. Sci. 12, 10471–10483 (2017). https://doi.org/10.20964/2017.11.42
Y. Huang, D. Wu, D. Cao, D. Cheng, Facile preparation of biomass-derived bifunctional electrocatalysts for oxygen reduction and evolution reactions. Int. J. Hydrogen Energy 43, 8611–8622 (2018). https://doi.org/10.1016/j.ijhydene.2018.03.136
L.L. Ma, X. Hu, W.J. Liu, H.C. Li, P.K. Lam et al., Constructing N, P-dually doped biochar materials from biomass wastes for high-performance bifunctional oxygen electrocatalysts. Chemosphere 278, 130508 (2021). https://doi.org/10.1016/j.chemosphere.2021.130508
Y. Li, Y. Qu, C. Liu, J. Cui, K. Xu et al., Processing agricultural cornstalks toward high-efficient stable bifunctional ORR/OER electrocatalysts. Adv. Sustain. Syst. 6, 2100343 (2022). https://doi.org/10.1002/adsu.202100343
X. Luo, Z. Liu, Y. Ma, Y. Nan, Y. Gu et al., Biomass derived Fe, N-doped carbon material as bifunctional electrocatalysts for rechargeable Zn-air batteries. J. Alloys Compd. 888, 161464 (2022). https://doi.org/10.1016/j.jallcom.2021.161464
Z. Chen, R. Zheng, W. Wei, W. Wei, B.J. Ni et al., Unlocking the electrocatalytic activity of natural chalcopyrite using mechanochemistry. J. Energy Chem. 68, 275–283 (2022). https://doi.org/10.1016/j.jechem.2021.11.005
V. Maruthapandian, S. Muralidharan, V. Saraswathy, From waste high speed steel alloy to valuable oxygen evolution reaction catalyst in alkaline medium. Electrochim. Acta 371, 137848 (2021). https://doi.org/10.1016/j.electacta.2021.137848
A.K. Gomaa, B.S. Shaheen, G.E. Khedr, A.M. Mokhtar, N.K. Allam, Facile surface treatment of industrial stainless steel waste meshes at mild conditions to produce efficient oxygen evolution catalysts. Energy Fuels 36, 7025–7034 (2022). https://doi.org/10.1021/acs.energyfuels.2c01562
H. Zhong, J. Wang, F. Meng, X. Zhang, In situ activating ubiquitous rust towards low-cost, efficient, free-standing, and recoverable oxygen evolution electrodes. Angew. Chem. Int. Ed. 55(34), 9937–9941 (2016). https://doi.org/10.1002/anie.201604040
S. Natarajan, S. Anantharaj, R.J. Tayade, H.C. Bajaj, S. Kundu, Recovered spinel MnCo2O4 from spent lithium-ion batteries for enhanced electrocatalytic oxygen evolution in alkaline medium. Dalton Trans. 46, 14382–14392 (2017). https://doi.org/10.1039/C7DT02613G
N. Chen, J. Qi, X. Du, Y. Wang, W. Zhang et al., Recycled LiCoO2 in spent lithium-ion battery as an oxygen evolution electrocatalyst. RSC Adv. 6, 103541–103545 (2016). https://doi.org/10.1039/C6RA23483F
A. Arif, M. Xu, J. Rashid, C.S. Saraj, W. Li et al., Efficient recovery of lithium cobaltate from spent lithium-ion batteries for oxygen evolution reaction. Nanomaterials 11, 3343 (2021). https://doi.org/10.3390/nano11123343
H. Lv, H. Huang, C. Huang, Q. Gao, Z. Yang et al., Electric field driven de-lithiation: a strategy towards comprehensive and efficient recycling of electrode materials from spent lithium ion batteries. Appl. Catal. B Environ. 283, 119634 (2021). https://doi.org/10.1016/j.apcatb.2020.119634
Z. Chen, W. Zou, R. Zheng, W. Wei, W. Wei et al., Synergistic recycling and conversion of spent Li-ion battery leachate into highly efficient oxygen evolution catalysts. Green Chem. 23, 6538–6547 (2021). https://doi.org/10.1039/D1GC01578H
T. Zhao, X. Shen, Y. Wang, R.K. Hocking, Y. Li et al., In situ reconstruction of V-doped Ni2P pre-catalysts with tunable electronic structures for water oxidation. Adv. Funct. Mater. 31(25), 2100614 (2021). https://doi.org/10.1002/adfm.202100614
Z. Chen, R. Zheng, S. Li, R. Wang, W. Wei et al., Dual-anion etching induced in situ interfacial engineering for high-efficiency oxygen evolution. Chem. Eng. J. 431, 134304 (2022). https://doi.org/10.1016/j.cej.2021.134304
Q. Xu, H. Jiang, X. Duan, Z. Jiang, Y. Hu et al., Fluorination-enabled reconstruction of NiFe electrocatalysts for efficient water oxidation. Nano Lett. 21(1), 492–499 (2021). https://doi.org/10.1021/acs.nanolett.0c03950
J. Wang, S.J. Kim, J. Liu, Y. Gao, S. Choi et al., Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation. Nat. Catal. 4, 212–222 (2021). https://doi.org/10.1038/s41929-021-00578-1
Z. Chen, W. Wei, B.J. Ni, Transition metal chalcogenides as emerging electrocatalysts for urea electrolysis. Curr. Opin. Electrochem. 31, 100888 (2022). https://doi.org/10.1016/j.coelec.2021.100888
J. Xu, D. Liu, C. Lee, P. Feydi, M. Chapuis et al., Efficient electrocatalyst nanops from upcycled class II capacitors. Nanomaterials 12, 2697 (2022). https://doi.org/10.3390/nano12152697
Y. Yang, H. Yang, H. Cao, Z. Wang, C. Liu et al., Direct preparation of efficient catalyst for oxygen evolution reaction and high-purity Li2CO3 from spent LiNi0.5Mn0.3Co0.2O2 batteries. J. Cleaner Prod. 236, 117–576 (2019). https://doi.org/10.1016/j.jclepro.2019.07.051
R. Lu, D.K. Sam, W. Wang, S. Gong, J. Liu et al., Boron, nitrogen co-doped biomass-derived carbon aerogel embedded nickel-cobalt-iron nanops as a promising electrocatalyst for oxygen evolution reaction. J. Colloid Interface Sci. 613, 126–135 (2022). https://doi.org/10.1016/j.jcis.2022.01.029
J. Chen, S. Yang, Z. Zhang, F. Wang, Biomass-derived cobalt/carbon hierarchically structured composites for efficient oxygen electrocatalysis and zinc–air batteries. Catal. Sci. Technol. 12, 4365–4371 (2022). https://doi.org/10.1039/D2CY00720G
C. Sathiskumar, L. Meesala, P. Kumar, B.R. Rao, N.S. John et al., Waste to wealth: spent catalyst as an efficient and stable bifunctional oxygen electrocatalyst for zinc–air batteries. Sustain. Energy Fuels 5, 1406–1414 (2021). https://doi.org/10.1039/D1SE00007A
L. Yang, X. Zeng, D. Wang, D. Cao, Biomass-derived FeNi alloy and nitrogen-codoped porous carbons as highly efficient oxygen reduction and evolution bifunctional electrocatalysts for rechargeable Zn-air battery. Energy Storage Mater. 12, 277–283 (2018). https://doi.org/10.1016/j.ensm.2018.02.011
F. Hof, A. Boni, G. Valenti, K. Huang, F. Paolucci et al., From food waste to efficient bifunctional nonprecious electrocatalyst. Chem. Eur. J. 23, 15283–15288 (2017). https://doi.org/10.1002/chem.201704041
X. Chen, L. Wei, Y. Wang, S. Zhai, Z. Chen et al., Milk powder-derived bifunctional oxygen electrocatalysts for rechargeable Zn-air battery. Energy Storage Mater. 11, 134–143 (2018). https://doi.org/10.1016/j.ensm.2017.10.011
C. Zhang, M. Antonietti, T.P. Fellinger, Blood ties: Co3O4 decorated blood derived carbon as a superior bifunctional electrocatalyst. Adv. Funct. Mater. 24(48), 7655–7665 (2014). https://doi.org/10.1002/adfm.201402770
M. Jiao, Q. Zhang, C. Ye, Z. Liu, X. Zhong et al., Recycling spent LiNi1-x-yMnxCoyO2 cathodes to bifunctional NiMnCo catalysts for zinc-air batteries. PNAS 119, e2202202119 (2022). https://doi.org/10.1073/pnas.2202202119
Y. Peng, F. Zhang, Y. Zhang, X. Luo, L. Chen et al., ZnS modified N, S dual-doped interconnected porous carbon derived from dye sludge waste as high-efficient ORR/OER catalyst for rechargeable zinc-air battery. J. Colloid Interface Sci. 616, 659–667 (2022). https://doi.org/10.1016/j.jcis.2022.02.102
H. Wang, F. Chang, J. Gu, X. Xie, H. Chen et al., Highly efficient catalytic CoS1.097 embedded in biomass nanosheets for oxygen evolution reaction. Int. J. Hydrogen Energy 45, 2765–2773 (2020). https://doi.org/10.1016/j.ijhydene.2019.11.170
A. Nairan, C. Liang, S.W. Chiang, Y. Wu, P. Zou et al., Proton selective adsorption on Pt–Ni nano-thorn array electrodes for superior hydrogen evolution activity. Energy Environ. Sci. 14, 1594–1601 (2021). https://doi.org/10.1039/D1EE00106J
M. Wang, X. Du, M. Zhang, K. Su, Z. Li, From S-rich polyphenylene sulfide to honeycomb-like porous carbon with ultrahigh specific surface area as bifunctional electrocatalysts for rechargeable Zn-air batteries. Carbon 198, 264–274 (2022). https://doi.org/10.1016/j.carbon.2022.07.042
Z. Chen, X. Duan, W. Wei, S. Wang, B.J. Ni, Iridium-based nanomaterials for electrochemical water splitting. Nano Energy 78, 105270 (2020). https://doi.org/10.1016/j.nanoen.2020.105270
W. Xin, W.J. Jiang, Y. Lian, H. Li, S. Hong et al., NiS2 nanodotted carnation-like CoS2 for enhanced electrocatalytic water splitting. Chem. Commun. 55, 3781–3784 (2019). https://doi.org/10.1039/C9CC01235D
Z. Chen, I. Ibrahim, D. Hao, X. Liu, L. Wu et al., Controllable design of nanoworm-like nickel sulfides for efficient electrochemical water splitting in alkaline media. Mater. Today Energy 18, 100573 (2020). https://doi.org/10.1016/j.mtener.2020.100573
Z. Liu, Q. Zhou, B. Zhao, S. Li, Y. Xiong et al., Few-layer N-doped porous carbon nanosheets derived from corn stalks as a bifunctional electrocatalyst for overall water splitting. Fuel 280, 118567 (2020). https://doi.org/10.1016/j.fuel.2020.118567
C. Xia, S. Surendran, S. Ji, D. Kim, Y. Chae et al., A sulfur self-doped multifunctional biochar catalyst for overall water splitting and a supercapacitor from camellia japonica flowers. Carbon Energy 4, 491–505 (2022). https://doi.org/10.1002/cey2.207
Z. Chen, W. Wei, B.J. Ni, Cost-effective catalysts for renewable hydrogen production via electrochemical water splitting: recent advances. Curr. Opin. Green Sustain. Chem. 27, 100398 (2021). https://doi.org/10.1016/j.cogsc.2020.100398
B. Zhou, M. Zhang, W. He, H. Wang, M. Jian et al., Blue rose-inspired approach towards highly graphitic carbons for efficient electrocatalytic water splitting. Carbon 150, 21–26 (2019). https://doi.org/10.1016/j.carbon.2019.05.009
Y. Zhang, Y. Shi, B. Yan, F. Zhang, S. Wang et al., A novel iron-based composite flocculant for enhanced wastewater treatment and upcycling hazardous sludge into trifunctional electrocatalyst. Appl. Surf. Sci. 569, 151034 (2021). https://doi.org/10.1016/j.apsusc.2021.151034
X. Zheng, X. Zhao, J. Lu, J. Li, Z. Miao et al., Regeneration of spent cathodes of Li-ion batteries into multifunctional electrodes for overall water splitting and rechargeable Zn-air batteries by ultrafast carbothermal shock. Sci. China Mater. 65, 2393–2400 (2022). https://doi.org/10.1007/s40843-021-1984-8
E. Jiang, N. Song, S. Hong, M. Xiao, D. Zhu et al., Cobalt supported on biomass carbon tubes derived from cotton fibers towards high-efficient electrocatalytic overall water-splitting. Electrochim. Acta 407, 139895 (2022). https://doi.org/10.1016/j.electacta.2022.139895
F. He, Y. Han, Y. Tong, M. Zhong, Q. Wang et al., NiFe Alloys@N-doped graphene-like carbon anchored on n-doped graphitized carbon as a highly efficient bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. ACS Sustain. Chem. Eng. 10(18), 6094–6105 (2022). https://doi.org/10.1021/acssuschemeng.2c01381
A. Kumar, D.K. Chaudhary, S. Parvin, S. Bhattacharyya, High performance duckweed-derived carbon support to anchor NiFe electrocatalysts for efficient solar energy driven water splitting. J. Mater. Chem. A 6(39), 18948–18959 (2018). https://doi.org/10.1039/C8TA06946H
J. Wang, Y. Gao, T.L. You, F. Ciucci, Bimetal-decorated nanocarbon as a superior electrocatalyst for overall water splitting. J. Power Sources 401, 312–321 (2018). https://doi.org/10.1016/j.jpowsour.2018.09.011
Z. Yang, C. Yan, M. Xiang, Y. Shi, M. Ding et al., Biomass carbon dual-doped with iron and nitrogen for high-performance electrocatalyst in water splitting. Int. J. Energy Res. 45, 8474–8483 (2021). https://doi.org/10.1002/er.6381
B. Wang, L. Xu, G. Liu, P. Zhang, W. Zhu et al., Biomass willow catkin-derived Co3O4/N-doped hollow hierarchical porous carbon microtubes as an effective tri-functional electrocatalyst. J. Mater. Chem. A 5(38), 20170–20179 (2017). https://doi.org/10.1039/C7TA05002J
B. Abdolahi, M.B. Gholivand, M. Shamsipur, M. Amiri, Engineering of nickel-cobalt oxide nanostructures based on biomass material for high performance supercapacitor and catalytic water splitting. Int. J. Energy Res. 45, 12879–12897 (2021). https://doi.org/10.1002/er.6618
W. Yaseen, M. Xie, B.A. Yusuf, Y. Xu, M. Rafiq et al., Hierarchical Co/MoO2@N-doped carbon nanosheets derived from waste lotus leaves for electrocatalytic water splitting. Int. J. Hydrogen Energy 47, 15673–15686 (2022). https://doi.org/10.1016/j.ijhydene.2022.03.037
M. Yang, D. Wu, D. Cheng, Biomass-derived porous carbon supported Co-CoO yolk-shell nanops as enhanced multifunctional electrocatalysts. Int. J. Hydrogen Energy 44, 6525–6534 (2019). https://doi.org/10.1016/j.ijhydene.2019.01.155
V.C. Hoang, K.N. Dinh, V.G. Gomes, Hybrid Ni/NiO composite with N-doped activated carbon from waste cauliflower leaves: a sustainable bifunctional electrocatalyst for efficient water splitting. Carbon 157, 515–524 (2020). https://doi.org/10.1016/j.carbon.2019.09.080
C. Lin, M. Kang, L. Zheng, X. Fu, S. Wang, Ammonium nitrate-assisted low-temperature synthesis of Co, Co2P@CoP embedded in biomass-derived carbons as efficient electrocatalysts for hydrogen and oxygen evolution reaction. ChemistrySelect 5, 7338–7346 (2020). https://doi.org/10.1002/slct.202001810
D. Li, Z. Li, J. Ma, X. Peng, C. Liu, One-step construction of Co2P nanops encapsulated in N, P co-doped biomass-based porous carbon as bifunctional efficient electrocatalysts for overall water splitting. Sustain. Energy Fuels 5, 2477–2485 (2021). https://doi.org/10.1039/D1SE00062D
Y. Zhang, L. Chen, B. Yan, F. Zhang, Y. Shi et al., Regeneration of textile sludge into Cu8S5 decorated N, S self-doped interconnected porous carbon as an advanced bifunctional electrocatalyst for overall water splitting. Chem. Eng. J. 451, 138497 (2023). https://doi.org/10.1016/j.cej.2022.138497
I.S. Amiinu, Z. Pu, D. He, H.G.R. Monestel, S. Mu, Scalable cellulose-sponsored functionalized carbon nanorods induced by cobalt for efficient overall water splitting. Carbon 137, 274–281 (2018). https://doi.org/10.1016/j.carbon.2018.05.025
B. Vedhanarayanan, J. Shi, J.Y. Lin, S. Yun, T.W. Lin, Enhanced activity and stability of MoS2 through enriching 1T-phase by covalent functionalization for energy conversion applications. Chem. Eng. J. 403, 126318 (2021). https://doi.org/10.1016/j.cej.2020.126318
J. Liu, S. Zhao, C. Wang, Y. Ma, L. He et al., Catkin-derived mesoporous carbon-supported molybdenum disulfide and nickelhydroxyloxide hybrid as a bifunctional electrocatalyst for driving overall water splitting. J. Colloid Interface Sci. 608, 1627–1637 (2022). https://doi.org/10.1016/j.jcis.2021.10.069
T. Liu, S. Cai, G. Zhao, Z. Gao, S. Liu et al., Recycling valuable cobalt from spent lithium ion batteries for controllably designing a novel sea-urchin-like cobalt nitride-graphene hybrid catalyst: towards efficient overall water splitting. J. Energy Chem. 62, 440–450 (2021). https://doi.org/10.1016/j.jechem.2021.03.052
Y. Zhao, W. Chen, F. Liu, P. Zhao, Hydrothermal pretreatment of cotton textile wastes: biofuel characteristics and biochar electrocatalytic performance. Fuel 316, 123327 (2022). https://doi.org/10.1016/j.fuel.2022.123327
G. Han, M. Hu, Y. Liu, J. Gao, L. Han et al., Efficient carbon-based catalyst derived from natural cattail fiber for hydrogen evolution reaction. J. Solid State Chem. 274, 207–214 (2019). https://doi.org/10.1016/j.jssc.2019.03.027
O.A. Fakayode, B.A. Yusuf, C. Zhou, Y. Xu, Q. Ji et al., Simplistic two-step fabrication of porous carbon-based biomass-derived electrocatalyst for efficient hydrogen evolution reaction. Energy Convers. Manage. 227, 113628 (2021). https://doi.org/10.1016/j.enconman.2020.113628
V. Kandathil, A. Moolakkil, P. Kulkarni, A.K. Veetil, M. Kempasiddaiah et al., Pd/Fe3O4 supported on bio-waste derived cellulosic-carbon as a nanocatalyst for CC coupling and electrocatalytic application. Front. Chem. Sci. Eng. (2022). https://doi.org/10.1007/s11705-022-2158-y
R.A. Mir, O. Pandey, An ecofriendly route to synthesize C-Mo2C and C/N-Mo2C utilizing waste polyethene for efficient hydrogen evolution reaction (HER) activity and high performance capacitors. Sustain. Energy Fuels 4, 655–669 (2020). https://doi.org/10.1039/C9SE00516A
A.L. Remmel, S. Ratso, G. Divitini, M. Danilson, V. Mikli et al., Nickel and nitrogen-doped bifunctional ORR and HER electrocatalysts derived from CO2. ACS Sustain. Chem. Eng. 10(1), 134–145 (2022). https://doi.org/10.1021/acssuschemeng.1c05250
X. Mu, L. Gong, G. Yang, Y. Xiong, J. Wan et al., Biomass-based transition metal phosphides supported on carbon matrix as efficient and stable electrocatalyst for hydrogen evolution reaction. Int. J. Energy Res. 46, 3502–3511 (2022). https://doi.org/10.1002/er.7400
D.K. Sam, W. Wang, S. Gong, E.K. Sam, X. Lv et al., CO2 assisted synthesis of silk fibroin driven robust N-doped carbon aerogels coupled with nickel–cobalt ps as highly active electrocatalysts for HER. Int. J. Hydrogen Energy 46, 21525–21533 (2021). https://doi.org/10.1016/j.ijhydene.2021.03.243
Q. Li, T. He, Y.Q. Zhang, H. Wu, J. Liu et al., Biomass waste-derived 3D metal-free porous carbon as a bifunctional electrocatalyst for rechargeable zinc–air batteries. ACS Sustain. Chem. Eng. 7(20), 17039–17046 (2019). https://doi.org/10.1021/acssuschemeng.9b02964
N. Murugan, S. Thangarasu, G.B. Choi, J. Choi, T.H. Oh et al., Interconnected hierarchical nanoarchitectonics of porous carbon nanosheets derived from renewable biomass for efficient oxygen evolution reaction. J. Alloys Compd. 923, 166321 (2022). https://doi.org/10.1016/j.jallcom.2022.166321
M. Devi, K. Ojha, A. Ganguli, M. Jha, Transformation of waste tin-plated steel to iron nanosheets and their application in generation of oxygen. Int. J. Environ. Sci. Technol. 16, 3669–3678 (2019). https://doi.org/10.1007/s13762-018-1778-8
R. Farzana, M.A. Sayeed, J. Joseph, K. Ostrikov, A.P. O’Mullane et al., Manganese oxide derived from a spent Zn–C battery as a catalyst for the oxygen evolution reaction. ChemElectroChem 7, 2073–2080 (2020). https://doi.org/10.1002/celc.202000422
R. Atchudan, N.C.S. Selvam, T.N.J.I. Edison, S. Perumal, R. Vinodh et al., Synthetic disposable material derived-carbon supported NiO: efficient hybrid electrocatalyst for water oxidation process. Fuel 294, 120558 (2021). https://doi.org/10.1016/j.fuel.2021.120558
H.A. Bandal, A.A. Pawar, H. Kim, Transformation of waste onion peels into core-shell Fe3C@N-doped carbon as a robust electrocatalyst for oxygen evolution reaction. Electrochim. Acta 422, 140545 (2022). https://doi.org/10.1016/j.electacta.2022.140545
J. Wang, H. Zhao, Y. Gao, D. Chen, C. Chen et al., Ba0.5Sr0.5Co0.8Fe0.2O3−δ on N-doped mesoporous carbon derived from organic waste as a bi-functional oxygen catalyst. Int. J. Hydrogen Energy 41, 10744–10754 (2016). https://doi.org/10.1016/j.ijhydene.2016.04.049
Z. Rong, C. Dong, S. Zhang, W. Dong, F. Huang, Co5.47N loaded N-doped carbon as an efficient bifunctional oxygen electrocatalyst for a Zn–air battery. Nanoscale 12, 6089–6095 (2020). https://doi.org/10.1039/D0NR00731E
C. Yang, Z. Jin, X. Zhang, X. Zheng, X. He, Ultrafast regenerating spent LiCoO2 lithium-ion batteries into bifunctional electrodes for rechargeable Zn-air batteries. ChemElectroChem 9, e202101494 (2022). https://doi.org/10.1002/celc.202101494
S. Sekar, D.Y. Kim, S. Lee, Excellent oxygen evolution reaction of activated carbon-anchored NiO nanotablets prepared by green routes. Nanomaterials 10, 1382 (2020). https://doi.org/10.3390/nano10071382
G. Li, T. Zhu, Y. Ye, S. Liang, W. Duan et al., Transforming Ni-coagulated polyferriertic sulfate sludge into porous heteroatom-doped carbon-supported transition metal phosphide: an efficient catalyst for oxygen evolution reaction. Energy Technol. 8, 1900995 (2020). https://doi.org/10.1002/ente.201900995
J. Xing, Y. Li, S. Guo, T. Jin, H. Li et al., Molybdenum carbide in-situ embedded into carbon nanosheets as efficient bifunctional electrocatalysts for overall water splitting. Electrochim. Acta 298, 305–312 (2019). https://doi.org/10.1016/j.electacta.2018.12.091
X. Li, X. Qian, Y. Xu, F. Duan, Q. Yu et al., Electrodeposited cobalt phosphides with hierarchical nanostructure on biomass carbon for bifunctional water splitting in alkaline solution. J. Alloys Compd. 829, 154535 (2020). https://doi.org/10.1016/j.jallcom.2020.154535