Boosting Lean Electrolyte Lithium–Sulfur Battery Performance with Transition Metals: A Comprehensive Review
Corresponding Author: Michael Wübbenhorst
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 165
Abstract
Lithium–sulfur (Li–S) batteries have received widespread attention, and lean electrolyte Li–S batteries have attracted additional interest because of their higher energy densities. This review systematically analyzes the effect of the electrolyte-to-sulfur (E/S) ratios on battery energy density and the challenges for sulfur reduction reactions (SRR) under lean electrolyte conditions. Accordingly, we review the use of various polar transition metal sulfur hosts as corresponding solutions to facilitate SRR kinetics at low E/S ratios (< 10 µL mg−1), and the strengths and limitations of different transition metal compounds are presented and discussed from a fundamental perspective. Subsequently, three promising strategies for sulfur hosts that act as anchors and catalysts are proposed to boost lean electrolyte Li–S battery performance. Finally, an outlook is provided to guide future research on high energy density Li–S batteries.
Highlights:
1 This review systematically analyzes the effect of the electrolyte-to-sulfur ratios on battery energy density and the challenges for sulfur reduction reactions under lean electrolyte conditions.
2 The strengths and limitations of different transition metal compounds are systematically presented and discussed from a fundamental perspective.
3 Three promising strategies for sulfur hosts that act as anchors and catalysts are proposed to boost lean electrolyte Li–S battery performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Sun, Z. Song, Z. Feng, Y. Huang, Z.J. Xu et al., Carbon-nitride-based materials for advanced lithium–sulfur batteries. Nano Micro Lett. 14(1), 222 (2022). https://doi.org/10.1007/s40820-022-00954-x
- Y. Huang, L. Lin, Y. Zhang, L. Liu, B. Sa et al., Dual-functional lithiophilic/sulfiphilic binary-metal selenide quantum dots toward high-performance Li–S full batteries. Nano Micro Lett. 15(1), 67 (2023). https://doi.org/10.1007/s40820-023-01037-1
- A.M. Abraham, K. Thiel, M. Shakouri, Q. Xiao, A. Paterson et al., Ultrahigh sulfur loading tolerant cathode architecture with extended cycle life for high energy density lithium–sulfur batteries. Adv. Energy Mater. 12(34), 2201494 (2022). https://doi.org/10.1002/aenm.202201494
- G. Zhou, H. Chen, Y. Cui, Formulating energy density for designing practical lithium–sulfur batteries. Nat. Energy 7(4), 312–319 (2022). https://doi.org/10.1038/s41560-022-01001-0
- Z.P. Cano, D. Banham, S. Ye, A. Hintennach, J. Lu et al., Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 3(4), 279–289 (2018). https://doi.org/10.1038/s41560-018-0108-1
- R. Deng, B. Ke, Y. Xie, S. Cheng, C. Zhang et al., All-solid-state thin-film lithium-sulfur batteries. Nano Micro Lett. 15(1), 73 (2023). https://doi.org/10.1007/s40820-023-01064-y
- X. Zhu, L. Wang, Z. Bai, J. Lu, T. Wu, Sulfide-based all-solid-state lithium-sulfur batteries: challenges and perspectives. Nano Micro Lett. 15(1), 75 (2023). https://doi.org/10.1007/s40820-023-01053-1
- H. Wang, Z. Cui, S.A. He, J. Zhu, W. Luo et al., Construction of ultrathin layered MXene-TiN heterostructure enabling favorable catalytic ability for high-areal-capacity lithium–sulfur batteries. Nano Micro Lett. 14(1), 189 (2022). https://doi.org/10.1007/s40820-022-00935-0
- B. Jiang, D. Tian, Y. Qiu, X. Song, Y. Zhang et al., High-index faceted nanocrystals as highly efficient bifunctional electrocatalysts for high-performance lithium–sulfur batteries. Nano Micro Lett. 14(1), 40 (2021). https://doi.org/10.1007/s40820-021-00769-2
- Y. Zhan, A. Buffa, L. Yu, Z.J. Xu, D. Mandler, Electrodeposited sulfur and CoxS electrocatalyst on buckypaper as high-performance cathode for Li-S batteries. Nano Micro Lett. 12(1), 141 (2020). https://doi.org/10.1007/s40820-020-00479-1
- J.L. Yang, D.-Q. Cai, Q. Lin, X.-Y. Wang, Z.Q. Fang et al., Regulating the Li2S deposition by grain boundaries in metal nitrides for stable lithium–sulfur batteries. Nano Energy 91, 106669 (2022). https://doi.org/10.1016/j.nanoen.2021.106669
- Y. Qi, N. Li, K. Zhang, Y. Yang, Z. Ren et al., Dynamic liquid metal catalysts for boosted lithium polysulfides redox reaction. Adv. Mater. (2022). https://doi.org/10.1002/adma.202204810
- Y. Lin, Y. Zhou, S. Huang, M. Xiao, D. Han et al., Catalytic disproportionation for suppressing polysulfide shuttle in Li–S pouch cells: beyond adsorption interactions. Adv. Energy Mater. (2022). https://doi.org/10.1002/aenm.202201912
- S. Feng, R.K. Singh, Y. Fu, Z. Li, Y. Wang et al., Low-tortuous and dense single-p-layer electrode for high-energy lithium–sulfur batteries. Energy Environ. Sci. 15(9), 3842–3853 (2022). https://doi.org/10.1039/d2ee01442d
- S.F. Ng, M.Y.L. Lau, W.J. Ong, Lithium-sulfur battery cathode design: tailoring metal-based nanostructures for robust polysulfide adsorption and catalytic conversion. Adv. Mater. 33(50), 2008654 (2021). https://doi.org/10.1002/adma.202008654
- R.D. Rauh, G.F. Pearson, J.K. Surprenant, S.B. Brummer, A lithium/dissolved sulfur battery with an organic electrolyte. J. Electrochem. Soc. 126, 523–527 (1979). https://doi.org/10.1149/1.2129079/meta
- W. Zheng, Y.W. Liu, X.G. Hu, C.F. Zhang, Novel nanosized adsorbing sulfur composite cathode materials for the advanced secondary lithium batteries. Electrochim. Acta 51(7), 1330–1335 (2006). https://doi.org/10.1016/j.electacta.2005.06.021
- D. Marmorstein, T.H. Yu, K.A. Striebel, F.R. McLarnon, J. Hou et al., Electrochemical performance of lithiumrsulfur cells with three different polymer electrolytes. J. Power Sources 89, 219–226 (2000). https://doi.org/10.1016/S0378-7753(00)00432-8
- D.R. Chang, S.H. Lee, S.W. Kim, H.T. Kim, Binary electrolyte based on tetra(ethylene glycol) dimethyl ether and 1,3-dioxolane for lithium–sulfur battery. J. Power Sources 112, 452–460 (2002). https://doi.org/10.1016/S0378-7753(02)00418-4
- D. Marmorstein, K.A. Striebel, F.R. McLarnon, J. Hou, E.J. Cairns, Electrochemical performance of lithiumrsulfur cells with three different polymer electrolytes. J. Power Sources 89, 219–226 (2000). https://doi.org/10.1016/S0378-7753(00)00432-8
- L.P. Felix, B. Dias, J.B.J. Veldhuis, Trends in polymer electrolytes for secondary lithium batteries. J. Power Sources 88, 169–191 (2000). https://doi.org/10.1016/S0378-7753(99)00529-7
- J. Wang, J. Yang, J. Xie, N. Xu, A novel conductive polymer sulfur composite cathode material for rechargeable lithium. Adv. Mater. 14, 13–14 (2002). https://doi.org/10.1002/1521-4095(20020705)14:13/14%3c963::AID-ADMA963%3e3.0.CO;2-P
- Y.V. Mikhaylik, Electrolytes for lithium sulfur cells, US Patent 7, 354, 680 (2008)
- X. Ji, K.T. Lee, L.F. Nazar, A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8(6), 500–506 (2009). https://doi.org/10.1038/nmat2460
- R. Wang, R. Wu, C. Ding, Z. Chen, H. Xu et al., Porous carbon architecture assembled by cross-linked carbon leaves with implanted atomic cobalt for high-performance Li–S batteries. Nano Micro Lett. 13(1), 151 (2021). https://doi.org/10.1007/s40820-021-00676-6
- J. Zheng, D. Lv, M. Gu, C. Wang, J. Zhang et al., How to obtain reproducible results for lithium sulfur batteries? J. Electrochem. Soc. 160(11), 2288–2292 (2013). https://doi.org/10.1149/2.106311jes]
- M. Hagen, P. Fanz, J. Tübke, Cell energy density and electrolyte/sulfur ratio in Li–S cells. J. Power Sources 264, 30–34 (2014). https://doi.org/10.1016/j.jpowsour.2014.04.018
- J. Brückner, S. Thieme, H.T. Grossmann, S. Dörfler, H. Althues, S. Kaskel, Lithium–sulfur batteries: influence of C-rate, amount of electrolyte and sulfur loading on cycle performance. J. Power Sources 268, 82–87 (2014). https://doi.org/10.1016/j.jpowsour.2014.05.143
- S.-H. Chung, A. Manthiram, Lithium–sulfur batteries with superior cycle stability by employing porous current collectors. Electrochim. Acta 107, 569–576 (2013). https://doi.org/10.1016/j.electacta.2013.06.034
- S. Xiong, K. Xie, Y. Diao, X. Hong, Properties of surface film on lithium anode with LiNO3 as lithium salt in electrolyte solution for lithium–sulfur batteries. Electrochim. Acta 83, 78–86 (2012). https://doi.org/10.1016/j.electacta.2012.07.118
- S. Xiong, K. Xie, Y. Diao, X. Hong, On the role of polysulfides for a stable solid electrolyte interphase on the lithium anode cycled in lithium–sulfur batteries. J. Power Sources 236, 181–187 (2013). https://doi.org/10.1016/j.jpowsour.2013.02.072
- Y. Yan, Y.-X. Yin, S. Xin, J. Su, Y.-G. Guo et al., High-safety lithium–sulfur battery with prelithiated Si/C anode and ionic liquid electrolyte. Electrochim. Acta 91, 58–61 (2013). https://doi.org/10.1016/j.electacta.2012.12.077
- Y.X. Yin, S. Xin, Y.G. Guo, L.J. Wan, Lithium-sulfur batteries: electrochemistry, materials, and prospects. Angew. Chem. Int. Ed. 52(50), 13186–13200 (2013). https://doi.org/10.1002/anie.201304762
- Z. Wei Seh, W. Li, J.J. Cha, G. Zheng, Y. Yang et al., Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 4, 1331 (2013). https://doi.org/10.1038/ncomms2327
- S. Dörfler, H. Althues, P. Härtel, T. Abendroth, B. Schumm et al., Challenges and key parameters of lithium–sulfur batteries on pouch cell level. Joule 4(3), 539–554 (2020). https://doi.org/10.1016/j.joule.2020.02.006
- L. Huang, T. Guan, H. Su, Y. Zhong, F. Cao et al., Synergistic interfacial bonding in reduced graphene oxide fiber cathodes containing polypyrrole@sulfur nanospheres for flexible energy storage. Angew. Chem. Int. Ed. (2022). https://doi.org/10.1002/anie.202212151
- G.T. Zhou, H. Jina, Y. Tao, X. Liu, B. Zhang et al., Catalytic oxidation of Li2S on the surface of metal sulfides for Li−S batteries. Proc. Natl. Acad. Sci. 114, 840–845 (2017). https://doi.org/10.1073/pnas.1615837114
- F. Shi, L. Zhai, Q. Liu, J. Yu, S.P. Lau et al., Emerging catalytic materials for practical lithium–sulfur batteries. J. Energy Chem. 76, 127–145 (2022). https://doi.org/10.1016/j.jechem.2022.08.027
- F. Zhan, S. Liu, Q. He, X. Zhao, H. Wang et al., Metal–organic framework-derived heteroatom-doped nanoarchitectures for electrochemical energy storage: recent advances and future perspectives. Energy Storage Mater. 52, 685–735 (2022). https://doi.org/10.1016/j.ensm.2022.08.035
- Z. Shen, X. Jin, J. Tian, M. Li, Y. Yuan et al., Cation-doped zns catalysts for polysulfide conversion in lithium–sulfur batteries. Nat. Catal. 5(6), 555–563 (2022). https://doi.org/10.1038/s41929-022-00804-4
- Y. Cao, C. Wu, W. Wang, Y. Li, J. You et al., Modification of lithium sulfur batteries by sieving effect: long term investigation of carbon molecular sieve. J. Energy Storage 54, 105228 (2022). https://doi.org/10.1016/j.est.2022.105228
- H. Yuan, H.-J. Peng, B.-Q. Li, J. Xie, L. Kong et al., Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium–sulfur batteries. Adv. Energy Mater. 9(1), 1802768 (2019). https://doi.org/10.1002/aenm.201802768
- S. Li, X. Zhang, H. Chen, H. Hu, J. Liu et al., Electrocatalytic effect of 3D porous sulfur/gallium hybrid materials in lithium–sulfur batteries. Electrochim. Acta 364, 137259 (2020). https://doi.org/10.1016/j.electacta.2020.137259
- Z. Kong, Q. Liu, X. Liu, Y. Wang, C. Shen et al., Co-Nx bonds as bifunctional electrocatalytic sites to drive the reversible conversion of lithium polysulfides for long life lithium sulfur batteries. Appl. Surf. Sci. 546, 148914 (2021). https://doi.org/10.1016/j.apsusc.2020.148914
- S. Park, M. Her, H. Shin, W. Hwang, Y.-E. Sung, Maximizing the active site densities of single-atomic Fe–N–C electrocatalysts for high-performance anion membrane fuel cells. ACS Appl. Energy Mater. 4(2), 1459–1466 (2021). https://doi.org/10.1021/acsaem.0c02650
- Z. Zeng, W. Nong, Y. Li, C. Wang, Universal-descriptors-guided design of single atom catalysts toward oxidation of Li2S in lithium–sulfur batteries. Adv. Sci. 8(23), 2102809 (2021). https://doi.org/10.1002/Adv.s.202102809
- C. Zhao, G.L. Xu, Z. Yu, L. Zhang, I. Hwang et al., A high-energy and long-cycling lithium–sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites. Nat. Nanotechnol. 16(2), 166–173 (2021). https://doi.org/10.1038/s41565-020-00797-w
- Z.X. Chen, M. Zhao, L.P. Hou, X.Q. Zhang, B.Q. Li et al., Toward practical high-energy-density lithium–sulfur pouch cells: a review. Adv. Mater. 34(35), 2201555 (2022). https://doi.org/10.1002/adma.202201555
- S. Lang, S.H. Yu, X. Feng, M.R. Krumov, H.D. Abruna, Understanding the lithium–sulfur battery redox reactions via operando confocal Raman microscopy. Nat. Commun. 13(1), 4811 (2022). https://doi.org/10.1038/s41467-022-32139-w
- U.J.H. Danuta, Electric dry cells and storage batteries, US Patent 3, 043, 896, (1962)
- S. Evers, T. Yim, L.F. Nazar, Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li–S battery. J. Phys. Chem. C 116(37), 19653–19658 (2012). https://doi.org/10.1021/jp304380j
- J. Lei, T. Liu, J. Chen, M. Zheng, Q. Zhang et al., Exploring and understanding the roles of Li2Sn and the strategies to beyond present Li–S batteries. Chem. 6(10), 2533–2557 (2020). https://doi.org/10.1016/j.chempr.2020.06.032
- T.M. Gür, Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ. Sci. 11(10), 2696–2767 (2018). https://doi.org/10.1039/c8ee01419a
- Z. Li, I. Sami, J. Yang, J. Li, R.V. Kumar et al., Lithiated metallic molybdenum disulfide nanosheets for high-performance lithium–sulfur batteries. Nat. Energy 8(1), 84–93 (2023). https://doi.org/10.1038/s41560-022-01175-7
- F. Cheng, J. Liang, Z. Tao, J. Chen, Functional materials for rechargeable batteries. Adv. Mater. 23(15), 1695–1715 (2011). https://doi.org/10.1002/adma.201003587
- M. Han, Y. Mu, J. Guo, L. Wei, L. Zeng et al., Monolayer MoS2 fabricated by in situ construction of interlayer electrostatic repulsion enables ultrafast ion transport in lithium-ion batteries. Nano Micro Lett. 15(1), 80 (2023). https://doi.org/10.1007/s40820-023-01042-4
- D. Moy, A. Manivannan, S.R. Narayanan, Direct measurement of polysulfide shuttle current: a window into understanding the performance of lithium-sulfur cells. J. Electrochem. Soc. 162, A1–A7 (2015). https://doi.org/10.1149/2.0181501jes
- C. Yang, Running battery electric vehicles with extended range: coupling cost and energy analysis. Appl. Energy 306, 118116 (2022). https://doi.org/10.1016/j.apenergy.2021.118116
- J. Wu, T. Ye, Y. Wang, P. Yang, Q. Wang et al., Understanding the catalytic kinetics of polysulfide redox reactions on transition metal compounds in Li–S batteries. ACS Nano 16(10), 15734–15759 (2022). https://doi.org/10.1021/acsnano.2c08581
- C. Shen, J. Xie, M. Zhang, P. Andrei, M. Hendrickson et al., Self-discharge behavior of lithium–sulfur batteries at different electrolyte/sulfur ratios. J. Electrochem. Soc. 166, A5287 (2019). https://doi.org/10.1149/2.0461903jes
- J. Zhang, G. Xu, Q. Zhang, X. Li, Y. Yang et al., Mo–O–C between MoS2 and graphene toward accelerated polysulfide catalytic conversion for advanced lithium–sulfur batteries. Adv. Sci. 9(22), 2201579 (2022). https://doi.org/10.1002/advs.202201579
- Z. Ye, Y. Jiang, T. Yang, L. Li, F. Wu et al., Engineering catalytic CoSe-ZnSe heterojunctions anchored on graphene aerogels for bidirectional sulfur conversion reactions. Adv. Sci. 9(1), 2103456 (2022). https://doi.org/10.1002/advs.202103456
- D. Yang, Z. Liang, P. Tang, C. Zhang, M. Tang et al., A high conductivity 1D π-d conjugated metal-organic framework with efficient polysulfide trapping-diffusion-catalysis in lithium–sulfur batteries. Adv. Mater. 34(10), 2108835 (2022). https://doi.org/10.1002/adma.202108835
- Y.T. Liu, S. Liu, G.R. Li, X.P. Gao, Strategy of enhancing the volumetric energy density for lithium–sulfur batteries. Adv. Mater. 33(8), 2003955 (2021). https://doi.org/10.1002/adma.202003955
- W. Xue, L. Miao, L. Qie, C. Wang, S. Li et al., Gravimetric and volumetric energy densities of lithium–sulfur batteries. Curr. Opin. Electrochem. 6(1), 92–99 (2017). https://doi.org/10.1016/j.coelec.2017.10.007
- J. Betz, G. Bieker, P. Meister, T. Placke, M. Winter et al., Theoretical versus practical energy: a plea for more transparency in the energy calculation of different rechargeable battery systems. Adv. Energy Mater. 9(6), 1803170 (2018). https://doi.org/10.1002/aenm.201803170
- S. Power, 650 w/hkg, 1400 wh/l rechargable batteries for new era of electrified mobility. 2018 NASA Aerospace Battery Workshop (2018).
- S. Kaskel, Recent progress in lithium–sulfur-batteries. AABC Europe 2017 (2017)
- H.J. Peng, J.Q. Huang, Q. Zhang, A review of flexible lithium–sulfur and analogous alkali metal-chalcogen rechargeable batteries. Chem. Soc. Rev. 46(17), 5237–5288 (2017). https://doi.org/10.1039/c7cs00139h
- N. Li, C. Sun, J. Zhu, S. Li, Y. Wang et al., Minimizing carbon content with three-in-one functionalized nano conductive ceramics: toward more practical and safer S cathodes of Li–S cells. Energy Environ. Mater. (2022). https://doi.org/10.1002/eem2.12354
- S.H. Chung, C.H. Chang, A. Manthiram, A carbon-cotton cathode with ultrahigh-loading capability for statically and dynamically stable lithium–sulfur batteries. ACS Nano 10(11), 10462–10470 (2016). https://doi.org/10.1021/acsnano.6b06369
- C.-H. Chang, S.-H. Chung, A. Manthiram, Highly flexible, freestanding tandem sulfur cathodes for foldable Li–S batteries with a high areal capacity. Mater. Horiz. 4(2), 249–258 (2017). https://doi.org/10.1039/c6mh00426a
- P. Han, S.H. Chung, A. Manthiram, Pyrrolic-type nitrogen-doped hierarchical macro/mesoporous carbon as a bifunctional host for high-performance thick cathodes for lithium–sulfur batteries. Small 15(16), 1900690 (2019). https://doi.org/10.1002/smll.201900690
- D.R. Deng, F. Xue, Y.J. Jia, J.C. Ye, C.D. Bai et al., Co4N nanosheet assembled mesoporous sphere as a matrix for ultrahigh sulfur content lithium–sulfur batteries. ACS Nano 11(6), 6031–6039 (2017). https://doi.org/10.1021/acsnano.7b01945
- D.R. Deng, F. Xue, C.D. Bai, J. Lei, R. Yuan et al., Enhanced adsorptions to polysulfides on graphene-supported bn nanosheets with excellent Li–S battery performance in a wide temperature range. ACS Nano 12(11), 11120–11129 (2018). https://doi.org/10.1021/acsnano.8b05534
- Z. Yuan, H.J. Peng, T.Z. Hou, J.Q. Huang, C.M. Chen et al., Powering lithium–sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 16(1), 519–527 (2016). https://doi.org/10.1021/acs.nanolett.5b04166
- X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss et al., A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat. Commun. 6, 5682 (2015). https://doi.org/10.1038/ncomms6682
- M. Zhao, B.Q. Li, H.J. Peng, H. Yuan, J.Y. Wei et al., Lithium–sulfur batteries under lean electrolyte conditions: challenges and opportunities. Angew. Chem. Int. Ed. 59(31), 12636–12652 (2020). https://doi.org/10.1002/anie.201909339
- M. Zhao, B.Q. Li, X.Q. Zhang, J.Q. Huang, Q. Zhang, A perspective toward practical lithium–sulfur batteries. ACS Cent. Sci. 6(7), 1095–1104 (2020). https://doi.org/10.1021/acscentsci.0c00449
- Y. Jin, P.M.L. Le, P. Gao, Y. Xu, B. Xiao et al., Low-solvation electrolytes for high-voltage sodium-ion batteries. Nat. Energy 7(8), 718–725 (2022). https://doi.org/10.1038/s41560-022-01055-0
- Y. Jeoun, M.-S. Kim, S.-H. Lee, J. Hyun Um, Y.-E. Sung et al., Lean-electrolyte lithium-sulfur batteries: recent advances in the design of cell components. Chem. Eng. J. 450, 138209 (2022). https://doi.org/10.1016/j.cej.2022.138209
- J. Guo, H. Pei, Y. Dou, S. Zhao, G. Shao et al., Rational designs for lithium-sulfur batteries with low electrolyte/sulfur ratio. Adv. Funct. Mater. 31(18), 2010499 (2021). https://doi.org/10.1002/adfm.202010499
- M. Wild, L. O’Neill, T. Zhang, R. Purkayastha, G. Minton et al., Lithium sulfur batteries, a mechanistic review. Energy Environ. Sci. 8(12), 3477–3494 (2015). https://doi.org/10.1039/c5ee01388g
- H.J. Peng, J.Q. Huang, X.Y. Liu, X.B. Cheng, W.T. Xu et al., Healing high-loading sulfur electrodes with unprecedented long cycling life: spatial heterogeneity control. J. Am. Chem. Soc. 139(25), 8458–8466 (2017). https://doi.org/10.1021/jacs.6b12358
- X.-B. Cheng, J.-Q. Huang, H.-J. Peng, J.-Q. Nie, X.-Y. Liu et al., Polysulfide shuttle control: towards a lithium–sulfur battery with superior capacity performance up to 1000 cycles by matching the sulfur/electrolyte loading. J. Power Sources 253, 263–268 (2014). https://doi.org/10.1016/j.jpowsour.2013.12.031
- C. Zu, A. Manthiram, Stabilized lithium-metal surface in a polysulfide-rich environment of lithium–sulfur batteries. J. Phys. Chem. Lett. 5(15), 2522–2527 (2014). https://doi.org/10.1021/jz501352e
- M. Zhang, W. Chen, L. Xue, Y. Jiao, T. Lei et al., Adsorption-catalysis design in the lithium–sulfur battery. Adv. Energy Mater. 10(2), 1903008 (2019). https://doi.org/10.1002/aenm.201903008
- Y. Shi, M. Li, Y. Yu, B. Zhang, Recent advances in nanostructured transition metal phosphides: synthesis and energy-related applications. Energy Environ. Sci. 13(12), 4564–4582 (2020). https://doi.org/10.1039/d0ee02577a
- S. Huang, E. Huixiang, Y. Yang, Y. Zhang, M. Ye et al., Transition metal phosphides: new generation cathode host/separator modifier for Li–S batteries. J. Mater. Chem. A 9(12), 7458–7480 (2021). https://doi.org/10.1039/d0ta11919a
- Z. Cheng, Z. Wu, J. Chen, Y. Fang, S. Lin et al., Mo2N-ZrO2 heterostructure engineering in freestanding carbon nanofibers for upgrading cycling stability and energy efficiency of Li-CO2 batteries. Small 19, 2301685 (2023). https://doi.org/10.1002/smll.202301685
- M. Wang, Z. Bai, T. Yang, C. Nie, X. Xu et al., Advances in high sulfur loading cathodes for practical lithium–sulfur batteries. Adv. Energy Mater. 12(39), 2201585 (2022). https://doi.org/10.1002/aenm.202201585
- M. Cui, Z. Zheng, J. Wang, Y. Wang, X. Zhao et al., Rational design of lithium–sulfur battery cathodes based on differential atom electronegativity. Energy Storage Mater. 35, 577–585 (2021). https://doi.org/10.1016/j.ensm.2020.11.039
- H. Ye, J. Sun, S. Zhang, H. Lin, T. Zhang et al., Stepwise electrocatalysis as a strategy against polysulfide shuttling in Li–S batteries. ACS Nano 13(12), 14208–14216 (2019). https://doi.org/10.1021/acsnano.9b07121
- H. Shin, M. Baek, A. Gupta, K. Char, A. Manthiram et al., Recent progress in high donor electrolytes for lithium–sulfur batteries. Adv. Energy Mater. 10(27), 2001456 (2020). https://doi.org/10.1002/aenm.202001456
- Y. Li, C. Wang, W. Wang, A.Y.S. Eng, M. Wan et al., Enhanced chemical immobilization and catalytic conversion of polysulfide intermediates using metallic Mo nanoclusters for high-performance Li–S batteries. ACS Nano 14(1), 1148–1157 (2020). https://doi.org/10.1021/acsnano.9b09135
- Z. Yu, B. Wang, X. Liao, K. Zhao, Z. Yang et al., Boosting polysulfide redox kinetics by graphene-supported Ni nanops with carbon coating. Adv. Energy Mater. 10(25), 2000907 (2020). https://doi.org/10.1002/aenm.202000907
- D. Guo, X. Zhang, M. Liu, Z. Yu, X.A. Chen et al., Single Mo-N4 atomic sites anchored on N-doped carbon nanoflowers as sulfur host with multiple immobilization and catalytic effects for high-performance lithium–sulfur batteries. Adv. Funct. Mater. 32(35), 2204458 (2020). https://doi.org/10.1002/adfm.202204458
- K. Zhang, W. Cai, Y. Liu, G. Hu, W. Hu et al., Nitrogen-doped carbon embedded with ag nanops for bidirectionally-promoted polysulfide redox electrochemistry. Chem. Eng. J. 427, 130897 (2022). https://doi.org/10.1016/j.cej.2021.130897
- L. Chen, X. Liu, L. Zheng, Y. Li, X. Guo et al., Insights into the role of active site density in the fuel cell performance of Co–N–C catalysts. Appl. Catal. B 256, 117849 (2019). https://doi.org/10.1016/j.apcatb.2019.117849
- E. Jung, S.-J. Kim, J. Kim, S. Koo, J. Lee et al., Oxygen-plasma-treated Fe–N–C catalysts with dual binding sites for enhanced electrocatalytic polysulfide conversion in lithium–sulfur batteries. ACS Energy Lett. 7(8), 2646–2653 (2022). https://doi.org/10.1021/acsenergylett.2c01132
- J. Kim, S.J. Kim, E. Jung, D.H. Mok, V.K. Paidi et al., Atomic structure modification of Fe–N–C catalysts via morphology engineering of graphene for enhanced conversion kinetics of lithium–sulfur batteries. Adv. Funct. Mater. 32(19), 2110857 (2022). https://doi.org/10.1002/adfm.202110857
- J. Luo, H. Liu, K. Guan, W. Lei, Q. Jia et al., Cobalt nanops decorated “wire in tube” framework as a multifunctional sulfur reservoir. ACS Sustain. Chem. Eng. 10(18), 6117–6127 (2022). https://doi.org/10.1021/acssuschemeng.2c01883
- Y. Tsao, H. Gong, S. Chen, G. Chen, Y. Liu et al., A nickel-decorated carbon flower/sulfur cathode for lean-electrolyte lithium–sulfur batteries. Adv. Energy Mater. 11(36), 2101449 (2021). https://doi.org/10.1002/aenm.202101449
- Z. Lin, X. Li, W. Huang, X. Zhu, Y. Wang et al., Active platinum nanops as a bifunctional promoter for lithium–sulfur batteries. ChemElectroChem 4(10), 2577–2582 (2017). https://doi.org/10.1002/celc.201700533
- P. Wang, Z. Zhang, X. Yan, M. Xu, Y. Chen et al., Pomegranate-like microclusters organized by ultrafine Co nanops@nitrogen-doped carbon subunits as sulfur hosts for long-life lithium–sulfur batteries. J. Mater. Chem. A 6(29), 14178–14187 (2018). https://doi.org/10.1039/c8ta04214d
- L. Zhang, D. Liu, Z. Muhammad, F. Wan, W. Xie et al., Single nickel atoms on nitrogen-doped graphene enabling enhanced kinetics of lithium–sulfur batteries. Adv. Mater. 31(40), 1903955 (2019). https://doi.org/10.1002/adma.201903955
- W. Zang, Z. Kou, S.J. Pennycook, J. Wang, Heterogeneous single atom electrocatalysis, where “singles” are “married.” Adv. Energy Mater. 10(9), 1903181 (2020). https://doi.org/10.1002/aenm.201903181
- X. Wang, A. Beck, J.A. van Bokhoven, D. Palagin, Thermodynamic insights into strong metal–support interaction of transition metal nanops on titania: simple descriptors for complex chemistry. J. Mater. Chem. A 9(7), 4044–4054 (2021). https://doi.org/10.1039/d0ta11650e
- J.G. Smith, P.K. Jain, The ligand shell as an energy barrier in surface reactions on transition metal nanops. J. Am. Chem. Soc. 138(21), 6765–6773 (2016). https://doi.org/10.1021/jacs.6b00179
- H. Gao, S. Ning, Y. Zhou, S. Men, X. Kang, Polyacrylonitrile-induced formation of core-shell carbon nanocages: enhanced redox kinetics towards polysulfides by confined catalysis in Li–S batteries. Chem. Eng. J. 408, 127323 (2021). https://doi.org/10.1016/j.cej.2020.127323
- C. Li, S. Qi, L. Zhu, Y. Zhao, R. Huang et al., Regulating polysulfide intermediates by ultrathin Co–Bi nanosheet electrocatalyst in lithium–sulfur batteries. Nano Today 40, 101246 (2021). https://doi.org/10.1016/j.nantod.2021.101246
- Y. Li, W. Wang, B. Zhang, L. Fu, M. Wan et al., Manipulating redox kinetics of sulfur species using Mott-Schottky electrocatalysts for advanced lithium–sulfur batteries. Nano Lett. 21(15), 6656–6663 (2021). https://doi.org/10.1021/acs.nanolett.1c02161
- Q. Shao, L. Xu, D. Guo, Y. Su, J. Chen, Atomic level design of single iron atom embedded mesoporous hollow carbon spheres as multi-effect nanoreactors for advanced lithium–sulfur batteries. J. Mater. Chem. A 8(45), 23772–23783 (2020). https://doi.org/10.1039/d0ta07010f
- Z.-L. Xu, S.J. Kim, D. Chang, K.-Y. Park, K.S. Dae et al., Visualization of regulated nucleation and growth of lithium sulfides for high energy lithium sulfur batteries. Energy Environ. Sci. 12(10), 3144–3155 (2019). https://doi.org/10.1039/c9ee01338e
- C. Li, Y. Zhao, Y. Zhang, D. Luo, J. Liu et al., A new defect-rich and ultrathin ZnCo layered double hydroxide/carbon nanotubes architecture to facilitate catalytic conversion of polysulfides for high-performance Li–S batteries. Chem. Eng. J. 417, 129248 (2021). https://doi.org/10.1016/j.cej.2021.129248
- H. Pan, X. Huang, C. Wang, D. Liu, D. Wang et al., Sandwich structural TixOy-Ti3C2/C3N4 material for long life and fast kinetics lithium-sulfur battery: bidirectional adsorption promoting lithium polysulfide conversion. Chem. Eng. J. 410, 128424 (2021). https://doi.org/10.1016/j.cej.2021.128424
- W. Wang, L. Huai, S. Wu, J. Shan, J. Zhu et al., Ultrahigh-volumetric-energy-density lithium–sulfur batteries with lean electrolyte enabled by cobalt-doped MoSe2/Ti3C2Tx mxene bifunctional catalyst. ACS Nano 15, 11619–11633 (2021). https://doi.org/10.1021/acsnano.1c02047
- Y. Xiao, S. Guo, Y. Ouyang, D. Li, X. Li et al., Constructing heterogeneous structure in metal-organic framework-derived hierarchical sulfur hosts for capturing polysulfides and promoting conversion kinetics. ACS Nano 15, 18363–18373 (2021). https://doi.org/10.1021/acsnano.1c07820
- H. Guo, J. Hu, H. Yuan, N. Wu, Y. Li et al., Ternary transition metal sulfide as high real energy cathode for lithium–sulfur pouch cell under lean electrolyte conditions. Small Methods 6(2), 2101402 (2022). https://doi.org/10.1002/smtd.202101402
- J. He, A. Bhargav, A. Manthiram, High-performance anode-free Li–S batteries with an integrated Li2S–electrocatalyst cathode. ACS Energy Lett. 7(2), 583–590 (2022). https://doi.org/10.1021/acsenergylett.1c02569
- V.P. Nguyen, I.H. Kim, H.C. Shim, J.S. Park, J.M. Yuk et al., Porous carbon textile decorated with VC/V2O3−x hybrid nanops: dual-functional host for flexible Li–S full batteries. Energy Storage Mater. 46, 542–552 (2022). https://doi.org/10.1016/j.ensm.2022.01.027
- H. Ye, J. Sun, Y. Zhao, J.Y. Lee, An integrated approach to improve the performance of lean–electrolyte lithium–sulfur batteries. J. Energy Chem. 67, 585–592 (2022). https://doi.org/10.1016/j.jechem.2021.11.004
- X. Zhong, D. Wang, J. Sheng, Z. Han, C. Sun et al., Freestanding and sandwich mxene-based cathode with suppressed lithium polysulfides shuttle for flexible lithium–sulfur batteries. Nano Lett. 22(3), 1207–1216 (2022). https://doi.org/10.1021/acs.nanolett.1c04377
- M. Zhang, C. Yu, C. Zhao, X. Song, X. Han et al., Cobalt-embedded nitrogen-doped hollow carbon nanorods for synergistically immobilizing the discharge products in lithium–sulfur battery. Energy Storage Mater. 5, 223–229 (2016). https://doi.org/10.1016/j.ensm.2016.04.002
- D. Xiao, Q. Li, H. Zhang, Y. Ma, C. Lu et al., A sulfur host based on cobalt–graphitic carbon nanocages for high performance lithium–sulfur batteries. J. Mater. Chem. A 5(47), 24901–24908 (2017). https://doi.org/10.1039/c7ta08483h
- S. Liu, J. Li, X. Yan, Q. Su, Y. Lu et al., Superhierarchical cobalt-embedded nitrogen-doped porous carbon nanosheets as two-in-one hosts for high-performance lithium–sulfur batteries. Adv. Mater. 30(12), 1706895 (2018). https://doi.org/10.1002/adma.201706895
- Z. Du, X. Chen, W. Hu, C. Chuang, S. Xie et al., Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium–sulfur batteries. J. Am. Chem. Soc. 141(9), 3977–3985 (2019). https://doi.org/10.1021/jacs.8b12973
- D. Wang, G. Zheng, W. Zhang, X. Niu, J. Yan et al., A highly stable cathode for lithium–sulfur battery built of Ni-doped carbon framework linked to CNT. J. Alloys Compd. 881, 160496 (2021). https://doi.org/10.1016/j.jallcom.2021.160496
- L. He, D. Yang, H. Zhao, L. Wei, D. Wang et al., Bipolar CoSe2 nanocrystals embedded in porous carbon nanocages as an efficient electrocatalyst for Li–S batteries. Chem. Eng. J. 440, 135820 (2022). https://doi.org/10.1016/j.cej.2022.135820
- B. Li, P. Wang, B. Xi, N. Song, X. An et al., In-situ embedding cote catalyst into 1D–2D nitrogen-doped carbon to didirectionally regulate lithium–sulfur batteries. Nano Res. 15, 8972–8982 (2022). https://doi.org/10.1007/s12274-022-4537-6
- H. Gao, S. Miao, M. Shi, X. Mao, X. Zhu, In situ-formed cobalt nanops embedded nitrogen-doped hierarchical porous carbon as sulfur host for high-performance Li–S batteries. Electrochim. Acta 403, 139717 (2022). https://doi.org/10.1016/j.electacta.2021.139717
- G. Li, W. Lei, D. Luo, Y. Deng, Z. Deng et al., Stringed “tube on cube” nanohybrids as compact cathode matrix for high-loading and lean-electrolyte lithium–sulfur batteries. Energy Environ. Sci. 11(9), 2372–2381 (2018). https://doi.org/10.1039/c8ee01377b
- Q. Wu, X. Zhou, J. Xu, F. Cao, C. Li, Adenine derivative host with interlaced 2D structure and dual lithiophilic-sulfiphilic sites to enable high-loading Li–S batteries. ACS Nano 13(8), 9520–9532 (2019). https://doi.org/10.1021/acsnano.9b04519
- D. Wang, K. Ma, J. Hao, W. Zhang, C. Wang et al., Multifunction Co-Nx species to manipulate polysulfides conversion kinetics toward highly efficient lithium–sulfur batteries. Nano Energy 89, 106426 (2021). https://doi.org/10.1016/j.nanoen.2021.106426
- B. Du, Y. Luo, Y. Yang, W. Xue, G. Liu et al., COFs-confined multifunctional sulfur-host design towards high-performance lithium–sulfur batteries. Chem. Eng. J. 442, 135823 (2022). https://doi.org/10.1016/j.cej.2022.135823
- L. Su, J. Zhang, Y. Chen, W. Yang, J. Wang et al., Cobalt-embedded hierarchically-porous hollow carbon microspheres as multifunctional confined reactors for high-loading Li–S batteries. Nano Energy 85, 105981 (2021). https://doi.org/10.1016/j.nanoen.2021.105981
- Z. Cheng, H. Pan, Z. Wu, M. Wubbenhorst, Z. Zhang, Cu–Mo bimetal modulated multifunctional carbon nanofibers promoting the polysulfides conversion for high-sulfur-loading lithium–sulfur batteries. ACS Appl. Mater. Interfaces 14(40), 45688–45696 (2022). https://doi.org/10.1021/acsami.2c13012
- J. He, A. Bhargav, A. Manthiram, High-energy-density, long-life lithium–sulfur batteries with practically necessary parameters enabled by low-cost Fe–Ni nanoalloy catalysts. ACS Nano 15(5), 8583–8591 (2021). https://doi.org/10.1021/acsnano.1c00446
- Z. Wang, H. Ge, S. Liu, G. Li, X. Gao, High-entropy alloys to activate the sulfur cathode for lithium–sulfur batteries. Energy Environ. Mater (2022). https://doi.org/10.1002/eem2.12358
- Z.Y. Wang, B. Zhang, S. Liu, G.R. Li, T. Yan et al., Nickel-platinum alloy nanocrystallites with high-index facets as highly effective core catalyst for lithium–sulfur batteries. Adv. Funct. Mater. 32(27), 2200893 (2022). https://doi.org/10.1002/adfm.202200893
- H. Pan, Z. Cheng, J. Fransaer, J. Luo, M. Wübbenhorst, Cobalt-embedded 3D conductive honeycomb architecture to enable high-sulphur-loading Li–S batteries under lean electrolyte conditions. Nano Res. 15(9), 8091–8100 (2022). https://doi.org/10.1007/s12274-022-4486-0
- H. Pei, Q. Yang, J. Yu, H. Song, S. Zhao et al., Self-supporting carbon nanofibers with Ni-single-atoms and uniformly dispersed Ni-nanops as scalable multifunctional hosts for high energy density lithium–sulfur batteries. Small 18(27), 2202037 (2022). https://doi.org/10.1002/smll.202202037
- Y. Jin, F. Chen, J. Wang, R.L. Johnston, Tuning electronic and composition effects in ruthenium-copper alloy nanops anchored on carbon nanofibers for rechargeable Li–CO2 batteries. Chem. Eng. J. 375, 121978 (2019). https://doi.org/10.1016/j.cej.2019.121978
- L. Wang, H. Wang, S. Zhang, N. Ren, Y. Wu et al., Manipulating the electronic structure of nickel via alloying with iron: toward high-kinetics sulfur cathode for Na–S batteries. ACS Nano 15(9), 15218–15228 (2021). https://doi.org/10.1021/acsnano.1c05778
- Z.Y. Wang, H.M. Wang, S. Liu, G.R. Li, X.P. Gao, To promote the catalytic conversion of polysulfides using Ni–B alloy nanops on carbon nanotube microspheres under high sulfur loading and a lean electrolyte. ACS Appl. Mater. Interfaces 13(17), 20222–20232 (2021). https://doi.org/10.1021/acsami.1c03791
- X. Zhou, T. Liu, G. Zhao, X. Yang, H. Guo, Cooperative catalytic interface accelerates redox kinetics of sulfur species for high-performance li–s batteries. Energy Storage Mater. 40, 139–149 (2021). https://doi.org/10.1016/j.ensm.2021.05.009
- X. Song, D. Tian, Y. Qiu, X. Sun, B. Jiang et al., Improving poisoning resistance of electrocatalysts via alloying strategy for high-performance lithium–sulfur batteries. Energy Storage Mater. 41, 248–254 (2021). https://doi.org/10.1016/j.ensm.2021.05.028
- Y. Liu, W. Kou, X. Li, C. Huang, R. Shui et al., Constructing patch-Ni-shelled Pt@Ni nanops within confined nanoreactors for catalytic oxidation of insoluble polysulfides in Li–S batteries. Small 15(34), 1902431 (2019). https://doi.org/10.1002/smll.201902431
- G. Li, W. Qiu, W. Gao, Y. Zhu, X. Zhang et al., Finely-dispersed Ni2Co nanoalloys on flower-like graphene microassembly empowering a bi-service matrix for superior lithium–sulfur electrochemistry. Adv. Funct. Mater. 32(32), 2202853 (2022). https://doi.org/10.1002/adfm.202202853
- F.Y. Fan, Y.-M. Chiang, Electrodeposition kinetics in Li–S batteries: effects of low electrolyte/sulfur ratios and deposition surface composition. J. Electrochem. Soc. 164(4), 917–922 (2017). https://doi.org/10.1149/2.0051706jes]
- M. Chen, C. Huang, Y. Li, S. Jiang, P. Zeng et al., Perovskite-type La0.56Li0.33TiO3 as an effective polysulfide promoter for stable lithium–sulfur batteries in lean electrolyte conditions. J. Mater. Chem. A 7(17), 10293–10302 (2019). https://doi.org/10.1039/c9ta01500k
- K. Lu, Y. Liu, J. Chen, Z. Zhang, Y. Cheng, Redox catalytic and quasi-solid sulfur conversion for high-capacity lean lithium sulfur batteries. ACS Nano 13(12), 14540–14548 (2019). https://doi.org/10.1021/acsnano.9b08516
- J. Lee, J.H. Moon, Polyhedral TiO2 p-based cathode for Li–S batteries with high volumetric capacity and high performance in lean electrolyte. Chem. Eng. J. 399, 125670 (2020). https://doi.org/10.1016/j.cej.2020.125670
- H. Pan, Z. Cheng, X. Zhang, K. Wan, J. Fransaer et al., Manganese dioxide nanosheet functionalized reduced graphene oxide as a compacted cathode matrix for lithium–sulphur batteries with a low electrolyte/sulphur ratio. J. Mater. Chem. A 8(41), 21824–21832 (2020). https://doi.org/10.1039/d0ta05021k
- J. Wang, G. Li, D. Luo, Y. Zhang, Y. Zhao et al., Engineering the conductive network of metal oxide-based sulfur cathode toward efficient and longevous lithium–sulfur batteries. Adv. Energy Mater. 10(41), 2002076 (2020). https://doi.org/10.1002/aenm.202002076
- J. Wang, D. Luo, J. Li, Y. Zhang, Y. Zhao et al., “Soft on rigid” nanohybrid as the self-supporting multifunctional cathode electrocatalyst for high-performance lithium–polysulfide batteries. Nano Energy 78, 105293 (2020). https://doi.org/10.1016/j.nanoen.2020.105293
- L. Wang, Z.-Y. Wang, J.-F. Wu, G.-R. Li, S. Liu et al., To effectively drive the conversion of sulfur with electroactive niobium tungsten oxide microspheres for lithium–sulfur battery. Nano Energy 77, 105173 (2020). https://doi.org/10.1016/j.nanoen.2020.105173
- L. Wang, G.R. Li, S. Liu, X.P. Gao, Hollow molybdate microspheres as catalytic hosts for enhancing the electrochemical performance of sulfur cathode under high sulfur loading and lean electrolyte. Adv. Funct. Mater. 31(18), 2010693 (2021). https://doi.org/10.1002/adfm.202010693
- Z. He, T. Wan, Y. Luo, G. Liu, L. Wu et al., Three-dimensional structural confinement design of conductive metal oxide for efficient sulfur host in lithium–sulfur batteries. Chem. Eng. J. 448, 137656 (2022). https://doi.org/10.1016/j.cej.2022.137656
- J. Guo, Y. Huang, S. Zhao, Z. Li, Z. Wang et al., Array-structured double-ion cooperative adsorption sites as multifunctional sulfur hosts for lithium–sulfur batteries with low electrolyte/sulfur ratio. ACS Nano 15(10), 16322–16334 (2021). https://doi.org/10.1021/acsnano.1c05536
- L. Niu, T. Wu, D. Zhou, J. Qi, Z. Xiao, Polaron hopping-mediated dynamic interactive sites boost sulfur chemistry for flexible lithium–sulfur batteries. Energy Storage Mater. 45, 840–850 (2022). https://doi.org/10.1016/j.ensm.2021.12.039
- Z. Zhang, D. Luo, G. Li, R. Gao, M. Li et al., Tantalum-based electrocatalyst for polysulfide catalysis and retention for high-performance lithium-sulfur batteries. Matter 3(3), 920–934 (2020). https://doi.org/10.1016/j.matt.2020.06.002
- H. Zhang, L. Yang, P. Zhang, C. Lu, D. Sha et al., Mxene-derived TinO2n−1 quantum dots distributed on porous carbon nanosheets for stable and long-life Li–S batteries: enhanced polysulfide mediation via defect engineering. Adv. Mater. 33(21), 2008447 (2021). https://doi.org/10.1002/adma.202008447
- Z. Li, J. Wu, P. Chen, Q. Zeng, X. Wen et al., A new metallic composite cathode originated from hyperbranched polymer coated mof for high-performance lithium–sulfur batteries. Chem. Eng. J. 435, 135125 (2022). https://doi.org/10.1016/j.cej.2022.135125
- K. Zou, T. Zhou, Y. Chen, X. Xiong, W. Jing et al., Defect engineering in a multiple confined geometry for robust lithium–sulfur batteries. Adv. Energy Mater. 12(18), 2103981 (2022). https://doi.org/10.1002/aenm.202103981
- S. Chen, J. Zhang, Z. Wang, L. Nie, X. Hu et al., Electrocatalytic NiCo2O4 nanofiber arrays on carbon cloth for flexible and high-loading lithium–sulfur batteries. Nano Lett. 21(12), 5285–5292 (2021). https://doi.org/10.1021/acs.nanolett.1c01422
- L. Wang, W. Hua, X. Wan, Z. Feng, Z. Hu et al., Design rules of a sulfur redox electrocatalyst for lithium-sulfur batteries. Adv. Mater. 34(14), e2110279 (2022). https://doi.org/10.1002/adma.202110279
- Y. Lu, J.L. Qin, T. Shen, Y.F. Yu, K. Chen et al., Hypercrosslinked polymerization enabled N-doped carbon confined Fe2O3 facilitating Li polysulfides interface conversion for Li–S batteries. Adv. Energy Mater. 11(42), 2101780 (2021). https://doi.org/10.1002/aenm.202101780
- Y.T. Liu, D.D. Han, L. Wang, G.R. Li, S. Liu et al., NiCo2O4 nanofibers as carbon-free sulfur immobilizer to fabricate sulfur-based composite with high volumetric capacity for lithium–sulfur battery. Adv. Energy Mater. 9(11), 1803477 (2019). https://doi.org/10.1002/aenm.201803477
- W. Hou, P. Feng, X. Guo, Z. Wang, Z. Bai et al., Catalytic mechanism of oxygen vacancies in perovskite oxides for lithium–sulfur batteries. Adv. Mater. 34(26), 2202222 (2022). https://doi.org/10.1002/adma.202202222
- S. Dai, C. Sun, Y. Zhang, L. Zeng, Y. Peng et al., Carbon microspheres built of La2O3 quantum dots-implanted nanorods: superb hosts with ultra-long Li2Sn-catalysis durability. J. Colloid Interface Sci. 640, 320–328 (2023). https://doi.org/10.1016/j.jcis.2023.02.127
- N. Li, T. Meng, L. Ma, H. Zhang, J. Yao et al., Curtailing carbon usage with addition of functionalized NiFe2O4 quantum dots: toward more practical S cathodes for Li–S cells. Nano Micro Lett. 12(1), 145 (2020). https://doi.org/10.1007/s40820-020-00484-4
- C. Sun, J. Zhu, B. Liu, M. Xu, J. Jiang et al., High-tap-density sulfur cathodes made beyond 400 °C for lithium–sulfur cells with balanced gravimetric/volumetric energy densities. ACS Energy Lett. 8(1), 772–779 (2022). https://doi.org/10.1021/acsenergylett.2c02313
- J. Shen, X. Xu, J. Liu, Z. Liu, F. Li et al., Mechanistic understanding of metal phosphide host for sulfur cathode in high-energy-density lithium–sulfur batteries. ACS Nano 13(8), 8986–8996 (2019). https://doi.org/10.1021/acsnano.9b02903
- X. Gao, Y. Huang, X. Li, H. Gao, T. Li, SnP0.94 nanodots confined carbon aerogel with porous hollow superstructures as an exceptional polysulfide electrocatalyst and “adsorption nest” to enable enhanced lithium–sulfur batteries. Chem. Eng. J. 420, 129724 (2021). https://doi.org/10.1016/j.cej.2021.129724
- L. Wang, M. Zhang, B. Zhang, B. Wang, J. Dou et al., A porous polycrystalline NiCo2Px as a highly efficient host for sulfur cathodes in Li–S batteries. J. Mater. Chem. A 9(40), 23149–23156 (2021). https://doi.org/10.1039/d1ta06249b
- Y. Feng, L. Zu, S. Yang, L. Chen, K. Liao et al., Ultrahigh-content Co–P cluster as a dual-atom-site electrocatalyst for accelerating polysulfides conversion in Li–S batteries. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202207579
- C. Zhang, R. Du, J.J. Biendicho, M. Yi, K. Xiao et al., Tubular CoFeP@CN as a Mott-Schottky catalyst with multiple adsorption sites for robust lithium–sulfur batteries. Adv. Energy Mater. 11(24), 2100432 (2021). https://doi.org/10.1002/aenm.202100432
- Y. Dong, D. Cai, T. Li, S. Yang, X. Zhou et al., Sulfur reduction catalyst design inspired by elemental periodic expansion concept for lithium–sulfur batteries. ACS Nano 16(4), 6414–6425 (2022). https://doi.org/10.1021/acsnano.2c00515
- Y. Ren, B. Wang, H. Liu, H. Wu, H. Bian et al., CoP nanocages intercalated MXene nanosheets as a bifunctional mediator for suppressing polysulfide shuttling and dendritic growth in lithium–sulfur batteries. Chem. Eng. J. 450, 138046 (2022). https://doi.org/10.1016/j.cej.2022.138046
- J. Sun, Y. Liu, L. Liu, S. He, Z. Du et al., Expediting sulfur reduction/evolution reactions with integrated electrocatalytic network: a comprehensive kinetic map. Nano Lett. 22(9), 3728–3736 (2022). https://doi.org/10.1021/acs.nanolett.2c00642
- B. Zhang, L. Wang, B. Wang, Y. Zhai, S. Zeng et al., Petroleum coke derived porous carbon/nicop with efficient reviving catalytic and adsorptive activity as sulfur host for high performance lithium–sulfur batteries. Nano Res. 15(5), 4058–4067 (2022). https://doi.org/10.1007/s12274-021-3996-5
- R. Sun, Y. Bai, M. Luo, M. Qu, Z. Wang et al., Enhancing polysulfide confinement and electrochemical kinetics by amorphous cobalt phosphide for highly efficient lithium–sulfur batteries. ACS Nano 15(1), 739–750 (2021). https://doi.org/10.1021/acsnano.0c07038
- Y. Yang, Y. Zhong, Q. Shi, Z. Wang, K. Sun et al., Electrocatalysis in lithium sulfur batteries under lean electrolyte conditions. Angew. Chem. Int. Ed. 57(47), 15549–15552 (2018). https://doi.org/10.1002/anie.201808311
- R. Sun, Y. Bai, Z. Bai, L. Peng, M. Luo et al., Phosphorus vacancies as effective polysulfide promoter for high-energy-density lithium–sulfur batteries. Adv. Energy Mater. 12(12), 2102739 (2022). https://doi.org/10.1002/aenm.202102739
- Y. Chen, W. Zhang, D. Zhou, H. Tian, D. Su et al., Co-Fe mixed metal phosphide nanocubes with highly interconnected-pore architecture as an efficient polysulfide mediator for lithium–sulfur batteries. ACS Nano 13(4), 4731–4741 (2019). https://doi.org/10.1021/acsnano.9b01079
- J. Li, W. Xie, S. Zhang, S.-M. Xu, M. Shao, Boosting the rate performance of Li–S batteries under high mass-loading of sulfur based on a hierarchical NCNT@Co-CoP nanowire integrated electrode. J. Mater. Chem. A 9(18), 11151–11159 (2021). https://doi.org/10.1039/d1ta00959a
- J. Zhou, X. Liu, L. Zhu, J. Zhou, Y. Guan et al., Deciphering the modulation essence of P bands in Co-based compounds on Li–S chemistry. Joule 2(12), 2681–2693 (2018). https://doi.org/10.1016/j.joule.2018.08.010
- Y. Mi, W. Liu, X. Li, J. Zhuang, H. Zhou et al., High-performance Li–S battery cathode with catalyst-like carbon nanotube-MoP promoting polysulfide redox. Nano Res. 10(11), 3698–3705 (2017). https://doi.org/10.1007/s12274-017-1581-8
- X. Huang, J. Tang, B. Luo, R. Knibbe, T. Lin et al., Sandwich-like ultrathin TiS2 nanosheets confined within N, S codoped porous carbon as an effective polysulfide promoter in lithium–sulfur batteries. Adv. Energy Mater. 9(32), 1901872 (2019). https://doi.org/10.1002/aenm.201901872
- Z.-L. Xu, N. Onofrio, J. Wang, Boosting the anchoring and catalytic capability of MoS2 for high-loading lithium sulfur batteries. J. Mater. Chem. A 8(34), 17646–17656 (2020). https://doi.org/10.1039/d0ta05948j
- C. Zhang, B. Fei, D. Yang, H. Zhan, J. Wang et al., Robust lithium–sulfur batteries enabled by highly conductive WSe2-based superlattices with tunable interlayer space. Adv. Funct. Mater. 32(24), 2201322 (2022). https://doi.org/10.1002/adfm.202201322
- Y. Zhong, L. Yin, P. He, W. Liu, Z. Wu et al., Surface chemistry in cobalt phosphide-stabilized lithium–sulfur batteries. J. Am. Chem. Soc. 140(4), 1455–1459 (2018). https://doi.org/10.1021/jacs.7b11434
- H. Wang, D. Wei, J. Zheng, B. Zhang, M. Ling et al., Electrospinning MoS2-decorated porous carbon nanofibers for high-performance lithium–sulfur batteries. ACS Appl. Energy Mater. 3(12), 11893–11899 (2020). https://doi.org/10.1021/acsaem.0c02015
- M. Wang, L. Fan, X. Sun, B. Guan, B. Jiang et al., Nitrogen-doped CoSe2 as a bifunctional catalyst for high areal capacity and lean electrolyte of Li–S battery. ACS Energy Lett. 5(9), 3041–3050 (2020). https://doi.org/10.1021/acsenergylett.0c01564
- H. Yang, Regulation polysulfide conversion by flexible carbon cloth/molybdenum selenide to improve sulfur redox kinetics in lithium–sulfur battery. Int. J. Electrochem. Sci. (2020). https://doi.org/10.20964/2020.08.72
- Y. Li, H. Wu, D. Wu, H. Wei, Y. Guo et al., High-density oxygen doping of conductive metal sulfides for better polysulfide trapping and Li2S-S8 redox kinetics in high areal capacity lithium–sulfur batteries. Adv. Sci. 9(17), 2200840 (2022). https://doi.org/10.1002/Adv.s.202200840
- M. Wang, Z. Sun, H. Ci, Z. Shi, L. Shen et al., Identifying the evolution of selenium-vacancy-modulated MoSe2 precatalyst in lithium–sulfur chemistry. Angew. Chem. Int. Ed. 60(46), 24558–24565 (2021). https://doi.org/10.1002/anie.202109291
- Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, Self-assembly of 0D–2D heterostructure electrocatalyst from MOF and MXene for boosted lithium polysulfide conversion reaction. Adv. Mater. 33(33), e2101204 (2021). https://doi.org/10.1002/adma.202101204
- B. Yu, A. Huang, K. Srinivas, X. Zhang, F. Ma et al., Outstanding catalytic effects of 1T’-MoTe2 quantum dots@3D graphene in shuttle-free Li–S batteries. ACS Nano 15, 13279–13288 (2021). https://doi.org/10.1021/acsnano.1c03011
- L. Jiao, H. Jiang, Y. Lei, S. Wu, Q. Gao et al., “Dual mediator system” enables efficient and persistent regulation toward sulfur redox conversion in lithium–sulfur batteries. ACS Nano 16, 14262–14273 (2022). https://doi.org/10.1021/acsnano.2c04402
- C. Li, W. Ge, S. Qi, L. Zhu, R. Huang et al., Manipulating electrocatalytic polysulfide redox kinetics by 1d core–shell like composite for lithium–sulfur batteries. Adv. Energy Mater. 12(16), 2103915 (2022). https://doi.org/10.1002/aenm.202103915
- H. Li, R. Gao, B. Chen, C. Zhou, F. Shao et al., Vacancy-rich mosse with sulfiphilicity-lithiophilicity dual function for kinetics-enhanced and dendrite-free Li–S batteries. Nano Lett. 22(12), 4999–5008 (2022). https://doi.org/10.1021/acs.nanolett.2c01779
- H.-J. Li, K. Xi, W. Wang, S. Liu, G.-R. Li et al., Quantitatively regulating defects of 2D tungsten selenide to enhance catalytic ability for polysulfide conversion in a lithium sulfur battery. Energy Storage Mater. 45, 1229–1237 (2022). https://doi.org/10.1016/j.ensm.2021.11.024
- N. Wang, B. Chen, K. Qin, R. Zhang, Y. Tang et al., Octopus-inspired design of apical NiS2 nanops supported on hierarchical carbon composites as an efficient host for lithium sulfur batteries with high sulfur loading. ACS Appl. Mater. Interfaces 12(15), 17528–17537 (2020). https://doi.org/10.1021/acsami.0c01640
- H. Li, X. Wen, F. Shao, C. Zhou, Y. Zhang et al., Interface covalent bonding endowing high-sulfur-loading paper cathode with robustness for energy-dense, compact and foldable lithium–sulfur batteries. Chem. Eng. J. 412, 128562 (2021). https://doi.org/10.1016/j.cej.2021.128562
- H. Ci, J. Cai, H. Ma, Z. Shi, G. Cui et al., Defective VSe2-graphene heterostructures enabling in situ electrocatalyst evolution for lithium–sulfur batteries. ACS Nano 14(9), 11929–11938 (2020). https://doi.org/10.1021/acsnano.0c05030
- Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, A high-efficiency cose electrocatalyst with hierarchical porous polyhedron nanoarchitecture for accelerating polysulfides conversion in Li–S batteries. Adv. Mater. 32(32), 2002168 (2020). https://doi.org/10.1002/adma.202002168
- L. Sun, Y. Liu, J. Xie, L. Fan, J. Wu et al., Polar Co9S8 anchored on pyrrole-modified graphene with in situ growth of cnts as multifunctional self-supporting medium for efficient lithium–sulfur batteries. Chem. Eng. J. 451, 138370 (2023). https://doi.org/10.1016/j.cej.2022.138370
- Z. Cheng, Y. Chen, Y. Yang, L. Zhang, H. Pan et al., Metallic MoS2 nanoflowers decorated graphene nanosheet catalytically boosts the volumetric capacity and cycle life of lithium–sulfur batteries. Adv. Energy Mater. 11(12), 2003718 (2021). https://doi.org/10.1002/aenm.202003718
- R. Xu, H. Tang, Y. Zhou, F. Wang, H. Wang et al., Enhanced catalysis of radical-to-polysulfide interconversion via increased sulfur vacancies in lithium–sulfur batteries. Chem. Sci. 13(21), 6224–6232 (2022). https://doi.org/10.1039/d2sc01353c
- Y. Xue, D. Luo, N. Yang, G. Ma, Z. Zhang et al., Engineering checkerboard-like heterostructured sulfur electrocatalyst towards high-performance lithium sulfur batteries. Chem. Eng. J. 440, 135990 (2022). https://doi.org/10.1016/j.cej.2022.135990
- T. Yan, J. Feng, P. Zeng, G. Zhao, L. Wang et al., Modulating e orbitals through ligand engineering to boost the electrocatalytic activity of nise for advanced lithium–sulfur batteries. J. Energy Chem. 74, 317–323 (2022). https://doi.org/10.1016/j.jechem.2022.07.025
- W. Sun, S. Liu, Y. Li, D. Wang, Q. Guo et al., Monodispersed FeS2 electrocatalyst anchored to nitrogen-doped carbon host for lithium–sulfur batteries. Adv. Funct. Mater. 32, 2205471 (2022). https://doi.org/10.1002/adfm.202205471
- M. Li, D. Yang, J.J. Biendicho, X. Han, C. Zhang et al., Enhanced polysulfide conversion with highly conductive and electrocatalytic iodine-doped bismuth selenide nanosheets in lithium–sulfur batteries. Adv. Funct. Mater. 32(26), 2200529 (2022). https://doi.org/10.1002/adfm.202200529
- X.Y. Li, S. Feng, M. Zhao, C.X. Zhao, X. Chen et al., Surface gelation on disulfide electrocatalysts in lithium–sulfur batteries. Angew. Chem. Int. Ed. 61(7), 202114671 (2022). https://doi.org/10.1002/anie.202114671
- S. Chandrasekaran, L. Yao, L. Deng, C. Bowen, Y. Zhang et al., Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chem. Soc. Rev. 48(15), 4178–4280 (2019). https://doi.org/10.1039/c8cs00664d
- S. Ogawa, T. Teranishi, Electrical reslstlvlty of narrow-band ferromagnet Fe1−xCoxS2. Phys. Lett. A 42, 147–148 (1972)
- X. Zhang, Z. Lai, C. Tan, H. Zhang, Solution-processed two-dimensional MoS2 nanosheets: preparation, hybridization, and applications. Angew. Chem. Int. Ed. 55(31), 8816–8838 (2016). https://doi.org/10.1002/anie.201509933
- G. Ye, Y. Gong, J. Lin, B. Li, Y. He et al., Defects engineered monolayer MoS2 for improved hydrogen evolution reaction. Nano Lett. 16(2), 1097–1103 (2016). https://doi.org/10.1021/acs.nanolett.5b04331
- C. Tan, X. Cao, X.J. Wu, Q. He, J. Yang et al., Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117(9), 6225–6331 (2017). https://doi.org/10.1021/acs.chemrev.6b00558
- X. Huang, Z. Zeng, H. Zhang, Metal dichalcogenide nanosheets: preparation, properties and applications. Chem. Soc. Rev. 42(5), 1934–1946 (2013). https://doi.org/10.1039/c2cs35387c
- M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5(4), 263–275 (2013). https://doi.org/10.1038/nchem.1589
- Q. Wu, Z. Yao, X. Zhou, J. Xu, F. Cao et al., Built-in catalysis in confined nanoreactors for high-loading Li–S batteries. ACS Nano 14(3), 3365–3377 (2020). https://doi.org/10.1021/acsnano.9b09231
- M. Wang, L. Fan, D. Tian, X. Wu, Y. Qiu et al., Rational design of hierarchical SnO2/1T-MoS2 nanoarray electrode for ultralong-life Li–S batteries. ACS Energy Lett. 3(7), 1627–1633 (2018). https://doi.org/10.1021/acsenergylett.8b00856
- H. Lin, L. Yang, X. Jiang, G. Li, T. Zhang et al., Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium–sulfur batteries. Energy Environ. Sci. 10(6), 1476–1486 (2017). https://doi.org/10.1039/c7ee01047h
- Z.L. Xu, S. Lin, N. Onofrio, L. Zhou, F. Shi et al., Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries. Nat. Commun. 9(1), 4164 (2018). https://doi.org/10.1038/s41467-018-06629-9
- W. Ge, L. Wang, C. Li, C. Wang, D. Wang et al., Conductive cobalt doped niobium nitride porous spheres as an efficient polysulfide convertor for advanced lithium–sulfur batteries. J. Mater. Chem. A 8(13), 6276–6282 (2020). https://doi.org/10.1039/d0ta00800a
- F. Li, M. Zhang, W. Chen, X. Cai, H. Rao et al., Vanadium nitride quantum dots/holey graphene matrix boosting adsorption and conversion reaction kinetics for high-performance lithium–sulfur batteries. ACS Appl. Mater. Interfaces 13(26), 30746–30755 (2021). https://doi.org/10.1021/acsami.1c08113
- D. Xie, Y. Xu, Y. Wang, X. Pan, E. Hark et al., Poly(ionic liquid) nanovesicle-templated carbon nanocapsules functionalized with uniform iron nitride nanops as catalytic sulfur host for Li–S batteries. ACS Nano 16, 10554–10565 (2022). https://doi.org/10.1021/acsnano.2c01992
- M. Zhao, H.J. Peng, Z.W. Zhang, B.Q. Li, X. Chen et al., Activating inert metallic compounds for high-rate lithium–sulfur batteries through in situ etching of extrinsic metal. Angew. Chem. Int. Ed. 58(12), 3779–3783 (2019). https://doi.org/10.1002/anie.201812062
- Z. Cui, C. Zu, W. Zhou, A. Manthiram, J.B. Goodenough, Mesoporous titanium nitride-enabled highly stable lithium–sulfur batteries. Adv. Mater. 28(32), 6926–6931 (2016). https://doi.org/10.1002/adma.201601382
- Z. Li, Q. He, X. Xu, Y. Zhao, X. Liu et al., A 3D nitrogen-doped graphene/TiN nanowires composite as a strong polysulfide anchor for lithium–sulfur batteries with enhanced rate performance and high areal capacity. Adv. Mater. 30(45), 1804089 (2018). https://doi.org/10.1002/adma.201804089
- H. Zhang, D. Tian, Z. Zhao, X. Liu, Y.-N. Hou et al., Cobalt nitride nanops embedded in porous carbon nanosheet arrays propelling polysulfides conversion for highly stable lithium–sulfur batteries. Energy Storage Mater. 21, 210–218 (2019). https://doi.org/10.1016/j.ensm.2018.12.005
- M. Zhang, L. Wang, B. Wang, B. Zhang, X. Sun et al., Phosphorus-modified Fe4N@N, P co-doped graphene as an efficient sulfur host for high-performance lithium–sulfur batteries. J. Mater. Chem. A 9(10), 6538–6546 (2021). https://doi.org/10.1039/d0ta12361g
- J. Qian, Y. Xing, Y. Yang, Y. Li, K. Yu et al., Enhanced electrochemical kinetics with highly dispersed conductive and electrocatalytic mediators for lithium–sulfur batteries. Adv. Mater. 33(25), 2100810 (2021). https://doi.org/10.1002/adma.202100810
- X. Li, Y. Zhang, S. Wang, Y. Liu, Y. Ding et al., Hierarchically porous C/Fe3C membranes with fast ion-transporting channels and polysulfide-trapping networks for high-areal-capacity Li–S batteries. Nano Lett. 20(1), 701–708 (2020). https://doi.org/10.1021/acs.nanolett.9b04551
- S. Deng, X. Shi, Y. Zhao, C. Wang, J. Wu et al., Catalytic Mo2C decorated N-doped honeycomb-like carbon network for high stable lithium–sulfur batteries. Chem. Eng. J. 433, 133683 (2022). https://doi.org/10.1016/j.cej.2021.133683
- S.-H. Moon, J.-H. Kim, J.-H. Shin, J.-S. Jang, S.-B. Kim et al., High absorption and fast polysulfides conversion of duel functional separator based on mesoporous-WC/rGO composite for lithium-sulfur batteries. J. Alloys Compd. 904, 164120 (2022). https://doi.org/10.1016/j.jallcom.2022.164120
- W. Wu, X. Li, L. Liu, X. Zhu, Z. Guo et al., Uniform coverage of high-loading sulfur on cross-linked carbon nanofibers for high reaction kinetics in Li–S batteries with low electrolyte/sulfur ratio. J. Mater. Chem. A 10(3), 1433–1441 (2022). https://doi.org/10.1039/d1ta09408d
- P. Zeng, C. Yuan, J. An, X. Yang, C. Cheng et al., Achieving reversible precipitation-decomposition of reactive Li2S towards high-areal-capacity lithium–sulfur batteries with a wide-temperature range. Energy Storage Mater. 44, 425–432 (2022). https://doi.org/10.1016/j.ensm.2021.10.035
- G. Liu, C. Yuan, P. Zeng, C. Cheng, T. Yan et al., Bidirectionally catalytic polysulfide conversion by high-conductive metal carbides for lithium–sulfur batteries. J. Energy Chem. 67, 73–81 (2022). https://doi.org/10.1016/j.jechem.2021.09.035
- B. Shen, Q. Liu, C. Ma, Y. Li, Z. Li et al., A facile synthesis of stable titanium carbide-decorated carbon nanofibers as electrocatalytic membrane for high-performance lithium–sulfur batteries. Ionics 28(3), 1173–1182 (2022). https://doi.org/10.1007/s11581-021-04399-x
- J. Zheng, C. Guan, H. Li, Y. Xie, S. Li et al., VC@NCNTs: bidirectional catalyst for fast charging lithium-sulfur batteries. Chem. Eng. J. 442, 135940 (2022). https://doi.org/10.1016/j.cej.2022.135940
- T. Wang, D. Luo, Y. Zhang, Z. Zhang, J. Wang et al., Hierarchically porous Ti3C2 MXene with tunable active edges and unsaturated coordination bonds for superior lithium–sulfur batteries. ACS Nano 15(12), 19457–19467 (2021). https://doi.org/10.1021/acsnano.1c06213
- S. Zhang, N. Zhong, X. Zhou, M. Zhang, X. Huang et al., Comprehensive design of the high-sulfur-loading Li–S battery based on mxene nanosheets. Nano Micro Lett. 12(1), 112 (2020). https://doi.org/10.1007/s40820-020-00449-7
- J. Xia, W. Chen, Y. Yang, X. Guan, T. Yang et al., In-situ growth of ultrathin sulfur microcrystal on MXene-based 3D matrice for flexible lithium–sulfur batteries. EcoMat 4(3), e12183 (2022). https://doi.org/10.1002/eom2.12183
- D. Guo, F. Ming, H. Su, Y. Wu, W. Wahyudi et al., Mxene based self-assembled cathode and antifouling separator for high-rate and dendrite-inhibited Li–S battery. Nano Energy 61, 478–485 (2019). https://doi.org/10.1016/j.nanoen.2019.05.011
- B. Qin, Y. Cai, X. Si, C. Li, J. Cao et al., Ultra-lightweight ion-sieving membranes for high-rate lithium sulfur batteries. Chem. Eng. J. 430, 132698 (2022). https://doi.org/10.1016/j.cej.2021.132698
- L. Zheng, C.E. Ren, M. Zhaoa, J. Yanga, J.M. Giammarco et al., Flexible and conductive mxene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. 111(47), 16676–16681 (2014). https://doi.org/10.1073/pnas.1414215111
- Y. He, Y. Zhao, Y. Zhang, Z. He, G. Liu et al., Building flexibly porous conductive skeleton inlaid with surface oxygen-dominated mxene as an amphiphilic nanoreactor for stable Li–S pouch batteries. Energy Storage Mater. 47, 434–444 (2022). https://doi.org/10.1016/j.ensm.2022.02.006
- D. Xiong, X. Li, Z. Bai, S. Lu, Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small 14(17), 1703419 (2018). https://doi.org/10.1002/smll.201703419
- J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta et al., Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48(1), 72–133 (2019). https://doi.org/10.1039/c8cs00324f
- M. Okubo, A. Sugahara, S. Kajiyama, A. Yamada, Mxene as a charge storage host. Acc. Chem. Res. 51(3), 591–599 (2018). https://doi.org/10.1021/acs.accounts.7b00481
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- N.K. Chaudhari, H. Jin, B. Kim, D. San Baek, S.H. Joo et al., Mxene: an emerging two-dimensional material for future energy conversion and storage applications. J. Mater. Chem. A 5(47), 24564–24579 (2017). https://doi.org/10.1039/c7ta09094c
- S. Li, J. Lin, Y. Ding, P. Xu, X. Guo et al., Defects engineering of lightweight metal-organic frameworks-based electrocatalytic membrane for high-loading lithium–sulfur batteries. ACS Nano 15, 13803–13813 (2021). https://doi.org/10.1021/acsnano.1c05585
- Q. Zeng, X. Li, W. Gong, S. Guo, Y. Ouyang et al., Copolymerization of sulfur chains with vinyl functionalized metal-organic framework for accelerating redox kinetics in lithium−sulfur batteries. Adv. Energy Mater. 12(21), 2104074 (2022). https://doi.org/10.1002/aenm.202104074
- Y. Wang, Z. Deng, J. Huang, H. Li, Z. Li et al., 2D Zr-Fc metal-organic frameworks with highly efficient anchoring and catalytic conversion ability towards polysulfides for advanced li–s battery. Energy Storage Mater. 36, 466–477 (2021). https://doi.org/10.1016/j.ensm.2021.01.025
- H.C. Zhou, J.R. Long, O.M. Yaghi, Introduction to metal-organic frameworks. Chem. Rev. 112(2), 673–674 (2012). https://doi.org/10.1021/cr300014x
- H.C. Zhou, S. Kitagawa, Metal-organic frameworks (MOFs). Chem. Soc. Rev. 43(16), 5415–5418 (2014). https://doi.org/10.1039/c4cs90059f
- S. Wang, X. Wang, Imidazolium ionic liquids, imidazolylidene heterocyclic carbenes, and zeolitic imidazolate frameworks for CO2 capture and photochemical reduction. Angew. Chem. Int. Ed. 55(7), 2308–2320 (2016). https://doi.org/10.1002/anie.201507145
- C.A. Trickett, A. Helal, B.A. Al-Maythalony, Z.H. Yamani, K.E. Cordova et al., The chemistry of metal-organic frameworks for CO2 capture, regeneration and conversion. Nat. Rev. Mater. 2(8), 17045 (2017). https://doi.org/10.1038/natrevmats.2017.45
- A. Schoedel, Z. Ji, O.M. Yaghi, The role of metal-organic frameworks in a carbon-neutral energy cycle. Nat. Energy 1(4), 16034 (2016). https://doi.org/10.1038/nenergy.2016.34
- J.R. Long, O.M. Yaghi, The pervasive chemistry of metal-organic frameworks. Chem. Soc. Rev. 38(5), 1213–1214 (2009). https://doi.org/10.1039/b903811f
- M. Ding, R.W. Flaig, H.L. Jiang, O.M. Yaghi, Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chem. Soc. Rev. 48(10), 2783–2828 (2019). https://doi.org/10.1039/c8cs00829a
- W. Lu, Z. Wei, Z. Gu, T. Liu, J. Park et al., Tuning the structure and function of metal-organic frameworks via linker design. Chem. Soc. Rev. 43, 5561 (2014). https://doi.org/10.1039/C4CS00003J
- M. Eddaoudi, D.B. Moler, H. Li, B. Chen, T.M. Reineke, Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc. Chem. Res. 34, 318–330 (2001). https://doi.org/10.1021/ar000034b
- J.S. Seo, D. Whang, H. Lee, S.I. Jun, J. Oh, Y.J. Jeon, K. Kim, A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature 404, 982–986 (2000). https://doi.org/10.1038/35010088
- D. Luo, C. Li, Y. Zhang, Q. Ma, C. Ma et al., Design of quasi-MOF nanospheres as a dynamic electrocatalyst toward accelerated sulfur reduction reaction for high-performance lithium–sulfur batteries. Adv. Mater. 34(2), 2105541 (2022). https://doi.org/10.1002/adma.202105541
- M. Rana, H.A. Al-Fayaad, B. Luo, T. Lin, L. Ran et al., Oriented nanoporous MOFs to mitigate polysulfides migration in lithium-sulfur batteries. Nano Energy 75, 105009 (2020). https://doi.org/10.1016/j.nanoen.202
References
W. Sun, Z. Song, Z. Feng, Y. Huang, Z.J. Xu et al., Carbon-nitride-based materials for advanced lithium–sulfur batteries. Nano Micro Lett. 14(1), 222 (2022). https://doi.org/10.1007/s40820-022-00954-x
Y. Huang, L. Lin, Y. Zhang, L. Liu, B. Sa et al., Dual-functional lithiophilic/sulfiphilic binary-metal selenide quantum dots toward high-performance Li–S full batteries. Nano Micro Lett. 15(1), 67 (2023). https://doi.org/10.1007/s40820-023-01037-1
A.M. Abraham, K. Thiel, M. Shakouri, Q. Xiao, A. Paterson et al., Ultrahigh sulfur loading tolerant cathode architecture with extended cycle life for high energy density lithium–sulfur batteries. Adv. Energy Mater. 12(34), 2201494 (2022). https://doi.org/10.1002/aenm.202201494
G. Zhou, H. Chen, Y. Cui, Formulating energy density for designing practical lithium–sulfur batteries. Nat. Energy 7(4), 312–319 (2022). https://doi.org/10.1038/s41560-022-01001-0
Z.P. Cano, D. Banham, S. Ye, A. Hintennach, J. Lu et al., Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 3(4), 279–289 (2018). https://doi.org/10.1038/s41560-018-0108-1
R. Deng, B. Ke, Y. Xie, S. Cheng, C. Zhang et al., All-solid-state thin-film lithium-sulfur batteries. Nano Micro Lett. 15(1), 73 (2023). https://doi.org/10.1007/s40820-023-01064-y
X. Zhu, L. Wang, Z. Bai, J. Lu, T. Wu, Sulfide-based all-solid-state lithium-sulfur batteries: challenges and perspectives. Nano Micro Lett. 15(1), 75 (2023). https://doi.org/10.1007/s40820-023-01053-1
H. Wang, Z. Cui, S.A. He, J. Zhu, W. Luo et al., Construction of ultrathin layered MXene-TiN heterostructure enabling favorable catalytic ability for high-areal-capacity lithium–sulfur batteries. Nano Micro Lett. 14(1), 189 (2022). https://doi.org/10.1007/s40820-022-00935-0
B. Jiang, D. Tian, Y. Qiu, X. Song, Y. Zhang et al., High-index faceted nanocrystals as highly efficient bifunctional electrocatalysts for high-performance lithium–sulfur batteries. Nano Micro Lett. 14(1), 40 (2021). https://doi.org/10.1007/s40820-021-00769-2
Y. Zhan, A. Buffa, L. Yu, Z.J. Xu, D. Mandler, Electrodeposited sulfur and CoxS electrocatalyst on buckypaper as high-performance cathode for Li-S batteries. Nano Micro Lett. 12(1), 141 (2020). https://doi.org/10.1007/s40820-020-00479-1
J.L. Yang, D.-Q. Cai, Q. Lin, X.-Y. Wang, Z.Q. Fang et al., Regulating the Li2S deposition by grain boundaries in metal nitrides for stable lithium–sulfur batteries. Nano Energy 91, 106669 (2022). https://doi.org/10.1016/j.nanoen.2021.106669
Y. Qi, N. Li, K. Zhang, Y. Yang, Z. Ren et al., Dynamic liquid metal catalysts for boosted lithium polysulfides redox reaction. Adv. Mater. (2022). https://doi.org/10.1002/adma.202204810
Y. Lin, Y. Zhou, S. Huang, M. Xiao, D. Han et al., Catalytic disproportionation for suppressing polysulfide shuttle in Li–S pouch cells: beyond adsorption interactions. Adv. Energy Mater. (2022). https://doi.org/10.1002/aenm.202201912
S. Feng, R.K. Singh, Y. Fu, Z. Li, Y. Wang et al., Low-tortuous and dense single-p-layer electrode for high-energy lithium–sulfur batteries. Energy Environ. Sci. 15(9), 3842–3853 (2022). https://doi.org/10.1039/d2ee01442d
S.F. Ng, M.Y.L. Lau, W.J. Ong, Lithium-sulfur battery cathode design: tailoring metal-based nanostructures for robust polysulfide adsorption and catalytic conversion. Adv. Mater. 33(50), 2008654 (2021). https://doi.org/10.1002/adma.202008654
R.D. Rauh, G.F. Pearson, J.K. Surprenant, S.B. Brummer, A lithium/dissolved sulfur battery with an organic electrolyte. J. Electrochem. Soc. 126, 523–527 (1979). https://doi.org/10.1149/1.2129079/meta
W. Zheng, Y.W. Liu, X.G. Hu, C.F. Zhang, Novel nanosized adsorbing sulfur composite cathode materials for the advanced secondary lithium batteries. Electrochim. Acta 51(7), 1330–1335 (2006). https://doi.org/10.1016/j.electacta.2005.06.021
D. Marmorstein, T.H. Yu, K.A. Striebel, F.R. McLarnon, J. Hou et al., Electrochemical performance of lithiumrsulfur cells with three different polymer electrolytes. J. Power Sources 89, 219–226 (2000). https://doi.org/10.1016/S0378-7753(00)00432-8
D.R. Chang, S.H. Lee, S.W. Kim, H.T. Kim, Binary electrolyte based on tetra(ethylene glycol) dimethyl ether and 1,3-dioxolane for lithium–sulfur battery. J. Power Sources 112, 452–460 (2002). https://doi.org/10.1016/S0378-7753(02)00418-4
D. Marmorstein, K.A. Striebel, F.R. McLarnon, J. Hou, E.J. Cairns, Electrochemical performance of lithiumrsulfur cells with three different polymer electrolytes. J. Power Sources 89, 219–226 (2000). https://doi.org/10.1016/S0378-7753(00)00432-8
L.P. Felix, B. Dias, J.B.J. Veldhuis, Trends in polymer electrolytes for secondary lithium batteries. J. Power Sources 88, 169–191 (2000). https://doi.org/10.1016/S0378-7753(99)00529-7
J. Wang, J. Yang, J. Xie, N. Xu, A novel conductive polymer sulfur composite cathode material for rechargeable lithium. Adv. Mater. 14, 13–14 (2002). https://doi.org/10.1002/1521-4095(20020705)14:13/14%3c963::AID-ADMA963%3e3.0.CO;2-P
Y.V. Mikhaylik, Electrolytes for lithium sulfur cells, US Patent 7, 354, 680 (2008)
X. Ji, K.T. Lee, L.F. Nazar, A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8(6), 500–506 (2009). https://doi.org/10.1038/nmat2460
R. Wang, R. Wu, C. Ding, Z. Chen, H. Xu et al., Porous carbon architecture assembled by cross-linked carbon leaves with implanted atomic cobalt for high-performance Li–S batteries. Nano Micro Lett. 13(1), 151 (2021). https://doi.org/10.1007/s40820-021-00676-6
J. Zheng, D. Lv, M. Gu, C. Wang, J. Zhang et al., How to obtain reproducible results for lithium sulfur batteries? J. Electrochem. Soc. 160(11), 2288–2292 (2013). https://doi.org/10.1149/2.106311jes]
M. Hagen, P. Fanz, J. Tübke, Cell energy density and electrolyte/sulfur ratio in Li–S cells. J. Power Sources 264, 30–34 (2014). https://doi.org/10.1016/j.jpowsour.2014.04.018
J. Brückner, S. Thieme, H.T. Grossmann, S. Dörfler, H. Althues, S. Kaskel, Lithium–sulfur batteries: influence of C-rate, amount of electrolyte and sulfur loading on cycle performance. J. Power Sources 268, 82–87 (2014). https://doi.org/10.1016/j.jpowsour.2014.05.143
S.-H. Chung, A. Manthiram, Lithium–sulfur batteries with superior cycle stability by employing porous current collectors. Electrochim. Acta 107, 569–576 (2013). https://doi.org/10.1016/j.electacta.2013.06.034
S. Xiong, K. Xie, Y. Diao, X. Hong, Properties of surface film on lithium anode with LiNO3 as lithium salt in electrolyte solution for lithium–sulfur batteries. Electrochim. Acta 83, 78–86 (2012). https://doi.org/10.1016/j.electacta.2012.07.118
S. Xiong, K. Xie, Y. Diao, X. Hong, On the role of polysulfides for a stable solid electrolyte interphase on the lithium anode cycled in lithium–sulfur batteries. J. Power Sources 236, 181–187 (2013). https://doi.org/10.1016/j.jpowsour.2013.02.072
Y. Yan, Y.-X. Yin, S. Xin, J. Su, Y.-G. Guo et al., High-safety lithium–sulfur battery with prelithiated Si/C anode and ionic liquid electrolyte. Electrochim. Acta 91, 58–61 (2013). https://doi.org/10.1016/j.electacta.2012.12.077
Y.X. Yin, S. Xin, Y.G. Guo, L.J. Wan, Lithium-sulfur batteries: electrochemistry, materials, and prospects. Angew. Chem. Int. Ed. 52(50), 13186–13200 (2013). https://doi.org/10.1002/anie.201304762
Z. Wei Seh, W. Li, J.J. Cha, G. Zheng, Y. Yang et al., Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 4, 1331 (2013). https://doi.org/10.1038/ncomms2327
S. Dörfler, H. Althues, P. Härtel, T. Abendroth, B. Schumm et al., Challenges and key parameters of lithium–sulfur batteries on pouch cell level. Joule 4(3), 539–554 (2020). https://doi.org/10.1016/j.joule.2020.02.006
L. Huang, T. Guan, H. Su, Y. Zhong, F. Cao et al., Synergistic interfacial bonding in reduced graphene oxide fiber cathodes containing polypyrrole@sulfur nanospheres for flexible energy storage. Angew. Chem. Int. Ed. (2022). https://doi.org/10.1002/anie.202212151
G.T. Zhou, H. Jina, Y. Tao, X. Liu, B. Zhang et al., Catalytic oxidation of Li2S on the surface of metal sulfides for Li−S batteries. Proc. Natl. Acad. Sci. 114, 840–845 (2017). https://doi.org/10.1073/pnas.1615837114
F. Shi, L. Zhai, Q. Liu, J. Yu, S.P. Lau et al., Emerging catalytic materials for practical lithium–sulfur batteries. J. Energy Chem. 76, 127–145 (2022). https://doi.org/10.1016/j.jechem.2022.08.027
F. Zhan, S. Liu, Q. He, X. Zhao, H. Wang et al., Metal–organic framework-derived heteroatom-doped nanoarchitectures for electrochemical energy storage: recent advances and future perspectives. Energy Storage Mater. 52, 685–735 (2022). https://doi.org/10.1016/j.ensm.2022.08.035
Z. Shen, X. Jin, J. Tian, M. Li, Y. Yuan et al., Cation-doped zns catalysts for polysulfide conversion in lithium–sulfur batteries. Nat. Catal. 5(6), 555–563 (2022). https://doi.org/10.1038/s41929-022-00804-4
Y. Cao, C. Wu, W. Wang, Y. Li, J. You et al., Modification of lithium sulfur batteries by sieving effect: long term investigation of carbon molecular sieve. J. Energy Storage 54, 105228 (2022). https://doi.org/10.1016/j.est.2022.105228
H. Yuan, H.-J. Peng, B.-Q. Li, J. Xie, L. Kong et al., Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium–sulfur batteries. Adv. Energy Mater. 9(1), 1802768 (2019). https://doi.org/10.1002/aenm.201802768
S. Li, X. Zhang, H. Chen, H. Hu, J. Liu et al., Electrocatalytic effect of 3D porous sulfur/gallium hybrid materials in lithium–sulfur batteries. Electrochim. Acta 364, 137259 (2020). https://doi.org/10.1016/j.electacta.2020.137259
Z. Kong, Q. Liu, X. Liu, Y. Wang, C. Shen et al., Co-Nx bonds as bifunctional electrocatalytic sites to drive the reversible conversion of lithium polysulfides for long life lithium sulfur batteries. Appl. Surf. Sci. 546, 148914 (2021). https://doi.org/10.1016/j.apsusc.2020.148914
S. Park, M. Her, H. Shin, W. Hwang, Y.-E. Sung, Maximizing the active site densities of single-atomic Fe–N–C electrocatalysts for high-performance anion membrane fuel cells. ACS Appl. Energy Mater. 4(2), 1459–1466 (2021). https://doi.org/10.1021/acsaem.0c02650
Z. Zeng, W. Nong, Y. Li, C. Wang, Universal-descriptors-guided design of single atom catalysts toward oxidation of Li2S in lithium–sulfur batteries. Adv. Sci. 8(23), 2102809 (2021). https://doi.org/10.1002/Adv.s.202102809
C. Zhao, G.L. Xu, Z. Yu, L. Zhang, I. Hwang et al., A high-energy and long-cycling lithium–sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites. Nat. Nanotechnol. 16(2), 166–173 (2021). https://doi.org/10.1038/s41565-020-00797-w
Z.X. Chen, M. Zhao, L.P. Hou, X.Q. Zhang, B.Q. Li et al., Toward practical high-energy-density lithium–sulfur pouch cells: a review. Adv. Mater. 34(35), 2201555 (2022). https://doi.org/10.1002/adma.202201555
S. Lang, S.H. Yu, X. Feng, M.R. Krumov, H.D. Abruna, Understanding the lithium–sulfur battery redox reactions via operando confocal Raman microscopy. Nat. Commun. 13(1), 4811 (2022). https://doi.org/10.1038/s41467-022-32139-w
U.J.H. Danuta, Electric dry cells and storage batteries, US Patent 3, 043, 896, (1962)
S. Evers, T. Yim, L.F. Nazar, Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li–S battery. J. Phys. Chem. C 116(37), 19653–19658 (2012). https://doi.org/10.1021/jp304380j
J. Lei, T. Liu, J. Chen, M. Zheng, Q. Zhang et al., Exploring and understanding the roles of Li2Sn and the strategies to beyond present Li–S batteries. Chem. 6(10), 2533–2557 (2020). https://doi.org/10.1016/j.chempr.2020.06.032
T.M. Gür, Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ. Sci. 11(10), 2696–2767 (2018). https://doi.org/10.1039/c8ee01419a
Z. Li, I. Sami, J. Yang, J. Li, R.V. Kumar et al., Lithiated metallic molybdenum disulfide nanosheets for high-performance lithium–sulfur batteries. Nat. Energy 8(1), 84–93 (2023). https://doi.org/10.1038/s41560-022-01175-7
F. Cheng, J. Liang, Z. Tao, J. Chen, Functional materials for rechargeable batteries. Adv. Mater. 23(15), 1695–1715 (2011). https://doi.org/10.1002/adma.201003587
M. Han, Y. Mu, J. Guo, L. Wei, L. Zeng et al., Monolayer MoS2 fabricated by in situ construction of interlayer electrostatic repulsion enables ultrafast ion transport in lithium-ion batteries. Nano Micro Lett. 15(1), 80 (2023). https://doi.org/10.1007/s40820-023-01042-4
D. Moy, A. Manivannan, S.R. Narayanan, Direct measurement of polysulfide shuttle current: a window into understanding the performance of lithium-sulfur cells. J. Electrochem. Soc. 162, A1–A7 (2015). https://doi.org/10.1149/2.0181501jes
C. Yang, Running battery electric vehicles with extended range: coupling cost and energy analysis. Appl. Energy 306, 118116 (2022). https://doi.org/10.1016/j.apenergy.2021.118116
J. Wu, T. Ye, Y. Wang, P. Yang, Q. Wang et al., Understanding the catalytic kinetics of polysulfide redox reactions on transition metal compounds in Li–S batteries. ACS Nano 16(10), 15734–15759 (2022). https://doi.org/10.1021/acsnano.2c08581
C. Shen, J. Xie, M. Zhang, P. Andrei, M. Hendrickson et al., Self-discharge behavior of lithium–sulfur batteries at different electrolyte/sulfur ratios. J. Electrochem. Soc. 166, A5287 (2019). https://doi.org/10.1149/2.0461903jes
J. Zhang, G. Xu, Q. Zhang, X. Li, Y. Yang et al., Mo–O–C between MoS2 and graphene toward accelerated polysulfide catalytic conversion for advanced lithium–sulfur batteries. Adv. Sci. 9(22), 2201579 (2022). https://doi.org/10.1002/advs.202201579
Z. Ye, Y. Jiang, T. Yang, L. Li, F. Wu et al., Engineering catalytic CoSe-ZnSe heterojunctions anchored on graphene aerogels for bidirectional sulfur conversion reactions. Adv. Sci. 9(1), 2103456 (2022). https://doi.org/10.1002/advs.202103456
D. Yang, Z. Liang, P. Tang, C. Zhang, M. Tang et al., A high conductivity 1D π-d conjugated metal-organic framework with efficient polysulfide trapping-diffusion-catalysis in lithium–sulfur batteries. Adv. Mater. 34(10), 2108835 (2022). https://doi.org/10.1002/adma.202108835
Y.T. Liu, S. Liu, G.R. Li, X.P. Gao, Strategy of enhancing the volumetric energy density for lithium–sulfur batteries. Adv. Mater. 33(8), 2003955 (2021). https://doi.org/10.1002/adma.202003955
W. Xue, L. Miao, L. Qie, C. Wang, S. Li et al., Gravimetric and volumetric energy densities of lithium–sulfur batteries. Curr. Opin. Electrochem. 6(1), 92–99 (2017). https://doi.org/10.1016/j.coelec.2017.10.007
J. Betz, G. Bieker, P. Meister, T. Placke, M. Winter et al., Theoretical versus practical energy: a plea for more transparency in the energy calculation of different rechargeable battery systems. Adv. Energy Mater. 9(6), 1803170 (2018). https://doi.org/10.1002/aenm.201803170
S. Power, 650 w/hkg, 1400 wh/l rechargable batteries for new era of electrified mobility. 2018 NASA Aerospace Battery Workshop (2018).
S. Kaskel, Recent progress in lithium–sulfur-batteries. AABC Europe 2017 (2017)
H.J. Peng, J.Q. Huang, Q. Zhang, A review of flexible lithium–sulfur and analogous alkali metal-chalcogen rechargeable batteries. Chem. Soc. Rev. 46(17), 5237–5288 (2017). https://doi.org/10.1039/c7cs00139h
N. Li, C. Sun, J. Zhu, S. Li, Y. Wang et al., Minimizing carbon content with three-in-one functionalized nano conductive ceramics: toward more practical and safer S cathodes of Li–S cells. Energy Environ. Mater. (2022). https://doi.org/10.1002/eem2.12354
S.H. Chung, C.H. Chang, A. Manthiram, A carbon-cotton cathode with ultrahigh-loading capability for statically and dynamically stable lithium–sulfur batteries. ACS Nano 10(11), 10462–10470 (2016). https://doi.org/10.1021/acsnano.6b06369
C.-H. Chang, S.-H. Chung, A. Manthiram, Highly flexible, freestanding tandem sulfur cathodes for foldable Li–S batteries with a high areal capacity. Mater. Horiz. 4(2), 249–258 (2017). https://doi.org/10.1039/c6mh00426a
P. Han, S.H. Chung, A. Manthiram, Pyrrolic-type nitrogen-doped hierarchical macro/mesoporous carbon as a bifunctional host for high-performance thick cathodes for lithium–sulfur batteries. Small 15(16), 1900690 (2019). https://doi.org/10.1002/smll.201900690
D.R. Deng, F. Xue, Y.J. Jia, J.C. Ye, C.D. Bai et al., Co4N nanosheet assembled mesoporous sphere as a matrix for ultrahigh sulfur content lithium–sulfur batteries. ACS Nano 11(6), 6031–6039 (2017). https://doi.org/10.1021/acsnano.7b01945
D.R. Deng, F. Xue, C.D. Bai, J. Lei, R. Yuan et al., Enhanced adsorptions to polysulfides on graphene-supported bn nanosheets with excellent Li–S battery performance in a wide temperature range. ACS Nano 12(11), 11120–11129 (2018). https://doi.org/10.1021/acsnano.8b05534
Z. Yuan, H.J. Peng, T.Z. Hou, J.Q. Huang, C.M. Chen et al., Powering lithium–sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 16(1), 519–527 (2016). https://doi.org/10.1021/acs.nanolett.5b04166
X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss et al., A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat. Commun. 6, 5682 (2015). https://doi.org/10.1038/ncomms6682
M. Zhao, B.Q. Li, H.J. Peng, H. Yuan, J.Y. Wei et al., Lithium–sulfur batteries under lean electrolyte conditions: challenges and opportunities. Angew. Chem. Int. Ed. 59(31), 12636–12652 (2020). https://doi.org/10.1002/anie.201909339
M. Zhao, B.Q. Li, X.Q. Zhang, J.Q. Huang, Q. Zhang, A perspective toward practical lithium–sulfur batteries. ACS Cent. Sci. 6(7), 1095–1104 (2020). https://doi.org/10.1021/acscentsci.0c00449
Y. Jin, P.M.L. Le, P. Gao, Y. Xu, B. Xiao et al., Low-solvation electrolytes for high-voltage sodium-ion batteries. Nat. Energy 7(8), 718–725 (2022). https://doi.org/10.1038/s41560-022-01055-0
Y. Jeoun, M.-S. Kim, S.-H. Lee, J. Hyun Um, Y.-E. Sung et al., Lean-electrolyte lithium-sulfur batteries: recent advances in the design of cell components. Chem. Eng. J. 450, 138209 (2022). https://doi.org/10.1016/j.cej.2022.138209
J. Guo, H. Pei, Y. Dou, S. Zhao, G. Shao et al., Rational designs for lithium-sulfur batteries with low electrolyte/sulfur ratio. Adv. Funct. Mater. 31(18), 2010499 (2021). https://doi.org/10.1002/adfm.202010499
M. Wild, L. O’Neill, T. Zhang, R. Purkayastha, G. Minton et al., Lithium sulfur batteries, a mechanistic review. Energy Environ. Sci. 8(12), 3477–3494 (2015). https://doi.org/10.1039/c5ee01388g
H.J. Peng, J.Q. Huang, X.Y. Liu, X.B. Cheng, W.T. Xu et al., Healing high-loading sulfur electrodes with unprecedented long cycling life: spatial heterogeneity control. J. Am. Chem. Soc. 139(25), 8458–8466 (2017). https://doi.org/10.1021/jacs.6b12358
X.-B. Cheng, J.-Q. Huang, H.-J. Peng, J.-Q. Nie, X.-Y. Liu et al., Polysulfide shuttle control: towards a lithium–sulfur battery with superior capacity performance up to 1000 cycles by matching the sulfur/electrolyte loading. J. Power Sources 253, 263–268 (2014). https://doi.org/10.1016/j.jpowsour.2013.12.031
C. Zu, A. Manthiram, Stabilized lithium-metal surface in a polysulfide-rich environment of lithium–sulfur batteries. J. Phys. Chem. Lett. 5(15), 2522–2527 (2014). https://doi.org/10.1021/jz501352e
M. Zhang, W. Chen, L. Xue, Y. Jiao, T. Lei et al., Adsorption-catalysis design in the lithium–sulfur battery. Adv. Energy Mater. 10(2), 1903008 (2019). https://doi.org/10.1002/aenm.201903008
Y. Shi, M. Li, Y. Yu, B. Zhang, Recent advances in nanostructured transition metal phosphides: synthesis and energy-related applications. Energy Environ. Sci. 13(12), 4564–4582 (2020). https://doi.org/10.1039/d0ee02577a
S. Huang, E. Huixiang, Y. Yang, Y. Zhang, M. Ye et al., Transition metal phosphides: new generation cathode host/separator modifier for Li–S batteries. J. Mater. Chem. A 9(12), 7458–7480 (2021). https://doi.org/10.1039/d0ta11919a
Z. Cheng, Z. Wu, J. Chen, Y. Fang, S. Lin et al., Mo2N-ZrO2 heterostructure engineering in freestanding carbon nanofibers for upgrading cycling stability and energy efficiency of Li-CO2 batteries. Small 19, 2301685 (2023). https://doi.org/10.1002/smll.202301685
M. Wang, Z. Bai, T. Yang, C. Nie, X. Xu et al., Advances in high sulfur loading cathodes for practical lithium–sulfur batteries. Adv. Energy Mater. 12(39), 2201585 (2022). https://doi.org/10.1002/aenm.202201585
M. Cui, Z. Zheng, J. Wang, Y. Wang, X. Zhao et al., Rational design of lithium–sulfur battery cathodes based on differential atom electronegativity. Energy Storage Mater. 35, 577–585 (2021). https://doi.org/10.1016/j.ensm.2020.11.039
H. Ye, J. Sun, S. Zhang, H. Lin, T. Zhang et al., Stepwise electrocatalysis as a strategy against polysulfide shuttling in Li–S batteries. ACS Nano 13(12), 14208–14216 (2019). https://doi.org/10.1021/acsnano.9b07121
H. Shin, M. Baek, A. Gupta, K. Char, A. Manthiram et al., Recent progress in high donor electrolytes for lithium–sulfur batteries. Adv. Energy Mater. 10(27), 2001456 (2020). https://doi.org/10.1002/aenm.202001456
Y. Li, C. Wang, W. Wang, A.Y.S. Eng, M. Wan et al., Enhanced chemical immobilization and catalytic conversion of polysulfide intermediates using metallic Mo nanoclusters for high-performance Li–S batteries. ACS Nano 14(1), 1148–1157 (2020). https://doi.org/10.1021/acsnano.9b09135
Z. Yu, B. Wang, X. Liao, K. Zhao, Z. Yang et al., Boosting polysulfide redox kinetics by graphene-supported Ni nanops with carbon coating. Adv. Energy Mater. 10(25), 2000907 (2020). https://doi.org/10.1002/aenm.202000907
D. Guo, X. Zhang, M. Liu, Z. Yu, X.A. Chen et al., Single Mo-N4 atomic sites anchored on N-doped carbon nanoflowers as sulfur host with multiple immobilization and catalytic effects for high-performance lithium–sulfur batteries. Adv. Funct. Mater. 32(35), 2204458 (2020). https://doi.org/10.1002/adfm.202204458
K. Zhang, W. Cai, Y. Liu, G. Hu, W. Hu et al., Nitrogen-doped carbon embedded with ag nanops for bidirectionally-promoted polysulfide redox electrochemistry. Chem. Eng. J. 427, 130897 (2022). https://doi.org/10.1016/j.cej.2021.130897
L. Chen, X. Liu, L. Zheng, Y. Li, X. Guo et al., Insights into the role of active site density in the fuel cell performance of Co–N–C catalysts. Appl. Catal. B 256, 117849 (2019). https://doi.org/10.1016/j.apcatb.2019.117849
E. Jung, S.-J. Kim, J. Kim, S. Koo, J. Lee et al., Oxygen-plasma-treated Fe–N–C catalysts with dual binding sites for enhanced electrocatalytic polysulfide conversion in lithium–sulfur batteries. ACS Energy Lett. 7(8), 2646–2653 (2022). https://doi.org/10.1021/acsenergylett.2c01132
J. Kim, S.J. Kim, E. Jung, D.H. Mok, V.K. Paidi et al., Atomic structure modification of Fe–N–C catalysts via morphology engineering of graphene for enhanced conversion kinetics of lithium–sulfur batteries. Adv. Funct. Mater. 32(19), 2110857 (2022). https://doi.org/10.1002/adfm.202110857
J. Luo, H. Liu, K. Guan, W. Lei, Q. Jia et al., Cobalt nanops decorated “wire in tube” framework as a multifunctional sulfur reservoir. ACS Sustain. Chem. Eng. 10(18), 6117–6127 (2022). https://doi.org/10.1021/acssuschemeng.2c01883
Y. Tsao, H. Gong, S. Chen, G. Chen, Y. Liu et al., A nickel-decorated carbon flower/sulfur cathode for lean-electrolyte lithium–sulfur batteries. Adv. Energy Mater. 11(36), 2101449 (2021). https://doi.org/10.1002/aenm.202101449
Z. Lin, X. Li, W. Huang, X. Zhu, Y. Wang et al., Active platinum nanops as a bifunctional promoter for lithium–sulfur batteries. ChemElectroChem 4(10), 2577–2582 (2017). https://doi.org/10.1002/celc.201700533
P. Wang, Z. Zhang, X. Yan, M. Xu, Y. Chen et al., Pomegranate-like microclusters organized by ultrafine Co nanops@nitrogen-doped carbon subunits as sulfur hosts for long-life lithium–sulfur batteries. J. Mater. Chem. A 6(29), 14178–14187 (2018). https://doi.org/10.1039/c8ta04214d
L. Zhang, D. Liu, Z. Muhammad, F. Wan, W. Xie et al., Single nickel atoms on nitrogen-doped graphene enabling enhanced kinetics of lithium–sulfur batteries. Adv. Mater. 31(40), 1903955 (2019). https://doi.org/10.1002/adma.201903955
W. Zang, Z. Kou, S.J. Pennycook, J. Wang, Heterogeneous single atom electrocatalysis, where “singles” are “married.” Adv. Energy Mater. 10(9), 1903181 (2020). https://doi.org/10.1002/aenm.201903181
X. Wang, A. Beck, J.A. van Bokhoven, D. Palagin, Thermodynamic insights into strong metal–support interaction of transition metal nanops on titania: simple descriptors for complex chemistry. J. Mater. Chem. A 9(7), 4044–4054 (2021). https://doi.org/10.1039/d0ta11650e
J.G. Smith, P.K. Jain, The ligand shell as an energy barrier in surface reactions on transition metal nanops. J. Am. Chem. Soc. 138(21), 6765–6773 (2016). https://doi.org/10.1021/jacs.6b00179
H. Gao, S. Ning, Y. Zhou, S. Men, X. Kang, Polyacrylonitrile-induced formation of core-shell carbon nanocages: enhanced redox kinetics towards polysulfides by confined catalysis in Li–S batteries. Chem. Eng. J. 408, 127323 (2021). https://doi.org/10.1016/j.cej.2020.127323
C. Li, S. Qi, L. Zhu, Y. Zhao, R. Huang et al., Regulating polysulfide intermediates by ultrathin Co–Bi nanosheet electrocatalyst in lithium–sulfur batteries. Nano Today 40, 101246 (2021). https://doi.org/10.1016/j.nantod.2021.101246
Y. Li, W. Wang, B. Zhang, L. Fu, M. Wan et al., Manipulating redox kinetics of sulfur species using Mott-Schottky electrocatalysts for advanced lithium–sulfur batteries. Nano Lett. 21(15), 6656–6663 (2021). https://doi.org/10.1021/acs.nanolett.1c02161
Q. Shao, L. Xu, D. Guo, Y. Su, J. Chen, Atomic level design of single iron atom embedded mesoporous hollow carbon spheres as multi-effect nanoreactors for advanced lithium–sulfur batteries. J. Mater. Chem. A 8(45), 23772–23783 (2020). https://doi.org/10.1039/d0ta07010f
Z.-L. Xu, S.J. Kim, D. Chang, K.-Y. Park, K.S. Dae et al., Visualization of regulated nucleation and growth of lithium sulfides for high energy lithium sulfur batteries. Energy Environ. Sci. 12(10), 3144–3155 (2019). https://doi.org/10.1039/c9ee01338e
C. Li, Y. Zhao, Y. Zhang, D. Luo, J. Liu et al., A new defect-rich and ultrathin ZnCo layered double hydroxide/carbon nanotubes architecture to facilitate catalytic conversion of polysulfides for high-performance Li–S batteries. Chem. Eng. J. 417, 129248 (2021). https://doi.org/10.1016/j.cej.2021.129248
H. Pan, X. Huang, C. Wang, D. Liu, D. Wang et al., Sandwich structural TixOy-Ti3C2/C3N4 material for long life and fast kinetics lithium-sulfur battery: bidirectional adsorption promoting lithium polysulfide conversion. Chem. Eng. J. 410, 128424 (2021). https://doi.org/10.1016/j.cej.2021.128424
W. Wang, L. Huai, S. Wu, J. Shan, J. Zhu et al., Ultrahigh-volumetric-energy-density lithium–sulfur batteries with lean electrolyte enabled by cobalt-doped MoSe2/Ti3C2Tx mxene bifunctional catalyst. ACS Nano 15, 11619–11633 (2021). https://doi.org/10.1021/acsnano.1c02047
Y. Xiao, S. Guo, Y. Ouyang, D. Li, X. Li et al., Constructing heterogeneous structure in metal-organic framework-derived hierarchical sulfur hosts for capturing polysulfides and promoting conversion kinetics. ACS Nano 15, 18363–18373 (2021). https://doi.org/10.1021/acsnano.1c07820
H. Guo, J. Hu, H. Yuan, N. Wu, Y. Li et al., Ternary transition metal sulfide as high real energy cathode for lithium–sulfur pouch cell under lean electrolyte conditions. Small Methods 6(2), 2101402 (2022). https://doi.org/10.1002/smtd.202101402
J. He, A. Bhargav, A. Manthiram, High-performance anode-free Li–S batteries with an integrated Li2S–electrocatalyst cathode. ACS Energy Lett. 7(2), 583–590 (2022). https://doi.org/10.1021/acsenergylett.1c02569
V.P. Nguyen, I.H. Kim, H.C. Shim, J.S. Park, J.M. Yuk et al., Porous carbon textile decorated with VC/V2O3−x hybrid nanops: dual-functional host for flexible Li–S full batteries. Energy Storage Mater. 46, 542–552 (2022). https://doi.org/10.1016/j.ensm.2022.01.027
H. Ye, J. Sun, Y. Zhao, J.Y. Lee, An integrated approach to improve the performance of lean–electrolyte lithium–sulfur batteries. J. Energy Chem. 67, 585–592 (2022). https://doi.org/10.1016/j.jechem.2021.11.004
X. Zhong, D. Wang, J. Sheng, Z. Han, C. Sun et al., Freestanding and sandwich mxene-based cathode with suppressed lithium polysulfides shuttle for flexible lithium–sulfur batteries. Nano Lett. 22(3), 1207–1216 (2022). https://doi.org/10.1021/acs.nanolett.1c04377
M. Zhang, C. Yu, C. Zhao, X. Song, X. Han et al., Cobalt-embedded nitrogen-doped hollow carbon nanorods for synergistically immobilizing the discharge products in lithium–sulfur battery. Energy Storage Mater. 5, 223–229 (2016). https://doi.org/10.1016/j.ensm.2016.04.002
D. Xiao, Q. Li, H. Zhang, Y. Ma, C. Lu et al., A sulfur host based on cobalt–graphitic carbon nanocages for high performance lithium–sulfur batteries. J. Mater. Chem. A 5(47), 24901–24908 (2017). https://doi.org/10.1039/c7ta08483h
S. Liu, J. Li, X. Yan, Q. Su, Y. Lu et al., Superhierarchical cobalt-embedded nitrogen-doped porous carbon nanosheets as two-in-one hosts for high-performance lithium–sulfur batteries. Adv. Mater. 30(12), 1706895 (2018). https://doi.org/10.1002/adma.201706895
Z. Du, X. Chen, W. Hu, C. Chuang, S. Xie et al., Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium–sulfur batteries. J. Am. Chem. Soc. 141(9), 3977–3985 (2019). https://doi.org/10.1021/jacs.8b12973
D. Wang, G. Zheng, W. Zhang, X. Niu, J. Yan et al., A highly stable cathode for lithium–sulfur battery built of Ni-doped carbon framework linked to CNT. J. Alloys Compd. 881, 160496 (2021). https://doi.org/10.1016/j.jallcom.2021.160496
L. He, D. Yang, H. Zhao, L. Wei, D. Wang et al., Bipolar CoSe2 nanocrystals embedded in porous carbon nanocages as an efficient electrocatalyst for Li–S batteries. Chem. Eng. J. 440, 135820 (2022). https://doi.org/10.1016/j.cej.2022.135820
B. Li, P. Wang, B. Xi, N. Song, X. An et al., In-situ embedding cote catalyst into 1D–2D nitrogen-doped carbon to didirectionally regulate lithium–sulfur batteries. Nano Res. 15, 8972–8982 (2022). https://doi.org/10.1007/s12274-022-4537-6
H. Gao, S. Miao, M. Shi, X. Mao, X. Zhu, In situ-formed cobalt nanops embedded nitrogen-doped hierarchical porous carbon as sulfur host for high-performance Li–S batteries. Electrochim. Acta 403, 139717 (2022). https://doi.org/10.1016/j.electacta.2021.139717
G. Li, W. Lei, D. Luo, Y. Deng, Z. Deng et al., Stringed “tube on cube” nanohybrids as compact cathode matrix for high-loading and lean-electrolyte lithium–sulfur batteries. Energy Environ. Sci. 11(9), 2372–2381 (2018). https://doi.org/10.1039/c8ee01377b
Q. Wu, X. Zhou, J. Xu, F. Cao, C. Li, Adenine derivative host with interlaced 2D structure and dual lithiophilic-sulfiphilic sites to enable high-loading Li–S batteries. ACS Nano 13(8), 9520–9532 (2019). https://doi.org/10.1021/acsnano.9b04519
D. Wang, K. Ma, J. Hao, W. Zhang, C. Wang et al., Multifunction Co-Nx species to manipulate polysulfides conversion kinetics toward highly efficient lithium–sulfur batteries. Nano Energy 89, 106426 (2021). https://doi.org/10.1016/j.nanoen.2021.106426
B. Du, Y. Luo, Y. Yang, W. Xue, G. Liu et al., COFs-confined multifunctional sulfur-host design towards high-performance lithium–sulfur batteries. Chem. Eng. J. 442, 135823 (2022). https://doi.org/10.1016/j.cej.2022.135823
L. Su, J. Zhang, Y. Chen, W. Yang, J. Wang et al., Cobalt-embedded hierarchically-porous hollow carbon microspheres as multifunctional confined reactors for high-loading Li–S batteries. Nano Energy 85, 105981 (2021). https://doi.org/10.1016/j.nanoen.2021.105981
Z. Cheng, H. Pan, Z. Wu, M. Wubbenhorst, Z. Zhang, Cu–Mo bimetal modulated multifunctional carbon nanofibers promoting the polysulfides conversion for high-sulfur-loading lithium–sulfur batteries. ACS Appl. Mater. Interfaces 14(40), 45688–45696 (2022). https://doi.org/10.1021/acsami.2c13012
J. He, A. Bhargav, A. Manthiram, High-energy-density, long-life lithium–sulfur batteries with practically necessary parameters enabled by low-cost Fe–Ni nanoalloy catalysts. ACS Nano 15(5), 8583–8591 (2021). https://doi.org/10.1021/acsnano.1c00446
Z. Wang, H. Ge, S. Liu, G. Li, X. Gao, High-entropy alloys to activate the sulfur cathode for lithium–sulfur batteries. Energy Environ. Mater (2022). https://doi.org/10.1002/eem2.12358
Z.Y. Wang, B. Zhang, S. Liu, G.R. Li, T. Yan et al., Nickel-platinum alloy nanocrystallites with high-index facets as highly effective core catalyst for lithium–sulfur batteries. Adv. Funct. Mater. 32(27), 2200893 (2022). https://doi.org/10.1002/adfm.202200893
H. Pan, Z. Cheng, J. Fransaer, J. Luo, M. Wübbenhorst, Cobalt-embedded 3D conductive honeycomb architecture to enable high-sulphur-loading Li–S batteries under lean electrolyte conditions. Nano Res. 15(9), 8091–8100 (2022). https://doi.org/10.1007/s12274-022-4486-0
H. Pei, Q. Yang, J. Yu, H. Song, S. Zhao et al., Self-supporting carbon nanofibers with Ni-single-atoms and uniformly dispersed Ni-nanops as scalable multifunctional hosts for high energy density lithium–sulfur batteries. Small 18(27), 2202037 (2022). https://doi.org/10.1002/smll.202202037
Y. Jin, F. Chen, J. Wang, R.L. Johnston, Tuning electronic and composition effects in ruthenium-copper alloy nanops anchored on carbon nanofibers for rechargeable Li–CO2 batteries. Chem. Eng. J. 375, 121978 (2019). https://doi.org/10.1016/j.cej.2019.121978
L. Wang, H. Wang, S. Zhang, N. Ren, Y. Wu et al., Manipulating the electronic structure of nickel via alloying with iron: toward high-kinetics sulfur cathode for Na–S batteries. ACS Nano 15(9), 15218–15228 (2021). https://doi.org/10.1021/acsnano.1c05778
Z.Y. Wang, H.M. Wang, S. Liu, G.R. Li, X.P. Gao, To promote the catalytic conversion of polysulfides using Ni–B alloy nanops on carbon nanotube microspheres under high sulfur loading and a lean electrolyte. ACS Appl. Mater. Interfaces 13(17), 20222–20232 (2021). https://doi.org/10.1021/acsami.1c03791
X. Zhou, T. Liu, G. Zhao, X. Yang, H. Guo, Cooperative catalytic interface accelerates redox kinetics of sulfur species for high-performance li–s batteries. Energy Storage Mater. 40, 139–149 (2021). https://doi.org/10.1016/j.ensm.2021.05.009
X. Song, D. Tian, Y. Qiu, X. Sun, B. Jiang et al., Improving poisoning resistance of electrocatalysts via alloying strategy for high-performance lithium–sulfur batteries. Energy Storage Mater. 41, 248–254 (2021). https://doi.org/10.1016/j.ensm.2021.05.028
Y. Liu, W. Kou, X. Li, C. Huang, R. Shui et al., Constructing patch-Ni-shelled Pt@Ni nanops within confined nanoreactors for catalytic oxidation of insoluble polysulfides in Li–S batteries. Small 15(34), 1902431 (2019). https://doi.org/10.1002/smll.201902431
G. Li, W. Qiu, W. Gao, Y. Zhu, X. Zhang et al., Finely-dispersed Ni2Co nanoalloys on flower-like graphene microassembly empowering a bi-service matrix for superior lithium–sulfur electrochemistry. Adv. Funct. Mater. 32(32), 2202853 (2022). https://doi.org/10.1002/adfm.202202853
F.Y. Fan, Y.-M. Chiang, Electrodeposition kinetics in Li–S batteries: effects of low electrolyte/sulfur ratios and deposition surface composition. J. Electrochem. Soc. 164(4), 917–922 (2017). https://doi.org/10.1149/2.0051706jes]
M. Chen, C. Huang, Y. Li, S. Jiang, P. Zeng et al., Perovskite-type La0.56Li0.33TiO3 as an effective polysulfide promoter for stable lithium–sulfur batteries in lean electrolyte conditions. J. Mater. Chem. A 7(17), 10293–10302 (2019). https://doi.org/10.1039/c9ta01500k
K. Lu, Y. Liu, J. Chen, Z. Zhang, Y. Cheng, Redox catalytic and quasi-solid sulfur conversion for high-capacity lean lithium sulfur batteries. ACS Nano 13(12), 14540–14548 (2019). https://doi.org/10.1021/acsnano.9b08516
J. Lee, J.H. Moon, Polyhedral TiO2 p-based cathode for Li–S batteries with high volumetric capacity and high performance in lean electrolyte. Chem. Eng. J. 399, 125670 (2020). https://doi.org/10.1016/j.cej.2020.125670
H. Pan, Z. Cheng, X. Zhang, K. Wan, J. Fransaer et al., Manganese dioxide nanosheet functionalized reduced graphene oxide as a compacted cathode matrix for lithium–sulphur batteries with a low electrolyte/sulphur ratio. J. Mater. Chem. A 8(41), 21824–21832 (2020). https://doi.org/10.1039/d0ta05021k
J. Wang, G. Li, D. Luo, Y. Zhang, Y. Zhao et al., Engineering the conductive network of metal oxide-based sulfur cathode toward efficient and longevous lithium–sulfur batteries. Adv. Energy Mater. 10(41), 2002076 (2020). https://doi.org/10.1002/aenm.202002076
J. Wang, D. Luo, J. Li, Y. Zhang, Y. Zhao et al., “Soft on rigid” nanohybrid as the self-supporting multifunctional cathode electrocatalyst for high-performance lithium–polysulfide batteries. Nano Energy 78, 105293 (2020). https://doi.org/10.1016/j.nanoen.2020.105293
L. Wang, Z.-Y. Wang, J.-F. Wu, G.-R. Li, S. Liu et al., To effectively drive the conversion of sulfur with electroactive niobium tungsten oxide microspheres for lithium–sulfur battery. Nano Energy 77, 105173 (2020). https://doi.org/10.1016/j.nanoen.2020.105173
L. Wang, G.R. Li, S. Liu, X.P. Gao, Hollow molybdate microspheres as catalytic hosts for enhancing the electrochemical performance of sulfur cathode under high sulfur loading and lean electrolyte. Adv. Funct. Mater. 31(18), 2010693 (2021). https://doi.org/10.1002/adfm.202010693
Z. He, T. Wan, Y. Luo, G. Liu, L. Wu et al., Three-dimensional structural confinement design of conductive metal oxide for efficient sulfur host in lithium–sulfur batteries. Chem. Eng. J. 448, 137656 (2022). https://doi.org/10.1016/j.cej.2022.137656
J. Guo, Y. Huang, S. Zhao, Z. Li, Z. Wang et al., Array-structured double-ion cooperative adsorption sites as multifunctional sulfur hosts for lithium–sulfur batteries with low electrolyte/sulfur ratio. ACS Nano 15(10), 16322–16334 (2021). https://doi.org/10.1021/acsnano.1c05536
L. Niu, T. Wu, D. Zhou, J. Qi, Z. Xiao, Polaron hopping-mediated dynamic interactive sites boost sulfur chemistry for flexible lithium–sulfur batteries. Energy Storage Mater. 45, 840–850 (2022). https://doi.org/10.1016/j.ensm.2021.12.039
Z. Zhang, D. Luo, G. Li, R. Gao, M. Li et al., Tantalum-based electrocatalyst for polysulfide catalysis and retention for high-performance lithium-sulfur batteries. Matter 3(3), 920–934 (2020). https://doi.org/10.1016/j.matt.2020.06.002
H. Zhang, L. Yang, P. Zhang, C. Lu, D. Sha et al., Mxene-derived TinO2n−1 quantum dots distributed on porous carbon nanosheets for stable and long-life Li–S batteries: enhanced polysulfide mediation via defect engineering. Adv. Mater. 33(21), 2008447 (2021). https://doi.org/10.1002/adma.202008447
Z. Li, J. Wu, P. Chen, Q. Zeng, X. Wen et al., A new metallic composite cathode originated from hyperbranched polymer coated mof for high-performance lithium–sulfur batteries. Chem. Eng. J. 435, 135125 (2022). https://doi.org/10.1016/j.cej.2022.135125
K. Zou, T. Zhou, Y. Chen, X. Xiong, W. Jing et al., Defect engineering in a multiple confined geometry for robust lithium–sulfur batteries. Adv. Energy Mater. 12(18), 2103981 (2022). https://doi.org/10.1002/aenm.202103981
S. Chen, J. Zhang, Z. Wang, L. Nie, X. Hu et al., Electrocatalytic NiCo2O4 nanofiber arrays on carbon cloth for flexible and high-loading lithium–sulfur batteries. Nano Lett. 21(12), 5285–5292 (2021). https://doi.org/10.1021/acs.nanolett.1c01422
L. Wang, W. Hua, X. Wan, Z. Feng, Z. Hu et al., Design rules of a sulfur redox electrocatalyst for lithium-sulfur batteries. Adv. Mater. 34(14), e2110279 (2022). https://doi.org/10.1002/adma.202110279
Y. Lu, J.L. Qin, T. Shen, Y.F. Yu, K. Chen et al., Hypercrosslinked polymerization enabled N-doped carbon confined Fe2O3 facilitating Li polysulfides interface conversion for Li–S batteries. Adv. Energy Mater. 11(42), 2101780 (2021). https://doi.org/10.1002/aenm.202101780
Y.T. Liu, D.D. Han, L. Wang, G.R. Li, S. Liu et al., NiCo2O4 nanofibers as carbon-free sulfur immobilizer to fabricate sulfur-based composite with high volumetric capacity for lithium–sulfur battery. Adv. Energy Mater. 9(11), 1803477 (2019). https://doi.org/10.1002/aenm.201803477
W. Hou, P. Feng, X. Guo, Z. Wang, Z. Bai et al., Catalytic mechanism of oxygen vacancies in perovskite oxides for lithium–sulfur batteries. Adv. Mater. 34(26), 2202222 (2022). https://doi.org/10.1002/adma.202202222
S. Dai, C. Sun, Y. Zhang, L. Zeng, Y. Peng et al., Carbon microspheres built of La2O3 quantum dots-implanted nanorods: superb hosts with ultra-long Li2Sn-catalysis durability. J. Colloid Interface Sci. 640, 320–328 (2023). https://doi.org/10.1016/j.jcis.2023.02.127
N. Li, T. Meng, L. Ma, H. Zhang, J. Yao et al., Curtailing carbon usage with addition of functionalized NiFe2O4 quantum dots: toward more practical S cathodes for Li–S cells. Nano Micro Lett. 12(1), 145 (2020). https://doi.org/10.1007/s40820-020-00484-4
C. Sun, J. Zhu, B. Liu, M. Xu, J. Jiang et al., High-tap-density sulfur cathodes made beyond 400 °C for lithium–sulfur cells with balanced gravimetric/volumetric energy densities. ACS Energy Lett. 8(1), 772–779 (2022). https://doi.org/10.1021/acsenergylett.2c02313
J. Shen, X. Xu, J. Liu, Z. Liu, F. Li et al., Mechanistic understanding of metal phosphide host for sulfur cathode in high-energy-density lithium–sulfur batteries. ACS Nano 13(8), 8986–8996 (2019). https://doi.org/10.1021/acsnano.9b02903
X. Gao, Y. Huang, X. Li, H. Gao, T. Li, SnP0.94 nanodots confined carbon aerogel with porous hollow superstructures as an exceptional polysulfide electrocatalyst and “adsorption nest” to enable enhanced lithium–sulfur batteries. Chem. Eng. J. 420, 129724 (2021). https://doi.org/10.1016/j.cej.2021.129724
L. Wang, M. Zhang, B. Zhang, B. Wang, J. Dou et al., A porous polycrystalline NiCo2Px as a highly efficient host for sulfur cathodes in Li–S batteries. J. Mater. Chem. A 9(40), 23149–23156 (2021). https://doi.org/10.1039/d1ta06249b
Y. Feng, L. Zu, S. Yang, L. Chen, K. Liao et al., Ultrahigh-content Co–P cluster as a dual-atom-site electrocatalyst for accelerating polysulfides conversion in Li–S batteries. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202207579
C. Zhang, R. Du, J.J. Biendicho, M. Yi, K. Xiao et al., Tubular CoFeP@CN as a Mott-Schottky catalyst with multiple adsorption sites for robust lithium–sulfur batteries. Adv. Energy Mater. 11(24), 2100432 (2021). https://doi.org/10.1002/aenm.202100432
Y. Dong, D. Cai, T. Li, S. Yang, X. Zhou et al., Sulfur reduction catalyst design inspired by elemental periodic expansion concept for lithium–sulfur batteries. ACS Nano 16(4), 6414–6425 (2022). https://doi.org/10.1021/acsnano.2c00515
Y. Ren, B. Wang, H. Liu, H. Wu, H. Bian et al., CoP nanocages intercalated MXene nanosheets as a bifunctional mediator for suppressing polysulfide shuttling and dendritic growth in lithium–sulfur batteries. Chem. Eng. J. 450, 138046 (2022). https://doi.org/10.1016/j.cej.2022.138046
J. Sun, Y. Liu, L. Liu, S. He, Z. Du et al., Expediting sulfur reduction/evolution reactions with integrated electrocatalytic network: a comprehensive kinetic map. Nano Lett. 22(9), 3728–3736 (2022). https://doi.org/10.1021/acs.nanolett.2c00642
B. Zhang, L. Wang, B. Wang, Y. Zhai, S. Zeng et al., Petroleum coke derived porous carbon/nicop with efficient reviving catalytic and adsorptive activity as sulfur host for high performance lithium–sulfur batteries. Nano Res. 15(5), 4058–4067 (2022). https://doi.org/10.1007/s12274-021-3996-5
R. Sun, Y. Bai, M. Luo, M. Qu, Z. Wang et al., Enhancing polysulfide confinement and electrochemical kinetics by amorphous cobalt phosphide for highly efficient lithium–sulfur batteries. ACS Nano 15(1), 739–750 (2021). https://doi.org/10.1021/acsnano.0c07038
Y. Yang, Y. Zhong, Q. Shi, Z. Wang, K. Sun et al., Electrocatalysis in lithium sulfur batteries under lean electrolyte conditions. Angew. Chem. Int. Ed. 57(47), 15549–15552 (2018). https://doi.org/10.1002/anie.201808311
R. Sun, Y. Bai, Z. Bai, L. Peng, M. Luo et al., Phosphorus vacancies as effective polysulfide promoter for high-energy-density lithium–sulfur batteries. Adv. Energy Mater. 12(12), 2102739 (2022). https://doi.org/10.1002/aenm.202102739
Y. Chen, W. Zhang, D. Zhou, H. Tian, D. Su et al., Co-Fe mixed metal phosphide nanocubes with highly interconnected-pore architecture as an efficient polysulfide mediator for lithium–sulfur batteries. ACS Nano 13(4), 4731–4741 (2019). https://doi.org/10.1021/acsnano.9b01079
J. Li, W. Xie, S. Zhang, S.-M. Xu, M. Shao, Boosting the rate performance of Li–S batteries under high mass-loading of sulfur based on a hierarchical NCNT@Co-CoP nanowire integrated electrode. J. Mater. Chem. A 9(18), 11151–11159 (2021). https://doi.org/10.1039/d1ta00959a
J. Zhou, X. Liu, L. Zhu, J. Zhou, Y. Guan et al., Deciphering the modulation essence of P bands in Co-based compounds on Li–S chemistry. Joule 2(12), 2681–2693 (2018). https://doi.org/10.1016/j.joule.2018.08.010
Y. Mi, W. Liu, X. Li, J. Zhuang, H. Zhou et al., High-performance Li–S battery cathode with catalyst-like carbon nanotube-MoP promoting polysulfide redox. Nano Res. 10(11), 3698–3705 (2017). https://doi.org/10.1007/s12274-017-1581-8
X. Huang, J. Tang, B. Luo, R. Knibbe, T. Lin et al., Sandwich-like ultrathin TiS2 nanosheets confined within N, S codoped porous carbon as an effective polysulfide promoter in lithium–sulfur batteries. Adv. Energy Mater. 9(32), 1901872 (2019). https://doi.org/10.1002/aenm.201901872
Z.-L. Xu, N. Onofrio, J. Wang, Boosting the anchoring and catalytic capability of MoS2 for high-loading lithium sulfur batteries. J. Mater. Chem. A 8(34), 17646–17656 (2020). https://doi.org/10.1039/d0ta05948j
C. Zhang, B. Fei, D. Yang, H. Zhan, J. Wang et al., Robust lithium–sulfur batteries enabled by highly conductive WSe2-based superlattices with tunable interlayer space. Adv. Funct. Mater. 32(24), 2201322 (2022). https://doi.org/10.1002/adfm.202201322
Y. Zhong, L. Yin, P. He, W. Liu, Z. Wu et al., Surface chemistry in cobalt phosphide-stabilized lithium–sulfur batteries. J. Am. Chem. Soc. 140(4), 1455–1459 (2018). https://doi.org/10.1021/jacs.7b11434
H. Wang, D. Wei, J. Zheng, B. Zhang, M. Ling et al., Electrospinning MoS2-decorated porous carbon nanofibers for high-performance lithium–sulfur batteries. ACS Appl. Energy Mater. 3(12), 11893–11899 (2020). https://doi.org/10.1021/acsaem.0c02015
M. Wang, L. Fan, X. Sun, B. Guan, B. Jiang et al., Nitrogen-doped CoSe2 as a bifunctional catalyst for high areal capacity and lean electrolyte of Li–S battery. ACS Energy Lett. 5(9), 3041–3050 (2020). https://doi.org/10.1021/acsenergylett.0c01564
H. Yang, Regulation polysulfide conversion by flexible carbon cloth/molybdenum selenide to improve sulfur redox kinetics in lithium–sulfur battery. Int. J. Electrochem. Sci. (2020). https://doi.org/10.20964/2020.08.72
Y. Li, H. Wu, D. Wu, H. Wei, Y. Guo et al., High-density oxygen doping of conductive metal sulfides for better polysulfide trapping and Li2S-S8 redox kinetics in high areal capacity lithium–sulfur batteries. Adv. Sci. 9(17), 2200840 (2022). https://doi.org/10.1002/Adv.s.202200840
M. Wang, Z. Sun, H. Ci, Z. Shi, L. Shen et al., Identifying the evolution of selenium-vacancy-modulated MoSe2 precatalyst in lithium–sulfur chemistry. Angew. Chem. Int. Ed. 60(46), 24558–24565 (2021). https://doi.org/10.1002/anie.202109291
Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, Self-assembly of 0D–2D heterostructure electrocatalyst from MOF and MXene for boosted lithium polysulfide conversion reaction. Adv. Mater. 33(33), e2101204 (2021). https://doi.org/10.1002/adma.202101204
B. Yu, A. Huang, K. Srinivas, X. Zhang, F. Ma et al., Outstanding catalytic effects of 1T’-MoTe2 quantum dots@3D graphene in shuttle-free Li–S batteries. ACS Nano 15, 13279–13288 (2021). https://doi.org/10.1021/acsnano.1c03011
L. Jiao, H. Jiang, Y. Lei, S. Wu, Q. Gao et al., “Dual mediator system” enables efficient and persistent regulation toward sulfur redox conversion in lithium–sulfur batteries. ACS Nano 16, 14262–14273 (2022). https://doi.org/10.1021/acsnano.2c04402
C. Li, W. Ge, S. Qi, L. Zhu, R. Huang et al., Manipulating electrocatalytic polysulfide redox kinetics by 1d core–shell like composite for lithium–sulfur batteries. Adv. Energy Mater. 12(16), 2103915 (2022). https://doi.org/10.1002/aenm.202103915
H. Li, R. Gao, B. Chen, C. Zhou, F. Shao et al., Vacancy-rich mosse with sulfiphilicity-lithiophilicity dual function for kinetics-enhanced and dendrite-free Li–S batteries. Nano Lett. 22(12), 4999–5008 (2022). https://doi.org/10.1021/acs.nanolett.2c01779
H.-J. Li, K. Xi, W. Wang, S. Liu, G.-R. Li et al., Quantitatively regulating defects of 2D tungsten selenide to enhance catalytic ability for polysulfide conversion in a lithium sulfur battery. Energy Storage Mater. 45, 1229–1237 (2022). https://doi.org/10.1016/j.ensm.2021.11.024
N. Wang, B. Chen, K. Qin, R. Zhang, Y. Tang et al., Octopus-inspired design of apical NiS2 nanops supported on hierarchical carbon composites as an efficient host for lithium sulfur batteries with high sulfur loading. ACS Appl. Mater. Interfaces 12(15), 17528–17537 (2020). https://doi.org/10.1021/acsami.0c01640
H. Li, X. Wen, F. Shao, C. Zhou, Y. Zhang et al., Interface covalent bonding endowing high-sulfur-loading paper cathode with robustness for energy-dense, compact and foldable lithium–sulfur batteries. Chem. Eng. J. 412, 128562 (2021). https://doi.org/10.1016/j.cej.2021.128562
H. Ci, J. Cai, H. Ma, Z. Shi, G. Cui et al., Defective VSe2-graphene heterostructures enabling in situ electrocatalyst evolution for lithium–sulfur batteries. ACS Nano 14(9), 11929–11938 (2020). https://doi.org/10.1021/acsnano.0c05030
Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, A high-efficiency cose electrocatalyst with hierarchical porous polyhedron nanoarchitecture for accelerating polysulfides conversion in Li–S batteries. Adv. Mater. 32(32), 2002168 (2020). https://doi.org/10.1002/adma.202002168
L. Sun, Y. Liu, J. Xie, L. Fan, J. Wu et al., Polar Co9S8 anchored on pyrrole-modified graphene with in situ growth of cnts as multifunctional self-supporting medium for efficient lithium–sulfur batteries. Chem. Eng. J. 451, 138370 (2023). https://doi.org/10.1016/j.cej.2022.138370
Z. Cheng, Y. Chen, Y. Yang, L. Zhang, H. Pan et al., Metallic MoS2 nanoflowers decorated graphene nanosheet catalytically boosts the volumetric capacity and cycle life of lithium–sulfur batteries. Adv. Energy Mater. 11(12), 2003718 (2021). https://doi.org/10.1002/aenm.202003718
R. Xu, H. Tang, Y. Zhou, F. Wang, H. Wang et al., Enhanced catalysis of radical-to-polysulfide interconversion via increased sulfur vacancies in lithium–sulfur batteries. Chem. Sci. 13(21), 6224–6232 (2022). https://doi.org/10.1039/d2sc01353c
Y. Xue, D. Luo, N. Yang, G. Ma, Z. Zhang et al., Engineering checkerboard-like heterostructured sulfur electrocatalyst towards high-performance lithium sulfur batteries. Chem. Eng. J. 440, 135990 (2022). https://doi.org/10.1016/j.cej.2022.135990
T. Yan, J. Feng, P. Zeng, G. Zhao, L. Wang et al., Modulating e orbitals through ligand engineering to boost the electrocatalytic activity of nise for advanced lithium–sulfur batteries. J. Energy Chem. 74, 317–323 (2022). https://doi.org/10.1016/j.jechem.2022.07.025
W. Sun, S. Liu, Y. Li, D. Wang, Q. Guo et al., Monodispersed FeS2 electrocatalyst anchored to nitrogen-doped carbon host for lithium–sulfur batteries. Adv. Funct. Mater. 32, 2205471 (2022). https://doi.org/10.1002/adfm.202205471
M. Li, D. Yang, J.J. Biendicho, X. Han, C. Zhang et al., Enhanced polysulfide conversion with highly conductive and electrocatalytic iodine-doped bismuth selenide nanosheets in lithium–sulfur batteries. Adv. Funct. Mater. 32(26), 2200529 (2022). https://doi.org/10.1002/adfm.202200529
X.Y. Li, S. Feng, M. Zhao, C.X. Zhao, X. Chen et al., Surface gelation on disulfide electrocatalysts in lithium–sulfur batteries. Angew. Chem. Int. Ed. 61(7), 202114671 (2022). https://doi.org/10.1002/anie.202114671
S. Chandrasekaran, L. Yao, L. Deng, C. Bowen, Y. Zhang et al., Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chem. Soc. Rev. 48(15), 4178–4280 (2019). https://doi.org/10.1039/c8cs00664d
S. Ogawa, T. Teranishi, Electrical reslstlvlty of narrow-band ferromagnet Fe1−xCoxS2. Phys. Lett. A 42, 147–148 (1972)
X. Zhang, Z. Lai, C. Tan, H. Zhang, Solution-processed two-dimensional MoS2 nanosheets: preparation, hybridization, and applications. Angew. Chem. Int. Ed. 55(31), 8816–8838 (2016). https://doi.org/10.1002/anie.201509933
G. Ye, Y. Gong, J. Lin, B. Li, Y. He et al., Defects engineered monolayer MoS2 for improved hydrogen evolution reaction. Nano Lett. 16(2), 1097–1103 (2016). https://doi.org/10.1021/acs.nanolett.5b04331
C. Tan, X. Cao, X.J. Wu, Q. He, J. Yang et al., Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117(9), 6225–6331 (2017). https://doi.org/10.1021/acs.chemrev.6b00558
X. Huang, Z. Zeng, H. Zhang, Metal dichalcogenide nanosheets: preparation, properties and applications. Chem. Soc. Rev. 42(5), 1934–1946 (2013). https://doi.org/10.1039/c2cs35387c
M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5(4), 263–275 (2013). https://doi.org/10.1038/nchem.1589
Q. Wu, Z. Yao, X. Zhou, J. Xu, F. Cao et al., Built-in catalysis in confined nanoreactors for high-loading Li–S batteries. ACS Nano 14(3), 3365–3377 (2020). https://doi.org/10.1021/acsnano.9b09231
M. Wang, L. Fan, D. Tian, X. Wu, Y. Qiu et al., Rational design of hierarchical SnO2/1T-MoS2 nanoarray electrode for ultralong-life Li–S batteries. ACS Energy Lett. 3(7), 1627–1633 (2018). https://doi.org/10.1021/acsenergylett.8b00856
H. Lin, L. Yang, X. Jiang, G. Li, T. Zhang et al., Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium–sulfur batteries. Energy Environ. Sci. 10(6), 1476–1486 (2017). https://doi.org/10.1039/c7ee01047h
Z.L. Xu, S. Lin, N. Onofrio, L. Zhou, F. Shi et al., Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries. Nat. Commun. 9(1), 4164 (2018). https://doi.org/10.1038/s41467-018-06629-9
W. Ge, L. Wang, C. Li, C. Wang, D. Wang et al., Conductive cobalt doped niobium nitride porous spheres as an efficient polysulfide convertor for advanced lithium–sulfur batteries. J. Mater. Chem. A 8(13), 6276–6282 (2020). https://doi.org/10.1039/d0ta00800a
F. Li, M. Zhang, W. Chen, X. Cai, H. Rao et al., Vanadium nitride quantum dots/holey graphene matrix boosting adsorption and conversion reaction kinetics for high-performance lithium–sulfur batteries. ACS Appl. Mater. Interfaces 13(26), 30746–30755 (2021). https://doi.org/10.1021/acsami.1c08113
D. Xie, Y. Xu, Y. Wang, X. Pan, E. Hark et al., Poly(ionic liquid) nanovesicle-templated carbon nanocapsules functionalized with uniform iron nitride nanops as catalytic sulfur host for Li–S batteries. ACS Nano 16, 10554–10565 (2022). https://doi.org/10.1021/acsnano.2c01992
M. Zhao, H.J. Peng, Z.W. Zhang, B.Q. Li, X. Chen et al., Activating inert metallic compounds for high-rate lithium–sulfur batteries through in situ etching of extrinsic metal. Angew. Chem. Int. Ed. 58(12), 3779–3783 (2019). https://doi.org/10.1002/anie.201812062
Z. Cui, C. Zu, W. Zhou, A. Manthiram, J.B. Goodenough, Mesoporous titanium nitride-enabled highly stable lithium–sulfur batteries. Adv. Mater. 28(32), 6926–6931 (2016). https://doi.org/10.1002/adma.201601382
Z. Li, Q. He, X. Xu, Y. Zhao, X. Liu et al., A 3D nitrogen-doped graphene/TiN nanowires composite as a strong polysulfide anchor for lithium–sulfur batteries with enhanced rate performance and high areal capacity. Adv. Mater. 30(45), 1804089 (2018). https://doi.org/10.1002/adma.201804089
H. Zhang, D. Tian, Z. Zhao, X. Liu, Y.-N. Hou et al., Cobalt nitride nanops embedded in porous carbon nanosheet arrays propelling polysulfides conversion for highly stable lithium–sulfur batteries. Energy Storage Mater. 21, 210–218 (2019). https://doi.org/10.1016/j.ensm.2018.12.005
M. Zhang, L. Wang, B. Wang, B. Zhang, X. Sun et al., Phosphorus-modified Fe4N@N, P co-doped graphene as an efficient sulfur host for high-performance lithium–sulfur batteries. J. Mater. Chem. A 9(10), 6538–6546 (2021). https://doi.org/10.1039/d0ta12361g
J. Qian, Y. Xing, Y. Yang, Y. Li, K. Yu et al., Enhanced electrochemical kinetics with highly dispersed conductive and electrocatalytic mediators for lithium–sulfur batteries. Adv. Mater. 33(25), 2100810 (2021). https://doi.org/10.1002/adma.202100810
X. Li, Y. Zhang, S. Wang, Y. Liu, Y. Ding et al., Hierarchically porous C/Fe3C membranes with fast ion-transporting channels and polysulfide-trapping networks for high-areal-capacity Li–S batteries. Nano Lett. 20(1), 701–708 (2020). https://doi.org/10.1021/acs.nanolett.9b04551
S. Deng, X. Shi, Y. Zhao, C. Wang, J. Wu et al., Catalytic Mo2C decorated N-doped honeycomb-like carbon network for high stable lithium–sulfur batteries. Chem. Eng. J. 433, 133683 (2022). https://doi.org/10.1016/j.cej.2021.133683
S.-H. Moon, J.-H. Kim, J.-H. Shin, J.-S. Jang, S.-B. Kim et al., High absorption and fast polysulfides conversion of duel functional separator based on mesoporous-WC/rGO composite for lithium-sulfur batteries. J. Alloys Compd. 904, 164120 (2022). https://doi.org/10.1016/j.jallcom.2022.164120
W. Wu, X. Li, L. Liu, X. Zhu, Z. Guo et al., Uniform coverage of high-loading sulfur on cross-linked carbon nanofibers for high reaction kinetics in Li–S batteries with low electrolyte/sulfur ratio. J. Mater. Chem. A 10(3), 1433–1441 (2022). https://doi.org/10.1039/d1ta09408d
P. Zeng, C. Yuan, J. An, X. Yang, C. Cheng et al., Achieving reversible precipitation-decomposition of reactive Li2S towards high-areal-capacity lithium–sulfur batteries with a wide-temperature range. Energy Storage Mater. 44, 425–432 (2022). https://doi.org/10.1016/j.ensm.2021.10.035
G. Liu, C. Yuan, P. Zeng, C. Cheng, T. Yan et al., Bidirectionally catalytic polysulfide conversion by high-conductive metal carbides for lithium–sulfur batteries. J. Energy Chem. 67, 73–81 (2022). https://doi.org/10.1016/j.jechem.2021.09.035
B. Shen, Q. Liu, C. Ma, Y. Li, Z. Li et al., A facile synthesis of stable titanium carbide-decorated carbon nanofibers as electrocatalytic membrane for high-performance lithium–sulfur batteries. Ionics 28(3), 1173–1182 (2022). https://doi.org/10.1007/s11581-021-04399-x
J. Zheng, C. Guan, H. Li, Y. Xie, S. Li et al., VC@NCNTs: bidirectional catalyst for fast charging lithium-sulfur batteries. Chem. Eng. J. 442, 135940 (2022). https://doi.org/10.1016/j.cej.2022.135940
T. Wang, D. Luo, Y. Zhang, Z. Zhang, J. Wang et al., Hierarchically porous Ti3C2 MXene with tunable active edges and unsaturated coordination bonds for superior lithium–sulfur batteries. ACS Nano 15(12), 19457–19467 (2021). https://doi.org/10.1021/acsnano.1c06213
S. Zhang, N. Zhong, X. Zhou, M. Zhang, X. Huang et al., Comprehensive design of the high-sulfur-loading Li–S battery based on mxene nanosheets. Nano Micro Lett. 12(1), 112 (2020). https://doi.org/10.1007/s40820-020-00449-7
J. Xia, W. Chen, Y. Yang, X. Guan, T. Yang et al., In-situ growth of ultrathin sulfur microcrystal on MXene-based 3D matrice for flexible lithium–sulfur batteries. EcoMat 4(3), e12183 (2022). https://doi.org/10.1002/eom2.12183
D. Guo, F. Ming, H. Su, Y. Wu, W. Wahyudi et al., Mxene based self-assembled cathode and antifouling separator for high-rate and dendrite-inhibited Li–S battery. Nano Energy 61, 478–485 (2019). https://doi.org/10.1016/j.nanoen.2019.05.011
B. Qin, Y. Cai, X. Si, C. Li, J. Cao et al., Ultra-lightweight ion-sieving membranes for high-rate lithium sulfur batteries. Chem. Eng. J. 430, 132698 (2022). https://doi.org/10.1016/j.cej.2021.132698
L. Zheng, C.E. Ren, M. Zhaoa, J. Yanga, J.M. Giammarco et al., Flexible and conductive mxene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. 111(47), 16676–16681 (2014). https://doi.org/10.1073/pnas.1414215111
Y. He, Y. Zhao, Y. Zhang, Z. He, G. Liu et al., Building flexibly porous conductive skeleton inlaid with surface oxygen-dominated mxene as an amphiphilic nanoreactor for stable Li–S pouch batteries. Energy Storage Mater. 47, 434–444 (2022). https://doi.org/10.1016/j.ensm.2022.02.006
D. Xiong, X. Li, Z. Bai, S. Lu, Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small 14(17), 1703419 (2018). https://doi.org/10.1002/smll.201703419
J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta et al., Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48(1), 72–133 (2019). https://doi.org/10.1039/c8cs00324f
M. Okubo, A. Sugahara, S. Kajiyama, A. Yamada, Mxene as a charge storage host. Acc. Chem. Res. 51(3), 591–599 (2018). https://doi.org/10.1021/acs.accounts.7b00481
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
N.K. Chaudhari, H. Jin, B. Kim, D. San Baek, S.H. Joo et al., Mxene: an emerging two-dimensional material for future energy conversion and storage applications. J. Mater. Chem. A 5(47), 24564–24579 (2017). https://doi.org/10.1039/c7ta09094c
S. Li, J. Lin, Y. Ding, P. Xu, X. Guo et al., Defects engineering of lightweight metal-organic frameworks-based electrocatalytic membrane for high-loading lithium–sulfur batteries. ACS Nano 15, 13803–13813 (2021). https://doi.org/10.1021/acsnano.1c05585
Q. Zeng, X. Li, W. Gong, S. Guo, Y. Ouyang et al., Copolymerization of sulfur chains with vinyl functionalized metal-organic framework for accelerating redox kinetics in lithium−sulfur batteries. Adv. Energy Mater. 12(21), 2104074 (2022). https://doi.org/10.1002/aenm.202104074
Y. Wang, Z. Deng, J. Huang, H. Li, Z. Li et al., 2D Zr-Fc metal-organic frameworks with highly efficient anchoring and catalytic conversion ability towards polysulfides for advanced li–s battery. Energy Storage Mater. 36, 466–477 (2021). https://doi.org/10.1016/j.ensm.2021.01.025
H.C. Zhou, J.R. Long, O.M. Yaghi, Introduction to metal-organic frameworks. Chem. Rev. 112(2), 673–674 (2012). https://doi.org/10.1021/cr300014x
H.C. Zhou, S. Kitagawa, Metal-organic frameworks (MOFs). Chem. Soc. Rev. 43(16), 5415–5418 (2014). https://doi.org/10.1039/c4cs90059f
S. Wang, X. Wang, Imidazolium ionic liquids, imidazolylidene heterocyclic carbenes, and zeolitic imidazolate frameworks for CO2 capture and photochemical reduction. Angew. Chem. Int. Ed. 55(7), 2308–2320 (2016). https://doi.org/10.1002/anie.201507145
C.A. Trickett, A. Helal, B.A. Al-Maythalony, Z.H. Yamani, K.E. Cordova et al., The chemistry of metal-organic frameworks for CO2 capture, regeneration and conversion. Nat. Rev. Mater. 2(8), 17045 (2017). https://doi.org/10.1038/natrevmats.2017.45
A. Schoedel, Z. Ji, O.M. Yaghi, The role of metal-organic frameworks in a carbon-neutral energy cycle. Nat. Energy 1(4), 16034 (2016). https://doi.org/10.1038/nenergy.2016.34
J.R. Long, O.M. Yaghi, The pervasive chemistry of metal-organic frameworks. Chem. Soc. Rev. 38(5), 1213–1214 (2009). https://doi.org/10.1039/b903811f
M. Ding, R.W. Flaig, H.L. Jiang, O.M. Yaghi, Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chem. Soc. Rev. 48(10), 2783–2828 (2019). https://doi.org/10.1039/c8cs00829a
W. Lu, Z. Wei, Z. Gu, T. Liu, J. Park et al., Tuning the structure and function of metal-organic frameworks via linker design. Chem. Soc. Rev. 43, 5561 (2014). https://doi.org/10.1039/C4CS00003J
M. Eddaoudi, D.B. Moler, H. Li, B. Chen, T.M. Reineke, Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc. Chem. Res. 34, 318–330 (2001). https://doi.org/10.1021/ar000034b
J.S. Seo, D. Whang, H. Lee, S.I. Jun, J. Oh, Y.J. Jeon, K. Kim, A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature 404, 982–986 (2000). https://doi.org/10.1038/35010088
D. Luo, C. Li, Y. Zhang, Q. Ma, C. Ma et al., Design of quasi-MOF nanospheres as a dynamic electrocatalyst toward accelerated sulfur reduction reaction for high-performance lithium–sulfur batteries. Adv. Mater. 34(2), 2105541 (2022). https://doi.org/10.1002/adma.202105541
M. Rana, H.A. Al-Fayaad, B. Luo, T. Lin, L. Ran et al., Oriented nanoporous MOFs to mitigate polysulfides migration in lithium-sulfur batteries. Nano Energy 75, 105009 (2020). https://doi.org/10.1016/j.nanoen.202