Extending the Frequency Range of Surface Plasmon Polariton Mode with Meta-Material
Corresponding Author: Fang Liu
Nano-Micro Letters,
Vol. 9 No. 1 (2017), Article Number: 9
Abstract
The frequency range that surface plasmon polariton (SPP) mode exists is mainly limited by the metal material. With high permittivity dielectrics above metal surface, the SPP mode at high frequency has extremely large loss or can be cutoff, which limits the potential applications of SPP in the field of optical interconnection, active SPP devices and so on. To extend the frequency range of SPP mode, the surface mode guided by metal/dielectric multilayers meta-material has been studied based on the theory of electromagnetic field. It is demonstrated that surface mode not only could be supported by the meta-material but also extends the frequency to where conventional metal SPP cannot exist. Meanwhile, the characteristics of this surface mode, such as dispersion relation, frequency range, propagation loss and skin depth in meta-material and dielectrics, are also studied. It is indicated that, by varying the structure parameters, the meta-material guided SPP mode presents its advantages and flexibility over traditional metal one.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.A. Maier, H.A. Atwater, Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 98, 011101 (2005). doi:10.1063/1.1951057
- W. Yan, L.F. Shen, L.X. Ran, J.A. Kong, Surface modes at the interfaces between isotropic media and indefinite media. J. Opt. Soc. Am. A: 24(2), 530–535 (2007). doi:10.1364/JOSAA.24.000530
- D. Zhang, Q. Zhang, Y. Lu, Y. Yao, S. Li, J. Jiang, G.L. Liu, Q. Liu, Peptide functionalized nanoplasmonic sensor for explosive detection. Nano-Micro Lett. 8(1), 36–43 (2016). doi:10.1007/s40820-015-0059-z
- S. Zeng, K.V. Sreekanth, J. Shang, T. Yu, C. Chen et al., Graphene–gold metasurface architectures for ultrasensitive plasmonic biosensing. Adv. Mater. 27(40), 6163–6169 (2015). doi:10.1002/adma.201501754
- O. Takayama, D. Artigas, L. Torner, Lossless directional guiding of light in dielectric nanosheets using Dyakonov surface waves. Nat. Nanotechnol. 9(6), 419–424 (2014). doi:10.1038/nnano.2014.90
- M. Sun, T. Sun, Y. Liu, L. Zhu, F. Liu, Y. Huang, C.C. Hasnain, Integrated Plasmonic Refractive Index Sensor Based on Grating/Metal Film Resonant Structure, Proc. SPIE 9757, High Contrast Metastructures V, (March 15, 2016): SPIE, 97570Q. doi:10.1117/12.2218558
- H.T.M. Baltar, K. Drozdowicz-Tomsia, E.M. Goldys, Plasmonics Principles and Applications (K. Y. Kim, Eds), InTech, Rijeka, pp. 136–155 (2012)
- J.T. Kim, J.J. Ju, S. Park, M. Kim, S.K. Park, M.-H. Lee, Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides. Opt. Express 16(17), 13133–13138 (2008). doi:10.1364/OE.16.013133
- Y. Li, H. Zhang, T. Mei, N. Zhu, D.H. Zhang, J. Teng, Effect of dielectric cladding on active plasmonic device based on InGaAsP multiple quantum wells. Opt. Express 22(21), 25599–25607 (2014). doi:10.1364/OE.22.025599
- P. Shekhar, J. Atkinson, Z. Jacob, Hyperbolic metamaterials: fundamentals and applications. Nano Convergence 1(1), 14 (2014). doi:10.1186/s40580-014-0014-6
- G. Ghosh, Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals. Opt. Commun. 163(1–3), 95–102 (1999). doi:10.1016/S0030-4018(99)00091-7
- S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007), pp. 5–34
- H.U. Yang, J. D’Archangel, M.L. Sundheimer, E. Tucker, G.D. Boreman, M.B. Raschke, Optical dielectric function of silver. Phys. Rev. B 91(23), 235137 (2015). doi:10.1103/PhysRevB.91.235137
- S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, M. Hu, Surface polariton cherenkov light radiation source. Phys. Rev. Lett. 109(15), 153902 (2012). doi:10.1103/PhysRevLett.109.153902
- P.A. Belov, Y. Hao, Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime. Phys. Rev. B 73(11), 113110 (2006). doi:10.1103/PhysRevB.73.113110
- B. Wood, J.B. Pendry, D.P. Tsai, Directed subwavelength imaging using a layered metal-dielectric system. Phys. Rev. B 74(11), 115116 (2006). doi:10.1103/PhysRevB.74.115116
- A.V. Zayats, I.I. Smolyaninov, A.A. Maradudin, Nano-optics of surface plasmon polaritons. Phys. Rep. 408(3–4), 131–314 (2005). doi:10.1016/j.physrep.2004.11.001
- D.E. Aspnes, A.A. Studna, Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys. Rev. B 27(2), 985–1009 (1983). doi:10.1103/PhysRevB.27.985
- F.J.G. de Abajo, Optical excitations in electron microscopy. Rev. Mod. Phys. 82(1), 209–275 (2010). doi:10.1103/RevModPhys.82.209
- S. Liu, M. Hu, Y. Zhang, W. Liu, P. Zhang, J. Zhou, Theoretical investigation of a tunable free-electron light source. Phys. Rev. E 83(6), 066609 (2011). doi:10.1103/PhysRevE.83.066609
- J. Zhou, M. Hu, Y. Zhang, P. Zhang, W. Liu, S. Liu, Numerical analysis of electron-induced surface plasmon excitation using the FDTD method. J. Opt. 13(3), 035003 (2011). doi:10.1088/2040-8978/13/3/035003
- J.M. Pitarke, V.M. Silkin, E.V. Chulkov, P.M. Echenique, Theory of surface plasmons and surface-plasmon polaritons. Rep. Prog. Phys. 70(1), 1–87 (2006). doi:10.1088/0034-4885/70/1/R01
- W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824–830 (2003). doi:10.1038/nature01937
References
S.A. Maier, H.A. Atwater, Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 98, 011101 (2005). doi:10.1063/1.1951057
W. Yan, L.F. Shen, L.X. Ran, J.A. Kong, Surface modes at the interfaces between isotropic media and indefinite media. J. Opt. Soc. Am. A: 24(2), 530–535 (2007). doi:10.1364/JOSAA.24.000530
D. Zhang, Q. Zhang, Y. Lu, Y. Yao, S. Li, J. Jiang, G.L. Liu, Q. Liu, Peptide functionalized nanoplasmonic sensor for explosive detection. Nano-Micro Lett. 8(1), 36–43 (2016). doi:10.1007/s40820-015-0059-z
S. Zeng, K.V. Sreekanth, J. Shang, T. Yu, C. Chen et al., Graphene–gold metasurface architectures for ultrasensitive plasmonic biosensing. Adv. Mater. 27(40), 6163–6169 (2015). doi:10.1002/adma.201501754
O. Takayama, D. Artigas, L. Torner, Lossless directional guiding of light in dielectric nanosheets using Dyakonov surface waves. Nat. Nanotechnol. 9(6), 419–424 (2014). doi:10.1038/nnano.2014.90
M. Sun, T. Sun, Y. Liu, L. Zhu, F. Liu, Y. Huang, C.C. Hasnain, Integrated Plasmonic Refractive Index Sensor Based on Grating/Metal Film Resonant Structure, Proc. SPIE 9757, High Contrast Metastructures V, (March 15, 2016): SPIE, 97570Q. doi:10.1117/12.2218558
H.T.M. Baltar, K. Drozdowicz-Tomsia, E.M. Goldys, Plasmonics Principles and Applications (K. Y. Kim, Eds), InTech, Rijeka, pp. 136–155 (2012)
J.T. Kim, J.J. Ju, S. Park, M. Kim, S.K. Park, M.-H. Lee, Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides. Opt. Express 16(17), 13133–13138 (2008). doi:10.1364/OE.16.013133
Y. Li, H. Zhang, T. Mei, N. Zhu, D.H. Zhang, J. Teng, Effect of dielectric cladding on active plasmonic device based on InGaAsP multiple quantum wells. Opt. Express 22(21), 25599–25607 (2014). doi:10.1364/OE.22.025599
P. Shekhar, J. Atkinson, Z. Jacob, Hyperbolic metamaterials: fundamentals and applications. Nano Convergence 1(1), 14 (2014). doi:10.1186/s40580-014-0014-6
G. Ghosh, Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals. Opt. Commun. 163(1–3), 95–102 (1999). doi:10.1016/S0030-4018(99)00091-7
S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007), pp. 5–34
H.U. Yang, J. D’Archangel, M.L. Sundheimer, E. Tucker, G.D. Boreman, M.B. Raschke, Optical dielectric function of silver. Phys. Rev. B 91(23), 235137 (2015). doi:10.1103/PhysRevB.91.235137
S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, M. Hu, Surface polariton cherenkov light radiation source. Phys. Rev. Lett. 109(15), 153902 (2012). doi:10.1103/PhysRevLett.109.153902
P.A. Belov, Y. Hao, Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime. Phys. Rev. B 73(11), 113110 (2006). doi:10.1103/PhysRevB.73.113110
B. Wood, J.B. Pendry, D.P. Tsai, Directed subwavelength imaging using a layered metal-dielectric system. Phys. Rev. B 74(11), 115116 (2006). doi:10.1103/PhysRevB.74.115116
A.V. Zayats, I.I. Smolyaninov, A.A. Maradudin, Nano-optics of surface plasmon polaritons. Phys. Rep. 408(3–4), 131–314 (2005). doi:10.1016/j.physrep.2004.11.001
D.E. Aspnes, A.A. Studna, Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys. Rev. B 27(2), 985–1009 (1983). doi:10.1103/PhysRevB.27.985
F.J.G. de Abajo, Optical excitations in electron microscopy. Rev. Mod. Phys. 82(1), 209–275 (2010). doi:10.1103/RevModPhys.82.209
S. Liu, M. Hu, Y. Zhang, W. Liu, P. Zhang, J. Zhou, Theoretical investigation of a tunable free-electron light source. Phys. Rev. E 83(6), 066609 (2011). doi:10.1103/PhysRevE.83.066609
J. Zhou, M. Hu, Y. Zhang, P. Zhang, W. Liu, S. Liu, Numerical analysis of electron-induced surface plasmon excitation using the FDTD method. J. Opt. 13(3), 035003 (2011). doi:10.1088/2040-8978/13/3/035003
J.M. Pitarke, V.M. Silkin, E.V. Chulkov, P.M. Echenique, Theory of surface plasmons and surface-plasmon polaritons. Rep. Prog. Phys. 70(1), 1–87 (2006). doi:10.1088/0034-4885/70/1/R01
W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824–830 (2003). doi:10.1038/nature01937