Engineering Mesoporous Structure in Amorphous Carbon Boosts Potassium Storage with High Initial Coulombic Efficiency
Corresponding Author: Liqiang Mai
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 148
Abstract
Amorphous carbon shows great potential as an anode material for high-performance potassium-ion batteries; however, its abundant defects or micropores generally capture K ions, thus resulting in high irreversible capacity with low initial Coulombic efficiency (ICE) and limited practical application. Herein, pore engineering via a facile self-etching strategy is applied to achieve mesoporous carbon (meso-C) nanowires with interconnected framework. Abundant and evenly distributed mesopores could provide short K+ pathways for its rapid diffusion. Compared to microporous carbon with highly disordered structure, the meso-C with Zn-catalyzed short-range ordered structure enables more K+ to reversibly intercalate into the graphitic layers. Consequently, the meso-C shows an increased capacity by ~ 100 mAh g−1 at 0.1 A g−1, and the capacity retention is 70.7% after 1000 cycles at 1 A g−1. Multiple in/ex situ characterizations reveal the reversible structural changes during the charging/discharging process. Particularly, benefiting from the mesoporous structure with reduced specific surface area by 31.5 times and less defects, the meso-C generates less irreversible capacity with high ICE up to 76.7%, one of the best reported values so far. This work provides a new perspective that mesopores engineering can effectively accelerate K+ diffusion and enhance K+ adsorption/intercalation storage.
Highlights:
1 A facile self-etching strategy was used to obtain mesoporous carbon (meso-C) nanowires with zinc-catalyzed short-range ordered structure.
2 Meso-C anode showed high initial Coulombic efficiency (76.7%) and excellent cycling stability (1000 cycles) for potassium-ion batteries.
3 In/ex situ characterizations revealed the reversible structural changes, and the kinetic analyses revealed the rapid K+ diffusion in electrode.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W.C. Zhang, Y.J. Liu, Z.P. Guo, Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci. Adv. 5(5), eaav7412 (2019). https://doi.org/10.1126/sciadv.aav7412
- Y.-H. Zhu, X. Yang, D. Bao, X.-F. Bie, T. Sun et al., High-energy-density flexible potassium-ion battery based on patterned electrodes. Joule 2(4), 736–746 (2018). https://doi.org/10.1016/j.joule.2018.01.010
- X.P. Wang, X.M. Xu, C.J. Niu, J.S. Meng, M. Huang et al., Earth abundant Fe/Mn-based layered oxide interconnected nanowires for advanced K-ion full batteries. Nano Lett. 17(1), 544–550 (2017). https://doi.org/10.1021/acs.nanolett.6b04611
- X.Y. Wu, D.P. Leonard, X.L. Ji, Emerging non-aqueous potassium-ion batteries: challenges and opportunities. Chem. Mater. 29(12), 5031–5042 (2017). https://doi.org/10.1021/acs.chemmater.7b01764
- A. Eftekhari, Z.L. Jian, X.L. Ji, Potassium secondary batteries. ACS Appl. Mater. Interfaces 9(5), 4404–4419 (2017). https://doi.org/10.1021/acsami.6b07989
- M. Okoshi, Y. Yamada, S. Komaba, A. Yamada, H. Nakai, Theoretical analysis of interactions between potassium ions and organic electrolyte solvents: a comparison with lithium, sodium, and magnesium ions. J. Electrochem. Soc. 164(2), A54–A60 (2017). https://doi.org/10.1149/2.0211702jes
- K.S. Huang, Z. Xing, L.C. Wang, X. Wu, W. Zhao et al., Direct synthesis of 3D hierarchically porous carbon/Sn composites via in situ generated NaCl crystals as templates for potassium-ion batteries anode. J. Mater. Chem. A 6(2), 434–442 (2018). https://doi.org/10.1039/c7ta08171e
- J. Zheng, Y. Yang, X.L. Fan, G.B. Ji, X. Ji et al., Extremely stable antimony-carbon composite anodes for potassium-ion batteries. Energy Environ. Sci. 12(2), 615–623 (2019). https://doi.org/10.1039/c8ee02836b
- W.C. Zhang, J.F. Mao, S. Li, Z.X. Chen, Z.P. Guo, Phosphorus-based alloy materials for advanced potassium-ion battery anode. J. Am. Chem. Soc. 139(9), 3316–3319 (2017). https://doi.org/10.1021/jacs.6b12185
- S.K. Chong, L. Sun, C.Y. Shu, S.W. Guo, Y.N. Liu, W. Wang, H.K. Liu, Chemical bonding boosts nano-rose-like MoS2 anchored on reduced graphene oxide for superior potassium-ion storage. Nano Energy 63, 103868 (2019). https://doi.org/10.1016/j.nanoen.2019.103868
- Z.W. Liu, K. Han, P. Li, W. Wang, D.L. He et al., Tuning metallic Co0.85Se quantum dots/carbon hollow polyhedrons with tertiary hierarchical structure for high-performance potassium ion batteries. Nano-Micro Lett. 11, 96 (2019). https://doi.org/10.1007/s40820-019-0326-5
- Y.S. Liao, C.M. Chen, D.G. Yin, Y. Cai, R.S. He, M. Zhang, Improved Na+/K+ storage properties of ReSe2-carbon nanofibers based on graphene modifications. Nano-Micro Lett. 11, 22 (2019). https://doi.org/10.1007/s40820-019-0248-2
- W. Wang, B. Jiang, C. Qian, F. Lv, J.R. Feng et al., Pistachio-shuck-like MoSe2/C core/shell nanostructures for high-performance potassium-ion storage. Adv. Mater. 30(30), 1801812 (2018). https://doi.org/10.1002/adma.201801812
- J. Zhao, X.X. Zou, Y.J. Zhu, Y.H. Xu, C.S. Wang, Electrochemical intercalation of potassium into graphite. Adv. Funct. Mater. 26(44), 8103–8110 (2016). https://doi.org/10.1002/adfm.201602248
- Z.L. Jian, W. Luo, X.L. Ji, Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 137(36), 11566–11569 (2015). https://doi.org/10.1021/jacs.5b06809
- Z.L. Jian, S. Hwang, Z.F. Li, A.S. Hernandez, X.F. Wang et al., Hard-soft composite carbon as a long-cycling and high-rate anode for potassium-ion batteries. Adv. Funct. Mater. 27(26), 1700324 (2017). https://doi.org/10.1002/adfm.201700324
- X. Wu, Y.L. Chen, Z. Xing, C.W.K. Lam, S.-S. Pang, W. Zhang, Z.C. Ju, Advanced carbon-based anodes for potassium-ion batteries. Adv. Energy Mater. 9(21), 1900343 (2019). https://doi.org/10.1002/aenm.201900343
- W.L. Zhang, J. Ming, W.L. Zhao, X.C. Dong, M.N. Hedhili, P.M.F.J. Costa, H.N. Alshareef, Graphitic nanocarbon with engineered defects for high-performance potassium-ion battery anodes. Adv. Funct. Mater. 29(35), 1903641 (2019). https://doi.org/10.1002/adfm.201903641
- Y. Xu, C.L. Zhang, M. Zhou, Q. Fu, C.X. Zhao, M.H. Wu, Y. Lei, Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 9(1), 1720 (2018). https://doi.org/10.1038/s41467-018-04190-z
- J. Ding, H.L. Zhang, H. Zhou, J. Feng, X.R. Zheng et al., Sulfur-grafted hollow carbon spheres for potassium-ion battery anodes. Adv. Mater. 31(30), 1900429 (2019). https://doi.org/10.1002/adma.201900429
- G.Y. Ma, K.S. Huang, J.-S. Ma, Z.C. Ju, Z. Xing, Q.-C. Zhuang, Phosphorus and oxygen dual-doped graphene as superior anode material for room-temperature potassium-ion batteries. J. Mater. Chem. A 5(17), 7854–7861 (2017). https://doi.org/10.1039/c7ta01108c
- R.Z. Hu, Y.P. Ouyang, T. Liang, H. Wang, J. Liu et al., Stabilizing the nanostructure of SnO2 anodes by transition metals: a route to achieve high initial coulombic efficiency and stable capacities for lithium storage. Adv. Mater. 29(13), 1605006 (2017). https://doi.org/10.1002/adma.201605006
- E. Olsson, G.L. Chai, M. Dove, Q. Cai, Adsorption and migration of alkali metals (Li, Na, and K) on pristine and defective graphene surfaces. Nanoscale 11(12), 5274–5284 (2019). https://doi.org/10.1039/c8nr10383f
- L.F. Xiao, H.Y. Lu, Y.J. Fang, M.L. Sushko, Y.L. Cao et al., Low-defect and low-porosity hard carbon with high coulombic efficiency and high capacity for practical sodium ion battery anode. Adv. Energy Mater. 8(20), 1703238 (2018). https://doi.org/10.1002/aenm.201703238
- C. Bommier, W. Luo, W.-Y. Gao, A. Greaney, S.Q. Ma, X.L. Ji, Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements. Carbon 76, 165–174 (2014). https://doi.org/10.1016/j.carbon.2014.04.064
- E. Olsson, J. Cottom, H. Au, Z.Y. Guo, A.C.S. Jensen et al., Elucidating the effect of planar graphitic layers and cylindrical pores on the storage and diffusion of Li, Na, and K in carbon materials. Adv. Funct. Mater. 30(17), 1908209 (2020). https://doi.org/10.1002/adfm.201908209
- Y. Qian, S. Jiang, Y. Li, Z. Yi, J. Zhou et al., Water-induced growth of a highly oriented mesoporous graphitic carbon nanospring for fast potassium-ion adsorption/intercalation storage. Angew. Chem. Int. Ed. 131(50), 18276–18283 (2019). https://doi.org/10.1002/anie.201912287
- W. Wang, J.H. Zhou, Z.P. Wang, L.Y. Zhao, P.H. Li et al., Short-range order in mesoporous carbon boosts potassium-ion battery performance. Adv. Energy Mater. 8(5), 1701648 (2018). https://doi.org/10.1002/aenm.201701648
- U.K. Fatema, C. Tomizawa, M. Harada, Y. Gotoh, Iodine-aided fabrication of hollow carbon fibers from solid poly(vinyl alcohol) fibers. Carbon 49(6), 2158–2161 (2011). https://doi.org/10.1016/j.carbon.2011.01.048
- Y. Tsuchiya, K. Sumi, Thermal decomposition products of poly(vinyl alcohol). J. Polym. Sci. A 7(11), 3151–3158 (1969). https://doi.org/10.1002/pol.1969.150071111
- W. Li, F. Zhang, Y.Q. Dou, Z.X. Wu, H.J. Liu et al., A self-template strategy for the synthesis of mesoporous carbon nanofibers as advanced supercapacitor electrodes. Adv. Energy Mater. 1(3), 381–386 (2011). https://doi.org/10.1002/aenm.201000096
- B. Liu, H. Shioyama, T. Akita, Q. Xu, Metal–organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 130(16), 5390–5391 (2008). https://doi.org/10.1021/ja7106146
- S.T. Liu, J.S. Zhou, H.H. Song, 2D Zn-hexamine coordination frameworks and their derived N-rich porous carbon nanosheets for ultrafast sodium storage. Adv. Energy Mater. 8(22), 1800569 (2018). https://doi.org/10.1002/aenm.201800569
- X.-F. Jiang, R.Q. Li, M. Hu, Z. Hu, D. Golberg, Y. Bando, X.-B. Wang, Zinc-tiered synthesis of 3D graphene for monolithic electrodes. Adv. Mater. 31(25), 1901186 (2019). https://doi.org/10.1002/adma.201901186
- E.F. Quezada, E.D.L. Llave, E. Halac, M. Jobbágy, F.A. Viva, M.M. Bruno, H.R. Corti, Bimodal mesoporous hard carbons from stabilized resorcinol-formaldehyde resin and silica template with enhanced adsorption capacity. Chem. Eng. J. 360, 631–644 (2019). https://doi.org/10.1016/j.cej.2018.11.235
- H.S. Hou, X.Q. Qiu, W.F. Wei, Y. Zhang, X.B. Ji, Carbon anode materials for advanced sodium-ion batteries. Adv. Energy Mater. 7(24), 1602898 (2017). https://doi.org/10.1002/aenm.201602898
- X.W. Dou, I. Hasa, D. Saurel, C. Vaalma, L.M. Wu et al., Hard carbons for sodium-ion batteries: structure, analysis, sustainability, and electrochemistry. Mater. Today 23, 87–104 (2019). https://doi.org/10.1016/j.mattod.2018.12.040
- J.L. Liu, Y.Q. Zhang, L. Zhang, F.X. Xie, A. Vasileff, S.-Z. Qiao, Graphitic carbon nitride (g-C3N4)-derived N-rich graphene with tunable interlayer distance as a high-rate anode for sodium-ion batteries. Adv. Mater. 31(24), 1901261 (2019). https://doi.org/10.1002/adma.201901261
- X.D. Hu, X.H. Sun, S.J. Yoo, B. Evanko, F.R. Fan et al., Nitrogen-rich hierarchically porous carbon as a high-rate anode material with ultra-stable cyclability and high capacity for capacitive sodium-ion batteries. Nano Energy 56, 828–839 (2019). https://doi.org/10.1016/j.nanoen.2018.11.081
- W. Luo, J.Y. Wan, B. Ozdemir, W.Z. Bao, Y.N. Chen et al., Potassium ion batteries with graphitic materials. Nano Lett. 15(11), 7671–7677 (2015). https://doi.org/10.1021/acs.nanolett.5b03667
- Y.S. Wang, Z.P. Wang, Y.J. Chen, H. Zhang, M. Yousaf et al., Hyperporous sponge interconnected by hierarchical carbon nanotubes as a high-performance potassium-ion battery anode. Adv. Mater. 30(32), 1802074 (2018). https://doi.org/10.1002/adma.201802074
- X.X. Zhao, P.X. Xiong, J.F. Meng, Y.Q. Liang, J.W. Wang, Y.H. Xu, High rate and long cycle life porous carbon nanofiber paper anodes for potassium-ion batteries. J. Mater. Chem. A 5(36), 19237–19244 (2017). https://doi.org/10.1039/c7ta04264g
- J.L. Yang, Z.C. Ju, Y. Jiang, Z. Xing, B.J. Xi, J.K. Feng, S.L. Xiong, Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 30(4), 1700104 (2018). https://doi.org/10.1002/adma.201700104
- L. Liu, Y. Chen, Y.H. Xie, P. Tao, Q.Y. Li, C.L. Yan, Understanding of the ultrastable K-ion storage of carbonaceous anode. Adv. Funct. Mater. 28(29), 1801989 (2018). https://doi.org/10.1002/adfm.201801989
- T. Brezesinski, J. Wang, S.H. Tolbert, B. Dunn, Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 9(2), 146–151 (2010). https://doi.org/10.1038/nmat2612
- J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 111(40), 14925–14931 (2007). https://doi.org/10.1021/jp074464w
References
W.C. Zhang, Y.J. Liu, Z.P. Guo, Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci. Adv. 5(5), eaav7412 (2019). https://doi.org/10.1126/sciadv.aav7412
Y.-H. Zhu, X. Yang, D. Bao, X.-F. Bie, T. Sun et al., High-energy-density flexible potassium-ion battery based on patterned electrodes. Joule 2(4), 736–746 (2018). https://doi.org/10.1016/j.joule.2018.01.010
X.P. Wang, X.M. Xu, C.J. Niu, J.S. Meng, M. Huang et al., Earth abundant Fe/Mn-based layered oxide interconnected nanowires for advanced K-ion full batteries. Nano Lett. 17(1), 544–550 (2017). https://doi.org/10.1021/acs.nanolett.6b04611
X.Y. Wu, D.P. Leonard, X.L. Ji, Emerging non-aqueous potassium-ion batteries: challenges and opportunities. Chem. Mater. 29(12), 5031–5042 (2017). https://doi.org/10.1021/acs.chemmater.7b01764
A. Eftekhari, Z.L. Jian, X.L. Ji, Potassium secondary batteries. ACS Appl. Mater. Interfaces 9(5), 4404–4419 (2017). https://doi.org/10.1021/acsami.6b07989
M. Okoshi, Y. Yamada, S. Komaba, A. Yamada, H. Nakai, Theoretical analysis of interactions between potassium ions and organic electrolyte solvents: a comparison with lithium, sodium, and magnesium ions. J. Electrochem. Soc. 164(2), A54–A60 (2017). https://doi.org/10.1149/2.0211702jes
K.S. Huang, Z. Xing, L.C. Wang, X. Wu, W. Zhao et al., Direct synthesis of 3D hierarchically porous carbon/Sn composites via in situ generated NaCl crystals as templates for potassium-ion batteries anode. J. Mater. Chem. A 6(2), 434–442 (2018). https://doi.org/10.1039/c7ta08171e
J. Zheng, Y. Yang, X.L. Fan, G.B. Ji, X. Ji et al., Extremely stable antimony-carbon composite anodes for potassium-ion batteries. Energy Environ. Sci. 12(2), 615–623 (2019). https://doi.org/10.1039/c8ee02836b
W.C. Zhang, J.F. Mao, S. Li, Z.X. Chen, Z.P. Guo, Phosphorus-based alloy materials for advanced potassium-ion battery anode. J. Am. Chem. Soc. 139(9), 3316–3319 (2017). https://doi.org/10.1021/jacs.6b12185
S.K. Chong, L. Sun, C.Y. Shu, S.W. Guo, Y.N. Liu, W. Wang, H.K. Liu, Chemical bonding boosts nano-rose-like MoS2 anchored on reduced graphene oxide for superior potassium-ion storage. Nano Energy 63, 103868 (2019). https://doi.org/10.1016/j.nanoen.2019.103868
Z.W. Liu, K. Han, P. Li, W. Wang, D.L. He et al., Tuning metallic Co0.85Se quantum dots/carbon hollow polyhedrons with tertiary hierarchical structure for high-performance potassium ion batteries. Nano-Micro Lett. 11, 96 (2019). https://doi.org/10.1007/s40820-019-0326-5
Y.S. Liao, C.M. Chen, D.G. Yin, Y. Cai, R.S. He, M. Zhang, Improved Na+/K+ storage properties of ReSe2-carbon nanofibers based on graphene modifications. Nano-Micro Lett. 11, 22 (2019). https://doi.org/10.1007/s40820-019-0248-2
W. Wang, B. Jiang, C. Qian, F. Lv, J.R. Feng et al., Pistachio-shuck-like MoSe2/C core/shell nanostructures for high-performance potassium-ion storage. Adv. Mater. 30(30), 1801812 (2018). https://doi.org/10.1002/adma.201801812
J. Zhao, X.X. Zou, Y.J. Zhu, Y.H. Xu, C.S. Wang, Electrochemical intercalation of potassium into graphite. Adv. Funct. Mater. 26(44), 8103–8110 (2016). https://doi.org/10.1002/adfm.201602248
Z.L. Jian, W. Luo, X.L. Ji, Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 137(36), 11566–11569 (2015). https://doi.org/10.1021/jacs.5b06809
Z.L. Jian, S. Hwang, Z.F. Li, A.S. Hernandez, X.F. Wang et al., Hard-soft composite carbon as a long-cycling and high-rate anode for potassium-ion batteries. Adv. Funct. Mater. 27(26), 1700324 (2017). https://doi.org/10.1002/adfm.201700324
X. Wu, Y.L. Chen, Z. Xing, C.W.K. Lam, S.-S. Pang, W. Zhang, Z.C. Ju, Advanced carbon-based anodes for potassium-ion batteries. Adv. Energy Mater. 9(21), 1900343 (2019). https://doi.org/10.1002/aenm.201900343
W.L. Zhang, J. Ming, W.L. Zhao, X.C. Dong, M.N. Hedhili, P.M.F.J. Costa, H.N. Alshareef, Graphitic nanocarbon with engineered defects for high-performance potassium-ion battery anodes. Adv. Funct. Mater. 29(35), 1903641 (2019). https://doi.org/10.1002/adfm.201903641
Y. Xu, C.L. Zhang, M. Zhou, Q. Fu, C.X. Zhao, M.H. Wu, Y. Lei, Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 9(1), 1720 (2018). https://doi.org/10.1038/s41467-018-04190-z
J. Ding, H.L. Zhang, H. Zhou, J. Feng, X.R. Zheng et al., Sulfur-grafted hollow carbon spheres for potassium-ion battery anodes. Adv. Mater. 31(30), 1900429 (2019). https://doi.org/10.1002/adma.201900429
G.Y. Ma, K.S. Huang, J.-S. Ma, Z.C. Ju, Z. Xing, Q.-C. Zhuang, Phosphorus and oxygen dual-doped graphene as superior anode material for room-temperature potassium-ion batteries. J. Mater. Chem. A 5(17), 7854–7861 (2017). https://doi.org/10.1039/c7ta01108c
R.Z. Hu, Y.P. Ouyang, T. Liang, H. Wang, J. Liu et al., Stabilizing the nanostructure of SnO2 anodes by transition metals: a route to achieve high initial coulombic efficiency and stable capacities for lithium storage. Adv. Mater. 29(13), 1605006 (2017). https://doi.org/10.1002/adma.201605006
E. Olsson, G.L. Chai, M. Dove, Q. Cai, Adsorption and migration of alkali metals (Li, Na, and K) on pristine and defective graphene surfaces. Nanoscale 11(12), 5274–5284 (2019). https://doi.org/10.1039/c8nr10383f
L.F. Xiao, H.Y. Lu, Y.J. Fang, M.L. Sushko, Y.L. Cao et al., Low-defect and low-porosity hard carbon with high coulombic efficiency and high capacity for practical sodium ion battery anode. Adv. Energy Mater. 8(20), 1703238 (2018). https://doi.org/10.1002/aenm.201703238
C. Bommier, W. Luo, W.-Y. Gao, A. Greaney, S.Q. Ma, X.L. Ji, Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements. Carbon 76, 165–174 (2014). https://doi.org/10.1016/j.carbon.2014.04.064
E. Olsson, J. Cottom, H. Au, Z.Y. Guo, A.C.S. Jensen et al., Elucidating the effect of planar graphitic layers and cylindrical pores on the storage and diffusion of Li, Na, and K in carbon materials. Adv. Funct. Mater. 30(17), 1908209 (2020). https://doi.org/10.1002/adfm.201908209
Y. Qian, S. Jiang, Y. Li, Z. Yi, J. Zhou et al., Water-induced growth of a highly oriented mesoporous graphitic carbon nanospring for fast potassium-ion adsorption/intercalation storage. Angew. Chem. Int. Ed. 131(50), 18276–18283 (2019). https://doi.org/10.1002/anie.201912287
W. Wang, J.H. Zhou, Z.P. Wang, L.Y. Zhao, P.H. Li et al., Short-range order in mesoporous carbon boosts potassium-ion battery performance. Adv. Energy Mater. 8(5), 1701648 (2018). https://doi.org/10.1002/aenm.201701648
U.K. Fatema, C. Tomizawa, M. Harada, Y. Gotoh, Iodine-aided fabrication of hollow carbon fibers from solid poly(vinyl alcohol) fibers. Carbon 49(6), 2158–2161 (2011). https://doi.org/10.1016/j.carbon.2011.01.048
Y. Tsuchiya, K. Sumi, Thermal decomposition products of poly(vinyl alcohol). J. Polym. Sci. A 7(11), 3151–3158 (1969). https://doi.org/10.1002/pol.1969.150071111
W. Li, F. Zhang, Y.Q. Dou, Z.X. Wu, H.J. Liu et al., A self-template strategy for the synthesis of mesoporous carbon nanofibers as advanced supercapacitor electrodes. Adv. Energy Mater. 1(3), 381–386 (2011). https://doi.org/10.1002/aenm.201000096
B. Liu, H. Shioyama, T. Akita, Q. Xu, Metal–organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 130(16), 5390–5391 (2008). https://doi.org/10.1021/ja7106146
S.T. Liu, J.S. Zhou, H.H. Song, 2D Zn-hexamine coordination frameworks and their derived N-rich porous carbon nanosheets for ultrafast sodium storage. Adv. Energy Mater. 8(22), 1800569 (2018). https://doi.org/10.1002/aenm.201800569
X.-F. Jiang, R.Q. Li, M. Hu, Z. Hu, D. Golberg, Y. Bando, X.-B. Wang, Zinc-tiered synthesis of 3D graphene for monolithic electrodes. Adv. Mater. 31(25), 1901186 (2019). https://doi.org/10.1002/adma.201901186
E.F. Quezada, E.D.L. Llave, E. Halac, M. Jobbágy, F.A. Viva, M.M. Bruno, H.R. Corti, Bimodal mesoporous hard carbons from stabilized resorcinol-formaldehyde resin and silica template with enhanced adsorption capacity. Chem. Eng. J. 360, 631–644 (2019). https://doi.org/10.1016/j.cej.2018.11.235
H.S. Hou, X.Q. Qiu, W.F. Wei, Y. Zhang, X.B. Ji, Carbon anode materials for advanced sodium-ion batteries. Adv. Energy Mater. 7(24), 1602898 (2017). https://doi.org/10.1002/aenm.201602898
X.W. Dou, I. Hasa, D. Saurel, C. Vaalma, L.M. Wu et al., Hard carbons for sodium-ion batteries: structure, analysis, sustainability, and electrochemistry. Mater. Today 23, 87–104 (2019). https://doi.org/10.1016/j.mattod.2018.12.040
J.L. Liu, Y.Q. Zhang, L. Zhang, F.X. Xie, A. Vasileff, S.-Z. Qiao, Graphitic carbon nitride (g-C3N4)-derived N-rich graphene with tunable interlayer distance as a high-rate anode for sodium-ion batteries. Adv. Mater. 31(24), 1901261 (2019). https://doi.org/10.1002/adma.201901261
X.D. Hu, X.H. Sun, S.J. Yoo, B. Evanko, F.R. Fan et al., Nitrogen-rich hierarchically porous carbon as a high-rate anode material with ultra-stable cyclability and high capacity for capacitive sodium-ion batteries. Nano Energy 56, 828–839 (2019). https://doi.org/10.1016/j.nanoen.2018.11.081
W. Luo, J.Y. Wan, B. Ozdemir, W.Z. Bao, Y.N. Chen et al., Potassium ion batteries with graphitic materials. Nano Lett. 15(11), 7671–7677 (2015). https://doi.org/10.1021/acs.nanolett.5b03667
Y.S. Wang, Z.P. Wang, Y.J. Chen, H. Zhang, M. Yousaf et al., Hyperporous sponge interconnected by hierarchical carbon nanotubes as a high-performance potassium-ion battery anode. Adv. Mater. 30(32), 1802074 (2018). https://doi.org/10.1002/adma.201802074
X.X. Zhao, P.X. Xiong, J.F. Meng, Y.Q. Liang, J.W. Wang, Y.H. Xu, High rate and long cycle life porous carbon nanofiber paper anodes for potassium-ion batteries. J. Mater. Chem. A 5(36), 19237–19244 (2017). https://doi.org/10.1039/c7ta04264g
J.L. Yang, Z.C. Ju, Y. Jiang, Z. Xing, B.J. Xi, J.K. Feng, S.L. Xiong, Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 30(4), 1700104 (2018). https://doi.org/10.1002/adma.201700104
L. Liu, Y. Chen, Y.H. Xie, P. Tao, Q.Y. Li, C.L. Yan, Understanding of the ultrastable K-ion storage of carbonaceous anode. Adv. Funct. Mater. 28(29), 1801989 (2018). https://doi.org/10.1002/adfm.201801989
T. Brezesinski, J. Wang, S.H. Tolbert, B. Dunn, Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 9(2), 146–151 (2010). https://doi.org/10.1038/nmat2612
J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 111(40), 14925–14931 (2007). https://doi.org/10.1021/jp074464w