Bioresource Upgrade for Sustainable Energy, Environment, and Biomedicine
Corresponding Author: Xingcai Zhang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 35
Abstract
We conceptualize bioresource upgrade for sustainable energy, environment, and biomedicine with a focus on circular economy, sustainability, and carbon neutrality using high availability and low utilization biomass (HALUB). We acme energy-efficient technologies for sustainable energy and material recovery and applications. The technologies of thermochemical conversion (TC), biochemical conversion (BC), electrochemical conversion (EC), and photochemical conversion (PTC) are summarized for HALUB. Microalgal biomass could contribute to a biofuel HHV of 35.72 MJ Kg−1 and total benefit of 749 $/ton biomass via TC. Specific surface area of biochar reached 3000 m2 g−1 via pyrolytic carbonization of waste bean dregs. Lignocellulosic biomass can be effectively converted into bio-stimulants and biofertilizers via BC with a high conversion efficiency of more than 90%. Besides, lignocellulosic biomass can contribute to a current density of 672 mA m−2 via EC. Bioresource can be 100% selectively synthesized via electrocatalysis through EC and PTC. Machine learning, techno-economic analysis, and life cycle analysis are essential to various upgrading approaches of HALUB. Sustainable biomaterials, sustainable living materials and technologies for biomedical and multifunctional applications like nano-catalysis, microfluidic and micro/nanomotors beyond are also highlighted. New techniques and systems for the complete conversion and utilization of HALUB for new energy and materials are further discussed.
Highlights:
1 Machine learning, techno-economic analysis, and life cycle analysis are imperative for various conversion approaches of high availability and low utilization biomass (HALUB).
2 The conversion of HALUB to sustainable energy and materials has a positive consequence on mitigating climate change and building a green future.
3 Microfluidic and micro/nanomotors-powered sustainable materials are of high potential for advanced applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Zheng, S. Suh, Strategies to reduce the global carbon footprint of plastics. Nat. Clim. Change. 9(5), 374–378 (2019). https://doi.org/10.1038/s41558-019-0459-z
- Y. Zhu, C. Romain, C.K. Williams, Sustainable polymers from renewable resources. Nature 540(7633), 354–362 (2016). https://doi.org/10.1038/nature21001
- C.-C. Chen, L. Dai, L. Ma, R.-T. Guo, Enzymatic degradation of plant biomass and synthetic polymers. Nat. Rev. Chem. 4(3), 114–126 (2020). https://doi.org/10.1038/s41570-020-0163-6
- G.W. Coates, Y.D.Y.L. Getzler, Chemical recycling to monomer for an ideal, circular polymer economy. Nat. Rev. Mater. 5(7), 501–516 (2020). https://doi.org/10.1038/s41578-020-0190-4
- E. Lizundia, M.H. Sipponen, L.G. Greca, M. Balakshin, B.L. Tardy et al., Multifunctional lignin-based nanocomposites and nanohybrids. Green Chem. 23(18), 6698–6760 (2021). https://doi.org/10.1039/D1GC01684A
- J.M. Moradian, Z. Fang, Y.-C. Yong, Recent advances on biomass-fueled microbial fuel cell. Bioresour. Bioprocess 8(1), 14 (2021). https://doi.org/10.1186/s40643-021-00365-7
- Y. Gao, J. Remón, A.S. Matharu, Microwave-assisted hydrothermal treatments for biomass valorisation: a critical review. Green Chem. 23(10), 3502–3525 (2021). https://doi.org/10.1039/D1GC00623A
- Y.-C. Lin, A. Motoyama, S. Kretschmer, S. Ghaderzadeh, M. Ghorbani-Asl et al., Polymorphic phases of metal chlorides in the confined 2d space of bilayer graphene. Adv. Mater. 33(52), 2170415 (2021). https://doi.org/10.1002/adma.202170415
- H. Wu, H. Li, Z. Fang, Hydrothermal amination of biomass to nitrogenous chemicals. Green Chem. 23(18), 6675–6697 (2021). https://doi.org/10.1039/D1GC02505H
- C. Zhang, M. Shao, H. Wu, N. Wang, Q. Chen et al., Management and valorization of digestate from food waste via hydrothermal. Resour Conserv Recycl. 171, 105639 (2021). https://doi.org/10.1016/j.resconrec.2021.105639
- Z. Ullah, M. Khan, S. Raza Naqvi, W. Farooq et al., A comparative study of machine learning methods for bio-oil yield prediction—a genetic algorithm-based features selection. Bioresour. Technol. 335, 125292 (2021). https://doi.org/10.1016/j.biortech.2021.125292
- N. Kardani, M. Hedayati Marzbali, K. Shah, A. Zhou, Machine learning prediction of the conversion of lignocellulosic biomass during hydrothermal carbonization. Biofuels 13(6), 703–715 (2021). https://doi.org/10.1080/17597269.2021.1894780
- A. Barhoum, J. Jeevanandam, A. Rastogi, P. Samyn, Y. Boluk et al., Plant celluloses, hemicelluloses, lignins, and volatile oils for the synthesis of nanops and nanostructured materials. Nanoscale 12(45), 22845–22890 (2020). https://doi.org/10.1039/D0NR04795C
- A. Kumar, N. von Wolff, M. Rauch, Y.-Q. Zou, G. Shmul et al., Hydrogenative depolymerization of nylons. J. Am. Chem. Soc. 142(33), 14267–14275 (2020). https://doi.org/10.1021/jacs.0c05675
- L. Pendleton, D.C. Donato, B.C. Murray, S. Crooks, W.A. Jenkins et al., Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE 7(9), e43542 (2012). https://doi.org/10.1371/journal.pone.0043542
- L. Huang, G. Krigsvoll, F. Johansen, Y. Liu, X. Zhang, Carbon emission of global construction sector. Renew. Sust. Energ. Rev. 81, 1906–1916 (2018). https://doi.org/10.1016/j.rser.2017.06.001
- S. Srikanth, M. Kumar, S.K. Puri, Bio-electrochemical system (bes) as an innovative approach for sustainable waste management in petroleum industry. Bioresour Technol. 265, 506–518 (2018). https://doi.org/10.1016/j.biortech.2018.02.059
- R.P. Ipiales, M.A. de la Rubia, E. Diaz, A.F. Mohedano, J.J. Rodriguez, Integration of hydrothermal carbonization and anaerobic digestion for energy recovery of biomass waste: An overview. Energy Fuels 35(21), 17032–17050 (2021). https://doi.org/10.1021/acs.energyfuels.1c01681
- P. Kaur, G. Verma, S.S. Sekhon, Biomass derived hierarchical porous carbon materials as oxygen reduction reaction electrocatalysts in fuel cells. Prog. Mater. Sci. 102, 1–71 (2019). https://doi.org/10.1016/j.pmatsci.2018.12.002
- M. Bielecki, V. Zubkova, A. Strojwas, Influence of densification on the pyrolytic behavior of agricultural biomass waste and the characteristics of pyrolysis products. ENERGIES. 15(12), (2022). https://doi.org/10.3390/en15124257
- A.E. Beck, K.A. Hunt, R.P. Carlson, Measuring cellular biomass composition for computational biology applications. Processes 6(5), 38 (2018). https://doi.org/10.3390/pr6050038
- B. Godin, S. Lamaudiere, R. Agneessens, T. Schmit, J.-P. Goffart et al., Chemical composition and biofuel potentials of a wide diversity of plant biomasses. Energy Fuels 27(5), 2588–2598 (2013). https://doi.org/10.1021/ef3019244
- H.C. Lange, J.J. Heijnen, Statistical reconciliation of the elemental and molecular biomass composition of saccharomyces cerevisiae. Biotechnol. Bioeng. 75(3), 334–344 (2001). https://doi.org/10.1002/bit.10054
- H. Rabemanolontsoa, S. Saka, Comparative study on chemical composition of various biomass species. RSC Adv. 3(12), 3946–3956 (2013). https://doi.org/10.1039/c3ra22958k
- S.V. Vassilev, D. Baxter, L.K. Andersen, C.G. Vassileva, An overview of the chemical composition of biomass. Fuel 89(5), 913–933 (2010). https://doi.org/10.1016/j.fuel.2009.10.022
- S.V. Vassilev, C.G. Vassileva, V.S. Vassilev, Advantages and disadvantages of composition and properties of biomass in comparison with coal: An overview. Fuel 158, 330–350 (2015). https://doi.org/10.1016/j.fuel.2015.05.050
- F.-X. Collard, J. Blin, A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew. Sust. Energ. Rev. 38, 594–608 (2014). https://doi.org/10.1016/j.rser.2014.06.013
- Y. Zhang, S. Liu, X. Zheng, X. Wang, Y. Xu et al., Biomass organs control the porosity of their pyrolyzed carbon. Adv. Funct. Mater. 27(3), 1604687 (2017). https://doi.org/10.1002/adfm.201604687
- Z. Bi, Q. Kong, Y. Cao, G. Sun, F. Su et al., Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: A review. J. Mater. Chem. A 7(27), 16028–16045 (2019). https://doi.org/10.1039/C9TA04436A
- N. Dhenadhayalan, K.-C. Lin, T.A. Saleh, Recent advances in functionalized carbon dots toward the design of efficient materials for sensing and catalysis applications. Small 16(1), 1905767 (2020). https://doi.org/10.1002/smll.201905767
- J. García Torrent, Á. Ramírez-Gómez, N. Fernandez-Anez, L. Medic Pejic, A. Tascón, Influence of the composition of solid biomass in the flammability and susceptibility to spontaneous combustion. Fuel 184, 503–511 (2016). https://doi.org/10.1016/j.fuel.2016.07.045
- W. Zhao, B. Simmons, S. Singh, A. Ragauskas, G. Cheng, From lignin association to nano-/micro-p preparation: Extracting higher value of lignin. Green Chem. 18(21), 5693–5700 (2016). https://doi.org/10.1039/C6GC01813K
- Q. Lu, M. Zhu, Y. Zu, W. Liu, L. Yang et al., Comparative antioxidant activity of nanoscale lignin prepared by a supercritical antisolvent (sas) process with non-nanoscale lignin. Food Chem. 135(1), 63–67 (2012). https://doi.org/10.1016/j.foodchem.2012.04.070
- B. de Caprariis, P. De Filippis, A. Petrullo, M. Scarsella, Hydrothermal liquefaction of biomass: Influence of temperature and biomass composition on the bio-oil production. Fuel 208, 618–625 (2017). https://doi.org/10.1016/j.fuel.2017.07.054
- J.J. Kaschuk, Y. Al Haj, O.J. Rojas, K. Miettunen, T. Abitbol et al., Plant-based structures as an opportunity to engineer optical functions in next-generation light management. Adv Mater. 34(6), e2104473 (2022). https://doi.org/10.1002/adma.202104473
- A. Bourmaud, J. Beaugrand, D.U. Shah, V. Placet, C. Baley, Towards the design of high-performance plant fibre composites. Prog. Mater. Sci. 97, 347–408 (2018). https://doi.org/10.1016/j.pmatsci.2018.05.005
- H. Yang, R. Yan, H. Chen, D.H. Lee, C. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12), 1781–1788 (2007). https://doi.org/10.1016/j.fuel.2006.12.013
- S.D. Stefanidis, K.G. Kalogiannis, E.F. Iliopoulou, C.M. Michailof, P.A. Pilavachi et al., A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J. Anal. Appl. Pyrolysis. 105, 143–150 (2014). https://doi.org/10.1016/j.jaap.2013.10.013
- X. Zhou, W. Li, R. Mabon, L.J. Broadbelt, A mechanistic model of fast pyrolysis of hemicellulose. Energy Environ. Sci. 11(5), 1240–1260 (2018). https://doi.org/10.1039/C7EE03208K
- A. Kruse, A. Funke, M.-M. Titirici, Hydrothermal conversion of biomass to fuels and energetic materials. Curr. Opin. Chem. Biol. 17(3), 515–521 (2013). https://doi.org/10.1016/j.cbpa.2013.05.004
- S. Vivekanandhan, M. Schreiber, S. Muthuramkumar, M. Misra, A.K. Mohanty, Carbon nanotubes from renewable feedstocks: A move toward sustainable nanofabrication. J. Appl. Polym. Sci. 134(4), 44225 (2017). https://doi.org/10.1002/app.44255
- Y.S. Zhang, H.L. Zhu, D. Yao, P.T. Williams, C. Wu et al., Thermo-chemical conversion of carbonaceous wastes for cnt and hydrogen production: A review. Sustain. Energy Fuels 5(17), 4173–4208 (2021). https://doi.org/10.1039/D1SE00619C
- J. Shah, J. Lopez-Mercado, M.G. Carreon, A. Lopez-Miranda, M.L. Carreon, Plasma synthesis of graphene from mango peel. ACS Omega 3(1), 455–463 (2018). https://doi.org/10.1021/acsomega.7b01825
- Z. Wang, H. Ogata, S. Morimoto, J. Ortiz-Medina, M. Fujishige et al., Nanocarbons from rice husk by microwave plasma irradiation: From graphene and carbon nanotubes to graphenated carbon nanotube hybrids. Carbon 94, 479–484 (2015). https://doi.org/10.1016/j.carbon.2015.07.037
- R. Ye, Y. Chyan, J. Zhang, Y. Li, X. Han et al., Laser-induced graphene formation on wood. Adv. Mater. 29(37), 1702211 (2017). https://doi.org/10.1002/adma.201702211
- X. Han, R. Ye, Y. Chyan, T. Wang, C. Zhang et al., Laser-induced graphene from wood impregnated with metal salts and use in electrocatalysis. ACS Appl. Nano Mater. 1(9), 5053–5061 (2018). https://doi.org/10.1021/acsanm.8b01163
- F. Mahmood, C. Zhang, Y. Xie, D. Stalla, J. Lin et al., Transforming lignin into porous graphene via direct laser writing for solid-state supercapacitors. RSC Adv. 9(39), 22713–22720 (2019). https://doi.org/10.1039/C9RA04073K
- D.X. Luong, K.V. Bets, W.A. Algozeeb, M.G. Stanford, C. Kittrell et al., Gram-scale bottom-up flash graphene synthesis. Nature 577(7792), 647–651 (2020). https://doi.org/10.1038/s41586-020-1938-0
- J.E. Omoriyekomwan, A. Tahmasebi, J. Dou, R. Wang, J. Yu, A review on the recent advances in the production of carbon nanotubes and carbon nanofibers via microwave-assisted pyrolysis of biomass. Fuel Process. Technol. 214, 106686 (2021). https://doi.org/10.1016/j.fuproc.2020.106686
- D.H. Seo, S. Pineda, S. Yick, J. Bell, Z.J. Han et al., Plasma-enabled sustainable elemental lifecycles: Honeycomb-derived graphenes for next-generation biosensors and supercapacitors. Green Chem. 17(4), 2164–2171 (2015). https://doi.org/10.1039/C4GC02135E
- X. Xiao, B. Chen, Z. Chen, L. Zhu, J.L. Schnoor, Insight into multiple and multilevel structures of biochars and their potential environmental applications: A critical review. Environ. Sci. Technol. 52(9), 5027–5047 (2018). https://doi.org/10.1021/acs.est.7b06487
- Y.-D. Chen, R. Wang, X. Duan, S. Wang, N.-Q. Ren et al., Production, properties, and catalytic applications of sludge derived biochar for environmental remediation. Water Res. 187, 116390 (2020). https://doi.org/10.1016/j.watres.2020.116390
- J. Fan, C. Cai, H. Chi, B.J. Reid, F. Coulon et al., Remediation of cadmium and lead polluted soil using thiol-modified biochar. J. Hazard. Mater. 388, 122037 (2020). https://doi.org/10.1016/j.jhazmat.2020.122037
- F.R. Oliveira, A.K. Patel, D.P. Jaisi, S. Adhikari, H. Lu et al., Environmental application of biochar: Current status and perspectives. Bioresour Technol. 246, 110–122 (2017). https://doi.org/10.1016/j.biortech.2017.08.122
- H. Sun, X. Peng, S. Zhang, S. Liu, Y. Xiong et al., Activation of peroxymonosulfate by nitrogen-functionalized sludge carbon for efficient degradation of organic pollutants in water. Bioresour Technol. 241, 244–251 (2017). https://doi.org/10.1016/j.biortech.2017.05.102
- L. Zhao, X. Cao, O. Mašek, A. Zimmerman, Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. J. Hazard. Mater. 256–257, 1–9 (2013). https://doi.org/10.1016/j.jhazmat.2013.04.015
- X. Xiao, Z. Chen, B. Chen, H/c atomic ratio as a smart linkage between pyrolytic temperatures, aromatic clusters and sorption properties of biochars derived from diverse precursory materials. Sci. Rep. 6(1), 22644 (2016). https://doi.org/10.1038/srep22644
- M. Keiluweit, P.S. Nico, M.G. Johnson, M. Kleber, Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 44(4), 1247–1253 (2010). https://doi.org/10.1021/es9031419
- S. Wei, M. Zhu, X. Fan, J. Song, P.a. Peng et al., Influence of pyrolysis temperature and feedstock on carbon fractions of biochar produced from pyrolysis of rice straw, pine wood, pig manure and sewage sludge. Chemosphere 218, 624–631 (2019). https://doi.org/10.1016/j.chemosphere.2018.11.177
- T. Hassenkam, G.E. Fantner, J.A. Cutroni, J.C. Weaver, D.E. Morse et al., High-resolution afm imaging of intact and fractured trabecular bone. Bone 35(1), 4–10 (2004). https://doi.org/10.1016/j.bone.2004.02.024
- W. Huang, H. Zhang, Y. Huang, W. Wang, S. Wei, Hierarchical porous carbon obtained from animal bone and evaluation in electric double-layer capacitors. Carbon 49(3), 838–843 (2011). https://doi.org/10.1016/j.carbon.2010.10.025
- D. Li, X. Duan, H. Sun, J. Kang, H. Zhang et al., Facile synthesis of nitrogen-doped graphene via low-temperature pyrolysis: The effects of precursors and annealing ambience on metal-free catalytic oxidation. Carbon 115, 649–658 (2017). https://doi.org/10.1016/j.carbon.2017.01.058
- H. Liu, Y. Liu, L. Tang, J. Wang, J. Yu et al., Egg shell biochar-based green catalysts for the removal of organic pollutants by activating persulfate. Sci. Total Environ. 745, 141095 (2020). https://doi.org/10.1016/j.scitotenv.2020.141095
- J. Song, C. Chen, S. Zhu, M. Zhu, J. Dai et al., Processing bulk natural wood into a high-performance structural material. Nature 554(7691), 224–228 (2018). https://doi.org/10.1038/nature25476
- T. Li, S.X. Li, W. Kong, C. Chen, E. Hitz et al., A nanofluidic ion regulation membrane with aligned cellulose nanofibers. Sci. Adv. 5(2), eaau4238 (2019). https://doi.org/10.1126/sciadv.aau4238
- S. Laurichesse, L. Avérous, Chemical modification of lignins: Towards biobased polymers. Prog. Polym. Sci. 39(7), 1266–1290 (2014). https://doi.org/10.1016/j.progpolymsci.2013.11.004
- J. Deng, S.-F. Sun, E.-Q. Zhu, J. Yang, H.-Y. Yang et al., Sub-micro and nano-lignin materials: Small size and rapid progress. Ind. Crops Prod. 164, 113412 (2021). https://doi.org/10.1016/j.indcrop.2021.113412
- E.P. Feofilova, I.S. Mysyakina, Lignin: Chemical structure, biodegradation, and practical application (a review). Appl. Biochem. Microbiol. 52(6), 573–581 (2016). https://doi.org/10.1134/S0003683816060053
- J. Karthaeuser, V. Biziks, C. Mai, H. Militz, Lignin and lignin-derived compounds for wood applications—a review. Molecules 26(9), 2533 (2021). https://doi.org/10.3390/molecules26092533
- K. Liu, Y. Zhuang, J. Chen, G. Yang, L. Dai, Research progress on the preparation and high-value utilization of lignin nanops. Int. J. Mol. Sci. 23(13), 7254 (2022). https://doi.org/10.3390/ijms23137254
- Y. Lu, X. Wei, Z. Zong, Y. Lu, W. Zhao et al., Structural investigation and application of lignins. Prog. Chem. 25(5), 838–858 (2013). https://doi.org/10.7536/PC121023
- C. Ma, T.-H. Kim, K. Liu, M.-G. Ma, S.-E. Choi et al., Multifunctional lignin-based composite materials for emerging applications. Front. Bioeng. Biotechnol. 9, 708976 (2021). https://doi.org/10.3389/fbioe.2021.708976
- Y. Meng, J. Lu, Y. Cheng, Q. Li, H. Wang, Lignin-based hydrogels: A review of preparation, properties, and application. Int. J. Biol. Macromol. 135, 1006–1019 (2019). https://doi.org/10.1016/j.ijbiomac.2019.05.198
- O.V. Okoro, A. Amenaghawon, D. Podstawczyk, H. Alimoradi, M.R. Khalili et al., Fruit pomace-lignin as a sustainable biopolymer for biomedical applications. J. Clean. Prod. 328, 129498 (2021). https://doi.org/10.1016/j.jclepro.2021.129498
- I. Spiridon, Extraction of lignin and therapeutic applications of lignin-derived compounds. A review. Environ. Chem. Lett. 18(3), 771–785 (2020). https://doi.org/10.1007/s10311-020-00981-3
- H. Sun, Q. Xu, M. Ren, S. Wang, F. Kong, Recent studies on the preparation and application of ionic amphiphilic lignin: A comprehensive review. J. Agric. Food Chem. 70(29), 8871–8891 (2022). https://doi.org/10.1021/acs.jafc.2c02798
- M.V. Tsvetkov, E.A. Salganskii, Lignin: Applications and ways of utilization (review). Russ. J. Appl. Chem. 91(7), 1129–1136 (2018). https://doi.org/10.1134/S1070427218070108
- O. Yu, K.H. Kim, Lignin to materials: A focused review on recent novel lignin applications. Appl Sci-Basel 10(13), 4626 (2020). https://doi.org/10.3390/app10134626
- G.W. Huber, S. Iborra, A. Corma, Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem. Rev. 106(9), 4044–4098 (2006). https://doi.org/10.1021/cr068360d
- M.P. Pandey, C.S. Kim, Lignin depolymerization and conversion: A review of thermochemical methods. Chem. Eng. Technol. 34(1), 29–41 (2011). https://doi.org/10.1002/ceat.201000270
- C. Xu, R.A. Arancon, J. Labidi, R. Luque, Lignin depolymerisation strategies: Towards valuable chemicals and fuels. Chem. Soc. Rev. 43(22), 7485–7500 (2014). https://doi.org/10.1039/c4cs00235k
- P. Figueiredo, K. Lintinen, J.T. Hirvonen, M.A. Kostiainen, H.A. Santos, Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications. Prog. Mater. Sci. 93, 233–269 (2018). https://doi.org/10.1016/j.pmatsci.2017.12.001
- E.A. Agustiany, M. Rasyidur Ridho, M. Rahmi D.N, E.W. Madyaratri et al., Recent developments in lignin modification and its application in lignin-based green composites: A review. Polym. Compos. 43(8), 4848–4865 (2022) https://doi.org/10.1002/pc.26824
- L. Lauberte, G. Fabre, J. Ponomarenko, T. Dizhbite, D.V. Evtuguin et al., Lignin modification supported by dft-based theoretical study as a way to produce competitive natural antioxidants. Molecules 24(9), 1794 (2019). https://doi.org/10.3390/molecules24091794
- N.A. Sa’don, A.A. Rahim, M.N.M. Ibrahim, N. Brosse, M.H. Hussin, Modification of oil palm fronds lignin by incorporation of m-cresol for improving structural and antioxidant properties. Int. J. Biol. Macromol. 104, 251–260 (2017). https://doi.org/10.1016/j.ijbiomac.2017.06.038
- C. Dumont, R.M. Gauvin, F. Belva, M. Sauthier, Palladium-catalyzed functionalization of kraft lignin: Ether linkages through the telomerization reaction. Chemsuschem 11(10), 1649–1655 (2018). https://doi.org/10.1002/cssc.201800123
- A. Duval, L. Averous, Cyclic carbonates as safe and versatile etherifying reagents for the functionalization of lignins and tannins. ACS Sustain. Chem. Eng. 5(8), 7334–7343 (2017). https://doi.org/10.1021/acssuschemeng.7b01502
- N. Ghavidel, M.K.R. Konduri, P. Fatehi, Chemical reactivity and sulfo-functionalization response of enzymatically produced lignin. Ind. Crops. Prod. 172, 113950 (2021). https://doi.org/10.1016/j.indcrop.2021.113950
- S. Gomez-Fernandez, L. Ugarte, T. Calvo-Correas, C. Pena-Rodriguez, M. Angeles Corcuera et al., Properties of flexible polyurethane foams containing isocyanate functionalized kraft lignin. Ind. Crops. Prod. 100, 51–64 (2017). https://doi.org/10.1016/j.indcrop.2017.02.005
- A. Moreno, J. Liu, R. Gueret, S.E. Hadi, L. Bergstrom et al., Unravelling the hydration barrier of lignin oleate nanops for acid- and base-catalyzed functionalization in dispersion state. Angew. Chem. Int. Ed. 60(38), 20897–20905 (2021). https://doi.org/10.1002/anie.202106743
- L.-E. Chile, S.J. Kaser, S.G. Hatzikiriakos, P. Mehrkhodavandi, Synthesis and thermorheological analysis of biobased lignin-graft-poly(lactide) copolymers and their blends. ACS Sustain. Chem. Eng 6(2), 1650–1661 (2018). https://doi.org/10.1021/acssuschemeng.7b02866
- C. Wang, R.A. Venditti, Uv cross-linkable lignin thermoplastic graft copolymers. ACS Sustain. Chem. Eng. 3(8), 1839–1845 (2015). https://doi.org/10.1021/acssuschemeng.5b00416
- Z.-y. Wei, Y.-h. Deng, H.-f. Yu, X.-q. Qiu, Preparation and photoresponsive properties of lignin-graft azobenzene-containing liquid crystalline copolymers. Acta Polym. Sin. 6, 742–749 (2016). https://doi.org/10.11777/j.issn1000-3304.2016.15307
- M. Wu, M. Wu, M. Pan, F. Jiang, B. Hui et al., Synthesization and characterization of lignin-graft-poly (lauryl methacrylate) via arget atrp. Int. J. Biol. Macromol. 207, 522–530 (2022). https://doi.org/10.1016/j.ijbiomac.2022.02.169
- J.A. Sirviö, M. Visanko, J. Ukkola, H. Liimatainen, Effect of plasticizers on the mechanical and thermomechanical properties of cellulose-based biocomposite films. Ind. Crops. Prod. 122, 513–521 (2018). https://doi.org/10.1016/j.indcrop.2018.06.039
- F. Rol, M.N. Belgacem, A. Gandini, J. Bras, Recent advances in surface-modified cellulose nanofibrils. Prog. Polym. Sci. 88, 241–264 (2019). https://doi.org/10.1016/j.progpolymsci.2018.09.002
- N.A. Negm, H.H.H. Hefni, A.A.A. Abd-Elaal, E.A. Badr, M.T.H. Abou Kana, Advancement on modification of chitosan biopolymer and its potential applications. Int. J. Biol. Macromol. 152, 681–702 (2020). https://doi.org/10.1016/j.ijbiomac.2020.02.196
- Y. Guo, J. Zhou, Y. Song, L. Zhang, An efficient and environmentally friendly method for the synthesis of cellulose carbamate by microwave heating. Macromol. Rapid Commun. 30(17), 1504–1508 (2009). https://doi.org/10.1002/marc.200900238
- E.-R. Kenawy, M.M. Azaam, E.M. El-nshar, Preparation of carboxymethyl cellulose-g-poly (acrylamide)/montmorillonite superabsorbent composite as a slow-release urea fertilizer. Polym. Adv. Technol. 29(7), 2072–2079 (2018). https://doi.org/10.1002/pat.4315
- Q. Yang, X. Pan, Introducing hydroxyl groups as cellulose-binding sites into polymeric solid acids to improve their catalytic performance in hydrolyzing cellulose. Carbohydr. Polym. 261, 117895 (2021). https://doi.org/10.1016/j.carbpol.2021.117895
- Y. Enomoto-Rogers, T. Iwata, Synthesis of xylan-graft-poly(l-lactide) copolymers via click chemistry and their thermal properties. Carbohydr. Polym. 87(3), 1933–1940 (2012). https://doi.org/10.1016/j.carbpol.2011.09.092
- M. Guo, W. Zhang, G. Ding, D. Guo, J. Zhu et al., Preparation and characterization of enzyme-responsive emamectin benzoate microcapsules based on a copolymer matrix of silica–epichlorohydrin–carboxymethylcellulose. RSC Adv. 5(113), 93170–93179 (2015). https://doi.org/10.1039/C5RA17901G
- A.M. Senna, V.R. Botaro, Biodegradable hydrogel derived from cellulose acetate and edta as a reduction substrate of leaching npk compound fertilizer and water retention in soil. J. Control. Release 260, 194–201 (2017). https://doi.org/10.1016/j.jconrel.2017.06.009
- L. Pang, Z. Gao, H. Feng, S. Wang, R. Ma et al., Synthesis of a fluorescent ethyl cellulose membrane with application in monitoring 1-naphthylacetic acid from controlled release formula. Carbohydr. Polym. 176, 160–166 (2017). https://doi.org/10.1016/j.carbpol.2017.07.057
- Y. Yusnaidar, B. Wirjosentono, T. Thamrin, E. Eddiyanto, Synthesized superabsorbent based on cellulose from rice straw for controlled-release of urea. Orient. J. Chem. 33, 1905–1913 (2017). https://doi.org/10.13005/ojc/330436
- X. Li, Q. Li, X. Xu, Y. Su, Q. Yue et al., Characterization, swelling and slow-release properties of a new controlled release fertilizer based on wheat straw cellulose hydrogel. J. Taiwan Inst. Chem. E 60, 564–572 (2016). https://doi.org/10.1016/j.jtice.2015.10.027
- H.A. Essawy, M.B. Ghazy, F.A. El-Hai, M.F. Mohamed, Superabsorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients. Int. J. Biol. Macromol. 89, 144–151 (2016). https://doi.org/10.1016/j.ijbiomac.2016.04.071
- N. Işiklan, Controlled release of insecticide carbaryl from sodium alginate, sodium alginate/gelatin, and sodium alginate/sodium carboxymethyl cellulose blend beads crosslinked with glutaraldehyde. J. Appl. Polym. Sci. 99(4), 1310–1319 (2006). https://doi.org/10.1002/app.22012
- E. Zanuso, D.G. Gomes, H.A. Ruiz, J.A. Teixeira, L. Domingues, Enzyme immobilization as a strategy towards efficient and sustainable lignocellulosic biomass conversion into chemicals and biofuels: Current status and perspectives. Sustain. Energy Fuels 5(17), 4233–4247 (2021). https://doi.org/10.1039/D1SE00747E
- R. Dickson, E. Mancini, N. Garg, J.M. Woodley, K.V. Gernaey et al., Sustainable bio-succinic acid production: Superstructure optimization, techno-economic, and lifecycle assessment. Energy Environ. Sci. 14(6), 3542–3558 (2021). https://doi.org/10.1039/D0EE03545A
- M.S. Singhvi, A.R. Deshmukh, B.S. Kim, Cellulase mimicking nanomaterial-assisted cellulose hydrolysis for enhanced bioethanol fermentation: An emerging sustainable approach. Green Chem. 23(14), 5064–5081 (2021). https://doi.org/10.1039/D1GC01239H
- A.-C. Albertsson, M. Hakkarainen, Designed to degrade. Science 358(6365), 872–873 (2017). https://doi.org/10.1126/science.aap8115
- Y. Kumar, P. Yogeshwar, S. Bajpai, P. Jaiswal, S. Yadav et al., Nanomaterials: Stimulants for biofuels and renewables, yield and energy optimization. Adv. Mater. 2(16), 5318–5343 (2021). https://doi.org/10.1039/D1MA00538C
- D. Elalami, A. Oukarroum, A. Barakat, Anaerobic digestion and agronomic applications of microalgae for its sustainable valorization. RSC Adv. 11(43), 26444–26462 (2021). https://doi.org/10.1039/D1RA04845G
- J. Rajesh Banu, R. Yukesh Kannah, S. Kavitha, A. Ashikvivek, R.R. Bhosale et al., Cost effective biomethanation via surfactant coupled ultrasonic liquefaction of mixed microalgal biomass harvested from open raceway pond. Bioresour. Technol. 304, 123021 (2020). https://doi.org/10.1016/j.biortech.2020.123021
- G. Kumar, D.D. Nguyen, P. Sivagurunathan, T. Kobayashi, K. Xu et al., Cultivation of microalgal biomass using swine manure for biohydrogen production: Impact of dilution ratio and pretreatment. Bioresour. Technol. 260, 16–22 (2018). https://doi.org/10.1016/j.biortech.2018.03.029
- F. Passos, M. Hernández-Mariné, J. García, I. Ferrer, Long-term anaerobic digestion of microalgae grown in hrap for wastewater treatment. Effect of microwave pretreatment. Water Res. 49, 351–359 (2014). https://doi.org/10.1016/j.watres.2013.10.013
- A. Shivhare, A. Kumar, R. Srivastava, Metal phosphate catalysts to upgrade lignocellulose biomass into value-added chemicals and biofuels. Green Chem. 23(11), 3818–3841 (2021). https://doi.org/10.1039/D1GC00376C
- Z.-H. Liu, N. Hao, Y.-Y. Wang, C. Dou, F. Lin et al., Transforming biorefinery designs with ‘plug-in processes of lignin’ to enable economic waste valorization. Nat. Commun. 12(1), 3912 (2021). https://doi.org/10.1038/s41467-021-23920-4
- J.F.J. Zhou, Y. Xiao, V. Fung Kin Yuen, G. Gözaydın, X. Ma et al., An integrated process for l-tyrosine production from sugarcane bagasse. ACS Sustain. Chem. Eng. 9(35), 11758–11768 (2021). https://doi.org/10.1021/acssuschemeng.1c03098
- A. Patel, A.R. Shah, Integrated lignocellulosic biorefinery: Gateway for production of second generation ethanol and value added products. JB&B 6(2), 108–128 (2021). https://doi.org/10.1016/j.jobab.2021.02.001
- A.A. Zaidi, F. RuiZhe, Y. Shi, S.Z. Khan, K. Mushtaq, Nanops augmentation on biogas yield from microalgal biomass anaerobic digestion. Int. J. Hydrog. Energy 43(31), 14202–14213 (2018). https://doi.org/10.1016/j.ijhydene.2018.05.132
- X. Sun, M. Chwatko, D.-H. Lee, J.L. Bachman, J.F. Reuther et al., Chemically triggered synthesis, remodeling, and degradation of soft materials. J. Am. Chem. Soc. 142(8), 3913–3922 (2020). https://doi.org/10.1021/jacs.9b12122
- M. Ko, Y. Kim, J. Woo, B. Lee, R. Mehrotra et al., Direct propylene epoxidation with oxygen using a photo-electro-heterogeneous catalytic system. Nat. Catal. 5, 37–44 (2022). https://doi.org/10.1038/s41929-021-00724-9
- X. Mei, X. Zhu, Y. Zhang, Z. Zhang, Z. Zhong et al., Decreasing the catalytic ignition temperature of diesel soot using electrified conductive oxide catalysts. Nat. Catal. 4(12), 1002–1011 (2021). https://doi.org/10.1038/s41929-021-00702-1
- D. Zhong, D. Zhang, W. Chen, J. He, C. Ren et al., Orally deliverable strategy based on microalgal biomass for intestinal disease treatment. Sci. Adv. 7(48), eabi9265 (2021). https://doi.org/10.1126/sciadv.abi9265
- F.W.S. Lucas, Y. Fishler, A. Holewinski, Tuning the selectivity of electrochemical levulinic acid reduction to 4-hydroxyvaleric acid: A monomer for biocompatible and biodegradable plastics. Green Chem. 23, 9154–9164 (2021). https://doi.org/10.1039/D1GC02826J
- J. Meyers, J.B. Mensah, F.J. Holzhäuser, A. Omari, C.C. Blesken et al., Electrochemical conversion of a bio-derivable hydroxy acid to a drop-in oxygenate diesel fuel. Energy Environ. Sci. 12(8), 2406–2411 (2019). https://doi.org/10.1039/C9EE01485C
- E.J. Biddinger, O.Y. Gutierrez, J. Holladay, Electrochemical routes for biomass conversion. J. Appl. Electrochem. 51(1), 1–3 (2021). https://doi.org/10.1007/s10800-020-01525-x
- P. Kisszekelyi, R. Hardian, H. Vovusha, B. Chen, X. Zeng et al., Selective electrocatalytic oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-diformylfuran: From mechanistic investigations to catalyst recovery. Chemsuschem 13(12), 3127–3136 (2020). https://doi.org/10.1002/cssc.202000453
- X. Shang, Y. Yang, Y. Sun, Electrohydrodimerization of biomass-derived furfural generates a jet fuel precursor. Green Chem. 22(16), 5395–5401 (2020). https://doi.org/10.1039/d0gc01720e
- F.J. Holzhäuser, G. Creusen, G. Moos, M. Dahmen, A. König et al., Electrochemical cross-coupling of biogenic di-acids for sustainable fuel production. Green Chem. 21(9), 2334–2344 (2019). https://doi.org/10.1039/c8gc03745k
- S. Li, X. Sun, Z. Yao, X. Zhong, Y. Cao et al., Biomass valorization via paired electrosynthesis over vanadium nitride-based electrocatalysts. Adv. Funct. Mater. 29(42), 1904780 (2019). https://doi.org/10.1002/adfm.201904780
- W.J. Liu, Z. Xu, D. Zhao, X.Q. Pan, H.C. Li et al., Efficient electrochemical production of glucaric acid and h2 via glucose electrolysis. Nat. Commun. 11(1), 265 (2020). https://doi.org/10.1038/s41467-019-14157-3
- X. Du, H. Zhang, K.P. Sullivan, P. Gogoi, Y. Den., Electrochemical lignin conversion. ChemSusChem 13(17), 4318–4343 (2020). https://doi.org/10.1002/cssc.202001187
- P. Prabhu, Y. Wan, J.-M. Lee, Electrochemical conversion of biomass derived products into high-value chemicals. Matter. 3(4), 1162–1177 (2020). https://doi.org/10.1016/j.matt.2020.09.002
- T. Hibino, K. Kobayashi, M. Ito, Q. Ma, M. Nagao et al., Efficient hydrogen production by direct electrolysis of waste biomass at intermediate temperatures. ACS Sustain. Chem. Eng. 6(7), 9360–9368 (2018). https://doi.org/10.1021/acssuschemeng.8b01701
- F.W.S. Lucas, R.G. Grim, S.A. Tacey, C.A. Downes, J. Hasse et al., Electrochemical routes for the valorization of biomass-derived feedstocks: From chemistry to application. ACS Energy Lett. 6(4), 1205–1270 (2021). https://doi.org/10.1021/acsenergylett.0c02692
- Y. Fujioka, J.M. Alam, D. Noshiro, K. Mouri, T. Ando et al., Phase separation organizes the site of autophagosome formation. Nature 578(7794), 301–305 (2020). https://doi.org/10.1038/s41586-020-1977-6
- C. Jiang, M. Yao, Z. Wang, J. Li, Z. Sun et al., A novel flower-like architecture comprised of 3d interconnected co–al-ox/sy decorated lignosulfonate-derived carbon nanosheets for flexible supercapacitors and electrocatalytic water splitting. Carbon 184, 386–399 (2021). https://doi.org/10.1016/j.carbon.2021.08.044
- T. Wang, L. Tao, X. Zhu, C. Chen, W. Chen et al., Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction. Nat. Catal. 5, 66–73 (2022). https://doi.org/10.1038/s41929-021-00721-y
- A.M. Curreri, S. Mitragotri, E.E.L. Tanner, Recent advances in ionic liquids in biomedicine. Adv. Sci. 8(17), 2004819 (2021). https://doi.org/10.1002/advs.202004819
- Y. Du, Q. Tian, X. Chang, J. Fang, X. Gu et al., Ionic liquid treatment for highest-efficiency ambient printed stable all-inorganic CsPBi3 perovskite solar cells. Adv. Mater. 34(10), 2106750 (2022). https://doi.org/10.1002/adma.202106750
- K.A.N. Sachinthani, J.R. Panchuk, Y. Wang, T. Zhu et al., Thiophene- and selenophene-based conjugated polymeric mixed ionic/electronic conductors. J. Chem. Phys. 155(13), 134704 (2021). https://doi.org/10.1063/5.0064858
- L. Chen, A.P. van Muyden, X. Cui, Z. Fei, N. Yan et al., Lignin first: Confirming the role of the metal catalyst in reductive fractionation. JACS Au 1(6), 729–733 (2021). https://doi.org/10.1021/jacsau.1c00018
- Z. Sheng, Y. Ding, G. Li, C. Fu, Y. Hou et al., Solid–liquid host–guest composites: The marriage of porous solids and functional liquids. Adv. Mater. 33(52), 2104851 (2021). https://doi.org/10.1002/adma.202104851
- J. Abed, S. Ahmadi, L. Laverdure, A. Abdellah, C.P. O’Brien et al., In situ formation of nano ni–co oxyhydroxide enables water oxidation electrocatalysts durable at high current densities. Adv. Mater. 33(45), 2103812 (2021). https://doi.org/10.1002/adma.202103812
- H. Dong, W. Yu, M.R. Hoffmann, Mixed metal oxide electrodes and the chlorine evolution reaction. J. Phys. Chem. C 125(38), 20745–20761 (2021). https://doi.org/10.1021/acs.jpcc.1c05671
- Y. Yang, T. Mu, Electrochemical oxidation of biomass derived 5-hydroxymethylfurfural (hmf): Pathway, mechanism, catalysts and coupling reactions. Green Chem. 23(12), 4228–4254 (2021). https://doi.org/10.1039/D1GC00914A
- F. Wang, S.S. Stahl, Electrochemical oxidation of organic molecules at lower overpotential: Accessing broader functional group compatibility with electron−proton transfer mediators. Acc. Chem. Res. 53(3), 561–574 (2020). https://doi.org/10.1021/acs.accounts.9b00544
- M. Rafiee, K.C. Miles, S.S. Stahl, Electrocatalytic alcohol oxidation with tempo and bicyclic nitroxyl derivatives: Driving force trumps steric effects. J. Am. Chem. Soc. 137(46), 14751–14757 (2015). https://doi.org/10.1021/jacs.5b09672
- Z. Fang, P. Zhang, M. Wang, F. Li, X. Wu et al., Selective electro-oxidation of alcohols to the corresponding aldehydes in aqueous solution via cu(iii) intermediates from cuo nanorods. ACS Sustain. Chem. Eng. 9(35), 11855–11861 (2021). https://doi.org/10.1021/acssuschemeng.1c03691
- W.-H. Chen, B.-J. Lin, Y.-Y. Lin, Y.-S. Chu, A.T. Ubando et al., Progress in biomass torrefaction: Principles, applications and challenges. Prog. Energy Combust. Sci. 82, 100887 (2021). https://doi.org/10.1016/j.pecs.2020.100887
- M.L. Gothe, K.L.C. Silva, A.L. Figueredo, J.L. Fiorio, J. Rozendo et al., Rhenium – a tuneable player in tailored hydrogenation catalysis. Eur. J. Inorg. Chem. 2021(39), 4043–4065 (2021). https://doi.org/10.1002/ejic.202100459
- M.I. Din, A.G. Nabi, Z. Hussain, R. Khalid, M. Iqbal et al., Microbial fuel cells—a preferred technology to prevail energy crisis. Int. J. Energy Res. 45(6), 8370–8388 (2021). https://doi.org/10.1002/er.6403
- M. Ko, L.T.M. Pham, Y.J. Sa, J. Woo, T.V.T. Nguyen et al., Unassisted solar lignin valorisation using a compartmented photo-electro-biochemical cell. Nat. Commun. 10(1), 5123 (2019). https://doi.org/10.1038/s41467-019-13022-7
- C. Yan, J. Wang, H. Du, L. Zhu, T. Jiang et al., Solar thermal electrochemical process (step) action to biomass: Solar thermo-coupled electrochemical synergy for efficient breaking of biomass to biofuels and hydrogen. Energy Convers. Manag. 180, 1247–1259 (2019). https://doi.org/10.1016/j.enconman.2018.11.056
- V. Tournier, C.M. Topham, A. Gilles, B. David, C. Folgoas et al., An engineered pet depolymerase to break down and recycle plastic bottles. Nature 580(7802), 216–219 (2020). https://doi.org/10.1038/s41586-020-2149-4
- J. Ali, L. Wang, H. Waseem, B. Song, R. Djellabi et al., Turning harmful algal biomass to electricity by microbial fuel cell: A sustainable approach for waste management. Environ. Pollut. 266(Pt 2), 115373 (2020). https://doi.org/10.1016/j.envpol.2020.115373
- L.B.K. Mancilio, G.A. Ribeiro, E.J.R. de Almeida, G.M.V. de Siqueira, R.S. Rocha et al., Adding value to lignocellulosic byproducts by using acetate and p-coumaric acid as substrate in a microbial fuel cell. Ind. Crops. Prod. 171, 113844 (2021). https://doi.org/10.1016/j.indcrop.2021.113844
- B. Baniasadi, F. Vahabzadeh, The performance of a cyanobacterial biomass-based microbial fuel cell (mfc) inoculated with shewanella oneidensis mr-1. J. Environ. Chem. Eng. 9(6), 106338 (2021). https://doi.org/10.1016/j.jece.2021.106338
- M. Hemalatha, J.S. Sravan, B. Min, S. Venkata Mohan, Concomitant use of azolla derived bioelectrode as anode and hydrolysate as substrate for microbial fuel cell and electro-fermentation applications. Sci. Total Environ. 707, 135851 (2020). https://doi.org/10.1016/j.scitotenv.2019.135851
- J.M. Moradian, Z.A. Xu, Y.T. Shi, Z. Fang, Y.C. Yong, Efficient biohydrogen and bioelectricity production from xylose by microbial fuel cell with newly isolated yeast of cystobasidium slooffiae. Int. J. Energy Res. 44(1), 325–333 (2019). https://doi.org/10.1002/er.4922
- T.R. Gebreslassie, P.K.T. Nguyen, H.H. Yoon, J. Kim, Co-production of hydrogen and electricity from macroalgae by simultaneous dark fermentation and microbial fuel cell. Bioresour Technol. 336, 125269 (2021). https://doi.org/10.1016/j.biortech.2021.125269
- J. He, X. Xin, Z. Pei, L. Chen, Z. Chu et al., Microbial profiles associated improving bioelectricity generation from sludge fermentation liquid via microbial fuel cells with adding fruit waste extracts. Bioresour Technol. 337, 125452 (2021). https://doi.org/10.1016/j.biortech.2021.125452
- S. Rojas-Flores, M. De La Cruz Noriega, S.M. Benites, G. Aguirre Gonzales, A. Salvador Salinas et al., Generation of bioelectricity from fruit waste. Energy Rep. 6, 37–42 (2020). https://doi.org/10.1016/j.egyr.2020.10.025
- N. Ibrahim, S.K. Kamarudin, L.J. Minggu, Biofuel from biomass via photo-electrochemical reactions: An overview. J. Power Sources 259, 33–42 (2014). https://doi.org/10.1016/j.jpowsour.2014.02.017
- Y.-A. Chen, H. Yang, D. Ouyang, T. Liu, D. Liu et al., Construction of electron transfer chains with methylene blue and ferric ions for direct conversion of lignocellulosic biomass to electricity in a wide ph range. Appl. Catal. B 265, 118578 (2020). https://doi.org/10.1016/j.apcatb.2019.118578
- T. Hibino, K. Kobayashi, S. Teranishi, T. Hitomi, Solid oxide fuel cell using municipal solid waste directly as fuel: Biomass, resin, plastic, and food waste. ACS Sustain. Chem. Eng. 9(8), 3124–3136 (2021). https://doi.org/10.1021/acssuschemeng.0c07657
- D. Roy, S. Samanta, S. Ghosh, Performance assessment of a biomass-fuelled distributed hybrid energy system integrating molten carbonate fuel cell, externally fired gas turbine and supercritical carbon dioxide cycle. Energy Convers. Manag. 211, 112740 (2020). https://doi.org/10.1016/j.enconman.2020.112740
- P. Zhu, Z. Wu, L. Guo, J. Yao, M. Dai et al., Achieving high-efficiency conversion and poly-generation of cooling, heating, and power based on biomass-fueled sofc hybrid system: Performance assessment and multi-objective optimization. Energy Convers. Manag. 240, 114245 (2021). https://doi.org/10.1016/j.enconman.2021.114245
- V.K. Magotra, S.J. Lee, A.I. Inamdar, T.W. Kang, P.D. Walke et al., Development of white brick fuel cell using rice husk ash agricultural waste for sustainable power generation: A novel approach. Renew. Energ. 179, 1875–1883 (2021). https://doi.org/10.1016/j.renene.2021.08.003
- T. Hibino, K. Kobayashi, T. Hitomi, Biomass solid oxide fuel cell using solid weed waste as fuel. Electrochim. Acta 388, 138681 (2021). https://doi.org/10.1016/j.electacta.2021.138681
- N. Jafri, W.Y. Wong, L.W. Yoon, K.H. Cheah, Pretreated mesocarp fibre biochars as carbon fuel for direct carbon fuel cells. Int. J. Hydrog. Energy 46(31), 16762–16775 (2021). https://doi.org/10.1016/j.ijhydene.2020.09.034
- D. Ouyang, Y. Han, F. Wang, X. Zhao, All-iron ions mediated electron transfer for biomass pretreatment coupling with direct generation of electricity from lignocellulose. Bioresour Technol. 344(Pt B), 126189 (2021). https://doi.org/10.1016/j.biortech.2021.126189
- N. Sanchez, R. Ruiz, A. Rödl, M. Cobo, Technical and environmental analysis on the power production from residual biomass using hydrogen as energy vector. Renew. Energ. 175, 825–839 (2021). https://doi.org/10.1016/j.renene.2021.04.145
- F. Li, M.J. Hülsey, N. Yan, Y. Dai, C.-H. Wang, Co-transesterification of waste cooking oil, algal oil and dimethyl carbonate over sustainable nanop catalysts. Chem. Eng. J. 405, 127036 (2021). https://doi.org/10.1016/j.cej.2020.127036
- L. Zhang, F. Li, A. Kuroki, K.-C. Loh, C.-H. Wang et al., Methane yield enhancement of mesophilic and thermophilic anaerobic co-digestion of algal biomass and food waste using algal biochar: Semi-continuous operation and microbial community analysis. Bioresour Technol. 302, 122892 (2020). https://doi.org/10.1016/j.biortech.2020.122892
- F. Li, X. He, C.A. Shoemaker, C.-H. Wang, Experimental and numerical study of biomass catalytic pyrolysis using Ni2P-loaded zeolite: Product distribution, characterization and overall benefit. Energy Convers. Manag. 208, 112581 (2020). https://doi.org/10.1016/j.enconman.2020.112581
- J.C. Lin, D. Mariuzza, M. Volpe, L. Fiori, S. Ceylan et al., Integrated thermochemical conversion process for valorizing mixed agricultural and dairy waste to nutrient-enriched biochars and biofuels. Bioresour Technol. 328, 124765 (2021). https://doi.org/10.1016/j.biortech.2021.124765
- C. Li, S. Xie, Y. Wang, R. Jiang, X. Wang et al., Multi-functional biochar preparation and heavy metal immobilization by co-pyrolysis of livestock feces and biomass waste. Waste Manag. 134, 241–250 (2021). https://doi.org/10.1016/j.wasman.2021.08.023
- J. Watson, M. Swoboda, A. Aierzhati, T. Wang, B. Si et al., Biocrude oil from algal bloom microalgae: A novel integration of biological and thermochemical techniques. Environ. Sci. Technol. 55(3), 1973–1983 (2021). https://doi.org/10.1021/acs.est.0c05924
- Z. Liu, Z. Wang, S. Tang, Z. Liu, Fabrication, characterization and sorption properties of activated biochar from livestock manure via three different approaches. Resour. Conserv. Recycl. 168, 105254 (2021). https://doi.org/10.1016/j.resconrec.2020.105254
- M. Wądrzyk, P. Grzywacz, R. Janus, M. Michalik., A two-stage processing of cherry pomace via hydrothermal treatment followed by biochar gasification. Renew. Energ. 179, 248–261 (2021). https://doi.org/10.1016/j.renene.2021.06.130
- K. Zhang, W.J. Kim, A.A. Park, Alkaline thermal treatment of seaweed for high-purity hydrogen production with carbon capture and storage potential. Nat. Commun. 11(1), 3783 (2020). https://doi.org/10.1038/s41467-020-17627-1
- M. Amado, D. Bastos, D. Gaspar, S. Matos, S. Vieira et al., Thermochemical liquefaction of pinewood shaves—evaluating the performance of cleaner and sustainable alternative solvents. J. Clean. Prod. 304, 127088 (2021). https://doi.org/10.1016/j.jclepro.2021.127088
- M. Moon, Y.J. Yeon, H.J. Park, J. Park, G.W. Park et al., Chemoenzymatic valorization of agricultural wastes into 4-hydroxyvaleric acid via levulinic acid. Bioresour. Technol. 337, 125479 (2021). https://doi.org/10.1016/j.biortech.2021.125479
- Q.-V. Bach, K.-Q. Tran, R.A. Khalil, Ø. Skreiberg, G. Seisenbaeva, Comparative assessment of wet torrefaction. Energy Fuels 27(11), 6743–6753 (2013). https://doi.org/10.1021/ef401295w
- A. Shrestha, B. Acharya, A.A. Farooque, Study of hydrochar and process water from hydrothermal carbonization of sea lettuce. Renew. Energ. 163, 589–598 (2021). https://doi.org/10.1016/j.renene.2020.08.133
- Y. Qian, Y. Li, Z. Pan, J. Tian, N. Lin et al., Hydrothermal “disproportionation” of biomass into oriented carbon microsphere anode and 3d porous carbon cathode for potassium ion hybrid capacitor. Adv. Funct. 31(30), 2103115 (2021). https://doi.org/10.1002/adfm.202103115
- G. Prasannamedha, P.S. Kumar, R. Mehala, T.J. Sharumitha, D. Surendhar, Enhanced adsorptive removal of sulfamethoxazole from water using biochar derived from hydrothermal carbonization of sugarcane bagasse. J. Hazard. Mater. 407, 124825 (2021). https://doi.org/10.1016/j.jhazmat.2020.124825
- B. Motavaf, R.A. Dean, J. Nicolas, P.E. Savage, Hydrothermal carbonization of simulated food waste for recovery of fatty acids and nutrients. Bioresour. Technol. 341, 125872 (2021). https://doi.org/10.1016/j.biortech.2021.125872
- H. Chen, J. Xu, H. Lin, Z. Wang, Z. Liu, Multi-cycle aqueous arsenic removal by novel magnetic n/s-doped hydrochars activated via one-pot and two-stage schemes. Chem. Eng. J. 429, 132071 (2022). https://doi.org/10.1016/j.cej.2021.132071
- Y. Li, M. Shao, M. Huang, W. Sang, S. Zheng et al., Enhanced remediation of heavy metals contaminated soils with ek-prb using beta-cd/hydrothermal biochar by waste cotton as reactive barrier. Chemosphere 286(1), 131470 (2022). https://doi.org/10.1016/j.chemosphere.2021.131470
- L. Suarez, I. Benavente-Ferraces, C. Plaza, S. de Pascual-Teresa, I. Suarez-Ruiz et al., Hydrothermal carbonization as a sustainable strategy for integral valorisation of apple waste. Bioresour. Technol. 309, 123395 (2020). https://doi.org/10.1016/j.biortech.2020.123395
- H. Fu, B. Wang, D. Li, L. Xue, Y. Hua et al., Anaerobic fermentation treatment improved Cd(2+) adsorption of different feedstocks based hydrochars. Chemosphere 263, 127981 (2021). https://doi.org/10.1016/j.chemosphere.2020.127981
- F. Yang, Q. Du, L. Sui, K. Cheng, One-step fabrication of artificial humic acid-functionalized colloid-like magnetic biochar for rapid heavy metal removal. Bioresour. Technol. 328, 124825 (2021). https://doi.org/10.1016/j.biortech.2021.124825
- W. Chen, M. Gong, K. Li, M. Xia, Z. Chen et al., Insight into koh activation mechanism during biomass pyrolysis: Chemical reactions between o-containing groups and koh. Appl. Energy 278, 115730 (2020). https://doi.org/10.1016/j.apenergy.2020.115730
- J.E. Kim, S.K. Bhatia, H.J. Song, E. Yoo, H.J. Jeon et al., Adsorptive removal of tetracycline from aqueous solution by maple leaf-derived biochar. Bioresour. Technol. 306, 123092 (2020). https://doi.org/10.1016/j.biortech.2020.123092
- J. Yu, L. Tang, Y. Pang, G. Zeng, H. Feng et al., Hierarchical porous biochar from shrimp shell for persulfate activation: A two-electron transfer path and key impact factors. Appl. Catal. B 260, 118160 (2020). https://doi.org/10.1016/j.apcatb.2019.118160
- B.H. Cheng, B.C. Huang, R. Zhang, Y.L. Chen, S.F. Jiang et al., Bio-coal: A renewable and massively producible fuel from lignocellulosic biomass. Sci. Adv. 6(1), eaay0748 (2020). https://doi.org/10.1126/sciadv.aay0748
- J.L. Santos, C. Megías-Sayago, S. Ivanova, M.Á. Centeno, J.A. Odriozola, Functionalized biochars as supports for pd/c catalysts for efficient hydrogen production from formic acid. Appl. Catal. B 282, 119615 (2021). https://doi.org/10.1016/j.apcatb.2020.119615
- M.M. Mian, G. Liu, Activation of peroxymonosulfate by chemically modified sludge biochar for the removal of organic pollutants: Understanding the role of active sites and mechanism. Chem. Eng. J. 392, 123681 (2020). https://doi.org/10.1016/j.cej.2019.123681
- S. Zhang, S.-F. Jiang, B.-C. Huang, X.-C. Shen, W.-J. Chen et al., Sustainable production of value-added carbon nanomaterials from biomass pyrolysis. Nat. Sustain. 3(9), 753–760 (2020). https://doi.org/10.1038/s41893-020-0538-1
- B.L. Liu, M.M. Fu, L. Xiang, N.X. Feng, H.M. Zhao et al., Adsorption of microcystin contaminants by biochars derived from contrasting pyrolytic conditions: Characteristics, affecting factors, and mechanisms. Sci. Total. Environ. 763, 143028 (2021). https://doi.org/10.1016/j.scitotenv.2020.143028
- S. Cai, Q. Zhang, Z. Wang, S. Hua, D. Ding et al., Pyrrolic n-rich biochar without exogenous nitrogen doping as a functional material for bisphenol a removal: Performance and mechanism. Appl. Catal. B 291, 120093 (2021). https://doi.org/10.1016/j.apcatb.2021.120093
- G.K. Gupta, P.K. Gupta, M.K. Mondal, Experimental process parameters optimization and in-depth product characterizations for teak sawdust pyrolysis. Waste Manag. 87, 499–511 (2019). https://doi.org/10.1016/j.wasman.2019.02.035
- S. Theppitak, D. Hungwe, L. Ding, D. Xin, G. Yu et al., Comparison on solid biofuel production from wet and dry carbonization processes of food wastes. Appl. Energy 272, 115264 (2020). https://doi.org/10.1016/j.apenergy.2020.115264
- G. Cao, R. Wang, Y. Ju, B. Jing, X. Duan et al., Synchronous removal of emulsions and soluble organic contaminants via a microalgae-based membrane system: Performance and mechanisms. Water Res. 206, 117741 (2021). https://doi.org/10.1016/j.watres.2021.117741
- E. Bevan, J. Fu, M. Luberti, Y. Zheng, Challenges and opportunities of hydrothermal carbonisation in the UK; case study in Chirnside. RSC Adv. 11(55), 34870–34897 (2021). https://doi.org/10.1039/D1RA06736B
- X. Yang, E. McGlynn, R. Das, S.P. Paşca, B. Cui et al., Nanotechnology enables novel modalities for neuromodulation. Adv. Mater. 33(52). 2103208 (2021). https://doi.org/10.1002/adma.202103208
- Y. Yang, J. Sun, J. Wen, S. Mo, J. Wang et al., Single-atom doping in carbon black nanomaterials for photothermal antibacterial applications. Cell Rep. Phys. Sci. 2(8), 100535 (2021). https://doi.org/10.1016/j.xcrp.2021.100535
- W. Tang, J.-P. Cao, Z.-H. Wang, Z.-M. He, T.-L. Liu et al., Comparative evaluation of tar steam reforming over graphitic carbon supported ni and co catalysts at low temperature. Energy Convers. Manag. 244, 114454 (2021). https://doi.org/10.1016/j.enconman.2021.114454
- A.D. Lalsare, B. Leonard, B. Robinson, A.C. Sivri, R. Vukmanovich et al., Self-regenerable carbon nanofiber supported fe-mo2c catalyst for ch4-co2 assisted reforming of biomass to hydrogen rich syngas. Appl. Catal. B 282, 119537 (2021). https://doi.org/10.1016/j.apcatb.2020.119537
- S. Kang, M. He, C. Yin, H. Xu, Q. Cai et al., Graphitic carbon embedded with Fe/Ni nano-catalysts derived from bacterial precursor for efficient toluene cracking. Green Chem. 22(6), 1934–1943 (2020). https://doi.org/10.1039/c9gc03357b
- M. Li, L.X. Zhong, W. Chen, Y. Huang, Z. Chen et al., Regulating the electron–hole separation to promote selective oxidation of biomass using ZnS@Bi2S3 nanosheet catalyst. Appl. Catal. B 292, 120180 (2021). https://doi.org/10.1016/j.apcatb.2021.120180
- C. DelRe, Y. Jiang, P. Kang, J. Kwon, A. Hall et al., Near-complete depolymerization of polyesters with nano-dispersed enzymes. Nature 592(7855), 558–563 (2021). https://doi.org/10.1038/s41586-021-03408-3
- G. Pradhan, Y.C. Sharma, A greener and cheaper approach towards synthesis of glycerol carbonate from bio waste glycerol using CaO–TiO2 nanocatalysts. J. Clean. Prod. 315, 127860 (2021). https://doi.org/10.1016/j.jclepro.2021.127860
- A. Larimi, F. Khorasheh, Renewable hydrogen production by ethylene glycol steam reforming over Al2O3 supported ni-pt bimetallic nano-catalysts. Renew. Energ. 128, 188–199 (2018). https://doi.org/10.1016/j.renene.2018.05.070
- M. Munir, M. Ahmad, M. Mubashir, S. Asif, A. Waseem et al., A practical approach for synthesis of biodiesel via non-edible seeds oils using trimetallic based montmorillonite nano-catalyst. Bioresour. Technol. 328, 124859 (2021). https://doi.org/10.1016/j.biortech.2021.124859
- B. Mondal, S.S. Parhi, G.P. Rangaiah, A.K. Jana, Nano-catalytic heterogeneous reactive distillation for algal biodiesel production: Multi-objective optimization and heat integration. Energy Convers. Manag. 241, 114298 (2021). https://doi.org/10.1016/j.enconman.2021.114298
- Y. Feng, S. Long, G. Yan, W. Jia, Y. Sun et al., Highly dispersed co/n-rich carbon nanosheets for the oxidative esterification of biomass-derived alcohols: Insights into the catalytic performance and mechanism. J. Catal. 397, 148–155 (2021). https://doi.org/10.1016/j.jcat.2021.03.031
- Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk et al., Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010). https://doi.org/10.1002/adma.201001068
- J. Yan, G. Wang, L. Xie, H. Tian, J. Li et al., Engineering radiosensitizer-based metal-phenolic networks potentiate sting pathway activation for advanced radiotherapy. Adv. Mater. 34(10), 2105783 (2022). https://doi.org/10.1002/adma.202105783
- L. Liu, A. Corma, Identification of the active sites in supported subnanometric metal catalysts. Nat. Catal. 4(6), 453–456 (2021). https://doi.org/10.1038/s41929-021-00632-y
- S. Arora, N. Gupta, V. Singh, Improved pd/ru metal supported graphene oxide nano-catalysts for hydrodeoxygenation (HDO) of vanillyl alcohol, vanillin and lignin. Green Chem. 22(6), 2018–2027 (2020). https://doi.org/10.1039/d0gc00052c
- A. Agrawal, A. Choudhary, Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science. APL Mater. 4(5), 053208 (2016). https://doi.org/10.1063/1.4946894
- A. Diez-Olivan, J. Del Ser, D. Galar, B. Sierra, Data fusion and machine learning for industrial prognosis: Trends and perspectives towards industry 4.0. Inf. Fusion. 50, 92–111 (2019). https://doi.org/10.1016/j.inffus.2018.10.005
- X. Yang, Y. Wang, R. Byrne, G. Schneider, S. Yang, Concepts of artificial intelligence for computer-assisted drug discovery. Chem. Rev. 119(18), 10520–10594 (2019). https://doi.org/10.1021/acs.chemrev.8b00728
- S. Wang, Z. Shen, Z. Shen, Y. Dong, Y. Li et al., Machine-learning micropattern manufacturing. Nano Today 38, 101152 (2021). https://doi.org/10.1016/j.nantod.2021.101152
- K.K. Yang, Z. Wu, F.H. Arnold, Machine-learning-guided directed evolution for protein engineering. Nat. Methods 16(8), 687–694 (2019). https://doi.org/10.1038/s41592-019-0496-6
- M. Reichstein, G. Camps-Valls, B. Stevens, M. Jung, J. Denzler et al., Deep learning and process understanding for data-driven earth system science. Nature 566(7743), 195–204 (2019). https://doi.org/10.1038/s41586-019-0912-1
- L. Himanen, A. Geurts, A.S. Foster, P. Rinke, Data-driven materials science: Status, challenges, and perspectives. Adv. Sci. 6(21), 1900808 (2019). https://doi.org/10.1002/advs.201900808
- J.A. Hueffel, T. Sperger, I. Funes-ardoiz JAS S. Ward, K. Rissanen et al., Accelerated dinuclear palladium catalyst identification through unsupervised machine learning. Science 374(6571), 1134–1140 (2021). https://doi.org/10.1126/science.abj0999
- J. Li, W. Zhang, T. Liu, L. Yang, H. Li et al., Machine learning aided bio-oil production with high energy recovery and low nitrogen content from hydrothermal liquefaction of biomass with experiment verification. Chem. Eng. J. 425, 130649 (2021). https://doi.org/10.1016/j.cej.2021.130649
- T. Katongtung, T. Onsree, N. Tippayawong, Machine learning prediction of biocrude yields and higher heating values from hydrothermal liquefaction of wet biomass and wastes. Bioresour. Technol. 344(Pt B), 126278 (2022). https://doi.org/10.1016/j.biortech.2021.126278
- F. Elmaz, Ö. Yücel, A.Y. Mutlu, Predictive modeling of biomass gasification with machine learning-based regression methods. Energy 191, 116541 (2020). https://doi.org/10.1016/j.energy.2019.116541
- M. Shahbaz, S.A. Taqvi, A.C. Minh Loy, A. Inayat, F. Uddin et al., Artificial neural network approach for the steam gasification of palm oil waste using bottom ash and CaO. Renew. Energy. 132, 243–254 (2019). https://doi.org/10.1016/j.renene.2018.07.142
- J. Xing, H. Wang, K. Luo, S. Wang, Y. Bai et al., Predictive single-step kinetic model of biomass devolatilization for cfd applications: A comparison study of empirical correlations (EC), artificial neural networks (ANN) and random forest (RF). Renew. Energ. 136, 104–114 (2019). https://doi.org/10.1016/j.renene.2018.12.088
- D. Serrano, I. Golpour, S. Sánchez-Delgado, Predicting the effect of bed materials in bubbling fluidized bed gasification using artificial neural networks (ANNS) modeling approach. Fuel 266, 117021 (2020). https://doi.org/10.1016/j.fuel.2020.117021
- S. Safarian, S.M. Ebrahimi Saryazdi, R. Unnthorsson, C. Richter, Artificial neural network integrated with thermodynamic equilibrium modeling of downdraft biomass gasification-power production plant. Energy 213, 118800 (2020). https://doi.org/10.1016/j.energy.2020.118800
- S. Sezer, U. Özveren, Investigation of syngas exergy value and hydrogen concentration in syngas from biomass gasification in a bubbling fluidized bed gasifier by using machine learning. Int. J. Hydrog. Energy 46(39), 20377–20396 (2021). https://doi.org/10.1016/j.ijhydene.2021.03.184
- B. Guo, D. Li, C. Cheng, Z.-A. Lü, Y. Shen, Simulation of biomass gasification with a hybrid neural network model. Bioresour. Technol. 76(2), 77–83 (2001). https://doi.org/10.1016/S0960-8524(00)00106-1
- R. Mikulandrić, D. Lončar, D. Böhning, R. Böhme, M. Beckmann, Artificial neural network modelling approach for a biomass gasification process in fixed bed gasifiers. Energy Convers. Manag. 87, 1210–1223 (2014). https://doi.org/10.1016/j.enconman.2014.03.036
- J. Deng, G. Jia, An interpretable hybrid machine learning prediction of dielectric constant of alkali halide crystals. Chem. Phys. 555, 111457 (2022). https://doi.org/10.1016/j.chemphys.2022.111457
- V. Lenz, A. Ortwein, Smartbiomassheat—heat from solid biofuels as an integral part of a future energy system based on renewables. Chem. Eng. Technol. 40(2), 313–322 (2017). https://doi.org/10.1002/ceat.201600188
- S. Phromphithak, T. Onsree, N. Tippayawong, Machine learning prediction of cellulose-rich materials from biomass pretreatment with ionic liquid solvents. Bioresour. Technol. 323, 124642 (2021). https://doi.org/10.1016/j.biortech.2020.124642
- L. Liu, M. Bi, Y. Wang, J. Liu, X. Jiang et al., Artificial intelligence-powered microfluidics for nanomedicine and materials synthesis. Nanoscale 13(46), 19352–19366 (2021). https://doi.org/10.1039/D1NR06195J
- J. Li, X. Zhu, Y. Li, Y.W. Tong, Y.S. Ok et al., Multi-task prediction and optimization of hydrochar properties from high-moisture municipal solid waste: Application of machine learning on waste-to-resource. J. Clean. Prod. 278, 123928 (2021). https://doi.org/10.1016/j.jclepro.2020.123928
- C. Hepburn, E. Adlen, J. Beddington, E.A. Carter, S. Fuss et al., The technological and economic prospects for CO2 utilization and removal. Nature 575(7781), 87–97 (2019). https://doi.org/10.1038/s41586-019-1681-6
- L.R. Lynd, The grand challenge of cellulosic biofuels. Nat. Biotechnol. 35(10), 912–915 (2017). https://doi.org/10.1038/nbt.3976
- X. Wang, P. Xie, B. Chen, X. Zhang, Chip-based high-dimensional optical neural network. Nano-Micro Lett. 14(1), 221 (2022). https://doi.org/10.1007/s40820-022-00957-8
- G. Zheng, Y. Cui, L. Lu, M. Guo, X. Hu et al., Microfluidic chemostatic bioreactor for high-throughput screening and sustainable co-harvesting of biomass and biodiesel in microalgae. Bioact. Mater. (2022). https://doi.org/10.1016/j.bioactmat.2022.07.012
- Y. Gu, C. Wang, N. Kim, J. Zhang, T.M. Wang et al., Three-dimensional transistor arrays for intra-and inter-cellular recording. Nat. Nanotechnol. 17, 292–300 (2022). https://doi.org/10.1038/s41565-021-01040-w
- Y. Li, B.-F. Liu, X. Zhang, Wettability-patterned microchip for emerging biomedical materials and technologies. Mater. Today 51, 273–293 (2021). https://doi.org/10.1016/j.mattod.2021.10.008
- J. Yang, X. Zhang, C. Liu, Z. Wang, L. Deng et al., Biologically modified nanops as theranostic bionanomaterials. Prog. Nat. Sci. 118, 100768 (2021). https://doi.org/10.1016/j.pmatsci.2020.100768
- P. Li, X. Zeng, S. Li, X. Xiang, P. Chen et al., Rapid determination of phase diagrams for biomolecular liquid–liquid phase separation with microfluidics. Anal. Chem. 94(2), 687–694 (2021). https://doi.org/10.1021/acs.analchem.1c02700
- Y. Li, M. Chen, J. Hu, R. Sheng, Q. Lin et al., Volumetric compression induces intracellular crowding to control intestinal organoid growth via wnt/β-catenin signaling. Cell Stem Cell 28(1), 63–78. e67 (2021). https://doi.org/10.1016/j.stem.2020.09.012
- Y. Li, P. Chen, Y. Wang, S. Yan, X. Feng et al., Rapid assembly of heterogeneous 3d cell microenvironments in a microgel array. Adv. Mater. 28(18), 3543–3548 (2016). https://doi.org/10.1002/adma.201600247
- Y. Li, F. Guo, Y. Hao, S.K. Gupta, J. Hu et al., Helical nanofiber yarn enabling highly stretchable engineered microtissue. PNAS 116(19), 9245–9250 (2019). https://doi.org/10.1073/pnas.1821617116
- Y. Li, A.S. Mao, B.R. Seo, X. Zhao, S.K. Gupta et al., Compression-induced dedifferentiation of adipocytes promotes tumor progression. Sci. Adv. 6(4), eaax5611 (2020). https://doi.org/10.1126/sciadv.aax5611
- Y. Li, W. Tang, M. Guo, The cell as matter: Connecting molecular biology to cellular functions. Matter 4(6), 1863–1891 (2021). https://doi.org/10.1016/j.matt.2021.03.013
- X. Ji, L. Ge, C. Liu, Z. Tang, Y. Xiao et al., Capturing functional two-dimensional nanosheets from sandwich-structure vermiculite for cancer theranostics. Nat. Commun. 12(1), 1–17 (2021). https://doi.org/10.1038/s41467-021-21436-5
- M.S. Chowdhury, W. Zheng, S. Kumari, J. Heyman, X. Zhang et al., Dendronized fluorosurfactant for highly stable water-in-fluorinated oil emulsions with minimal inter-droplet transfer of small molecules. Nat. Commun. 10(1), 1–10 (2019). https://doi.org/10.1038/s41467-019-12462-5
- N. Kong, H. Zhang, C. Feng, C. Liu, Y. Xiao et al., Arsenene-mediated multiple independently targeted reactive oxygen species burst for cancer therapy. Nat. Commun. 12(1), 1–18 (2021). https://doi.org/10.1038/s41467-021-24961-5
- Y. Yang, X. Wei, N. Zhang, J. Zheng, X. Chen et al., A non-printed integrated-circuit textile for wireless theranostics. Nat. Commun. 12(1), 1–10 (2021). https://doi.org/10.1038/s41467-021-25075-8
- S. Han, Q. Zhang, X. Zhang, X. Liu, L. Lu et al., A digital microfluidic diluter-based microalgal motion biosensor for marine pollution monitoring. Biosens. Bioelectron. 143, 111597 (2019). https://doi.org/10.1016/j.bios.2019.111597
- G. Zheng, L. Lu, Y. Yang, J. Wei, B. Han et al., Development of microfluidic dilution network-based system for lab-on-a-chip microalgal bioassays. Anal. Chem. 90(22), 13280–13289 (2018). https://doi.org/10.1021/acs.analchem.8b02597
- A. Rodrigo-Navarro, S. Sankaran, M.J. Dalby, A. del Campo, M. Salmeron-Sanchez, Engineered living biomaterials. Nat. Rev. Mater. 6(12), 1175–1190 (2021). https://doi.org/10.1038/s41578-021-00350-8
- P.Q. Nguyen, N.D. Courchesne, A. Duraj-Thatte, P. Praveschotinunt, N.S. Joshi, Engineered living materials: Prospects and challenges for using biological systems to direct the assembly of smart materials. Adv. Mater. 30(19), e1704847 (2018). https://doi.org/10.1002/adma.201704847
- S.Y. Kang, A. Pokhrel, S. Bratsch, J.J. Benson, S.O. Seo et al., Engineering bacillus subtilis for the formation of a durable living biocomposite material. Nat. Commun. 12(1), 7133 (2021). https://doi.org/10.1038/s41467-021-27467-2
- C. Gilbert, T.C. Tang, W. Ott, B.A. Dorr, W.M. Shaw et al., Living materials with programmable functionalities grown from engineered microbial co-cultures. Nat. Mater. 20(5), 691–700 (2021). https://doi.org/10.1038/s41563-020-00857-5
- L. Xu, X. Wang, F. Sun, Y. Cao, C. Zhong et al., Harnessing proteins for engineered living materials. Curr. Opin. Solid State Mater. Sci. 25(1), 100896 (2021). https://doi.org/10.1016/j.cossms.2020.100896
- Z. Dai, X. Yang, F. Wu, L. Wang, K. Xiang et al., A. Dohlman, L. Dai, X. Shen, L. You., Living fabrication of functional semi-interpenetrating polymeric materials. Nat. Commun. 12(1), 3422 (2021). https://doi.org/10.1038/s41467-021-23812-7
- P. Zhang, N. Shao, L. Qin, Recent advances in microfluidic platforms for programming cell-based living materials. Adv. Mater. 33(46), e2005944 (2021). https://doi.org/10.1002/adma.202005944
- C.F. Guimarães, R. Ahmed, A. Mataji-Kojouri, F. Soto, J. Wang et al., Engineering polysaccharide-based hydrogel photonic constructs: From multiscale detection to the biofabrication of living optical fibers. Adv. Mater. 33(52), 2170408 (2021). https://doi.org/10.1002/adma.202170408
- Z. Cao, R. Li, P. Xu, N. Li, H. Zhu et al., Highly dispersed ruo2-biomass carbon composite made by immobilization of ruthenium and dissolution of coconut meat with octyl ammonium salicylate ionic liquid for high performance flexible supercapacitor. J. Colloid Interface Sci. 606(Pt 1), 424–433 (2022). https://doi.org/10.1016/j.jcis.2021.08.011
- C. Xiong, B. Li, C. Duan, L. Dai, S. Nie et al., Carbonized wood cell chamber-reduced graphene oxide@PVA flexible conductive material for supercapacitor, strain sensing and moisture-electric generation applications. Chem. Eng. J. 418, 129518 (2021). https://doi.org/1
References
J. Zheng, S. Suh, Strategies to reduce the global carbon footprint of plastics. Nat. Clim. Change. 9(5), 374–378 (2019). https://doi.org/10.1038/s41558-019-0459-z
Y. Zhu, C. Romain, C.K. Williams, Sustainable polymers from renewable resources. Nature 540(7633), 354–362 (2016). https://doi.org/10.1038/nature21001
C.-C. Chen, L. Dai, L. Ma, R.-T. Guo, Enzymatic degradation of plant biomass and synthetic polymers. Nat. Rev. Chem. 4(3), 114–126 (2020). https://doi.org/10.1038/s41570-020-0163-6
G.W. Coates, Y.D.Y.L. Getzler, Chemical recycling to monomer for an ideal, circular polymer economy. Nat. Rev. Mater. 5(7), 501–516 (2020). https://doi.org/10.1038/s41578-020-0190-4
E. Lizundia, M.H. Sipponen, L.G. Greca, M. Balakshin, B.L. Tardy et al., Multifunctional lignin-based nanocomposites and nanohybrids. Green Chem. 23(18), 6698–6760 (2021). https://doi.org/10.1039/D1GC01684A
J.M. Moradian, Z. Fang, Y.-C. Yong, Recent advances on biomass-fueled microbial fuel cell. Bioresour. Bioprocess 8(1), 14 (2021). https://doi.org/10.1186/s40643-021-00365-7
Y. Gao, J. Remón, A.S. Matharu, Microwave-assisted hydrothermal treatments for biomass valorisation: a critical review. Green Chem. 23(10), 3502–3525 (2021). https://doi.org/10.1039/D1GC00623A
Y.-C. Lin, A. Motoyama, S. Kretschmer, S. Ghaderzadeh, M. Ghorbani-Asl et al., Polymorphic phases of metal chlorides in the confined 2d space of bilayer graphene. Adv. Mater. 33(52), 2170415 (2021). https://doi.org/10.1002/adma.202170415
H. Wu, H. Li, Z. Fang, Hydrothermal amination of biomass to nitrogenous chemicals. Green Chem. 23(18), 6675–6697 (2021). https://doi.org/10.1039/D1GC02505H
C. Zhang, M. Shao, H. Wu, N. Wang, Q. Chen et al., Management and valorization of digestate from food waste via hydrothermal. Resour Conserv Recycl. 171, 105639 (2021). https://doi.org/10.1016/j.resconrec.2021.105639
Z. Ullah, M. Khan, S. Raza Naqvi, W. Farooq et al., A comparative study of machine learning methods for bio-oil yield prediction—a genetic algorithm-based features selection. Bioresour. Technol. 335, 125292 (2021). https://doi.org/10.1016/j.biortech.2021.125292
N. Kardani, M. Hedayati Marzbali, K. Shah, A. Zhou, Machine learning prediction of the conversion of lignocellulosic biomass during hydrothermal carbonization. Biofuels 13(6), 703–715 (2021). https://doi.org/10.1080/17597269.2021.1894780
A. Barhoum, J. Jeevanandam, A. Rastogi, P. Samyn, Y. Boluk et al., Plant celluloses, hemicelluloses, lignins, and volatile oils for the synthesis of nanops and nanostructured materials. Nanoscale 12(45), 22845–22890 (2020). https://doi.org/10.1039/D0NR04795C
A. Kumar, N. von Wolff, M. Rauch, Y.-Q. Zou, G. Shmul et al., Hydrogenative depolymerization of nylons. J. Am. Chem. Soc. 142(33), 14267–14275 (2020). https://doi.org/10.1021/jacs.0c05675
L. Pendleton, D.C. Donato, B.C. Murray, S. Crooks, W.A. Jenkins et al., Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE 7(9), e43542 (2012). https://doi.org/10.1371/journal.pone.0043542
L. Huang, G. Krigsvoll, F. Johansen, Y. Liu, X. Zhang, Carbon emission of global construction sector. Renew. Sust. Energ. Rev. 81, 1906–1916 (2018). https://doi.org/10.1016/j.rser.2017.06.001
S. Srikanth, M. Kumar, S.K. Puri, Bio-electrochemical system (bes) as an innovative approach for sustainable waste management in petroleum industry. Bioresour Technol. 265, 506–518 (2018). https://doi.org/10.1016/j.biortech.2018.02.059
R.P. Ipiales, M.A. de la Rubia, E. Diaz, A.F. Mohedano, J.J. Rodriguez, Integration of hydrothermal carbonization and anaerobic digestion for energy recovery of biomass waste: An overview. Energy Fuels 35(21), 17032–17050 (2021). https://doi.org/10.1021/acs.energyfuels.1c01681
P. Kaur, G. Verma, S.S. Sekhon, Biomass derived hierarchical porous carbon materials as oxygen reduction reaction electrocatalysts in fuel cells. Prog. Mater. Sci. 102, 1–71 (2019). https://doi.org/10.1016/j.pmatsci.2018.12.002
M. Bielecki, V. Zubkova, A. Strojwas, Influence of densification on the pyrolytic behavior of agricultural biomass waste and the characteristics of pyrolysis products. ENERGIES. 15(12), (2022). https://doi.org/10.3390/en15124257
A.E. Beck, K.A. Hunt, R.P. Carlson, Measuring cellular biomass composition for computational biology applications. Processes 6(5), 38 (2018). https://doi.org/10.3390/pr6050038
B. Godin, S. Lamaudiere, R. Agneessens, T. Schmit, J.-P. Goffart et al., Chemical composition and biofuel potentials of a wide diversity of plant biomasses. Energy Fuels 27(5), 2588–2598 (2013). https://doi.org/10.1021/ef3019244
H.C. Lange, J.J. Heijnen, Statistical reconciliation of the elemental and molecular biomass composition of saccharomyces cerevisiae. Biotechnol. Bioeng. 75(3), 334–344 (2001). https://doi.org/10.1002/bit.10054
H. Rabemanolontsoa, S. Saka, Comparative study on chemical composition of various biomass species. RSC Adv. 3(12), 3946–3956 (2013). https://doi.org/10.1039/c3ra22958k
S.V. Vassilev, D. Baxter, L.K. Andersen, C.G. Vassileva, An overview of the chemical composition of biomass. Fuel 89(5), 913–933 (2010). https://doi.org/10.1016/j.fuel.2009.10.022
S.V. Vassilev, C.G. Vassileva, V.S. Vassilev, Advantages and disadvantages of composition and properties of biomass in comparison with coal: An overview. Fuel 158, 330–350 (2015). https://doi.org/10.1016/j.fuel.2015.05.050
F.-X. Collard, J. Blin, A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew. Sust. Energ. Rev. 38, 594–608 (2014). https://doi.org/10.1016/j.rser.2014.06.013
Y. Zhang, S. Liu, X. Zheng, X. Wang, Y. Xu et al., Biomass organs control the porosity of their pyrolyzed carbon. Adv. Funct. Mater. 27(3), 1604687 (2017). https://doi.org/10.1002/adfm.201604687
Z. Bi, Q. Kong, Y. Cao, G. Sun, F. Su et al., Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: A review. J. Mater. Chem. A 7(27), 16028–16045 (2019). https://doi.org/10.1039/C9TA04436A
N. Dhenadhayalan, K.-C. Lin, T.A. Saleh, Recent advances in functionalized carbon dots toward the design of efficient materials for sensing and catalysis applications. Small 16(1), 1905767 (2020). https://doi.org/10.1002/smll.201905767
J. García Torrent, Á. Ramírez-Gómez, N. Fernandez-Anez, L. Medic Pejic, A. Tascón, Influence of the composition of solid biomass in the flammability and susceptibility to spontaneous combustion. Fuel 184, 503–511 (2016). https://doi.org/10.1016/j.fuel.2016.07.045
W. Zhao, B. Simmons, S. Singh, A. Ragauskas, G. Cheng, From lignin association to nano-/micro-p preparation: Extracting higher value of lignin. Green Chem. 18(21), 5693–5700 (2016). https://doi.org/10.1039/C6GC01813K
Q. Lu, M. Zhu, Y. Zu, W. Liu, L. Yang et al., Comparative antioxidant activity of nanoscale lignin prepared by a supercritical antisolvent (sas) process with non-nanoscale lignin. Food Chem. 135(1), 63–67 (2012). https://doi.org/10.1016/j.foodchem.2012.04.070
B. de Caprariis, P. De Filippis, A. Petrullo, M. Scarsella, Hydrothermal liquefaction of biomass: Influence of temperature and biomass composition on the bio-oil production. Fuel 208, 618–625 (2017). https://doi.org/10.1016/j.fuel.2017.07.054
J.J. Kaschuk, Y. Al Haj, O.J. Rojas, K. Miettunen, T. Abitbol et al., Plant-based structures as an opportunity to engineer optical functions in next-generation light management. Adv Mater. 34(6), e2104473 (2022). https://doi.org/10.1002/adma.202104473
A. Bourmaud, J. Beaugrand, D.U. Shah, V. Placet, C. Baley, Towards the design of high-performance plant fibre composites. Prog. Mater. Sci. 97, 347–408 (2018). https://doi.org/10.1016/j.pmatsci.2018.05.005
H. Yang, R. Yan, H. Chen, D.H. Lee, C. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12), 1781–1788 (2007). https://doi.org/10.1016/j.fuel.2006.12.013
S.D. Stefanidis, K.G. Kalogiannis, E.F. Iliopoulou, C.M. Michailof, P.A. Pilavachi et al., A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J. Anal. Appl. Pyrolysis. 105, 143–150 (2014). https://doi.org/10.1016/j.jaap.2013.10.013
X. Zhou, W. Li, R. Mabon, L.J. Broadbelt, A mechanistic model of fast pyrolysis of hemicellulose. Energy Environ. Sci. 11(5), 1240–1260 (2018). https://doi.org/10.1039/C7EE03208K
A. Kruse, A. Funke, M.-M. Titirici, Hydrothermal conversion of biomass to fuels and energetic materials. Curr. Opin. Chem. Biol. 17(3), 515–521 (2013). https://doi.org/10.1016/j.cbpa.2013.05.004
S. Vivekanandhan, M. Schreiber, S. Muthuramkumar, M. Misra, A.K. Mohanty, Carbon nanotubes from renewable feedstocks: A move toward sustainable nanofabrication. J. Appl. Polym. Sci. 134(4), 44225 (2017). https://doi.org/10.1002/app.44255
Y.S. Zhang, H.L. Zhu, D. Yao, P.T. Williams, C. Wu et al., Thermo-chemical conversion of carbonaceous wastes for cnt and hydrogen production: A review. Sustain. Energy Fuels 5(17), 4173–4208 (2021). https://doi.org/10.1039/D1SE00619C
J. Shah, J. Lopez-Mercado, M.G. Carreon, A. Lopez-Miranda, M.L. Carreon, Plasma synthesis of graphene from mango peel. ACS Omega 3(1), 455–463 (2018). https://doi.org/10.1021/acsomega.7b01825
Z. Wang, H. Ogata, S. Morimoto, J. Ortiz-Medina, M. Fujishige et al., Nanocarbons from rice husk by microwave plasma irradiation: From graphene and carbon nanotubes to graphenated carbon nanotube hybrids. Carbon 94, 479–484 (2015). https://doi.org/10.1016/j.carbon.2015.07.037
R. Ye, Y. Chyan, J. Zhang, Y. Li, X. Han et al., Laser-induced graphene formation on wood. Adv. Mater. 29(37), 1702211 (2017). https://doi.org/10.1002/adma.201702211
X. Han, R. Ye, Y. Chyan, T. Wang, C. Zhang et al., Laser-induced graphene from wood impregnated with metal salts and use in electrocatalysis. ACS Appl. Nano Mater. 1(9), 5053–5061 (2018). https://doi.org/10.1021/acsanm.8b01163
F. Mahmood, C. Zhang, Y. Xie, D. Stalla, J. Lin et al., Transforming lignin into porous graphene via direct laser writing for solid-state supercapacitors. RSC Adv. 9(39), 22713–22720 (2019). https://doi.org/10.1039/C9RA04073K
D.X. Luong, K.V. Bets, W.A. Algozeeb, M.G. Stanford, C. Kittrell et al., Gram-scale bottom-up flash graphene synthesis. Nature 577(7792), 647–651 (2020). https://doi.org/10.1038/s41586-020-1938-0
J.E. Omoriyekomwan, A. Tahmasebi, J. Dou, R. Wang, J. Yu, A review on the recent advances in the production of carbon nanotubes and carbon nanofibers via microwave-assisted pyrolysis of biomass. Fuel Process. Technol. 214, 106686 (2021). https://doi.org/10.1016/j.fuproc.2020.106686
D.H. Seo, S. Pineda, S. Yick, J. Bell, Z.J. Han et al., Plasma-enabled sustainable elemental lifecycles: Honeycomb-derived graphenes for next-generation biosensors and supercapacitors. Green Chem. 17(4), 2164–2171 (2015). https://doi.org/10.1039/C4GC02135E
X. Xiao, B. Chen, Z. Chen, L. Zhu, J.L. Schnoor, Insight into multiple and multilevel structures of biochars and their potential environmental applications: A critical review. Environ. Sci. Technol. 52(9), 5027–5047 (2018). https://doi.org/10.1021/acs.est.7b06487
Y.-D. Chen, R. Wang, X. Duan, S. Wang, N.-Q. Ren et al., Production, properties, and catalytic applications of sludge derived biochar for environmental remediation. Water Res. 187, 116390 (2020). https://doi.org/10.1016/j.watres.2020.116390
J. Fan, C. Cai, H. Chi, B.J. Reid, F. Coulon et al., Remediation of cadmium and lead polluted soil using thiol-modified biochar. J. Hazard. Mater. 388, 122037 (2020). https://doi.org/10.1016/j.jhazmat.2020.122037
F.R. Oliveira, A.K. Patel, D.P. Jaisi, S. Adhikari, H. Lu et al., Environmental application of biochar: Current status and perspectives. Bioresour Technol. 246, 110–122 (2017). https://doi.org/10.1016/j.biortech.2017.08.122
H. Sun, X. Peng, S. Zhang, S. Liu, Y. Xiong et al., Activation of peroxymonosulfate by nitrogen-functionalized sludge carbon for efficient degradation of organic pollutants in water. Bioresour Technol. 241, 244–251 (2017). https://doi.org/10.1016/j.biortech.2017.05.102
L. Zhao, X. Cao, O. Mašek, A. Zimmerman, Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. J. Hazard. Mater. 256–257, 1–9 (2013). https://doi.org/10.1016/j.jhazmat.2013.04.015
X. Xiao, Z. Chen, B. Chen, H/c atomic ratio as a smart linkage between pyrolytic temperatures, aromatic clusters and sorption properties of biochars derived from diverse precursory materials. Sci. Rep. 6(1), 22644 (2016). https://doi.org/10.1038/srep22644
M. Keiluweit, P.S. Nico, M.G. Johnson, M. Kleber, Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 44(4), 1247–1253 (2010). https://doi.org/10.1021/es9031419
S. Wei, M. Zhu, X. Fan, J. Song, P.a. Peng et al., Influence of pyrolysis temperature and feedstock on carbon fractions of biochar produced from pyrolysis of rice straw, pine wood, pig manure and sewage sludge. Chemosphere 218, 624–631 (2019). https://doi.org/10.1016/j.chemosphere.2018.11.177
T. Hassenkam, G.E. Fantner, J.A. Cutroni, J.C. Weaver, D.E. Morse et al., High-resolution afm imaging of intact and fractured trabecular bone. Bone 35(1), 4–10 (2004). https://doi.org/10.1016/j.bone.2004.02.024
W. Huang, H. Zhang, Y. Huang, W. Wang, S. Wei, Hierarchical porous carbon obtained from animal bone and evaluation in electric double-layer capacitors. Carbon 49(3), 838–843 (2011). https://doi.org/10.1016/j.carbon.2010.10.025
D. Li, X. Duan, H. Sun, J. Kang, H. Zhang et al., Facile synthesis of nitrogen-doped graphene via low-temperature pyrolysis: The effects of precursors and annealing ambience on metal-free catalytic oxidation. Carbon 115, 649–658 (2017). https://doi.org/10.1016/j.carbon.2017.01.058
H. Liu, Y. Liu, L. Tang, J. Wang, J. Yu et al., Egg shell biochar-based green catalysts for the removal of organic pollutants by activating persulfate. Sci. Total Environ. 745, 141095 (2020). https://doi.org/10.1016/j.scitotenv.2020.141095
J. Song, C. Chen, S. Zhu, M. Zhu, J. Dai et al., Processing bulk natural wood into a high-performance structural material. Nature 554(7691), 224–228 (2018). https://doi.org/10.1038/nature25476
T. Li, S.X. Li, W. Kong, C. Chen, E. Hitz et al., A nanofluidic ion regulation membrane with aligned cellulose nanofibers. Sci. Adv. 5(2), eaau4238 (2019). https://doi.org/10.1126/sciadv.aau4238
S. Laurichesse, L. Avérous, Chemical modification of lignins: Towards biobased polymers. Prog. Polym. Sci. 39(7), 1266–1290 (2014). https://doi.org/10.1016/j.progpolymsci.2013.11.004
J. Deng, S.-F. Sun, E.-Q. Zhu, J. Yang, H.-Y. Yang et al., Sub-micro and nano-lignin materials: Small size and rapid progress. Ind. Crops Prod. 164, 113412 (2021). https://doi.org/10.1016/j.indcrop.2021.113412
E.P. Feofilova, I.S. Mysyakina, Lignin: Chemical structure, biodegradation, and practical application (a review). Appl. Biochem. Microbiol. 52(6), 573–581 (2016). https://doi.org/10.1134/S0003683816060053
J. Karthaeuser, V. Biziks, C. Mai, H. Militz, Lignin and lignin-derived compounds for wood applications—a review. Molecules 26(9), 2533 (2021). https://doi.org/10.3390/molecules26092533
K. Liu, Y. Zhuang, J. Chen, G. Yang, L. Dai, Research progress on the preparation and high-value utilization of lignin nanops. Int. J. Mol. Sci. 23(13), 7254 (2022). https://doi.org/10.3390/ijms23137254
Y. Lu, X. Wei, Z. Zong, Y. Lu, W. Zhao et al., Structural investigation and application of lignins. Prog. Chem. 25(5), 838–858 (2013). https://doi.org/10.7536/PC121023
C. Ma, T.-H. Kim, K. Liu, M.-G. Ma, S.-E. Choi et al., Multifunctional lignin-based composite materials for emerging applications. Front. Bioeng. Biotechnol. 9, 708976 (2021). https://doi.org/10.3389/fbioe.2021.708976
Y. Meng, J. Lu, Y. Cheng, Q. Li, H. Wang, Lignin-based hydrogels: A review of preparation, properties, and application. Int. J. Biol. Macromol. 135, 1006–1019 (2019). https://doi.org/10.1016/j.ijbiomac.2019.05.198
O.V. Okoro, A. Amenaghawon, D. Podstawczyk, H. Alimoradi, M.R. Khalili et al., Fruit pomace-lignin as a sustainable biopolymer for biomedical applications. J. Clean. Prod. 328, 129498 (2021). https://doi.org/10.1016/j.jclepro.2021.129498
I. Spiridon, Extraction of lignin and therapeutic applications of lignin-derived compounds. A review. Environ. Chem. Lett. 18(3), 771–785 (2020). https://doi.org/10.1007/s10311-020-00981-3
H. Sun, Q. Xu, M. Ren, S. Wang, F. Kong, Recent studies on the preparation and application of ionic amphiphilic lignin: A comprehensive review. J. Agric. Food Chem. 70(29), 8871–8891 (2022). https://doi.org/10.1021/acs.jafc.2c02798
M.V. Tsvetkov, E.A. Salganskii, Lignin: Applications and ways of utilization (review). Russ. J. Appl. Chem. 91(7), 1129–1136 (2018). https://doi.org/10.1134/S1070427218070108
O. Yu, K.H. Kim, Lignin to materials: A focused review on recent novel lignin applications. Appl Sci-Basel 10(13), 4626 (2020). https://doi.org/10.3390/app10134626
G.W. Huber, S. Iborra, A. Corma, Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem. Rev. 106(9), 4044–4098 (2006). https://doi.org/10.1021/cr068360d
M.P. Pandey, C.S. Kim, Lignin depolymerization and conversion: A review of thermochemical methods. Chem. Eng. Technol. 34(1), 29–41 (2011). https://doi.org/10.1002/ceat.201000270
C. Xu, R.A. Arancon, J. Labidi, R. Luque, Lignin depolymerisation strategies: Towards valuable chemicals and fuels. Chem. Soc. Rev. 43(22), 7485–7500 (2014). https://doi.org/10.1039/c4cs00235k
P. Figueiredo, K. Lintinen, J.T. Hirvonen, M.A. Kostiainen, H.A. Santos, Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications. Prog. Mater. Sci. 93, 233–269 (2018). https://doi.org/10.1016/j.pmatsci.2017.12.001
E.A. Agustiany, M. Rasyidur Ridho, M. Rahmi D.N, E.W. Madyaratri et al., Recent developments in lignin modification and its application in lignin-based green composites: A review. Polym. Compos. 43(8), 4848–4865 (2022) https://doi.org/10.1002/pc.26824
L. Lauberte, G. Fabre, J. Ponomarenko, T. Dizhbite, D.V. Evtuguin et al., Lignin modification supported by dft-based theoretical study as a way to produce competitive natural antioxidants. Molecules 24(9), 1794 (2019). https://doi.org/10.3390/molecules24091794
N.A. Sa’don, A.A. Rahim, M.N.M. Ibrahim, N. Brosse, M.H. Hussin, Modification of oil palm fronds lignin by incorporation of m-cresol for improving structural and antioxidant properties. Int. J. Biol. Macromol. 104, 251–260 (2017). https://doi.org/10.1016/j.ijbiomac.2017.06.038
C. Dumont, R.M. Gauvin, F. Belva, M. Sauthier, Palladium-catalyzed functionalization of kraft lignin: Ether linkages through the telomerization reaction. Chemsuschem 11(10), 1649–1655 (2018). https://doi.org/10.1002/cssc.201800123
A. Duval, L. Averous, Cyclic carbonates as safe and versatile etherifying reagents for the functionalization of lignins and tannins. ACS Sustain. Chem. Eng. 5(8), 7334–7343 (2017). https://doi.org/10.1021/acssuschemeng.7b01502
N. Ghavidel, M.K.R. Konduri, P. Fatehi, Chemical reactivity and sulfo-functionalization response of enzymatically produced lignin. Ind. Crops. Prod. 172, 113950 (2021). https://doi.org/10.1016/j.indcrop.2021.113950
S. Gomez-Fernandez, L. Ugarte, T. Calvo-Correas, C. Pena-Rodriguez, M. Angeles Corcuera et al., Properties of flexible polyurethane foams containing isocyanate functionalized kraft lignin. Ind. Crops. Prod. 100, 51–64 (2017). https://doi.org/10.1016/j.indcrop.2017.02.005
A. Moreno, J. Liu, R. Gueret, S.E. Hadi, L. Bergstrom et al., Unravelling the hydration barrier of lignin oleate nanops for acid- and base-catalyzed functionalization in dispersion state. Angew. Chem. Int. Ed. 60(38), 20897–20905 (2021). https://doi.org/10.1002/anie.202106743
L.-E. Chile, S.J. Kaser, S.G. Hatzikiriakos, P. Mehrkhodavandi, Synthesis and thermorheological analysis of biobased lignin-graft-poly(lactide) copolymers and their blends. ACS Sustain. Chem. Eng 6(2), 1650–1661 (2018). https://doi.org/10.1021/acssuschemeng.7b02866
C. Wang, R.A. Venditti, Uv cross-linkable lignin thermoplastic graft copolymers. ACS Sustain. Chem. Eng. 3(8), 1839–1845 (2015). https://doi.org/10.1021/acssuschemeng.5b00416
Z.-y. Wei, Y.-h. Deng, H.-f. Yu, X.-q. Qiu, Preparation and photoresponsive properties of lignin-graft azobenzene-containing liquid crystalline copolymers. Acta Polym. Sin. 6, 742–749 (2016). https://doi.org/10.11777/j.issn1000-3304.2016.15307
M. Wu, M. Wu, M. Pan, F. Jiang, B. Hui et al., Synthesization and characterization of lignin-graft-poly (lauryl methacrylate) via arget atrp. Int. J. Biol. Macromol. 207, 522–530 (2022). https://doi.org/10.1016/j.ijbiomac.2022.02.169
J.A. Sirviö, M. Visanko, J. Ukkola, H. Liimatainen, Effect of plasticizers on the mechanical and thermomechanical properties of cellulose-based biocomposite films. Ind. Crops. Prod. 122, 513–521 (2018). https://doi.org/10.1016/j.indcrop.2018.06.039
F. Rol, M.N. Belgacem, A. Gandini, J. Bras, Recent advances in surface-modified cellulose nanofibrils. Prog. Polym. Sci. 88, 241–264 (2019). https://doi.org/10.1016/j.progpolymsci.2018.09.002
N.A. Negm, H.H.H. Hefni, A.A.A. Abd-Elaal, E.A. Badr, M.T.H. Abou Kana, Advancement on modification of chitosan biopolymer and its potential applications. Int. J. Biol. Macromol. 152, 681–702 (2020). https://doi.org/10.1016/j.ijbiomac.2020.02.196
Y. Guo, J. Zhou, Y. Song, L. Zhang, An efficient and environmentally friendly method for the synthesis of cellulose carbamate by microwave heating. Macromol. Rapid Commun. 30(17), 1504–1508 (2009). https://doi.org/10.1002/marc.200900238
E.-R. Kenawy, M.M. Azaam, E.M. El-nshar, Preparation of carboxymethyl cellulose-g-poly (acrylamide)/montmorillonite superabsorbent composite as a slow-release urea fertilizer. Polym. Adv. Technol. 29(7), 2072–2079 (2018). https://doi.org/10.1002/pat.4315
Q. Yang, X. Pan, Introducing hydroxyl groups as cellulose-binding sites into polymeric solid acids to improve their catalytic performance in hydrolyzing cellulose. Carbohydr. Polym. 261, 117895 (2021). https://doi.org/10.1016/j.carbpol.2021.117895
Y. Enomoto-Rogers, T. Iwata, Synthesis of xylan-graft-poly(l-lactide) copolymers via click chemistry and their thermal properties. Carbohydr. Polym. 87(3), 1933–1940 (2012). https://doi.org/10.1016/j.carbpol.2011.09.092
M. Guo, W. Zhang, G. Ding, D. Guo, J. Zhu et al., Preparation and characterization of enzyme-responsive emamectin benzoate microcapsules based on a copolymer matrix of silica–epichlorohydrin–carboxymethylcellulose. RSC Adv. 5(113), 93170–93179 (2015). https://doi.org/10.1039/C5RA17901G
A.M. Senna, V.R. Botaro, Biodegradable hydrogel derived from cellulose acetate and edta as a reduction substrate of leaching npk compound fertilizer and water retention in soil. J. Control. Release 260, 194–201 (2017). https://doi.org/10.1016/j.jconrel.2017.06.009
L. Pang, Z. Gao, H. Feng, S. Wang, R. Ma et al., Synthesis of a fluorescent ethyl cellulose membrane with application in monitoring 1-naphthylacetic acid from controlled release formula. Carbohydr. Polym. 176, 160–166 (2017). https://doi.org/10.1016/j.carbpol.2017.07.057
Y. Yusnaidar, B. Wirjosentono, T. Thamrin, E. Eddiyanto, Synthesized superabsorbent based on cellulose from rice straw for controlled-release of urea. Orient. J. Chem. 33, 1905–1913 (2017). https://doi.org/10.13005/ojc/330436
X. Li, Q. Li, X. Xu, Y. Su, Q. Yue et al., Characterization, swelling and slow-release properties of a new controlled release fertilizer based on wheat straw cellulose hydrogel. J. Taiwan Inst. Chem. E 60, 564–572 (2016). https://doi.org/10.1016/j.jtice.2015.10.027
H.A. Essawy, M.B. Ghazy, F.A. El-Hai, M.F. Mohamed, Superabsorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients. Int. J. Biol. Macromol. 89, 144–151 (2016). https://doi.org/10.1016/j.ijbiomac.2016.04.071
N. Işiklan, Controlled release of insecticide carbaryl from sodium alginate, sodium alginate/gelatin, and sodium alginate/sodium carboxymethyl cellulose blend beads crosslinked with glutaraldehyde. J. Appl. Polym. Sci. 99(4), 1310–1319 (2006). https://doi.org/10.1002/app.22012
E. Zanuso, D.G. Gomes, H.A. Ruiz, J.A. Teixeira, L. Domingues, Enzyme immobilization as a strategy towards efficient and sustainable lignocellulosic biomass conversion into chemicals and biofuels: Current status and perspectives. Sustain. Energy Fuels 5(17), 4233–4247 (2021). https://doi.org/10.1039/D1SE00747E
R. Dickson, E. Mancini, N. Garg, J.M. Woodley, K.V. Gernaey et al., Sustainable bio-succinic acid production: Superstructure optimization, techno-economic, and lifecycle assessment. Energy Environ. Sci. 14(6), 3542–3558 (2021). https://doi.org/10.1039/D0EE03545A
M.S. Singhvi, A.R. Deshmukh, B.S. Kim, Cellulase mimicking nanomaterial-assisted cellulose hydrolysis for enhanced bioethanol fermentation: An emerging sustainable approach. Green Chem. 23(14), 5064–5081 (2021). https://doi.org/10.1039/D1GC01239H
A.-C. Albertsson, M. Hakkarainen, Designed to degrade. Science 358(6365), 872–873 (2017). https://doi.org/10.1126/science.aap8115
Y. Kumar, P. Yogeshwar, S. Bajpai, P. Jaiswal, S. Yadav et al., Nanomaterials: Stimulants for biofuels and renewables, yield and energy optimization. Adv. Mater. 2(16), 5318–5343 (2021). https://doi.org/10.1039/D1MA00538C
D. Elalami, A. Oukarroum, A. Barakat, Anaerobic digestion and agronomic applications of microalgae for its sustainable valorization. RSC Adv. 11(43), 26444–26462 (2021). https://doi.org/10.1039/D1RA04845G
J. Rajesh Banu, R. Yukesh Kannah, S. Kavitha, A. Ashikvivek, R.R. Bhosale et al., Cost effective biomethanation via surfactant coupled ultrasonic liquefaction of mixed microalgal biomass harvested from open raceway pond. Bioresour. Technol. 304, 123021 (2020). https://doi.org/10.1016/j.biortech.2020.123021
G. Kumar, D.D. Nguyen, P. Sivagurunathan, T. Kobayashi, K. Xu et al., Cultivation of microalgal biomass using swine manure for biohydrogen production: Impact of dilution ratio and pretreatment. Bioresour. Technol. 260, 16–22 (2018). https://doi.org/10.1016/j.biortech.2018.03.029
F. Passos, M. Hernández-Mariné, J. García, I. Ferrer, Long-term anaerobic digestion of microalgae grown in hrap for wastewater treatment. Effect of microwave pretreatment. Water Res. 49, 351–359 (2014). https://doi.org/10.1016/j.watres.2013.10.013
A. Shivhare, A. Kumar, R. Srivastava, Metal phosphate catalysts to upgrade lignocellulose biomass into value-added chemicals and biofuels. Green Chem. 23(11), 3818–3841 (2021). https://doi.org/10.1039/D1GC00376C
Z.-H. Liu, N. Hao, Y.-Y. Wang, C. Dou, F. Lin et al., Transforming biorefinery designs with ‘plug-in processes of lignin’ to enable economic waste valorization. Nat. Commun. 12(1), 3912 (2021). https://doi.org/10.1038/s41467-021-23920-4
J.F.J. Zhou, Y. Xiao, V. Fung Kin Yuen, G. Gözaydın, X. Ma et al., An integrated process for l-tyrosine production from sugarcane bagasse. ACS Sustain. Chem. Eng. 9(35), 11758–11768 (2021). https://doi.org/10.1021/acssuschemeng.1c03098
A. Patel, A.R. Shah, Integrated lignocellulosic biorefinery: Gateway for production of second generation ethanol and value added products. JB&B 6(2), 108–128 (2021). https://doi.org/10.1016/j.jobab.2021.02.001
A.A. Zaidi, F. RuiZhe, Y. Shi, S.Z. Khan, K. Mushtaq, Nanops augmentation on biogas yield from microalgal biomass anaerobic digestion. Int. J. Hydrog. Energy 43(31), 14202–14213 (2018). https://doi.org/10.1016/j.ijhydene.2018.05.132
X. Sun, M. Chwatko, D.-H. Lee, J.L. Bachman, J.F. Reuther et al., Chemically triggered synthesis, remodeling, and degradation of soft materials. J. Am. Chem. Soc. 142(8), 3913–3922 (2020). https://doi.org/10.1021/jacs.9b12122
M. Ko, Y. Kim, J. Woo, B. Lee, R. Mehrotra et al., Direct propylene epoxidation with oxygen using a photo-electro-heterogeneous catalytic system. Nat. Catal. 5, 37–44 (2022). https://doi.org/10.1038/s41929-021-00724-9
X. Mei, X. Zhu, Y. Zhang, Z. Zhang, Z. Zhong et al., Decreasing the catalytic ignition temperature of diesel soot using electrified conductive oxide catalysts. Nat. Catal. 4(12), 1002–1011 (2021). https://doi.org/10.1038/s41929-021-00702-1
D. Zhong, D. Zhang, W. Chen, J. He, C. Ren et al., Orally deliverable strategy based on microalgal biomass for intestinal disease treatment. Sci. Adv. 7(48), eabi9265 (2021). https://doi.org/10.1126/sciadv.abi9265
F.W.S. Lucas, Y. Fishler, A. Holewinski, Tuning the selectivity of electrochemical levulinic acid reduction to 4-hydroxyvaleric acid: A monomer for biocompatible and biodegradable plastics. Green Chem. 23, 9154–9164 (2021). https://doi.org/10.1039/D1GC02826J
J. Meyers, J.B. Mensah, F.J. Holzhäuser, A. Omari, C.C. Blesken et al., Electrochemical conversion of a bio-derivable hydroxy acid to a drop-in oxygenate diesel fuel. Energy Environ. Sci. 12(8), 2406–2411 (2019). https://doi.org/10.1039/C9EE01485C
E.J. Biddinger, O.Y. Gutierrez, J. Holladay, Electrochemical routes for biomass conversion. J. Appl. Electrochem. 51(1), 1–3 (2021). https://doi.org/10.1007/s10800-020-01525-x
P. Kisszekelyi, R. Hardian, H. Vovusha, B. Chen, X. Zeng et al., Selective electrocatalytic oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-diformylfuran: From mechanistic investigations to catalyst recovery. Chemsuschem 13(12), 3127–3136 (2020). https://doi.org/10.1002/cssc.202000453
X. Shang, Y. Yang, Y. Sun, Electrohydrodimerization of biomass-derived furfural generates a jet fuel precursor. Green Chem. 22(16), 5395–5401 (2020). https://doi.org/10.1039/d0gc01720e
F.J. Holzhäuser, G. Creusen, G. Moos, M. Dahmen, A. König et al., Electrochemical cross-coupling of biogenic di-acids for sustainable fuel production. Green Chem. 21(9), 2334–2344 (2019). https://doi.org/10.1039/c8gc03745k
S. Li, X. Sun, Z. Yao, X. Zhong, Y. Cao et al., Biomass valorization via paired electrosynthesis over vanadium nitride-based electrocatalysts. Adv. Funct. Mater. 29(42), 1904780 (2019). https://doi.org/10.1002/adfm.201904780
W.J. Liu, Z. Xu, D. Zhao, X.Q. Pan, H.C. Li et al., Efficient electrochemical production of glucaric acid and h2 via glucose electrolysis. Nat. Commun. 11(1), 265 (2020). https://doi.org/10.1038/s41467-019-14157-3
X. Du, H. Zhang, K.P. Sullivan, P. Gogoi, Y. Den., Electrochemical lignin conversion. ChemSusChem 13(17), 4318–4343 (2020). https://doi.org/10.1002/cssc.202001187
P. Prabhu, Y. Wan, J.-M. Lee, Electrochemical conversion of biomass derived products into high-value chemicals. Matter. 3(4), 1162–1177 (2020). https://doi.org/10.1016/j.matt.2020.09.002
T. Hibino, K. Kobayashi, M. Ito, Q. Ma, M. Nagao et al., Efficient hydrogen production by direct electrolysis of waste biomass at intermediate temperatures. ACS Sustain. Chem. Eng. 6(7), 9360–9368 (2018). https://doi.org/10.1021/acssuschemeng.8b01701
F.W.S. Lucas, R.G. Grim, S.A. Tacey, C.A. Downes, J. Hasse et al., Electrochemical routes for the valorization of biomass-derived feedstocks: From chemistry to application. ACS Energy Lett. 6(4), 1205–1270 (2021). https://doi.org/10.1021/acsenergylett.0c02692
Y. Fujioka, J.M. Alam, D. Noshiro, K. Mouri, T. Ando et al., Phase separation organizes the site of autophagosome formation. Nature 578(7794), 301–305 (2020). https://doi.org/10.1038/s41586-020-1977-6
C. Jiang, M. Yao, Z. Wang, J. Li, Z. Sun et al., A novel flower-like architecture comprised of 3d interconnected co–al-ox/sy decorated lignosulfonate-derived carbon nanosheets for flexible supercapacitors and electrocatalytic water splitting. Carbon 184, 386–399 (2021). https://doi.org/10.1016/j.carbon.2021.08.044
T. Wang, L. Tao, X. Zhu, C. Chen, W. Chen et al., Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction. Nat. Catal. 5, 66–73 (2022). https://doi.org/10.1038/s41929-021-00721-y
A.M. Curreri, S. Mitragotri, E.E.L. Tanner, Recent advances in ionic liquids in biomedicine. Adv. Sci. 8(17), 2004819 (2021). https://doi.org/10.1002/advs.202004819
Y. Du, Q. Tian, X. Chang, J. Fang, X. Gu et al., Ionic liquid treatment for highest-efficiency ambient printed stable all-inorganic CsPBi3 perovskite solar cells. Adv. Mater. 34(10), 2106750 (2022). https://doi.org/10.1002/adma.202106750
K.A.N. Sachinthani, J.R. Panchuk, Y. Wang, T. Zhu et al., Thiophene- and selenophene-based conjugated polymeric mixed ionic/electronic conductors. J. Chem. Phys. 155(13), 134704 (2021). https://doi.org/10.1063/5.0064858
L. Chen, A.P. van Muyden, X. Cui, Z. Fei, N. Yan et al., Lignin first: Confirming the role of the metal catalyst in reductive fractionation. JACS Au 1(6), 729–733 (2021). https://doi.org/10.1021/jacsau.1c00018
Z. Sheng, Y. Ding, G. Li, C. Fu, Y. Hou et al., Solid–liquid host–guest composites: The marriage of porous solids and functional liquids. Adv. Mater. 33(52), 2104851 (2021). https://doi.org/10.1002/adma.202104851
J. Abed, S. Ahmadi, L. Laverdure, A. Abdellah, C.P. O’Brien et al., In situ formation of nano ni–co oxyhydroxide enables water oxidation electrocatalysts durable at high current densities. Adv. Mater. 33(45), 2103812 (2021). https://doi.org/10.1002/adma.202103812
H. Dong, W. Yu, M.R. Hoffmann, Mixed metal oxide electrodes and the chlorine evolution reaction. J. Phys. Chem. C 125(38), 20745–20761 (2021). https://doi.org/10.1021/acs.jpcc.1c05671
Y. Yang, T. Mu, Electrochemical oxidation of biomass derived 5-hydroxymethylfurfural (hmf): Pathway, mechanism, catalysts and coupling reactions. Green Chem. 23(12), 4228–4254 (2021). https://doi.org/10.1039/D1GC00914A
F. Wang, S.S. Stahl, Electrochemical oxidation of organic molecules at lower overpotential: Accessing broader functional group compatibility with electron−proton transfer mediators. Acc. Chem. Res. 53(3), 561–574 (2020). https://doi.org/10.1021/acs.accounts.9b00544
M. Rafiee, K.C. Miles, S.S. Stahl, Electrocatalytic alcohol oxidation with tempo and bicyclic nitroxyl derivatives: Driving force trumps steric effects. J. Am. Chem. Soc. 137(46), 14751–14757 (2015). https://doi.org/10.1021/jacs.5b09672
Z. Fang, P. Zhang, M. Wang, F. Li, X. Wu et al., Selective electro-oxidation of alcohols to the corresponding aldehydes in aqueous solution via cu(iii) intermediates from cuo nanorods. ACS Sustain. Chem. Eng. 9(35), 11855–11861 (2021). https://doi.org/10.1021/acssuschemeng.1c03691
W.-H. Chen, B.-J. Lin, Y.-Y. Lin, Y.-S. Chu, A.T. Ubando et al., Progress in biomass torrefaction: Principles, applications and challenges. Prog. Energy Combust. Sci. 82, 100887 (2021). https://doi.org/10.1016/j.pecs.2020.100887
M.L. Gothe, K.L.C. Silva, A.L. Figueredo, J.L. Fiorio, J. Rozendo et al., Rhenium – a tuneable player in tailored hydrogenation catalysis. Eur. J. Inorg. Chem. 2021(39), 4043–4065 (2021). https://doi.org/10.1002/ejic.202100459
M.I. Din, A.G. Nabi, Z. Hussain, R. Khalid, M. Iqbal et al., Microbial fuel cells—a preferred technology to prevail energy crisis. Int. J. Energy Res. 45(6), 8370–8388 (2021). https://doi.org/10.1002/er.6403
M. Ko, L.T.M. Pham, Y.J. Sa, J. Woo, T.V.T. Nguyen et al., Unassisted solar lignin valorisation using a compartmented photo-electro-biochemical cell. Nat. Commun. 10(1), 5123 (2019). https://doi.org/10.1038/s41467-019-13022-7
C. Yan, J. Wang, H. Du, L. Zhu, T. Jiang et al., Solar thermal electrochemical process (step) action to biomass: Solar thermo-coupled electrochemical synergy for efficient breaking of biomass to biofuels and hydrogen. Energy Convers. Manag. 180, 1247–1259 (2019). https://doi.org/10.1016/j.enconman.2018.11.056
V. Tournier, C.M. Topham, A. Gilles, B. David, C. Folgoas et al., An engineered pet depolymerase to break down and recycle plastic bottles. Nature 580(7802), 216–219 (2020). https://doi.org/10.1038/s41586-020-2149-4
J. Ali, L. Wang, H. Waseem, B. Song, R. Djellabi et al., Turning harmful algal biomass to electricity by microbial fuel cell: A sustainable approach for waste management. Environ. Pollut. 266(Pt 2), 115373 (2020). https://doi.org/10.1016/j.envpol.2020.115373
L.B.K. Mancilio, G.A. Ribeiro, E.J.R. de Almeida, G.M.V. de Siqueira, R.S. Rocha et al., Adding value to lignocellulosic byproducts by using acetate and p-coumaric acid as substrate in a microbial fuel cell. Ind. Crops. Prod. 171, 113844 (2021). https://doi.org/10.1016/j.indcrop.2021.113844
B. Baniasadi, F. Vahabzadeh, The performance of a cyanobacterial biomass-based microbial fuel cell (mfc) inoculated with shewanella oneidensis mr-1. J. Environ. Chem. Eng. 9(6), 106338 (2021). https://doi.org/10.1016/j.jece.2021.106338
M. Hemalatha, J.S. Sravan, B. Min, S. Venkata Mohan, Concomitant use of azolla derived bioelectrode as anode and hydrolysate as substrate for microbial fuel cell and electro-fermentation applications. Sci. Total Environ. 707, 135851 (2020). https://doi.org/10.1016/j.scitotenv.2019.135851
J.M. Moradian, Z.A. Xu, Y.T. Shi, Z. Fang, Y.C. Yong, Efficient biohydrogen and bioelectricity production from xylose by microbial fuel cell with newly isolated yeast of cystobasidium slooffiae. Int. J. Energy Res. 44(1), 325–333 (2019). https://doi.org/10.1002/er.4922
T.R. Gebreslassie, P.K.T. Nguyen, H.H. Yoon, J. Kim, Co-production of hydrogen and electricity from macroalgae by simultaneous dark fermentation and microbial fuel cell. Bioresour Technol. 336, 125269 (2021). https://doi.org/10.1016/j.biortech.2021.125269
J. He, X. Xin, Z. Pei, L. Chen, Z. Chu et al., Microbial profiles associated improving bioelectricity generation from sludge fermentation liquid via microbial fuel cells with adding fruit waste extracts. Bioresour Technol. 337, 125452 (2021). https://doi.org/10.1016/j.biortech.2021.125452
S. Rojas-Flores, M. De La Cruz Noriega, S.M. Benites, G. Aguirre Gonzales, A. Salvador Salinas et al., Generation of bioelectricity from fruit waste. Energy Rep. 6, 37–42 (2020). https://doi.org/10.1016/j.egyr.2020.10.025
N. Ibrahim, S.K. Kamarudin, L.J. Minggu, Biofuel from biomass via photo-electrochemical reactions: An overview. J. Power Sources 259, 33–42 (2014). https://doi.org/10.1016/j.jpowsour.2014.02.017
Y.-A. Chen, H. Yang, D. Ouyang, T. Liu, D. Liu et al., Construction of electron transfer chains with methylene blue and ferric ions for direct conversion of lignocellulosic biomass to electricity in a wide ph range. Appl. Catal. B 265, 118578 (2020). https://doi.org/10.1016/j.apcatb.2019.118578
T. Hibino, K. Kobayashi, S. Teranishi, T. Hitomi, Solid oxide fuel cell using municipal solid waste directly as fuel: Biomass, resin, plastic, and food waste. ACS Sustain. Chem. Eng. 9(8), 3124–3136 (2021). https://doi.org/10.1021/acssuschemeng.0c07657
D. Roy, S. Samanta, S. Ghosh, Performance assessment of a biomass-fuelled distributed hybrid energy system integrating molten carbonate fuel cell, externally fired gas turbine and supercritical carbon dioxide cycle. Energy Convers. Manag. 211, 112740 (2020). https://doi.org/10.1016/j.enconman.2020.112740
P. Zhu, Z. Wu, L. Guo, J. Yao, M. Dai et al., Achieving high-efficiency conversion and poly-generation of cooling, heating, and power based on biomass-fueled sofc hybrid system: Performance assessment and multi-objective optimization. Energy Convers. Manag. 240, 114245 (2021). https://doi.org/10.1016/j.enconman.2021.114245
V.K. Magotra, S.J. Lee, A.I. Inamdar, T.W. Kang, P.D. Walke et al., Development of white brick fuel cell using rice husk ash agricultural waste for sustainable power generation: A novel approach. Renew. Energ. 179, 1875–1883 (2021). https://doi.org/10.1016/j.renene.2021.08.003
T. Hibino, K. Kobayashi, T. Hitomi, Biomass solid oxide fuel cell using solid weed waste as fuel. Electrochim. Acta 388, 138681 (2021). https://doi.org/10.1016/j.electacta.2021.138681
N. Jafri, W.Y. Wong, L.W. Yoon, K.H. Cheah, Pretreated mesocarp fibre biochars as carbon fuel for direct carbon fuel cells. Int. J. Hydrog. Energy 46(31), 16762–16775 (2021). https://doi.org/10.1016/j.ijhydene.2020.09.034
D. Ouyang, Y. Han, F. Wang, X. Zhao, All-iron ions mediated electron transfer for biomass pretreatment coupling with direct generation of electricity from lignocellulose. Bioresour Technol. 344(Pt B), 126189 (2021). https://doi.org/10.1016/j.biortech.2021.126189
N. Sanchez, R. Ruiz, A. Rödl, M. Cobo, Technical and environmental analysis on the power production from residual biomass using hydrogen as energy vector. Renew. Energ. 175, 825–839 (2021). https://doi.org/10.1016/j.renene.2021.04.145
F. Li, M.J. Hülsey, N. Yan, Y. Dai, C.-H. Wang, Co-transesterification of waste cooking oil, algal oil and dimethyl carbonate over sustainable nanop catalysts. Chem. Eng. J. 405, 127036 (2021). https://doi.org/10.1016/j.cej.2020.127036
L. Zhang, F. Li, A. Kuroki, K.-C. Loh, C.-H. Wang et al., Methane yield enhancement of mesophilic and thermophilic anaerobic co-digestion of algal biomass and food waste using algal biochar: Semi-continuous operation and microbial community analysis. Bioresour Technol. 302, 122892 (2020). https://doi.org/10.1016/j.biortech.2020.122892
F. Li, X. He, C.A. Shoemaker, C.-H. Wang, Experimental and numerical study of biomass catalytic pyrolysis using Ni2P-loaded zeolite: Product distribution, characterization and overall benefit. Energy Convers. Manag. 208, 112581 (2020). https://doi.org/10.1016/j.enconman.2020.112581
J.C. Lin, D. Mariuzza, M. Volpe, L. Fiori, S. Ceylan et al., Integrated thermochemical conversion process for valorizing mixed agricultural and dairy waste to nutrient-enriched biochars and biofuels. Bioresour Technol. 328, 124765 (2021). https://doi.org/10.1016/j.biortech.2021.124765
C. Li, S. Xie, Y. Wang, R. Jiang, X. Wang et al., Multi-functional biochar preparation and heavy metal immobilization by co-pyrolysis of livestock feces and biomass waste. Waste Manag. 134, 241–250 (2021). https://doi.org/10.1016/j.wasman.2021.08.023
J. Watson, M. Swoboda, A. Aierzhati, T. Wang, B. Si et al., Biocrude oil from algal bloom microalgae: A novel integration of biological and thermochemical techniques. Environ. Sci. Technol. 55(3), 1973–1983 (2021). https://doi.org/10.1021/acs.est.0c05924
Z. Liu, Z. Wang, S. Tang, Z. Liu, Fabrication, characterization and sorption properties of activated biochar from livestock manure via three different approaches. Resour. Conserv. Recycl. 168, 105254 (2021). https://doi.org/10.1016/j.resconrec.2020.105254
M. Wądrzyk, P. Grzywacz, R. Janus, M. Michalik., A two-stage processing of cherry pomace via hydrothermal treatment followed by biochar gasification. Renew. Energ. 179, 248–261 (2021). https://doi.org/10.1016/j.renene.2021.06.130
K. Zhang, W.J. Kim, A.A. Park, Alkaline thermal treatment of seaweed for high-purity hydrogen production with carbon capture and storage potential. Nat. Commun. 11(1), 3783 (2020). https://doi.org/10.1038/s41467-020-17627-1
M. Amado, D. Bastos, D. Gaspar, S. Matos, S. Vieira et al., Thermochemical liquefaction of pinewood shaves—evaluating the performance of cleaner and sustainable alternative solvents. J. Clean. Prod. 304, 127088 (2021). https://doi.org/10.1016/j.jclepro.2021.127088
M. Moon, Y.J. Yeon, H.J. Park, J. Park, G.W. Park et al., Chemoenzymatic valorization of agricultural wastes into 4-hydroxyvaleric acid via levulinic acid. Bioresour. Technol. 337, 125479 (2021). https://doi.org/10.1016/j.biortech.2021.125479
Q.-V. Bach, K.-Q. Tran, R.A. Khalil, Ø. Skreiberg, G. Seisenbaeva, Comparative assessment of wet torrefaction. Energy Fuels 27(11), 6743–6753 (2013). https://doi.org/10.1021/ef401295w
A. Shrestha, B. Acharya, A.A. Farooque, Study of hydrochar and process water from hydrothermal carbonization of sea lettuce. Renew. Energ. 163, 589–598 (2021). https://doi.org/10.1016/j.renene.2020.08.133
Y. Qian, Y. Li, Z. Pan, J. Tian, N. Lin et al., Hydrothermal “disproportionation” of biomass into oriented carbon microsphere anode and 3d porous carbon cathode for potassium ion hybrid capacitor. Adv. Funct. 31(30), 2103115 (2021). https://doi.org/10.1002/adfm.202103115
G. Prasannamedha, P.S. Kumar, R. Mehala, T.J. Sharumitha, D. Surendhar, Enhanced adsorptive removal of sulfamethoxazole from water using biochar derived from hydrothermal carbonization of sugarcane bagasse. J. Hazard. Mater. 407, 124825 (2021). https://doi.org/10.1016/j.jhazmat.2020.124825
B. Motavaf, R.A. Dean, J. Nicolas, P.E. Savage, Hydrothermal carbonization of simulated food waste for recovery of fatty acids and nutrients. Bioresour. Technol. 341, 125872 (2021). https://doi.org/10.1016/j.biortech.2021.125872
H. Chen, J. Xu, H. Lin, Z. Wang, Z. Liu, Multi-cycle aqueous arsenic removal by novel magnetic n/s-doped hydrochars activated via one-pot and two-stage schemes. Chem. Eng. J. 429, 132071 (2022). https://doi.org/10.1016/j.cej.2021.132071
Y. Li, M. Shao, M. Huang, W. Sang, S. Zheng et al., Enhanced remediation of heavy metals contaminated soils with ek-prb using beta-cd/hydrothermal biochar by waste cotton as reactive barrier. Chemosphere 286(1), 131470 (2022). https://doi.org/10.1016/j.chemosphere.2021.131470
L. Suarez, I. Benavente-Ferraces, C. Plaza, S. de Pascual-Teresa, I. Suarez-Ruiz et al., Hydrothermal carbonization as a sustainable strategy for integral valorisation of apple waste. Bioresour. Technol. 309, 123395 (2020). https://doi.org/10.1016/j.biortech.2020.123395
H. Fu, B. Wang, D. Li, L. Xue, Y. Hua et al., Anaerobic fermentation treatment improved Cd(2+) adsorption of different feedstocks based hydrochars. Chemosphere 263, 127981 (2021). https://doi.org/10.1016/j.chemosphere.2020.127981
F. Yang, Q. Du, L. Sui, K. Cheng, One-step fabrication of artificial humic acid-functionalized colloid-like magnetic biochar for rapid heavy metal removal. Bioresour. Technol. 328, 124825 (2021). https://doi.org/10.1016/j.biortech.2021.124825
W. Chen, M. Gong, K. Li, M. Xia, Z. Chen et al., Insight into koh activation mechanism during biomass pyrolysis: Chemical reactions between o-containing groups and koh. Appl. Energy 278, 115730 (2020). https://doi.org/10.1016/j.apenergy.2020.115730
J.E. Kim, S.K. Bhatia, H.J. Song, E. Yoo, H.J. Jeon et al., Adsorptive removal of tetracycline from aqueous solution by maple leaf-derived biochar. Bioresour. Technol. 306, 123092 (2020). https://doi.org/10.1016/j.biortech.2020.123092
J. Yu, L. Tang, Y. Pang, G. Zeng, H. Feng et al., Hierarchical porous biochar from shrimp shell for persulfate activation: A two-electron transfer path and key impact factors. Appl. Catal. B 260, 118160 (2020). https://doi.org/10.1016/j.apcatb.2019.118160
B.H. Cheng, B.C. Huang, R. Zhang, Y.L. Chen, S.F. Jiang et al., Bio-coal: A renewable and massively producible fuel from lignocellulosic biomass. Sci. Adv. 6(1), eaay0748 (2020). https://doi.org/10.1126/sciadv.aay0748
J.L. Santos, C. Megías-Sayago, S. Ivanova, M.Á. Centeno, J.A. Odriozola, Functionalized biochars as supports for pd/c catalysts for efficient hydrogen production from formic acid. Appl. Catal. B 282, 119615 (2021). https://doi.org/10.1016/j.apcatb.2020.119615
M.M. Mian, G. Liu, Activation of peroxymonosulfate by chemically modified sludge biochar for the removal of organic pollutants: Understanding the role of active sites and mechanism. Chem. Eng. J. 392, 123681 (2020). https://doi.org/10.1016/j.cej.2019.123681
S. Zhang, S.-F. Jiang, B.-C. Huang, X.-C. Shen, W.-J. Chen et al., Sustainable production of value-added carbon nanomaterials from biomass pyrolysis. Nat. Sustain. 3(9), 753–760 (2020). https://doi.org/10.1038/s41893-020-0538-1
B.L. Liu, M.M. Fu, L. Xiang, N.X. Feng, H.M. Zhao et al., Adsorption of microcystin contaminants by biochars derived from contrasting pyrolytic conditions: Characteristics, affecting factors, and mechanisms. Sci. Total. Environ. 763, 143028 (2021). https://doi.org/10.1016/j.scitotenv.2020.143028
S. Cai, Q. Zhang, Z. Wang, S. Hua, D. Ding et al., Pyrrolic n-rich biochar without exogenous nitrogen doping as a functional material for bisphenol a removal: Performance and mechanism. Appl. Catal. B 291, 120093 (2021). https://doi.org/10.1016/j.apcatb.2021.120093
G.K. Gupta, P.K. Gupta, M.K. Mondal, Experimental process parameters optimization and in-depth product characterizations for teak sawdust pyrolysis. Waste Manag. 87, 499–511 (2019). https://doi.org/10.1016/j.wasman.2019.02.035
S. Theppitak, D. Hungwe, L. Ding, D. Xin, G. Yu et al., Comparison on solid biofuel production from wet and dry carbonization processes of food wastes. Appl. Energy 272, 115264 (2020). https://doi.org/10.1016/j.apenergy.2020.115264
G. Cao, R. Wang, Y. Ju, B. Jing, X. Duan et al., Synchronous removal of emulsions and soluble organic contaminants via a microalgae-based membrane system: Performance and mechanisms. Water Res. 206, 117741 (2021). https://doi.org/10.1016/j.watres.2021.117741
E. Bevan, J. Fu, M. Luberti, Y. Zheng, Challenges and opportunities of hydrothermal carbonisation in the UK; case study in Chirnside. RSC Adv. 11(55), 34870–34897 (2021). https://doi.org/10.1039/D1RA06736B
X. Yang, E. McGlynn, R. Das, S.P. Paşca, B. Cui et al., Nanotechnology enables novel modalities for neuromodulation. Adv. Mater. 33(52). 2103208 (2021). https://doi.org/10.1002/adma.202103208
Y. Yang, J. Sun, J. Wen, S. Mo, J. Wang et al., Single-atom doping in carbon black nanomaterials for photothermal antibacterial applications. Cell Rep. Phys. Sci. 2(8), 100535 (2021). https://doi.org/10.1016/j.xcrp.2021.100535
W. Tang, J.-P. Cao, Z.-H. Wang, Z.-M. He, T.-L. Liu et al., Comparative evaluation of tar steam reforming over graphitic carbon supported ni and co catalysts at low temperature. Energy Convers. Manag. 244, 114454 (2021). https://doi.org/10.1016/j.enconman.2021.114454
A.D. Lalsare, B. Leonard, B. Robinson, A.C. Sivri, R. Vukmanovich et al., Self-regenerable carbon nanofiber supported fe-mo2c catalyst for ch4-co2 assisted reforming of biomass to hydrogen rich syngas. Appl. Catal. B 282, 119537 (2021). https://doi.org/10.1016/j.apcatb.2020.119537
S. Kang, M. He, C. Yin, H. Xu, Q. Cai et al., Graphitic carbon embedded with Fe/Ni nano-catalysts derived from bacterial precursor for efficient toluene cracking. Green Chem. 22(6), 1934–1943 (2020). https://doi.org/10.1039/c9gc03357b
M. Li, L.X. Zhong, W. Chen, Y. Huang, Z. Chen et al., Regulating the electron–hole separation to promote selective oxidation of biomass using ZnS@Bi2S3 nanosheet catalyst. Appl. Catal. B 292, 120180 (2021). https://doi.org/10.1016/j.apcatb.2021.120180
C. DelRe, Y. Jiang, P. Kang, J. Kwon, A. Hall et al., Near-complete depolymerization of polyesters with nano-dispersed enzymes. Nature 592(7855), 558–563 (2021). https://doi.org/10.1038/s41586-021-03408-3
G. Pradhan, Y.C. Sharma, A greener and cheaper approach towards synthesis of glycerol carbonate from bio waste glycerol using CaO–TiO2 nanocatalysts. J. Clean. Prod. 315, 127860 (2021). https://doi.org/10.1016/j.jclepro.2021.127860
A. Larimi, F. Khorasheh, Renewable hydrogen production by ethylene glycol steam reforming over Al2O3 supported ni-pt bimetallic nano-catalysts. Renew. Energ. 128, 188–199 (2018). https://doi.org/10.1016/j.renene.2018.05.070
M. Munir, M. Ahmad, M. Mubashir, S. Asif, A. Waseem et al., A practical approach for synthesis of biodiesel via non-edible seeds oils using trimetallic based montmorillonite nano-catalyst. Bioresour. Technol. 328, 124859 (2021). https://doi.org/10.1016/j.biortech.2021.124859
B. Mondal, S.S. Parhi, G.P. Rangaiah, A.K. Jana, Nano-catalytic heterogeneous reactive distillation for algal biodiesel production: Multi-objective optimization and heat integration. Energy Convers. Manag. 241, 114298 (2021). https://doi.org/10.1016/j.enconman.2021.114298
Y. Feng, S. Long, G. Yan, W. Jia, Y. Sun et al., Highly dispersed co/n-rich carbon nanosheets for the oxidative esterification of biomass-derived alcohols: Insights into the catalytic performance and mechanism. J. Catal. 397, 148–155 (2021). https://doi.org/10.1016/j.jcat.2021.03.031
Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk et al., Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010). https://doi.org/10.1002/adma.201001068
J. Yan, G. Wang, L. Xie, H. Tian, J. Li et al., Engineering radiosensitizer-based metal-phenolic networks potentiate sting pathway activation for advanced radiotherapy. Adv. Mater. 34(10), 2105783 (2022). https://doi.org/10.1002/adma.202105783
L. Liu, A. Corma, Identification of the active sites in supported subnanometric metal catalysts. Nat. Catal. 4(6), 453–456 (2021). https://doi.org/10.1038/s41929-021-00632-y
S. Arora, N. Gupta, V. Singh, Improved pd/ru metal supported graphene oxide nano-catalysts for hydrodeoxygenation (HDO) of vanillyl alcohol, vanillin and lignin. Green Chem. 22(6), 2018–2027 (2020). https://doi.org/10.1039/d0gc00052c
A. Agrawal, A. Choudhary, Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science. APL Mater. 4(5), 053208 (2016). https://doi.org/10.1063/1.4946894
A. Diez-Olivan, J. Del Ser, D. Galar, B. Sierra, Data fusion and machine learning for industrial prognosis: Trends and perspectives towards industry 4.0. Inf. Fusion. 50, 92–111 (2019). https://doi.org/10.1016/j.inffus.2018.10.005
X. Yang, Y. Wang, R. Byrne, G. Schneider, S. Yang, Concepts of artificial intelligence for computer-assisted drug discovery. Chem. Rev. 119(18), 10520–10594 (2019). https://doi.org/10.1021/acs.chemrev.8b00728
S. Wang, Z. Shen, Z. Shen, Y. Dong, Y. Li et al., Machine-learning micropattern manufacturing. Nano Today 38, 101152 (2021). https://doi.org/10.1016/j.nantod.2021.101152
K.K. Yang, Z. Wu, F.H. Arnold, Machine-learning-guided directed evolution for protein engineering. Nat. Methods 16(8), 687–694 (2019). https://doi.org/10.1038/s41592-019-0496-6
M. Reichstein, G. Camps-Valls, B. Stevens, M. Jung, J. Denzler et al., Deep learning and process understanding for data-driven earth system science. Nature 566(7743), 195–204 (2019). https://doi.org/10.1038/s41586-019-0912-1
L. Himanen, A. Geurts, A.S. Foster, P. Rinke, Data-driven materials science: Status, challenges, and perspectives. Adv. Sci. 6(21), 1900808 (2019). https://doi.org/10.1002/advs.201900808
J.A. Hueffel, T. Sperger, I. Funes-ardoiz JAS S. Ward, K. Rissanen et al., Accelerated dinuclear palladium catalyst identification through unsupervised machine learning. Science 374(6571), 1134–1140 (2021). https://doi.org/10.1126/science.abj0999
J. Li, W. Zhang, T. Liu, L. Yang, H. Li et al., Machine learning aided bio-oil production with high energy recovery and low nitrogen content from hydrothermal liquefaction of biomass with experiment verification. Chem. Eng. J. 425, 130649 (2021). https://doi.org/10.1016/j.cej.2021.130649
T. Katongtung, T. Onsree, N. Tippayawong, Machine learning prediction of biocrude yields and higher heating values from hydrothermal liquefaction of wet biomass and wastes. Bioresour. Technol. 344(Pt B), 126278 (2022). https://doi.org/10.1016/j.biortech.2021.126278
F. Elmaz, Ö. Yücel, A.Y. Mutlu, Predictive modeling of biomass gasification with machine learning-based regression methods. Energy 191, 116541 (2020). https://doi.org/10.1016/j.energy.2019.116541
M. Shahbaz, S.A. Taqvi, A.C. Minh Loy, A. Inayat, F. Uddin et al., Artificial neural network approach for the steam gasification of palm oil waste using bottom ash and CaO. Renew. Energy. 132, 243–254 (2019). https://doi.org/10.1016/j.renene.2018.07.142
J. Xing, H. Wang, K. Luo, S. Wang, Y. Bai et al., Predictive single-step kinetic model of biomass devolatilization for cfd applications: A comparison study of empirical correlations (EC), artificial neural networks (ANN) and random forest (RF). Renew. Energ. 136, 104–114 (2019). https://doi.org/10.1016/j.renene.2018.12.088
D. Serrano, I. Golpour, S. Sánchez-Delgado, Predicting the effect of bed materials in bubbling fluidized bed gasification using artificial neural networks (ANNS) modeling approach. Fuel 266, 117021 (2020). https://doi.org/10.1016/j.fuel.2020.117021
S. Safarian, S.M. Ebrahimi Saryazdi, R. Unnthorsson, C. Richter, Artificial neural network integrated with thermodynamic equilibrium modeling of downdraft biomass gasification-power production plant. Energy 213, 118800 (2020). https://doi.org/10.1016/j.energy.2020.118800
S. Sezer, U. Özveren, Investigation of syngas exergy value and hydrogen concentration in syngas from biomass gasification in a bubbling fluidized bed gasifier by using machine learning. Int. J. Hydrog. Energy 46(39), 20377–20396 (2021). https://doi.org/10.1016/j.ijhydene.2021.03.184
B. Guo, D. Li, C. Cheng, Z.-A. Lü, Y. Shen, Simulation of biomass gasification with a hybrid neural network model. Bioresour. Technol. 76(2), 77–83 (2001). https://doi.org/10.1016/S0960-8524(00)00106-1
R. Mikulandrić, D. Lončar, D. Böhning, R. Böhme, M. Beckmann, Artificial neural network modelling approach for a biomass gasification process in fixed bed gasifiers. Energy Convers. Manag. 87, 1210–1223 (2014). https://doi.org/10.1016/j.enconman.2014.03.036
J. Deng, G. Jia, An interpretable hybrid machine learning prediction of dielectric constant of alkali halide crystals. Chem. Phys. 555, 111457 (2022). https://doi.org/10.1016/j.chemphys.2022.111457
V. Lenz, A. Ortwein, Smartbiomassheat—heat from solid biofuels as an integral part of a future energy system based on renewables. Chem. Eng. Technol. 40(2), 313–322 (2017). https://doi.org/10.1002/ceat.201600188
S. Phromphithak, T. Onsree, N. Tippayawong, Machine learning prediction of cellulose-rich materials from biomass pretreatment with ionic liquid solvents. Bioresour. Technol. 323, 124642 (2021). https://doi.org/10.1016/j.biortech.2020.124642
L. Liu, M. Bi, Y. Wang, J. Liu, X. Jiang et al., Artificial intelligence-powered microfluidics for nanomedicine and materials synthesis. Nanoscale 13(46), 19352–19366 (2021). https://doi.org/10.1039/D1NR06195J
J. Li, X. Zhu, Y. Li, Y.W. Tong, Y.S. Ok et al., Multi-task prediction and optimization of hydrochar properties from high-moisture municipal solid waste: Application of machine learning on waste-to-resource. J. Clean. Prod. 278, 123928 (2021). https://doi.org/10.1016/j.jclepro.2020.123928
C. Hepburn, E. Adlen, J. Beddington, E.A. Carter, S. Fuss et al., The technological and economic prospects for CO2 utilization and removal. Nature 575(7781), 87–97 (2019). https://doi.org/10.1038/s41586-019-1681-6
L.R. Lynd, The grand challenge of cellulosic biofuels. Nat. Biotechnol. 35(10), 912–915 (2017). https://doi.org/10.1038/nbt.3976
X. Wang, P. Xie, B. Chen, X. Zhang, Chip-based high-dimensional optical neural network. Nano-Micro Lett. 14(1), 221 (2022). https://doi.org/10.1007/s40820-022-00957-8
G. Zheng, Y. Cui, L. Lu, M. Guo, X. Hu et al., Microfluidic chemostatic bioreactor for high-throughput screening and sustainable co-harvesting of biomass and biodiesel in microalgae. Bioact. Mater. (2022). https://doi.org/10.1016/j.bioactmat.2022.07.012
Y. Gu, C. Wang, N. Kim, J. Zhang, T.M. Wang et al., Three-dimensional transistor arrays for intra-and inter-cellular recording. Nat. Nanotechnol. 17, 292–300 (2022). https://doi.org/10.1038/s41565-021-01040-w
Y. Li, B.-F. Liu, X. Zhang, Wettability-patterned microchip for emerging biomedical materials and technologies. Mater. Today 51, 273–293 (2021). https://doi.org/10.1016/j.mattod.2021.10.008
J. Yang, X. Zhang, C. Liu, Z. Wang, L. Deng et al., Biologically modified nanops as theranostic bionanomaterials. Prog. Nat. Sci. 118, 100768 (2021). https://doi.org/10.1016/j.pmatsci.2020.100768
P. Li, X. Zeng, S. Li, X. Xiang, P. Chen et al., Rapid determination of phase diagrams for biomolecular liquid–liquid phase separation with microfluidics. Anal. Chem. 94(2), 687–694 (2021). https://doi.org/10.1021/acs.analchem.1c02700
Y. Li, M. Chen, J. Hu, R. Sheng, Q. Lin et al., Volumetric compression induces intracellular crowding to control intestinal organoid growth via wnt/β-catenin signaling. Cell Stem Cell 28(1), 63–78. e67 (2021). https://doi.org/10.1016/j.stem.2020.09.012
Y. Li, P. Chen, Y. Wang, S. Yan, X. Feng et al., Rapid assembly of heterogeneous 3d cell microenvironments in a microgel array. Adv. Mater. 28(18), 3543–3548 (2016). https://doi.org/10.1002/adma.201600247
Y. Li, F. Guo, Y. Hao, S.K. Gupta, J. Hu et al., Helical nanofiber yarn enabling highly stretchable engineered microtissue. PNAS 116(19), 9245–9250 (2019). https://doi.org/10.1073/pnas.1821617116
Y. Li, A.S. Mao, B.R. Seo, X. Zhao, S.K. Gupta et al., Compression-induced dedifferentiation of adipocytes promotes tumor progression. Sci. Adv. 6(4), eaax5611 (2020). https://doi.org/10.1126/sciadv.aax5611
Y. Li, W. Tang, M. Guo, The cell as matter: Connecting molecular biology to cellular functions. Matter 4(6), 1863–1891 (2021). https://doi.org/10.1016/j.matt.2021.03.013
X. Ji, L. Ge, C. Liu, Z. Tang, Y. Xiao et al., Capturing functional two-dimensional nanosheets from sandwich-structure vermiculite for cancer theranostics. Nat. Commun. 12(1), 1–17 (2021). https://doi.org/10.1038/s41467-021-21436-5
M.S. Chowdhury, W. Zheng, S. Kumari, J. Heyman, X. Zhang et al., Dendronized fluorosurfactant for highly stable water-in-fluorinated oil emulsions with minimal inter-droplet transfer of small molecules. Nat. Commun. 10(1), 1–10 (2019). https://doi.org/10.1038/s41467-019-12462-5
N. Kong, H. Zhang, C. Feng, C. Liu, Y. Xiao et al., Arsenene-mediated multiple independently targeted reactive oxygen species burst for cancer therapy. Nat. Commun. 12(1), 1–18 (2021). https://doi.org/10.1038/s41467-021-24961-5
Y. Yang, X. Wei, N. Zhang, J. Zheng, X. Chen et al., A non-printed integrated-circuit textile for wireless theranostics. Nat. Commun. 12(1), 1–10 (2021). https://doi.org/10.1038/s41467-021-25075-8
S. Han, Q. Zhang, X. Zhang, X. Liu, L. Lu et al., A digital microfluidic diluter-based microalgal motion biosensor for marine pollution monitoring. Biosens. Bioelectron. 143, 111597 (2019). https://doi.org/10.1016/j.bios.2019.111597
G. Zheng, L. Lu, Y. Yang, J. Wei, B. Han et al., Development of microfluidic dilution network-based system for lab-on-a-chip microalgal bioassays. Anal. Chem. 90(22), 13280–13289 (2018). https://doi.org/10.1021/acs.analchem.8b02597
A. Rodrigo-Navarro, S. Sankaran, M.J. Dalby, A. del Campo, M. Salmeron-Sanchez, Engineered living biomaterials. Nat. Rev. Mater. 6(12), 1175–1190 (2021). https://doi.org/10.1038/s41578-021-00350-8
P.Q. Nguyen, N.D. Courchesne, A. Duraj-Thatte, P. Praveschotinunt, N.S. Joshi, Engineered living materials: Prospects and challenges for using biological systems to direct the assembly of smart materials. Adv. Mater. 30(19), e1704847 (2018). https://doi.org/10.1002/adma.201704847
S.Y. Kang, A. Pokhrel, S. Bratsch, J.J. Benson, S.O. Seo et al., Engineering bacillus subtilis for the formation of a durable living biocomposite material. Nat. Commun. 12(1), 7133 (2021). https://doi.org/10.1038/s41467-021-27467-2
C. Gilbert, T.C. Tang, W. Ott, B.A. Dorr, W.M. Shaw et al., Living materials with programmable functionalities grown from engineered microbial co-cultures. Nat. Mater. 20(5), 691–700 (2021). https://doi.org/10.1038/s41563-020-00857-5
L. Xu, X. Wang, F. Sun, Y. Cao, C. Zhong et al., Harnessing proteins for engineered living materials. Curr. Opin. Solid State Mater. Sci. 25(1), 100896 (2021). https://doi.org/10.1016/j.cossms.2020.100896
Z. Dai, X. Yang, F. Wu, L. Wang, K. Xiang et al., A. Dohlman, L. Dai, X. Shen, L. You., Living fabrication of functional semi-interpenetrating polymeric materials. Nat. Commun. 12(1), 3422 (2021). https://doi.org/10.1038/s41467-021-23812-7
P. Zhang, N. Shao, L. Qin, Recent advances in microfluidic platforms for programming cell-based living materials. Adv. Mater. 33(46), e2005944 (2021). https://doi.org/10.1002/adma.202005944
C.F. Guimarães, R. Ahmed, A. Mataji-Kojouri, F. Soto, J. Wang et al., Engineering polysaccharide-based hydrogel photonic constructs: From multiscale detection to the biofabrication of living optical fibers. Adv. Mater. 33(52), 2170408 (2021). https://doi.org/10.1002/adma.202170408
Z. Cao, R. Li, P. Xu, N. Li, H. Zhu et al., Highly dispersed ruo2-biomass carbon composite made by immobilization of ruthenium and dissolution of coconut meat with octyl ammonium salicylate ionic liquid for high performance flexible supercapacitor. J. Colloid Interface Sci. 606(Pt 1), 424–433 (2022). https://doi.org/10.1016/j.jcis.2021.08.011
C. Xiong, B. Li, C. Duan, L. Dai, S. Nie et al., Carbonized wood cell chamber-reduced graphene oxide@PVA flexible conductive material for supercapacitor, strain sensing and moisture-electric generation applications. Chem. Eng. J. 418, 129518 (2021). https://doi.org/1