High-Entropy Perovskite Oxide: A New Opportunity for Developing Highly Active and Durable Air Electrode for Reversible Protonic Ceramic Electrochemical Cells
Corresponding Author: Zongping Shao
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 217
Abstract
Reversible proton ceramic electrochemical cell (R-PCEC) is regarded as the most promising energy conversion device, which can realize efficient mutual conversion of electrical and chemical energy and to solve the problem of large-scale energy storage. However, the development of robust electrodes with high catalytic activity is the main bottleneck for the commercialization of R-PCECs. Here, a novel type of high-entropy perovskite oxide consisting of six equimolar metals in the A-site, Pr1/6La1/6Nd1/6Ba1/6Sr1/6Ca1/6CoO3−δ (PLNBSCC), is reported as a high-performance bifunctional air electrode for R-PCEC. By harnessing the unique functionalities of multiple elements, high-entropy perovskite oxide can be anticipated to accelerate reaction rates in both fuel cell and electrolysis modes. Especially, an R-PCEC utilizing the PLNBSCC air electrode achieves exceptional electrochemical performances, demonstrating a peak power density of 1.21 W cm−2 for the fuel cell, while simultaneously obtaining an astonishing current density of − 1.95 A cm−2 at an electrolysis voltage of 1.3 V and a temperature of 600 °C. The significantly enhanced electrochemical performance and durability of the PLNBSCC air electrode is attributed mainly to the high electrons/ions conductivity, fast hydration reactivity and high configurational entropy. This research explores to a new avenue to develop optimally active and stable air electrodes for R-PCECs.
Highlights:
1 Synthesis of high-entropy perovskite oxide for air electrode in reversible proton ceramic electrochemical cells.
2 Triple-conducting high-entropy air electrodes exhibit excellent structural stability and oxygen catalytic activity.
3 The peak power density and current density of the cell with high-entropy air electrode in the fuel cell and electrolysis modes are 1.21 W cm−2 and − 1.95 A cm−2 at 600 °C, respectively.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Duan, J. Huang, N. Sullivan, R. O’Hayre, Proton-conducting oxides for energy conversion and storage. Appl. Phys. Rev. 7(1), 011314 (2020). https://doi.org/10.1063/1.5135319
- W. Bian, W. Wu, B. Wang, W. Tang, M. Zhou et al., Revitalizing interface in protonic ceramic cells by acid etch. Nature 604(7906), 479–485 (2022). https://doi.org/10.1038/s41586-022-04457-y
- C. Duan, R. Kee, H. Zhu, N. Sullivan, L. Zhu et al., Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production. Nat. Energy 4(3), 230–240 (2019). https://doi.org/10.1038/s41560-019-0333-2
- Y. Niu, Y. Zhou, W. Zhang, Y. Zhang, C. Evans et al., Highly active and durable air electrodes for reversible protonic ceramic electrochemical cells enabled by an efficient bifunctional catalyst. Adv. Energy Mater. 12(12), 2103783 (2022). https://doi.org/10.1002/aenm.202103783
- R. Ren, Z. Wang, C. Xu, W. Sun, J. Qiao et al., Tuning the defects of the triple conducting oxide BaCo0.4Fe0.4Zr0.1Y0.1O3−δ perovskite toward enhanced cathode activity of protonic ceramic fuel cells. J. Mater. Chem. A 7(31), 18365–18372 (2019). https://doi.org/10.1039/c9ta04335g
- I. Zvonareva, X.-Z. Fu, D. Medvedev, Z. Shao, Electrochemistry and energy conversion features of protonic ceramic cells with mixed ionic-electronic electrolytes. Energy Environ. Sci. 14, 439–465 (2022). https://doi.org/10.1039/d1ee03109k
- Z. Liu, D. Cheng, Y. Zhu, M. Liang, M. Yang et al., Robust bifunctional phosphorus-doped perovskite oxygen electrode for reversible proton ceramic electrochemical cells. Chem. Eng. J. 450, 137787 (2022). https://doi.org/10.1016/j.cej.2022.137787
- K. Zhu, Y. Yang, D.M. Huan, X.Y. Hu, N. Shi et al., Theoretical and experimental investigations on K-doped SrCo0.9Nb0.1O3-δ as a promising cathode for proton-conducting solid oxide fuel cells. Chemsuschem 14(18), 3876–3886 (2021). https://doi.org/10.1002/cssc.202101100
- Y.S. Chou, E.C. Thomsen, R.T. Williams, J.F. Choi, N.L. Canfield et al., Compliant alkali silicate sealing glass for solid oxide fuel cell applications: thermal cycle stability and chemical compatibility. J. Power Sources 196(5), 2709–2716 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.020
- Z.P. Shao, S.M. Haile, A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431(7005), 170–173 (2004). https://doi.org/10.1038/nature02863
- H.-T. Lim, J.-H. Song, M.G. Jung, H.W. Park, The effect of fabrication conditions for GDC buffer layer on electrochemical performance of solid oxide fuel cells. Nano-Micro Lett. 5(3), 151–158 (2013). https://doi.org/10.1016/j.ijhydene.2020.06.245
- D. Oh, D. Gostovic, E.D. Wachsman, Mechanism of La0.6Sr0.4Co0.2Fe0.8O3−δ cathode degradation. J. Mater. Res. 27(15), 1992–1999 (2012). https://doi.org/10.1557/jmr.2012.222
- X. Xu, C. Su, Z. Shao, Fundamental understanding and application of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite in energy storage and conversion: past, present, and future. Energy Fuels 35(17), 13585–13609 (2021). https://doi.org/10.1021/acs.energyfuels.1c02111
- G. Yang, C. Su, H. Shi, Y. Zhu, Y. Song et al., Toward reducing the operation temperature of solid oxide fuel cells: our past 15 years of efforts in cathode development. Energy Fuels 32(12), 15169–15194 (2020). https://doi.org/10.1021/acs.energyfuels.0c01887
- R. Ren, Z. Wang, X. Meng, X. Wang, C. Xu et al., Tailoring the oxygen vacancy to achieve fast intrinsic proton transport in a perovskite cathode for protonic ceramic fuel cells. ACS Appl. Energy Mater. 3(5), 4914–4922 (2020). https://doi.org/10.1021/acsaem.0c00486
- M. Papac, V. Stevanovic, A. Zakutayev, R. O’Hayre, Triple ionic-electronic conducting oxides for next-generation electrochemical devices. Nat. Mater. 20(3), 301–313 (2021). https://doi.org/10.1038/s41563-020-00854-8
- C. Duan, J. Tong, M. Shang, S. Nikodemski, M. Sanders et al., Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science 349(6254), 1321–1326 (2015). https://doi.org/10.1126/science.aab3987
- M. Liang, Y. Zhu, Y. Song, D. Guan, Z. Luo et al., A New durable surface nanops-modified perovskite cathode for protonic ceramic fuel cells from selective cation exsolution under oxidizing atmosphere. Adv. Mater. 34(10), 2106379 (2021). https://doi.org/10.1002/adma.202106379
- H. Ding, W. Wu, C. Jiang, Y. Ding, W. Bian et al., Self-sustainable protonic ceramic electrochemical cells using a triple conducting electrode for hydrogen and power production. Nat. Commun. 11(1), 1970 (2020). https://doi.org/10.1038/s41467-020-15677-z
- Y. Song, Y. Chen, W. Wang, C. Zhou, Y. Zhong et al., Self-assembled triple-conducting nanocomposite as a superior protonic ceramic fuel cell cathode. Joule 3(11), 2842–2853 (2019). https://doi.org/10.1016/j.joule.2019.07.004
- Y. Wang, K. Pei, B. Zhao, Y. Zhao, H. Wang et al., Enhanced electrochemical performance of a Ba0.5Sr0.5Co0.7Fe0.2Ni0.1O3−δ–BaZr0.1Ce0.7Y0.1Yb0.1O3−δ composite oxygen electrode for protonic ceramic electrochemical cells. Energy Fuels 35(17), 14101–14109 (2021). https://doi.org/10.1021/acs.energyfuels.1c02148
- X. Li, Z. Chen, Y. Yang, D. Huan, H. Su et al., Highly stable and efficient Pt single-atom catalyst for reversible proton-conducting solid oxide cells. Appl. Catal. B Environ. 316, 121627 (2022). https://doi.org/10.1016/j.apcatb.2022.121627
- L. Tang, Y. Yang, H. Guo, Y. Wang, M. Wang et al., High configuration entropy activated lattice oxygen for O2 formation on perovskite electrocatalyst. Adv. Funct. Mater. 32, 2112157 (2022). https://doi.org/10.1002/adfm.202112157
- A. Sarkar, L. Velasco, D. Wang, Q. Wang, G. Talasila et al., High entropy oxides for reversible energy storage. Nat. Commun. 9(1), 1–9 (2018). https://doi.org/10.1038/s41467-018-05774-5
- A. Sarkar, Q. Wang, A. Schiele, M.R. Chellali, S.S. Bhattacharya et al., High-entropy oxides: fundamental aspects and electrochemical properties. Adv. Mater. 31(26), e1806236 (2019). https://doi.org/10.1002/adma.201806236
- S. Jiang, T. Hu, J. Gild, N. Zhou, J. Nie et al., A new class of high-entropy perovskite oxides. Scripta Mater. 142, 116–120 (2018). https://doi.org/10.1016/j.scriptamat.2017.08.040
- S.H. Albedwawi, A. AlJaberi, G.N. Haidemenopoulos, K. Polychronopoulou, High entropy oxides-exploring a paradigm of promising catalysts: a review. Mater. Des. 202, 109534 (2021). https://doi.org/10.1016/j.matdes.2021.109534
- J. Dąbrowa, A. Olszewska, A. Falkenstein, C. Schwab, M. Szymczak et al., An innovative approach to design SOFC air electrode materials: high entropy La1−xSrx(Co, Cr, Fe, Mn, Ni)O3−δ (x = 0, 0.1, 0.2, 0.3) perovskites synthesized by the sol–gel method. J. Mater. Chem. A 8(46), 24455–24468 (2020). https://doi.org/10.1039/d0ta06356h
- L. Shen, Z. Du, Y. Zhang, X. Dong, H. Zhao, Medium-entropy perovskites(FeαTiβCoγMnζ)O3−δ as promising cathodes for intermediate temperature solid oxide fuel cell. Appl. Catal. B Environ. 295, 120264 (2021). https://doi.org/10.1016/j.apcatb.2021.120264
- S. Zhao, N. Li, L. Sun, Q. Li, L. Huo et al., A novel high-entropy cathode with the A2BO4-type structure for solid oxide fuel cells. J. Alloys Compd. 895, 162548 (2022). https://doi.org/10.1016/j.jallcom.2021.162548
- Y. Yang, H. Bao, H. Ni, X. Ou, S. Wang et al., A novel facile strategy to suppress Sr segregation for high-entropy stabilized La0.8Sr0.2MnO3-δ cathode. J. Power Sources 482, 228959 (2021). https://doi.org/10.1016/j.jpowsour.2020.228959
- S.N. Marshenya, B.V. Politov, A.Y. Suntsov, I.A. Leonidov, S.A. Petrova et al., Improved structural stability, electron transport and defect formation in PrBaCo2-xAlxO6–δ. J. Alloys Compd. 767, 1041–1047 (2018). https://doi.org/10.1016/j.jallcom.2018.07.089
- L. Zhu, B. Wei, Z. Lü, J. Feng, L. Xu et al., Performance degradation of double-perovskite PrBaCo2O5+δ oxygen electrode in CO2 containing atmospheres. Appl. Surf. Sci. 416, 649–655 (2017). https://doi.org/10.1016/j.apsusc.2017.03.298
- D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–511 (2017). https://doi.org/10.1016/j.actamat.2016.08.081
- C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey et al., Entropy-stabilized oxides. Nat. Commun. 6(1), 1–8 (2015). https://doi.org/10.1038/ncomms9485
- K. Guruvidyathri, K.C. Hari Kumar, J.W. Yeh, B.S. Murty, Topologically close-packed phase formation in high entropy alloys: a review of calphad and experimental results. JOM 69(11), 2113–2124 (2017). https://doi.org/10.1007/s11837-017-2566-5
- E. Fabbri, L. Bi, D. Pergolesi, E. Traversa, Towards the next generation of solid oxide fuel cells operating below 600 °C with chemically stable proton-conducting electrolytes. Adv. Mater. 24(2), 195–208 (2012). https://doi.org/10.1002/adma.201103102
- T.H. Wan, M. Saccoccio, C. Chen, F. Ciucci, Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRTtools. Electrochim. Acta 184, 483–499 (2015). https://doi.org/10.1016/j.electacta.2015.09.097
- Y. Song, J. Liu, Y. Wang, D. Guan, A. Seong et al., Nanocomposites: a new opportunity for developing highly active and durable bifunctional air electrodes for reversible protonic ceramic cells. Adv. Energy Mater. 11(36), 2101899 (2021). https://doi.org/10.1002/aenm.202101899
- Z. Liu, Y. Chen, G. Yang, M. Yang, R. Ji et al., One-pot derived thermodynamically quasi-stable triple conducting nanocomposite as robust bifunctional air electrode for reversible protonic ceramic cells. Appl. Catal. B Environ. 319, 121929 (2022). https://doi.org/10.1016/j.apcatb.2022.121929
- A.P. Tarutin, Y.G. Lyagaeva, A.I. Vylkov, M.Y. Gorshkov, G.K. Vdovin et al., Performance of Pr2(Ni, Cu)O4+δ electrodes in protonic ceramic electrochemical cells with unseparated and separated gas spaces. J. Mater. Sci. Technol. 93, 157–168 (2021). https://doi.org/10.1016/j.jmst.2021.03.056
- C. Duan, D. Hook, Y. Chen, J. Tong, R. O’Hayre, Zr and Y co-doped perovskite as a stable, high performance cathode for solid oxide fuel cells operating below 500 °C. Energy Environ. Sci. 10(1), 176–182 (2017). https://doi.org/10.1039/c6ee01915c
- X. Kuai, G. Yang, Y. Chen, H. Sun, J. Dai et al., Boosting the activity of BaCo0.4 Fe0.4Zr0.1Y0.1O3−δ perovskite for oxygen reduction reactions at low-to-intermediate temperatures through tuning b-site cation deficiency. Adv. Energy Mater. 9(38), 1902384 (2019). https://doi.org/10.1002/aenm.201902384
- Y. Chen, Y. Bu, B. Zhao, Y. Zhang, D. Ding et al., A durable, high-performance hollow-nanofiber cathode for intermediate-temperature fuel cells. Nano Energy 26, 90–99 (2016). https://doi.org/10.1016/j.nanoen.2016.05.001
- Q. Yang, G. Wang, H. Wu, B.A. Beshiwork, D. Tian et al., A high-entropy perovskite cathode for solid oxide fuel cells. J. Alloys Compd. 872, 159633 (2021). https://doi.org/10.1016/j.jallcom.2021.159633
- Y. Chen, T. Hong, P. Wang, K. Brinkman, J. Tong et al., Investigate the proton uptake process of proton/oxygen ion/hole triple conductor BaCo0.4Fe0.4Zr0.1Y0.1O3-δ by electrical conductivity relaxation. J. Power Sources 440, 227122 (2019). https://doi.org/10.1016/j.jpowsour.2019.227122
- Y. Xu, F. Hu, Y. Guo, J. Zhang, Y. Huang et al., Probing oxygen reduction and water uptake kinetics of BaCo0.4Fe0.4Zr0.1Y0.1-xZnxO3-δ cathodes for protonic ceramic fuel cells. Sep. Purif. Technol. 297, 121482 (2022). https://doi.org/10.1016/j.seppur.2022.121482
- A. Seong, J. Kim, D. Jeong, S. Sengodan, M. Liu et al., Electrokinetic proton transport in triple (H+/O2−/e−) conducting oxides as a key descriptor for highly efficient protonic ceramic fuel cells. Adv. Sci. 8(11), 2004099 (2021). https://doi.org/10.1002/advs.202004099
- J.H. Kim, K. Jang, D.-K. Lim, S. Ahn, D. Oh et al., Self-assembled nano-composite perovskites as highly efficient and robust hybrid cathodes for solid oxide fuel cells. J. Mater. Chem. A 10(5), 2496–2508 (2022). https://doi.org/10.1039/d1ta08178k
- X. Xi, J. Liu, Y. Fan, L. Wang, J. Li et al., Reducing d-p band coupling to enhance CO2 electrocatalytic activity by Mg-doping in Sr2FeMoO6-δ double perovskite for high performance solid oxide electrolysis cells. Nano Energy 82, 105707 (2021). https://doi.org/10.1016/j.nanoen.2020.105707
- X. Xu, H. Wang, M. Fronzi, X. Wang, L. Bi et al., Tailoring cations in a perovskite cathode for proton-conducting solid oxide fuel cells with high performance. J. Mater. Chem. A 7(36), 20624–20632 (2019). https://doi.org/10.1039/c9ta05300j
- F. He, Q. Gao, Z. Liu, M. Yang, R. Ran et al., A New pd doped proton conducting perovskite oxide with multiple functionalities for efficient and stable power generation from ammonia at reduced temperatures. Adv. Energy Mater. 11(19), 2003916 (2021). https://doi.org/10.1002/aenm.202003916
- X. Xu, H. Wang, J. Ma, W. Liu, X. Wang et al., Impressive performance of proton-conducting solid oxide fuel cells using a first-generation cathode with tailored cations. J. Mater. Chem. A 7(32), 18792–18798 (2019). https://doi.org/10.1039/c9ta06676d
- S. Choi, C.J. Kucharczyk, Y. Liang, X. Zhang, I. Takeuchi et al., Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells. Nat. Energy 3(3), 202–210 (2018). https://doi.org/10.1038/s41560-017-0085-9
- T. Yu, X. Mao, G. Ma, A novel cobalt-free perovskite La0.6Sr0.4Fe0.9Mo0.1O3−δ cathode for intermediate-temperature solid oxide fuel cells. Ceram. Int. 40(8), 13747–13751 (2014). https://doi.org/10.1016/j.ceramint.2014.05.050
- A. Zhu, G. Zhang, T. Wan, T. Shi, H. Wang et al., Evaluation of SrSc0.175Nb0.025Co0.8O3-δ perovskite as a cathode for proton-conducting solid oxide fuel cells: the possibility of in situ creating protonic conductivity and electrochemical performance. Electrochim. Acta 259, 559–565 (2018). https://doi.org/10.1016/j.electacta.2017.11.037
- L. Zhao, J. Shen, B. He, F. Chen, C. Xia, Synthesis, characterization and evaluation of PrBaCo2−xFexO5+δ as cathodes for intermediate-temperature solid oxide fuel cells. Int. J. Hydrogen Energy 36(5), 3658–3665 (2011). https://doi.org/10.1016/j.ijhydene.2010.12.064
- X. Mao, T. Yu, G. Ma, Performance of cobalt-free double-perovskite NdBaFe2−xMnxO5+δ cathode materials for proton-conducting IT-SOFC. J. Alloys Compd. 637, 286–290 (2015). https://doi.org/10.1016/j.jallcom.2015.02.001
- Q. Nian, L. Zhao, B. He, B. Lin, R. Peng et al., Layered SmBaCuCoO5+δ and SmBaCuFeO5+δ perovskite oxides as cathode materials for proton-conducting SOFCs. J. Alloys Compd. 492(1–2), 291–294 (2010). https://doi.org/10.1016/j.jallcom.2009.11.073
- T. Yu, X. Mao, G. Ma, Performance of cobalt-free perovskite La0.6Sr0.4Fe1−xNbxO3−δ cathode materials for proton-conducting IT-SOFC. J. Alloys Compd. 608, 30–34 (2014). https://doi.org/10.1016/j.jallcom.2014.04.071
- L. Jiang, T. Wei, R. Zeng, W.-X. Zhang, Y.-H. Huang, Thermal and electrochemical properties of PrBa0.5Sr0.5Co2−xFexO5+δ (x = 0.5, 1.0, 1.5) cathode materials for solid-oxide fuel cells. J. Power Sources 232, 279–285 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.064
- A. Mineshige, J. Izutsu, M. Nakamura, K. Nigaki, J. Abe et al., Introduction of A-site deficiency into La0.6Sr0.4Co0.2Fe0.8O3–δ and its effect on structure and conductivity. Solid State Ionics 176(11–12), 1145–1149 (2005). https://doi.org/10.1016/j.ssi.2004.11.021
- M. Liang, F. He, C. Zhou, Y. Chen, R. Ran et al., Nickel-doped BaCo0.4Fe0.4Zr0.1Y0.1O3-δ as a new high-performance cathode for both oxygen-ion and proton conducting fuel cells. Chem. Eng. J. 420, 127717 (2020). https://doi.org/10.1016/j.cej.2020.127717
- P. Wang, D. Xu, J. Cheng, T. Hong, Proton uptake kinetics and electromotive force in BaCo0.4Fe0.4Zr0.1Y0.1O3-δ cathode material with e−/O2−/H+ three mobile carriers for protonic ceramic fuel cells. Ionics 27(3), 1185–1192 (2021). https://doi.org/10.1007/s11581-021-03914-4
- A. Perrichon, N. Torino, E. Jedvik Granhed, Y.-C. Lin, S.F. Parker et al., Local coordination environments and vibrational dynamics of protons in hexagonal and cubic Sc-doped BaTiO3 proton-conducting oxides. J. Phys. Chem. C 124(16), 8643–8651 (2020). https://doi.org/10.1021/acs.jpcc.0c01705
- D. Wu, K. Kusada, Y. Nanba, M. Koyama, T. Yamamoto et al., Noble-metal high-entropy-alloy nanops: atomic-level insight into the electronic structure. J. Am. Chem. Soc. 144(8), 3365–3369 (2022). https://doi.org/10.1021/jacs.1c13616
- W. Tang, H. Ding, W. Bian, W. Wu, W. Li et al., Understanding of A-site deficiency in layered perovskites: promotion of dual reaction kinetics for water oxidation and oxygen reduction in protonic ceramic electrochemical cells. J. Mater. Chem. A 8(29), 14600–14608 (2020). https://doi.org/10.1039/d0ta05137c
- S. Choi, T.C. Davenport, S.M. Haile, Protonic ceramic electrochemical cells for hydrogen production and electricity generation: exceptional reversibility, stability, and demonstrated faradaic efficiency. Energy Environ. Sci. 12(1), 206–215 (2019). https://doi.org/10.1039/c8ee02865f
- J.-S. Shin, H. Park, K. Park, M. Saqib, M. Jo et al., Activity of layered swedenborgite structured Y0.8Er0.2BaCo3.2Ga0.8O7+δ for oxygen electrode reactions in at intermediate temperature reversible ceramic cells. J. Mater. Chem. A 9(1), 607–621 (2021). https://doi.org/10.1039/d0ta11000k
- M. Choi, J. Paik, D. Kim, D. Woo, J. Lee et al., Exceptionally high performance of protonic ceramic fuel cells with stoichiometric electrolytes. Energy Environ. Sci. 14(12), 6476–6483 (2021). https://doi.org/10.1039/d1ee01497h
- J.-H. Jia, Y.-J. Ke, X. Li, H.-R. Zhang, Z.-P. Yu et al., A large magnetocaloric effect of GdCoO3−δ epitaxial thin films prepared by a polymer assisted spin-coating method. J. Mater. Chem. C 7(47), 14970–14976 (2019). https://doi.org/10.1039/c9tc04464g
- I. Jang, S. Kim, C. Kim, H. Lee, H. Yoon et al., Interface engineering of yttrium stabilized zirconia/gadolinium doped ceria bi-layer electrolyte solid oxide fuel cell for boosting electrochemical performance. J. Power Sources 435, 226776 (2019). https://doi.org/10.1016/j.jpowsour.2019.226776
- K.-R. Lee, C.-J. Tseng, S.-C. Jang, J.-C. Lin, K.-W. Wang et al., Fabrication of anode-supported thin BCZY electrolyte protonic fuel cells using NiO sintering aid. Int. J. Hydrogen Energy 44(42), 23784–23792 (2019). https://doi.org/10.1016/j.ijhydene.2019.07.097
- I. Jang, S. Kim, C. Kim, H. Yoon, T. Song, Enhancement of oxygen reduction reaction through coating a nano-web-structured La0.6Sr0.4Co0.2Fe0.8O3-δ thin-film as a cathode/electrolyte interfacial layer for lowering the operating temperature of solid oxide fuel cells. J. Power Sources 392, 123–128 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.106
- Y. Zhou, E. Liu, Y. Chen, Y. Liu, L. Zhang et al., An active and robust air electrode for reversible protonic ceramic electrochemical cells. ACS Energy Lett. 6, 1511–1520 (2021). https://doi.org/10.1021/acsenergylett.1c00432
- N. Wang, H. Toriumi, Y. Sato, C. Tang, T. Nakamura et al., La0.8Sr0.2Co1-xNixO3-δ as the efficient triple conductor air electrode for protonic ceramic cells. ACS Appl. Energy Mater. 4(1), 554–563 (2020). https://doi.org/10.1021/acsaem.0c02447
- Y. Zhou, W. Zhang, N. Kane, Z. Luo, K. Pei et al., An efficient bifunctional air electrode for reversible protonic ceramic electrochemical cells. Adv. Funct. Mater. 31(40), 2105386 (2021). https://doi.org/10.1002/adfm.202105386
References
C. Duan, J. Huang, N. Sullivan, R. O’Hayre, Proton-conducting oxides for energy conversion and storage. Appl. Phys. Rev. 7(1), 011314 (2020). https://doi.org/10.1063/1.5135319
W. Bian, W. Wu, B. Wang, W. Tang, M. Zhou et al., Revitalizing interface in protonic ceramic cells by acid etch. Nature 604(7906), 479–485 (2022). https://doi.org/10.1038/s41586-022-04457-y
C. Duan, R. Kee, H. Zhu, N. Sullivan, L. Zhu et al., Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production. Nat. Energy 4(3), 230–240 (2019). https://doi.org/10.1038/s41560-019-0333-2
Y. Niu, Y. Zhou, W. Zhang, Y. Zhang, C. Evans et al., Highly active and durable air electrodes for reversible protonic ceramic electrochemical cells enabled by an efficient bifunctional catalyst. Adv. Energy Mater. 12(12), 2103783 (2022). https://doi.org/10.1002/aenm.202103783
R. Ren, Z. Wang, C. Xu, W. Sun, J. Qiao et al., Tuning the defects of the triple conducting oxide BaCo0.4Fe0.4Zr0.1Y0.1O3−δ perovskite toward enhanced cathode activity of protonic ceramic fuel cells. J. Mater. Chem. A 7(31), 18365–18372 (2019). https://doi.org/10.1039/c9ta04335g
I. Zvonareva, X.-Z. Fu, D. Medvedev, Z. Shao, Electrochemistry and energy conversion features of protonic ceramic cells with mixed ionic-electronic electrolytes. Energy Environ. Sci. 14, 439–465 (2022). https://doi.org/10.1039/d1ee03109k
Z. Liu, D. Cheng, Y. Zhu, M. Liang, M. Yang et al., Robust bifunctional phosphorus-doped perovskite oxygen electrode for reversible proton ceramic electrochemical cells. Chem. Eng. J. 450, 137787 (2022). https://doi.org/10.1016/j.cej.2022.137787
K. Zhu, Y. Yang, D.M. Huan, X.Y. Hu, N. Shi et al., Theoretical and experimental investigations on K-doped SrCo0.9Nb0.1O3-δ as a promising cathode for proton-conducting solid oxide fuel cells. Chemsuschem 14(18), 3876–3886 (2021). https://doi.org/10.1002/cssc.202101100
Y.S. Chou, E.C. Thomsen, R.T. Williams, J.F. Choi, N.L. Canfield et al., Compliant alkali silicate sealing glass for solid oxide fuel cell applications: thermal cycle stability and chemical compatibility. J. Power Sources 196(5), 2709–2716 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.020
Z.P. Shao, S.M. Haile, A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431(7005), 170–173 (2004). https://doi.org/10.1038/nature02863
H.-T. Lim, J.-H. Song, M.G. Jung, H.W. Park, The effect of fabrication conditions for GDC buffer layer on electrochemical performance of solid oxide fuel cells. Nano-Micro Lett. 5(3), 151–158 (2013). https://doi.org/10.1016/j.ijhydene.2020.06.245
D. Oh, D. Gostovic, E.D. Wachsman, Mechanism of La0.6Sr0.4Co0.2Fe0.8O3−δ cathode degradation. J. Mater. Res. 27(15), 1992–1999 (2012). https://doi.org/10.1557/jmr.2012.222
X. Xu, C. Su, Z. Shao, Fundamental understanding and application of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite in energy storage and conversion: past, present, and future. Energy Fuels 35(17), 13585–13609 (2021). https://doi.org/10.1021/acs.energyfuels.1c02111
G. Yang, C. Su, H. Shi, Y. Zhu, Y. Song et al., Toward reducing the operation temperature of solid oxide fuel cells: our past 15 years of efforts in cathode development. Energy Fuels 32(12), 15169–15194 (2020). https://doi.org/10.1021/acs.energyfuels.0c01887
R. Ren, Z. Wang, X. Meng, X. Wang, C. Xu et al., Tailoring the oxygen vacancy to achieve fast intrinsic proton transport in a perovskite cathode for protonic ceramic fuel cells. ACS Appl. Energy Mater. 3(5), 4914–4922 (2020). https://doi.org/10.1021/acsaem.0c00486
M. Papac, V. Stevanovic, A. Zakutayev, R. O’Hayre, Triple ionic-electronic conducting oxides for next-generation electrochemical devices. Nat. Mater. 20(3), 301–313 (2021). https://doi.org/10.1038/s41563-020-00854-8
C. Duan, J. Tong, M. Shang, S. Nikodemski, M. Sanders et al., Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science 349(6254), 1321–1326 (2015). https://doi.org/10.1126/science.aab3987
M. Liang, Y. Zhu, Y. Song, D. Guan, Z. Luo et al., A New durable surface nanops-modified perovskite cathode for protonic ceramic fuel cells from selective cation exsolution under oxidizing atmosphere. Adv. Mater. 34(10), 2106379 (2021). https://doi.org/10.1002/adma.202106379
H. Ding, W. Wu, C. Jiang, Y. Ding, W. Bian et al., Self-sustainable protonic ceramic electrochemical cells using a triple conducting electrode for hydrogen and power production. Nat. Commun. 11(1), 1970 (2020). https://doi.org/10.1038/s41467-020-15677-z
Y. Song, Y. Chen, W. Wang, C. Zhou, Y. Zhong et al., Self-assembled triple-conducting nanocomposite as a superior protonic ceramic fuel cell cathode. Joule 3(11), 2842–2853 (2019). https://doi.org/10.1016/j.joule.2019.07.004
Y. Wang, K. Pei, B. Zhao, Y. Zhao, H. Wang et al., Enhanced electrochemical performance of a Ba0.5Sr0.5Co0.7Fe0.2Ni0.1O3−δ–BaZr0.1Ce0.7Y0.1Yb0.1O3−δ composite oxygen electrode for protonic ceramic electrochemical cells. Energy Fuels 35(17), 14101–14109 (2021). https://doi.org/10.1021/acs.energyfuels.1c02148
X. Li, Z. Chen, Y. Yang, D. Huan, H. Su et al., Highly stable and efficient Pt single-atom catalyst for reversible proton-conducting solid oxide cells. Appl. Catal. B Environ. 316, 121627 (2022). https://doi.org/10.1016/j.apcatb.2022.121627
L. Tang, Y. Yang, H. Guo, Y. Wang, M. Wang et al., High configuration entropy activated lattice oxygen for O2 formation on perovskite electrocatalyst. Adv. Funct. Mater. 32, 2112157 (2022). https://doi.org/10.1002/adfm.202112157
A. Sarkar, L. Velasco, D. Wang, Q. Wang, G. Talasila et al., High entropy oxides for reversible energy storage. Nat. Commun. 9(1), 1–9 (2018). https://doi.org/10.1038/s41467-018-05774-5
A. Sarkar, Q. Wang, A. Schiele, M.R. Chellali, S.S. Bhattacharya et al., High-entropy oxides: fundamental aspects and electrochemical properties. Adv. Mater. 31(26), e1806236 (2019). https://doi.org/10.1002/adma.201806236
S. Jiang, T. Hu, J. Gild, N. Zhou, J. Nie et al., A new class of high-entropy perovskite oxides. Scripta Mater. 142, 116–120 (2018). https://doi.org/10.1016/j.scriptamat.2017.08.040
S.H. Albedwawi, A. AlJaberi, G.N. Haidemenopoulos, K. Polychronopoulou, High entropy oxides-exploring a paradigm of promising catalysts: a review. Mater. Des. 202, 109534 (2021). https://doi.org/10.1016/j.matdes.2021.109534
J. Dąbrowa, A. Olszewska, A. Falkenstein, C. Schwab, M. Szymczak et al., An innovative approach to design SOFC air electrode materials: high entropy La1−xSrx(Co, Cr, Fe, Mn, Ni)O3−δ (x = 0, 0.1, 0.2, 0.3) perovskites synthesized by the sol–gel method. J. Mater. Chem. A 8(46), 24455–24468 (2020). https://doi.org/10.1039/d0ta06356h
L. Shen, Z. Du, Y. Zhang, X. Dong, H. Zhao, Medium-entropy perovskites(FeαTiβCoγMnζ)O3−δ as promising cathodes for intermediate temperature solid oxide fuel cell. Appl. Catal. B Environ. 295, 120264 (2021). https://doi.org/10.1016/j.apcatb.2021.120264
S. Zhao, N. Li, L. Sun, Q. Li, L. Huo et al., A novel high-entropy cathode with the A2BO4-type structure for solid oxide fuel cells. J. Alloys Compd. 895, 162548 (2022). https://doi.org/10.1016/j.jallcom.2021.162548
Y. Yang, H. Bao, H. Ni, X. Ou, S. Wang et al., A novel facile strategy to suppress Sr segregation for high-entropy stabilized La0.8Sr0.2MnO3-δ cathode. J. Power Sources 482, 228959 (2021). https://doi.org/10.1016/j.jpowsour.2020.228959
S.N. Marshenya, B.V. Politov, A.Y. Suntsov, I.A. Leonidov, S.A. Petrova et al., Improved structural stability, electron transport and defect formation in PrBaCo2-xAlxO6–δ. J. Alloys Compd. 767, 1041–1047 (2018). https://doi.org/10.1016/j.jallcom.2018.07.089
L. Zhu, B. Wei, Z. Lü, J. Feng, L. Xu et al., Performance degradation of double-perovskite PrBaCo2O5+δ oxygen electrode in CO2 containing atmospheres. Appl. Surf. Sci. 416, 649–655 (2017). https://doi.org/10.1016/j.apsusc.2017.03.298
D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–511 (2017). https://doi.org/10.1016/j.actamat.2016.08.081
C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey et al., Entropy-stabilized oxides. Nat. Commun. 6(1), 1–8 (2015). https://doi.org/10.1038/ncomms9485
K. Guruvidyathri, K.C. Hari Kumar, J.W. Yeh, B.S. Murty, Topologically close-packed phase formation in high entropy alloys: a review of calphad and experimental results. JOM 69(11), 2113–2124 (2017). https://doi.org/10.1007/s11837-017-2566-5
E. Fabbri, L. Bi, D. Pergolesi, E. Traversa, Towards the next generation of solid oxide fuel cells operating below 600 °C with chemically stable proton-conducting electrolytes. Adv. Mater. 24(2), 195–208 (2012). https://doi.org/10.1002/adma.201103102
T.H. Wan, M. Saccoccio, C. Chen, F. Ciucci, Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRTtools. Electrochim. Acta 184, 483–499 (2015). https://doi.org/10.1016/j.electacta.2015.09.097
Y. Song, J. Liu, Y. Wang, D. Guan, A. Seong et al., Nanocomposites: a new opportunity for developing highly active and durable bifunctional air electrodes for reversible protonic ceramic cells. Adv. Energy Mater. 11(36), 2101899 (2021). https://doi.org/10.1002/aenm.202101899
Z. Liu, Y. Chen, G. Yang, M. Yang, R. Ji et al., One-pot derived thermodynamically quasi-stable triple conducting nanocomposite as robust bifunctional air electrode for reversible protonic ceramic cells. Appl. Catal. B Environ. 319, 121929 (2022). https://doi.org/10.1016/j.apcatb.2022.121929
A.P. Tarutin, Y.G. Lyagaeva, A.I. Vylkov, M.Y. Gorshkov, G.K. Vdovin et al., Performance of Pr2(Ni, Cu)O4+δ electrodes in protonic ceramic electrochemical cells with unseparated and separated gas spaces. J. Mater. Sci. Technol. 93, 157–168 (2021). https://doi.org/10.1016/j.jmst.2021.03.056
C. Duan, D. Hook, Y. Chen, J. Tong, R. O’Hayre, Zr and Y co-doped perovskite as a stable, high performance cathode for solid oxide fuel cells operating below 500 °C. Energy Environ. Sci. 10(1), 176–182 (2017). https://doi.org/10.1039/c6ee01915c
X. Kuai, G. Yang, Y. Chen, H. Sun, J. Dai et al., Boosting the activity of BaCo0.4 Fe0.4Zr0.1Y0.1O3−δ perovskite for oxygen reduction reactions at low-to-intermediate temperatures through tuning b-site cation deficiency. Adv. Energy Mater. 9(38), 1902384 (2019). https://doi.org/10.1002/aenm.201902384
Y. Chen, Y. Bu, B. Zhao, Y. Zhang, D. Ding et al., A durable, high-performance hollow-nanofiber cathode for intermediate-temperature fuel cells. Nano Energy 26, 90–99 (2016). https://doi.org/10.1016/j.nanoen.2016.05.001
Q. Yang, G. Wang, H. Wu, B.A. Beshiwork, D. Tian et al., A high-entropy perovskite cathode for solid oxide fuel cells. J. Alloys Compd. 872, 159633 (2021). https://doi.org/10.1016/j.jallcom.2021.159633
Y. Chen, T. Hong, P. Wang, K. Brinkman, J. Tong et al., Investigate the proton uptake process of proton/oxygen ion/hole triple conductor BaCo0.4Fe0.4Zr0.1Y0.1O3-δ by electrical conductivity relaxation. J. Power Sources 440, 227122 (2019). https://doi.org/10.1016/j.jpowsour.2019.227122
Y. Xu, F. Hu, Y. Guo, J. Zhang, Y. Huang et al., Probing oxygen reduction and water uptake kinetics of BaCo0.4Fe0.4Zr0.1Y0.1-xZnxO3-δ cathodes for protonic ceramic fuel cells. Sep. Purif. Technol. 297, 121482 (2022). https://doi.org/10.1016/j.seppur.2022.121482
A. Seong, J. Kim, D. Jeong, S. Sengodan, M. Liu et al., Electrokinetic proton transport in triple (H+/O2−/e−) conducting oxides as a key descriptor for highly efficient protonic ceramic fuel cells. Adv. Sci. 8(11), 2004099 (2021). https://doi.org/10.1002/advs.202004099
J.H. Kim, K. Jang, D.-K. Lim, S. Ahn, D. Oh et al., Self-assembled nano-composite perovskites as highly efficient and robust hybrid cathodes for solid oxide fuel cells. J. Mater. Chem. A 10(5), 2496–2508 (2022). https://doi.org/10.1039/d1ta08178k
X. Xi, J. Liu, Y. Fan, L. Wang, J. Li et al., Reducing d-p band coupling to enhance CO2 electrocatalytic activity by Mg-doping in Sr2FeMoO6-δ double perovskite for high performance solid oxide electrolysis cells. Nano Energy 82, 105707 (2021). https://doi.org/10.1016/j.nanoen.2020.105707
X. Xu, H. Wang, M. Fronzi, X. Wang, L. Bi et al., Tailoring cations in a perovskite cathode for proton-conducting solid oxide fuel cells with high performance. J. Mater. Chem. A 7(36), 20624–20632 (2019). https://doi.org/10.1039/c9ta05300j
F. He, Q. Gao, Z. Liu, M. Yang, R. Ran et al., A New pd doped proton conducting perovskite oxide with multiple functionalities for efficient and stable power generation from ammonia at reduced temperatures. Adv. Energy Mater. 11(19), 2003916 (2021). https://doi.org/10.1002/aenm.202003916
X. Xu, H. Wang, J. Ma, W. Liu, X. Wang et al., Impressive performance of proton-conducting solid oxide fuel cells using a first-generation cathode with tailored cations. J. Mater. Chem. A 7(32), 18792–18798 (2019). https://doi.org/10.1039/c9ta06676d
S. Choi, C.J. Kucharczyk, Y. Liang, X. Zhang, I. Takeuchi et al., Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells. Nat. Energy 3(3), 202–210 (2018). https://doi.org/10.1038/s41560-017-0085-9
T. Yu, X. Mao, G. Ma, A novel cobalt-free perovskite La0.6Sr0.4Fe0.9Mo0.1O3−δ cathode for intermediate-temperature solid oxide fuel cells. Ceram. Int. 40(8), 13747–13751 (2014). https://doi.org/10.1016/j.ceramint.2014.05.050
A. Zhu, G. Zhang, T. Wan, T. Shi, H. Wang et al., Evaluation of SrSc0.175Nb0.025Co0.8O3-δ perovskite as a cathode for proton-conducting solid oxide fuel cells: the possibility of in situ creating protonic conductivity and electrochemical performance. Electrochim. Acta 259, 559–565 (2018). https://doi.org/10.1016/j.electacta.2017.11.037
L. Zhao, J. Shen, B. He, F. Chen, C. Xia, Synthesis, characterization and evaluation of PrBaCo2−xFexO5+δ as cathodes for intermediate-temperature solid oxide fuel cells. Int. J. Hydrogen Energy 36(5), 3658–3665 (2011). https://doi.org/10.1016/j.ijhydene.2010.12.064
X. Mao, T. Yu, G. Ma, Performance of cobalt-free double-perovskite NdBaFe2−xMnxO5+δ cathode materials for proton-conducting IT-SOFC. J. Alloys Compd. 637, 286–290 (2015). https://doi.org/10.1016/j.jallcom.2015.02.001
Q. Nian, L. Zhao, B. He, B. Lin, R. Peng et al., Layered SmBaCuCoO5+δ and SmBaCuFeO5+δ perovskite oxides as cathode materials for proton-conducting SOFCs. J. Alloys Compd. 492(1–2), 291–294 (2010). https://doi.org/10.1016/j.jallcom.2009.11.073
T. Yu, X. Mao, G. Ma, Performance of cobalt-free perovskite La0.6Sr0.4Fe1−xNbxO3−δ cathode materials for proton-conducting IT-SOFC. J. Alloys Compd. 608, 30–34 (2014). https://doi.org/10.1016/j.jallcom.2014.04.071
L. Jiang, T. Wei, R. Zeng, W.-X. Zhang, Y.-H. Huang, Thermal and electrochemical properties of PrBa0.5Sr0.5Co2−xFexO5+δ (x = 0.5, 1.0, 1.5) cathode materials for solid-oxide fuel cells. J. Power Sources 232, 279–285 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.064
A. Mineshige, J. Izutsu, M. Nakamura, K. Nigaki, J. Abe et al., Introduction of A-site deficiency into La0.6Sr0.4Co0.2Fe0.8O3–δ and its effect on structure and conductivity. Solid State Ionics 176(11–12), 1145–1149 (2005). https://doi.org/10.1016/j.ssi.2004.11.021
M. Liang, F. He, C. Zhou, Y. Chen, R. Ran et al., Nickel-doped BaCo0.4Fe0.4Zr0.1Y0.1O3-δ as a new high-performance cathode for both oxygen-ion and proton conducting fuel cells. Chem. Eng. J. 420, 127717 (2020). https://doi.org/10.1016/j.cej.2020.127717
P. Wang, D. Xu, J. Cheng, T. Hong, Proton uptake kinetics and electromotive force in BaCo0.4Fe0.4Zr0.1Y0.1O3-δ cathode material with e−/O2−/H+ three mobile carriers for protonic ceramic fuel cells. Ionics 27(3), 1185–1192 (2021). https://doi.org/10.1007/s11581-021-03914-4
A. Perrichon, N. Torino, E. Jedvik Granhed, Y.-C. Lin, S.F. Parker et al., Local coordination environments and vibrational dynamics of protons in hexagonal and cubic Sc-doped BaTiO3 proton-conducting oxides. J. Phys. Chem. C 124(16), 8643–8651 (2020). https://doi.org/10.1021/acs.jpcc.0c01705
D. Wu, K. Kusada, Y. Nanba, M. Koyama, T. Yamamoto et al., Noble-metal high-entropy-alloy nanops: atomic-level insight into the electronic structure. J. Am. Chem. Soc. 144(8), 3365–3369 (2022). https://doi.org/10.1021/jacs.1c13616
W. Tang, H. Ding, W. Bian, W. Wu, W. Li et al., Understanding of A-site deficiency in layered perovskites: promotion of dual reaction kinetics for water oxidation and oxygen reduction in protonic ceramic electrochemical cells. J. Mater. Chem. A 8(29), 14600–14608 (2020). https://doi.org/10.1039/d0ta05137c
S. Choi, T.C. Davenport, S.M. Haile, Protonic ceramic electrochemical cells for hydrogen production and electricity generation: exceptional reversibility, stability, and demonstrated faradaic efficiency. Energy Environ. Sci. 12(1), 206–215 (2019). https://doi.org/10.1039/c8ee02865f
J.-S. Shin, H. Park, K. Park, M. Saqib, M. Jo et al., Activity of layered swedenborgite structured Y0.8Er0.2BaCo3.2Ga0.8O7+δ for oxygen electrode reactions in at intermediate temperature reversible ceramic cells. J. Mater. Chem. A 9(1), 607–621 (2021). https://doi.org/10.1039/d0ta11000k
M. Choi, J. Paik, D. Kim, D. Woo, J. Lee et al., Exceptionally high performance of protonic ceramic fuel cells with stoichiometric electrolytes. Energy Environ. Sci. 14(12), 6476–6483 (2021). https://doi.org/10.1039/d1ee01497h
J.-H. Jia, Y.-J. Ke, X. Li, H.-R. Zhang, Z.-P. Yu et al., A large magnetocaloric effect of GdCoO3−δ epitaxial thin films prepared by a polymer assisted spin-coating method. J. Mater. Chem. C 7(47), 14970–14976 (2019). https://doi.org/10.1039/c9tc04464g
I. Jang, S. Kim, C. Kim, H. Lee, H. Yoon et al., Interface engineering of yttrium stabilized zirconia/gadolinium doped ceria bi-layer electrolyte solid oxide fuel cell for boosting electrochemical performance. J. Power Sources 435, 226776 (2019). https://doi.org/10.1016/j.jpowsour.2019.226776
K.-R. Lee, C.-J. Tseng, S.-C. Jang, J.-C. Lin, K.-W. Wang et al., Fabrication of anode-supported thin BCZY electrolyte protonic fuel cells using NiO sintering aid. Int. J. Hydrogen Energy 44(42), 23784–23792 (2019). https://doi.org/10.1016/j.ijhydene.2019.07.097
I. Jang, S. Kim, C. Kim, H. Yoon, T. Song, Enhancement of oxygen reduction reaction through coating a nano-web-structured La0.6Sr0.4Co0.2Fe0.8O3-δ thin-film as a cathode/electrolyte interfacial layer for lowering the operating temperature of solid oxide fuel cells. J. Power Sources 392, 123–128 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.106
Y. Zhou, E. Liu, Y. Chen, Y. Liu, L. Zhang et al., An active and robust air electrode for reversible protonic ceramic electrochemical cells. ACS Energy Lett. 6, 1511–1520 (2021). https://doi.org/10.1021/acsenergylett.1c00432
N. Wang, H. Toriumi, Y. Sato, C. Tang, T. Nakamura et al., La0.8Sr0.2Co1-xNixO3-δ as the efficient triple conductor air electrode for protonic ceramic cells. ACS Appl. Energy Mater. 4(1), 554–563 (2020). https://doi.org/10.1021/acsaem.0c02447
Y. Zhou, W. Zhang, N. Kane, Z. Luo, K. Pei et al., An efficient bifunctional air electrode for reversible protonic ceramic electrochemical cells. Adv. Funct. Mater. 31(40), 2105386 (2021). https://doi.org/10.1002/adfm.202105386