Bioinspired Nanostructured Superwetting Thin-Films in a Self-supported form Enabled “Miniature Umbrella” for Weather Monitoring and Water Rescue
Corresponding Author: Tao Chen
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 32
Abstract
Two-dimensional (2D) soft materials, especially in their self-supported forms, demonstrate attractive properties to realize biomimetic morphing and ultrasensitive sensing. Although extensive efforts on design of self-supported functional membranes and integrated systems have been devoted, there still remains an unexplored regime of the combination of mechanical, electrical and surface wetting properties for specific functions. Here, we report a self-supported film featured with elastic, thin, conductive and superhydrophobic characteristics. Through a well-defined surface modification strategy, the surface wettability and mechanical sensing can be effectively balanced. The resulted film can function as a smart umbrella to achieve real-time simulated raining with diverse frequencies and intensity. In addition, the integrated umbrella can even response sensitively to the sunlight and demonstrate a positively correlation of current signals with the intensity of sun illumination. Moreover, the superhydrophobic umbrella can be further employed to realize water rescue, which can take the underwater object onto water surface, load and rapidly transport the considerable weight. More importantly, the whole process of loaded objects and water flow velocity can be precisely detected. The self-supported smart umbrella can effectively monitor the weather and realize a smart water rescue, demonstrating significant potentials in multifunctional sensing and directional actuation in the presence of water.
Highlights:
1 An elastic, superhydrophobic and conductive thin film inspired by the natural self-supported superhydrophobic butterfly wings enabled by a controllable composite of assembled carbon nanotube and elastomer is fabricated.
2 Through the adjustment of hydrophobic elastomeric coating, the surface wettability can be effectively controlled and still maintain superhydrophobic characteristics under the applied strain of 60%.
3 The achieved film can function as a self-supported smart umbrella to sensitively monitor the day weather and perform water rescue
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.M. Drotlef, M. Amjadi, M. Yunusa, M. Sitti, Bioinspired composite microfibers for skin adhesion and signal amplification of wearable sensors. Adv. Mater. 29(28), 1701353 (2017). https://doi.org/10.1002/adma.201701353
- S. Wei, H. Qiu, H. Shi, W. Lu, H. Liu et al., Promotion of color-changing luminescent hydrogels from thermo to electrical responsiveness toward biomimetic skin applications. ACS Nano 15(6), 10415–10427 (2021). https://doi.org/10.1021/acsnano.1c02720
- X. Liu, X. Zhang, Q. Chen, Y. Pan, C. Liu et al., A simple superhydrophobic/superhydrophilic Janus-paper with enhanced biocompatibility by PDMS and candle soot coating for actuator. Chem. Eng. J. 406, 126532 (2021). https://doi.org/10.1016/j.cej.2020.126532
- Y. Jia, Y. Pan, C. Wang, C. Liu, C. Shen et al., Flexible Ag microparticle/MXene-based film for energy harvesting. Nano Micro Lett. 13, 201 (2021). https://doi.org/10.1007/s40820-021-00729-w
- L. Jing, L.Y. Hsiao, S. Li, H. Yang, P.L.P. Ng et al., 2D-material-integrated hydrogels as multifunctional protective skins for soft robots. Mater. Horiz. 8(7), 2065–2078 (2021). https://doi.org/10.1039/d0mh01594f
- T. Li, L. Li, H. Sun, Y. Xu, X. Wang et al., Porous ionic membrane based flexible humidity sensor and its multifunctional applications. Adv. Sci. 4(5), 1600404 (2017). https://doi.org/10.1002/advs.201600404
- X. Wang, X. Liu, D.W. Schubert, Highly sensitive ultrathin flexible thermoplastic polyurethane/carbon black fibrous film strain sensor with adjustable scaffold networks. Nano Micro Lett. 13, 64 (2021). https://doi.org/10.1007/s40820-021-00592-9
- Y. Qiu, Y. Tian, S. Sun, J. Hu, Y. Wang et al., Bioinspired, multifunctional dual-mode pressure sensors as electronic skin for decoding complex loading processes and human motions. Nano Energy 78, 105337 (2020). https://doi.org/10.1016/j.nanoen.2020.105337
- X. Lin, F. Li, Y. Bing, T. Fei, S. Liu et al., Biocompatible multifunctional e-skins with excellent self-healing ability enabled by clean and scalable fabrication. Nano Micro Lett. 13, 200 (2021). https://doi.org/10.1007/s40820-021-00701-8
- H. Wang, S. Li, Y. Wang, H. Wang, X. Shen et al., Bioinspired fluffy fabric with in situ grown carbon nanotubes for ultrasensitive wearable airflow sensor. Adv. Mater. 32(11), 1908214 (2020). https://doi.org/10.1002/adma.201908214
- Y. Liang, P. Xiao, S. Wang, J. Shi, J. He et al., Scalable fabrication of free-standing, stretchable CNT/TPE ultrathin composite films for skin adhesive epidermal electronics. J. Mater. Chem. C 6(25), 6666–6671 (2018). https://doi.org/10.1039/c8tc00711j
- Y. Gao, C. Yan, H. Huang, T. Yang, G. Tian et al., Microchannel-confined MXene based flexible piezoresistive multifunctional micro-force sensor. Adv. Funct. Mater. 30(11), 1909603 (2020). https://doi.org/10.1002/adfm.201909603
- S. Pan, Z. Liu, M. Wang, Y. Jiang, Y. Luo et al., Mechanocombinatorially screening sensitivity of stretchable strain sensors. Adv. Mater. 31(35), 1903130 (2019). https://doi.org/10.1002/adma.201903130
- R. Liu, J. Li, J. Duan, B. Yu, W. Xie et al., High-efficiency solar heat storage enabled by adaptive radiation management. Cell Rep. Phys. Sci. 2(8), 100533 (2021). https://doi.org/10.1016/j.xcrp.2021.100533
- S. Zeng, S. Pian, M. Su, Z. Wang, M. Wu et al., Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373(6555), 692–696 (2021). https://doi.org/10.1126/science.abi5484
- J. Mandal, Y. Fu, A.C. Overvig, M. Jia, K. Sun et al., Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362(6412), 315–319 (2018). https://doi.org/10.1126/science.aat9513
- M. Shi, M. Shen, X. Guo, X. Jin, Y. Cao et al., Ti3C2Tx MXene-decorated nanoporous polyethylene textile for passive and active personal precision heating. ACS Nano 15(7), 11396–11405 (2021). https://doi.org/10.1021/acsnano.1c00903
- J. He, P. Xiao, J. Shi, Y. Liang, W. Lu et al., High performance humidity fluctuation sensor for wearable devices via a bioinspired atomic-precise tunable graphene-polymer heterogeneous sensing junction. Chem. Mater. 30(13), 4343–4354 (2018). https://doi.org/10.1021/acs.chemmater.8b01587
- H. Cheng, Y. Pan, Q. Chen, R. Che, G. Zheng et al., Ultrathin flexible poly(vinylidene fluoride)/MXene/silver nanowire film with outstanding specific EMI shielding and high heat dissipation. Adv. Compos. Hybrid Mater. 4(3), 505–513 (2021). https://doi.org/10.1007/s42114-021-00224-1
- P. Xiao, J. Gu, C. Wan, S. Wang, J. He et al., Ultrafast formation of free-standing 2D carbon nanotube thin films through capillary force driving compression on an air/water interface. Chem. Mater. 28(19), 7125–7133 (2016). https://doi.org/10.1021/acs.chemmater.6b03420
- P. Xiao, Y. Liang, J. He, L. Zhang, S. Wang et al., Hydrophilic/hydrophobic interphase-mediated bubble-like stretchable Janus ultrathin films toward self-adaptive and pneumatic multifunctional electronics. ACS Nano 13(4), 4368–4378 (2019). https://doi.org/10.1021/acsnano.8b09600
- J. Yang, J. Chen, Y. Su, Q. Jing, Z. Li et al., Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition. Adv. Mater. 27(8), 1316–1326 (2015). https://doi.org/10.1002/adma.201404794
- X. Yang, L. Li, S. Wang, Q. Lu, Y. Bai et al., Ultrathin, stretchable, and breathable epidermal electronics based on a facile bubble blowing method. Adv. Electron. 6(11), 2000306 (2020). https://doi.org/10.1002/aelm.202000306
- P. Won, K.K. Kim, H. Kim, J.J. Park, I. Ha et al., Transparent soft actuators/sensors and camouflage skins for imperceptible soft robotics. Adv. Mater. 33(19), 2002397 (2020). https://doi.org/10.1002/adma.202002397
- J. Yi, K. Dong, S. Shen, Y. Jiang, X. Peng et al., Fully fabric-based triboelectric nanogenerators as self-powered human-machine interactive keyboards. Nano Micro Lett. 13, 103 (2021). https://doi.org/10.1007/s40820-021-00621-7
- Z. Tian, B. Xu, G. Wan, X. Han, Z. Di et al., Gaussian-preserved, non-volatile shape morphing in three-dimensional microstructures for dual-functional electronic devices. Nat. Commun. 12, 509 (2021). https://doi.org/10.1038/s41467-020-20843-4
- Y. Zhu, M. Birla, K.R. Oldham, E.T. Filipov, Elastically and plastically foldable electrothermal micro-origami for controllable and rapid shape morphing. Adv. Funct. Mater. 30(40), 2003741 (2020). https://doi.org/10.1002/adfm.202003741
- K. Xu, Y. Wang, B. Zhang, C. Zhang, T. Liu, Stretchable and self-healing polyvinyl alcohol/cellulose nanofiber nanocomposite hydrogels for strain sensors with high sensitivity and linearity. Compos. Commun. 24, 100677 (2021). https://doi.org/10.1016/j.coco.2021.100677
- A. Mohammadi, Y. Xu, Y. Tan, P. Choong, D. Oetomo, Magnetic-based soft tactile sensors with deformable continuous force transfer medium for resolving contact locations in robotic grasping and manipulation. Sensors 19(22), 4925 (2019). https://doi.org/10.3390/s19224925
- J. Pikul, S. Li, H. Bai, R. Hanlon, I. Cohen et al., Stretchable surfaces with programmable 3D texture morphing for synthetic camouflaging skins. Science 358(6360), 210–214 (2017). https://doi.org/10.1126/science.aan5627
- Z. Xiang, Y. Shi, X. Zhu, L. Cai, W. Lu, Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion. Nano Micro Lett. 13, 150 (2021). https://doi.org/10.1007/s40820-021-00673-9
- Y. Wu, Y. Liu, Y. Zhou, Q. Man, C. Hu et al., A skin-inspired tactile sensor for smart prosthetics. Sci. Robot. 3(22), aat0429 (2018). https://doi.org/10.1126/scirobotics.aat0429
- B. Dai, K. Li, L. Shi, X. Wan, X. Liu et al., Bioinspired Janus textile with conical micropores for human body moisture and thermal management. Adv. Mater. 31(41), 1904113 (2019). https://doi.org/10.1002/adma.201904113
- T. Xu, L.P. Xu, X. Zhang, S. Wang, Bioinspired superwettable micropatterns for biosensing. Chem. Soc. Rev. 48(12), 3153–3165 (2019). https://doi.org/10.1039/c8cs00915e
- D. Byun, J. Hong, J.H. Ko, Y.J. Lee et al., Wetting characteristics of insect wing surfaces. J. Bionic Eng. 6(1), 63–70 (2009). https://doi.org/10.1016/s1672-6529(08)60092-x
- P.P. Goodwyn, Y. Maezono, N. Hosoda, K. Fujisaki, Waterproof and translucent wings at the same time: problems and solutions in butterflies. Naturwissenschaften 96(7), 781–787 (2009). https://doi.org/10.1007/s00114-009-0531-z
- Q. Zhao, T. Fan, J. Ding, D. Zhang, Q. Guo et al., Super black and ultrathin amorphous carbon film inspired by anti-reflection architecture in butterfly wing. Carbon 49(3), 877–883 (2011). https://doi.org/10.1016/j.carbon.2010.10.048
- P. Li, B. Zhang, H. Zhao, L. Zhang, Z. Wang et al., Unidirectional droplet transport on the biofabricated butterfly wing. Langmuir 34(41), 12482–12487 (2018). https://doi.org/10.1021/acs.langmuir.8b02550
- Q. Zhao, X. Guo, T. Fan, J. Ding, D. Zhang et al., Art of blackness in butterfly wings as natural solar collector. Soft Matter 7(24), 11433–11439 (2011). https://doi.org/10.1039/c1sm06167d
- W. Wang, W. Zhang, D. Zhang, G.P. Wang, A low-cost, high-efficiency light absorption structure inspired by the Papilio ulysses butterfly. RSC Adv. 7(37), 22749–22756 (2017). https://doi.org/10.1039/c7ra03048g
- Y. Liang, J. Shi, P. Xiao, J. He, F. Ni et al., A lotus-inspired Janus hybrid film enabled by interfacial self-assembly and in situ asymmetric modification. Chem. Commun. 54(91), 12804–12807 (2018). https://doi.org/10.1039/c8cc07143h
References
D.M. Drotlef, M. Amjadi, M. Yunusa, M. Sitti, Bioinspired composite microfibers for skin adhesion and signal amplification of wearable sensors. Adv. Mater. 29(28), 1701353 (2017). https://doi.org/10.1002/adma.201701353
S. Wei, H. Qiu, H. Shi, W. Lu, H. Liu et al., Promotion of color-changing luminescent hydrogels from thermo to electrical responsiveness toward biomimetic skin applications. ACS Nano 15(6), 10415–10427 (2021). https://doi.org/10.1021/acsnano.1c02720
X. Liu, X. Zhang, Q. Chen, Y. Pan, C. Liu et al., A simple superhydrophobic/superhydrophilic Janus-paper with enhanced biocompatibility by PDMS and candle soot coating for actuator. Chem. Eng. J. 406, 126532 (2021). https://doi.org/10.1016/j.cej.2020.126532
Y. Jia, Y. Pan, C. Wang, C. Liu, C. Shen et al., Flexible Ag microparticle/MXene-based film for energy harvesting. Nano Micro Lett. 13, 201 (2021). https://doi.org/10.1007/s40820-021-00729-w
L. Jing, L.Y. Hsiao, S. Li, H. Yang, P.L.P. Ng et al., 2D-material-integrated hydrogels as multifunctional protective skins for soft robots. Mater. Horiz. 8(7), 2065–2078 (2021). https://doi.org/10.1039/d0mh01594f
T. Li, L. Li, H. Sun, Y. Xu, X. Wang et al., Porous ionic membrane based flexible humidity sensor and its multifunctional applications. Adv. Sci. 4(5), 1600404 (2017). https://doi.org/10.1002/advs.201600404
X. Wang, X. Liu, D.W. Schubert, Highly sensitive ultrathin flexible thermoplastic polyurethane/carbon black fibrous film strain sensor with adjustable scaffold networks. Nano Micro Lett. 13, 64 (2021). https://doi.org/10.1007/s40820-021-00592-9
Y. Qiu, Y. Tian, S. Sun, J. Hu, Y. Wang et al., Bioinspired, multifunctional dual-mode pressure sensors as electronic skin for decoding complex loading processes and human motions. Nano Energy 78, 105337 (2020). https://doi.org/10.1016/j.nanoen.2020.105337
X. Lin, F. Li, Y. Bing, T. Fei, S. Liu et al., Biocompatible multifunctional e-skins with excellent self-healing ability enabled by clean and scalable fabrication. Nano Micro Lett. 13, 200 (2021). https://doi.org/10.1007/s40820-021-00701-8
H. Wang, S. Li, Y. Wang, H. Wang, X. Shen et al., Bioinspired fluffy fabric with in situ grown carbon nanotubes for ultrasensitive wearable airflow sensor. Adv. Mater. 32(11), 1908214 (2020). https://doi.org/10.1002/adma.201908214
Y. Liang, P. Xiao, S. Wang, J. Shi, J. He et al., Scalable fabrication of free-standing, stretchable CNT/TPE ultrathin composite films for skin adhesive epidermal electronics. J. Mater. Chem. C 6(25), 6666–6671 (2018). https://doi.org/10.1039/c8tc00711j
Y. Gao, C. Yan, H. Huang, T. Yang, G. Tian et al., Microchannel-confined MXene based flexible piezoresistive multifunctional micro-force sensor. Adv. Funct. Mater. 30(11), 1909603 (2020). https://doi.org/10.1002/adfm.201909603
S. Pan, Z. Liu, M. Wang, Y. Jiang, Y. Luo et al., Mechanocombinatorially screening sensitivity of stretchable strain sensors. Adv. Mater. 31(35), 1903130 (2019). https://doi.org/10.1002/adma.201903130
R. Liu, J. Li, J. Duan, B. Yu, W. Xie et al., High-efficiency solar heat storage enabled by adaptive radiation management. Cell Rep. Phys. Sci. 2(8), 100533 (2021). https://doi.org/10.1016/j.xcrp.2021.100533
S. Zeng, S. Pian, M. Su, Z. Wang, M. Wu et al., Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373(6555), 692–696 (2021). https://doi.org/10.1126/science.abi5484
J. Mandal, Y. Fu, A.C. Overvig, M. Jia, K. Sun et al., Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362(6412), 315–319 (2018). https://doi.org/10.1126/science.aat9513
M. Shi, M. Shen, X. Guo, X. Jin, Y. Cao et al., Ti3C2Tx MXene-decorated nanoporous polyethylene textile for passive and active personal precision heating. ACS Nano 15(7), 11396–11405 (2021). https://doi.org/10.1021/acsnano.1c00903
J. He, P. Xiao, J. Shi, Y. Liang, W. Lu et al., High performance humidity fluctuation sensor for wearable devices via a bioinspired atomic-precise tunable graphene-polymer heterogeneous sensing junction. Chem. Mater. 30(13), 4343–4354 (2018). https://doi.org/10.1021/acs.chemmater.8b01587
H. Cheng, Y. Pan, Q. Chen, R. Che, G. Zheng et al., Ultrathin flexible poly(vinylidene fluoride)/MXene/silver nanowire film with outstanding specific EMI shielding and high heat dissipation. Adv. Compos. Hybrid Mater. 4(3), 505–513 (2021). https://doi.org/10.1007/s42114-021-00224-1
P. Xiao, J. Gu, C. Wan, S. Wang, J. He et al., Ultrafast formation of free-standing 2D carbon nanotube thin films through capillary force driving compression on an air/water interface. Chem. Mater. 28(19), 7125–7133 (2016). https://doi.org/10.1021/acs.chemmater.6b03420
P. Xiao, Y. Liang, J. He, L. Zhang, S. Wang et al., Hydrophilic/hydrophobic interphase-mediated bubble-like stretchable Janus ultrathin films toward self-adaptive and pneumatic multifunctional electronics. ACS Nano 13(4), 4368–4378 (2019). https://doi.org/10.1021/acsnano.8b09600
J. Yang, J. Chen, Y. Su, Q. Jing, Z. Li et al., Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition. Adv. Mater. 27(8), 1316–1326 (2015). https://doi.org/10.1002/adma.201404794
X. Yang, L. Li, S. Wang, Q. Lu, Y. Bai et al., Ultrathin, stretchable, and breathable epidermal electronics based on a facile bubble blowing method. Adv. Electron. 6(11), 2000306 (2020). https://doi.org/10.1002/aelm.202000306
P. Won, K.K. Kim, H. Kim, J.J. Park, I. Ha et al., Transparent soft actuators/sensors and camouflage skins for imperceptible soft robotics. Adv. Mater. 33(19), 2002397 (2020). https://doi.org/10.1002/adma.202002397
J. Yi, K. Dong, S. Shen, Y. Jiang, X. Peng et al., Fully fabric-based triboelectric nanogenerators as self-powered human-machine interactive keyboards. Nano Micro Lett. 13, 103 (2021). https://doi.org/10.1007/s40820-021-00621-7
Z. Tian, B. Xu, G. Wan, X. Han, Z. Di et al., Gaussian-preserved, non-volatile shape morphing in three-dimensional microstructures for dual-functional electronic devices. Nat. Commun. 12, 509 (2021). https://doi.org/10.1038/s41467-020-20843-4
Y. Zhu, M. Birla, K.R. Oldham, E.T. Filipov, Elastically and plastically foldable electrothermal micro-origami for controllable and rapid shape morphing. Adv. Funct. Mater. 30(40), 2003741 (2020). https://doi.org/10.1002/adfm.202003741
K. Xu, Y. Wang, B. Zhang, C. Zhang, T. Liu, Stretchable and self-healing polyvinyl alcohol/cellulose nanofiber nanocomposite hydrogels for strain sensors with high sensitivity and linearity. Compos. Commun. 24, 100677 (2021). https://doi.org/10.1016/j.coco.2021.100677
A. Mohammadi, Y. Xu, Y. Tan, P. Choong, D. Oetomo, Magnetic-based soft tactile sensors with deformable continuous force transfer medium for resolving contact locations in robotic grasping and manipulation. Sensors 19(22), 4925 (2019). https://doi.org/10.3390/s19224925
J. Pikul, S. Li, H. Bai, R. Hanlon, I. Cohen et al., Stretchable surfaces with programmable 3D texture morphing for synthetic camouflaging skins. Science 358(6360), 210–214 (2017). https://doi.org/10.1126/science.aan5627
Z. Xiang, Y. Shi, X. Zhu, L. Cai, W. Lu, Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion. Nano Micro Lett. 13, 150 (2021). https://doi.org/10.1007/s40820-021-00673-9
Y. Wu, Y. Liu, Y. Zhou, Q. Man, C. Hu et al., A skin-inspired tactile sensor for smart prosthetics. Sci. Robot. 3(22), aat0429 (2018). https://doi.org/10.1126/scirobotics.aat0429
B. Dai, K. Li, L. Shi, X. Wan, X. Liu et al., Bioinspired Janus textile with conical micropores for human body moisture and thermal management. Adv. Mater. 31(41), 1904113 (2019). https://doi.org/10.1002/adma.201904113
T. Xu, L.P. Xu, X. Zhang, S. Wang, Bioinspired superwettable micropatterns for biosensing. Chem. Soc. Rev. 48(12), 3153–3165 (2019). https://doi.org/10.1039/c8cs00915e
D. Byun, J. Hong, J.H. Ko, Y.J. Lee et al., Wetting characteristics of insect wing surfaces. J. Bionic Eng. 6(1), 63–70 (2009). https://doi.org/10.1016/s1672-6529(08)60092-x
P.P. Goodwyn, Y. Maezono, N. Hosoda, K. Fujisaki, Waterproof and translucent wings at the same time: problems and solutions in butterflies. Naturwissenschaften 96(7), 781–787 (2009). https://doi.org/10.1007/s00114-009-0531-z
Q. Zhao, T. Fan, J. Ding, D. Zhang, Q. Guo et al., Super black and ultrathin amorphous carbon film inspired by anti-reflection architecture in butterfly wing. Carbon 49(3), 877–883 (2011). https://doi.org/10.1016/j.carbon.2010.10.048
P. Li, B. Zhang, H. Zhao, L. Zhang, Z. Wang et al., Unidirectional droplet transport on the biofabricated butterfly wing. Langmuir 34(41), 12482–12487 (2018). https://doi.org/10.1021/acs.langmuir.8b02550
Q. Zhao, X. Guo, T. Fan, J. Ding, D. Zhang et al., Art of blackness in butterfly wings as natural solar collector. Soft Matter 7(24), 11433–11439 (2011). https://doi.org/10.1039/c1sm06167d
W. Wang, W. Zhang, D. Zhang, G.P. Wang, A low-cost, high-efficiency light absorption structure inspired by the Papilio ulysses butterfly. RSC Adv. 7(37), 22749–22756 (2017). https://doi.org/10.1039/c7ra03048g
Y. Liang, J. Shi, P. Xiao, J. He, F. Ni et al., A lotus-inspired Janus hybrid film enabled by interfacial self-assembly and in situ asymmetric modification. Chem. Commun. 54(91), 12804–12807 (2018). https://doi.org/10.1039/c8cc07143h