Pulsed Dynamic Water Electrolysis: Mass Transfer Enhancement, Microenvironment Regulation, and Hydrogen Production Optimization
Corresponding Author: Wei Zhou
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 103
Abstract
Pulsed dynamic electrolysis (PDE), driven by renewable energy, has emerged as an innovative electrocatalytic conversion method, demonstrating significant potential in addressing global energy challenges and promoting sustainable development. Despite significant progress in various electrochemical systems, the regulatory mechanisms of PDE in energy and mass transfer and the lifespan extension of electrolysis systems, particularly in water electrolysis (WE) for hydrogen production, remain insufficiently explored. Therefore, there is an urgent need for a deeper understanding of the unique contributions of PDE in mass transfer enhancement, microenvironment regulation, and hydrogen production optimization, aiming to achieve low-energy consumption, high catalytic activity, and long-term stability in the generation of target products. Here, this review critically examines the microenvironmental effects of PDE on energy and mass transfer, the electrode degradation mechanisms in the lifespan extension of electrolysis systems, and the key factors in enhancing WE for hydrogen production, providing a comprehensive summary of current research progress. The review focuses on the complex regulatory mechanisms of frequency, duty cycle, amplitude, and other factors in hydrogen evolution reaction (HER) performance within PDE strategies, revealing the interrelationships among them. Finally, the potential future directions and challenges for transitioning from laboratory studies to industrial applications are proposed.
Highlights:
1 The mechanisms, key factors, and merits of pulsed dynamic electrolysis (PDE) in energy and mass transfer, extending system lifespan, and enhancing water electrolysis are covered.
2 Synergies and parameter-performance relationships between PDE and hydrogen evolution reaction are emphasized.
3 Future prospects and challenges for the development of PDE technology are outlined.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Johnson, M. Liebreich, D.M. Kammen, P. Ekins, R. McKenna et al., Realistic roles for hydrogen in the future energy transition. Nat. Rev. Clean Technol. 1(5), 351–371 (2025). https://doi.org/10.1038/s44359-025-00050-4
- G. Fan, H. Zhang, B. Sun, F. Pan, Economic and environmental competitiveness of multiple hydrogen production pathways in China. Nat. Commun. 16(1), 4284 (2025). https://doi.org/10.1038/s41467-025-59412-y
- Q. Sha, S. Wang, L. Yan, Y. Feng, Z. Zhang et al., 10, 000-h-stable intermittent alkaline seawater electrolysis. Nature 639(8054), 360–367 (2025). https://doi.org/10.1038/s41586-025-08610-1
- Y.-W. Song, L. Shen, X.-Y. Li, C.-X. Zhao, J. Zhou et al., Phase equilibrium thermodynamics of lithium–sulfur batteries. Nat. Chem. Eng. 1(9), 588–596 (2024). https://doi.org/10.1038/s44286-024-00115-4
- Y. Zhang, Y. Chen, R. Liu, X. Wang, H. Liu et al., Oxygen vacancy stabilized Bi2O2CO3 nanosheet for CO2 electroreduction at low overpotential enables energy efficient CO-production of formate. InfoMat 5(3), e12375 (2023). https://doi.org/10.1002/inf2.12375
- X. Wang, Y. Zhang, S. Wang, Y. Li, Y. Feng et al., Steering geometric reconstruction of bismuth with accelerated dynamics for CO2 electroreduction. Angew. Chem. Int. Ed. 63(34), e202407665 (2024). https://doi.org/10.1002/anie.202407665
- N.C. Ereli, M. Kıstı, T. Eşiyok, E. Özdoğan, B. Hüner et al., First pulsed control system design for enhanced hydrogen production performance in proton exchange membrane water electrolyzers. Fuel 371, 132027 (2024). https://doi.org/10.1016/j.fuel.2024.132027
- J. Khan, H. Liu, T. Zhang, X. Kang, Z. Zhang et al., A monolithic Co–FeCo8S8 electrode for a stable anion exchange membrane water electrolyzer driven by a fluctuating power supply. Energy Environ. Sci. 17(24), 9435–9442 (2024). https://doi.org/10.1039/D4EE04993D
- N.A. Burton, J.C. Grant, Increasing the efficiency of water electrolysis with the application of pulsing electric fields. Renew. Sustain. Energy Rev. 215, 115584 (2025). https://doi.org/10.1016/j.rser.2025.115584
- C. Zhao, Z. Ding, K. Zhang, Z. Du, H. Fang et al., Comprehensive chlorine suppression: advances in materials and system technologies for direct seawater electrolysis. Nano-Micro Lett. 17(1), 113 (2025). https://doi.org/10.1007/s40820-025-01653-z
- C. Chen, H. Jin, P. Wang, X. Sun, M. Jaroniec et al., Local reaction environment in electrocatalysis. Chem. Soc. Rev. 53(4), 2022–2055 (2024). https://doi.org/10.1039/d3cs00669g
- H. Wang, Y. Wu, Q. Luo, H. Wu, F.-S. Xiao et al., Managing dynamic catalyst changes to upgrade reactors and reaction processes. Nat. Chem. Eng. 2(3), 169–180 (2025). https://doi.org/10.1038/s44286-025-00199-6
- T. Miličić, M. Sivasankaran, C. Blümner, A. Sorrentino, T. Vidaković-Koch, Pulsed electrolysis–explained. Faraday Discuss. 246, 179–197 (2023). https://doi.org/10.1039/d3fd00030c
- L. Bohn, J. Häberlein, F. Brendel, L. Metzler, L. Helfen et al., High-resolution neutron imaging of water transport in CO2 electrolysis during pulsed operation. ACS Energy Lett. 10(2), 975–981 (2025). https://doi.org/10.1021/acsenergylett.4c03003
- Y. Yu, W. Zhou, X. Zhou, J. Yuan, X. Zhang et al., Taking advantage of activation potential coincidence to unlock stable direct seawater splitting. Adv. Funct. Mater. 35(20), 2419871 (2025). https://doi.org/10.1002/adfm.202419871
- R. Casebolt, K. Levine, J. Suntivich, T. Hanrath, Pulse check: Potential opportunities in pulsed electrochemical CO2 reduction. Joule 5(8), 1987–2026 (2021). https://doi.org/10.1016/j.joule.2021.05.014
- Y. Xia, W. Wei, H. Cheng, L. Li, Z. Hu et al., Current bunching effect of large-scale alkaline hydrogen evolution driven by renewable energy sources. Cell Rep. Phys. Sci. 5(6), 102018 (2024). https://doi.org/10.1016/j.xcrp.2024.102018
- F. Rocha, Q. de Radiguès, G. Thunis, J. Proost, Pulsed water electrolysis: a review. Electrochim. Acta 377, 138052 (2021). https://doi.org/10.1016/j.electacta.2021.138052
- T. Liu, J. Wang, X. Yang, M. Gong, A review of pulse electrolysis for efficient energy conversion and chemical production. J. Energy Chem. 59, 69–82 (2021). https://doi.org/10.1016/j.jechem.2020.10.027
- Y. Huang, W. Zhou, L. Xie, X. Meng, J. Li et al., Self-sacrificing and self-supporting biomass carbon anode–assisted water electrolysis for low-cost hydrogen production. Proc. Natl. Acad. Sci. U. S. A. 121(47), e2316352121 (2024). https://doi.org/10.1073/pnas.2316352121
- Q. Zhao, B. Zhao, X. Long, R. Feng, M. Shakouri et al., Interfacial electronic modulation of dual-monodispersed Pt-Ni3S2 as efficacious bi-functional electrocatalysts for concurrent H2 evolution and methanol selective oxidation. Nano-Micro Lett. 16(1), 80 (2024). https://doi.org/10.1007/s40820-023-01282-4
- L. Ding, K. Li, W. Wang, Z. Xie, S. Yu et al., Amorphous iridium oxide-integrated anode electrodes with ultrahigh material utilization for hydrogen production at industrial current densities. Nano-Micro Lett. 16(1), 203 (2024). https://doi.org/10.1007/s40820-024-01411-7
- Z. Masaud, G. Liu, L.E. Roseng, K. Wang, Progress on pulsed electrocatalysis for sustainable energy and environmental applications. Chem. Eng. J. 475, 145882 (2023). https://doi.org/10.1016/j.cej.2023.145882
- J. Xiong, Y. Xia, Y. Peng, W. Wei, A multimode self-optimization electrolysis converting strategy for improving efficiency of alkaline water electrolyzers. IEEE Trans. Power Electron. 39(3), 3738–3748 (2024). https://doi.org/10.1109/TPEL.2023.3346897
- W. Chen, Y. He, Y. Zou, S. Wang, Pulsed electrochemistry: a pathway to enhanced electrocatalysis and sustainable electrosynthesis. Natl. Sci. Open 3(6), 20240047 (2024). https://doi.org/10.1360/nso/20240047
- W. Xi, H. Zhou, P. Yang, H. Huang, J. Tian et al., Pulse manipulation on Cu-based catalysts for electrochemical reduction of CO2. ACS Catal. 14(18), 13697–13722 (2024). https://doi.org/10.1021/acscatal.4c03513
- F. Liu, R. Zhou, C. Zhang, Z. Wu, H. Ren et al., Critical review on the pulsed electrochemical technologies for wastewater treatment: fundamentals, current trends, and future studies. Chem. Eng. J. 479, 147588 (2024). https://doi.org/10.1016/j.cej.2023.147588
- M. Fan, H. Tian, Z. Wu, J. Dai, X. Ma et al., Microwave shock synthesis of porous 2D non-layered transition metal carbides for efficient hydrogen evolution. SusMat 5(2), e252 (2025). https://doi.org/10.1002/sus2.252
- H.G. Han, J.W. Choi, M. Son, K.C. Kim, Unlocking power of neighboring vacancies in boosting hydrogen evolution reactions on two-dimensional NiPS3 monolayer. eScience 4(3), 100204 (2024). https://doi.org/10.1016/j.esci.2023.100204
- R. Wei, D. Li et al., Unraveling the formation kinetics of the first intermediate in the oxygen evolution reaction on MnOx with different electron configurations. J. Am. Chem. Soc. 147(27), 23473–23481 (2025). https://doi.org/10.1021/jacs.4c18273
- L. Wang, J. Li, S. Ji, Y. Xiong, D. Wang, Microenvironment engineering of covalent organic framework based single/dual-atom catalysts toward sustainable energy conversion and storage. Energy Environ. Sci. 17(22), 8482–8528 (2024). https://doi.org/10.1039/d4ee03704a
- S.H. Lee, J.C. Lin, M. Farmand, A.T. Landers, J.T. Feaster et al., Oxidation state and surface reconstruction of Cu under CO2 reduction conditions from in situ X-ray characterization. J. Am. Chem. Soc. 143(2), 588–592 (2021). https://doi.org/10.1021/jacs.0c10017
- K.W. Kimura, R. Casebolt, J. Cimada DaSilva, E. Kauffman, J. Kim et al., Selective electrochemical CO2 reduction during pulsed potential stems from dynamic interface. ACS Catal. 10(15), 8632–8639 (2020). https://doi.org/10.1021/acscatal.0c02630
- J. Huang, N. Hörmann, E. Oveisi, A. Loiudice, G.L. De Gregorio et al., Potential-induced nanoclustering of metallic catalysts during electrochemical CO2 reduction. Nat. Commun. 9(1), 3117 (2018). https://doi.org/10.1038/s41467-018-05544-3
- Q. Hu, W. Zhou, S. Qi, Q. Huo, X. Li et al., Pulsed co-electrolysis of carbon dioxide and nitrate for sustainable urea synthesis. Nat. Sustain. 7(4), 442–451 (2024). https://doi.org/10.1038/s41893-024-01302-0
- J. Wang, Y. Qin, S. Jin, Y. Yang, J. Zhu et al., Customizing CO2 electroreduction by pulse-induced anion enrichment. J. Am. Chem. Soc. 145(48), 26213–26221 (2023). https://doi.org/10.1021/jacs.3c08748
- W. Chen, L. Zhang, L. Xu, Y. He, H. Pang et al., Pulse potential mediated selectivity for the electrocatalytic oxidation of glycerol to glyceric acid. Nat. Commun. 15(1), 2420 (2024). https://doi.org/10.1038/s41467-024-46752-4
- A.R. Woldu, P. Talebi, A.G. Yohannes, J. Xu, X.-D. Wu et al., Insights into electrochemical CO2 reduction on SnS2: main product switch from hydrogen to formate by pulsed potential electrolysis. Angew. Chem. Int. Ed. 62(29), e202301621 (2023). https://doi.org/10.1002/anie.202301621
- Y. Mao, Q. Mao, H. Yang, Q. Liu, X. Dong et al., Dynamically stabilizing oxygen atoms in silver catalyst for highly selective and durable CO2 reduction reaction. Angew. Chem. Int. Ed. 63(49), e202410932 (2024). https://doi.org/10.1002/anie.202410932
- Y. Zhang, Y. Chen, X. Wang, Y. Feng, Z. Dai et al., Low-coordinated copper facilitates the *CH(2)CO affinity at enhanced rectifying interface of Cu/Cu(2)O for efficient CO2-to-multicarbon alcohols conversion. Nat. Commun. 15(1), 5172 (2024). https://doi.org/10.1038/s41467-024-49247-4
- Y. Zhang, Y. Chen, X. Wang, Y. Feng, H. Zhang et al., Self-polarization triggered multiple polar units toward electrochemical reduction of CO2 to ethanol with high selectivity. Angew. Chem. Int. Ed. 62(26), e202302241 (2023). https://doi.org/10.1002/anie.202302241
- S. Bera, S. Sen, D. Maiti, Unveiling alternate electrode electrolysis in electro-photochemical and electro-organic syntheses. J. Am. Chem. Soc. 146(36), 25166–25175 (2024). https://doi.org/10.1021/jacs.4c08826
- S. Rodrigo, C. Um, J.C. Mixdorf, D. Gunasekera, H.M. Nguyen et al., Alternating current electrolysis for organic electrosynthesis: trifluoromethylation of (hetero)arenes. Org. Lett. 22(17), 6719–6723 (2020). https://doi.org/10.1021/acs.orglett.0c01906
- E.R. Sauvé, B.Y. Tang, N.K. Razdan, W.L. Toh, S. Weng et al., Open circuit potential decay transients quantify interfacial pH swings during high current density hydrogen electrocatalysis. Joule 8(3), 728–745 (2024). https://doi.org/10.1016/j.joule.2024.01.004
- H.S. Jeon, J. Timoshenko, C. Rettenmaier, A. Herzog, A. Yoon et al., Selectivity control of Cu nanocrystals in a gas-fed flow cell through CO2 pulsed electroreduction. J. Am. Chem. Soc. 143(19), 7578–7587 (2021). https://doi.org/10.1021/jacs.1c03443
- J. He, J. Zhou, K. Yang, L. Luo, P. Wang et al., Pulsed electric field drives chemical-free membrane stripping for high ammonia recovery from urine. Water Res. 251, 121129 (2024). https://doi.org/10.1016/j.watres.2024.121129
- J.C. Bui, C. Kim, A.Z. Weber, A.T. Bell, Dynamic boundary layer simulation of pulsed CO2 electrolysis on a copper catalyst. ACS Energy Lett. 6(4), 1181–1188 (2021). https://doi.org/10.1021/acsenergylett.1c00364
- M. He, Y. Wu, R. Li, Y. Wang, C. Liu et al., Aqueous pulsed electrochemistry promotes C-N bond formation via a one-pot cascade approach. Nat. Commun. 14, 5088 (2023). https://doi.org/10.1038/s41467-023-40892-9
- X. Guan, G. Zhang, J. Li, S.C. Kim, G. Feng et al., Seawater alkalization via an energy-efficient electrochemical process for CO2 capture. Proc. Natl. Acad. Sci. U. S. A. 121(45), e2410841121 (2024). https://doi.org/10.1073/pnas.2410841121
- K. Ye, T.-W. Jiang, H.D. Jung, P. Shen, S.M. Jang et al., Molecular level insights on the pulsed electrochemical CO2 reduction. Nat. Commun. 15, 9781 (2024). https://doi.org/10.1038/s41467-024-54122-3
- H. Xin, H. Wang, W. Zhang, Y. Chen, Q. Ji et al., In operando visualization and dynamic manipulation of electrochemical processes at the electrode–solution interface. Angew. Chem. Int. Ed. 61(36), e202206236 (2022). https://doi.org/10.1002/anie.202206236
- Y. Huang, C. He, C. Cheng, S. Han, M. He et al., Pulsed electroreduction of low-concentration nitrate to ammonia. Nat. Commun. 14(1), 7368 (2023). https://doi.org/10.1038/s41467-023-43179-1
- Y. Ding, W. Zhou, J. Li, J. Wang, L. Xie et al., Revealing the in situ dynamic regulation of the interfacial microenvironment induced by pulsed electrocatalysis in the oxygen reduction reaction. ACS Energy Lett. 8(7), 3122–3130 (2023). https://doi.org/10.1021/acsenergylett.3c00758
- Z. Li, L. Wang, L. Sun, W. Yang, Dynamic cation enrichment during pulsed CO2 electrolysis and the cation-promoted multicarbon formation. J. Am. Chem. Soc. 146(34), 23901–23908 (2024). https://doi.org/10.1021/jacs.4c06404
- X. Zhang, W. Zhou, Y. Huang, L. Xie, T. Li et al., Pulsed dynamic electrolysis enhanced PEMWE hydrogen production: revealing the effects of pulsed electric fields on protons mass transport and hydrogen bubble escape. J. Energy Chem. 100, 201–214 (2025). https://doi.org/10.1016/j.jechem.2024.08.033
- X. Zhang, W. Zhou, Y. Huang, Y. Ding, J. Li et al., Enhanced hydrogen production enabled by pulsed potential coupled sulfite electrooxidation water electrolysis system. Renew. Energy 227, 120464 (2024). https://doi.org/10.1016/j.renene.2024.120464
- B. Zhang, Z. Dai, Y. Chen, M. Cheng, H. Zhang et al., Defect-induced triple synergistic modulation in copper for superior electrochemical ammonia production across broad nitrate concentrations. Nat. Commun. 15(1), 2816 (2024). https://doi.org/10.1038/s41467-024-47025-w
- W. Qiu, S. Qin, Y. Li, N. Cao, W. Cui et al., Overcoming electrostatic interaction via pulsed electroreduction for boosting the electrocatalytic urea synthesis. Angew. Chem. Int. Ed. 63(24), e202402684 (2024). https://doi.org/10.1002/anie.202402684
- R. Boppella, M. Ahmadi, B.M. Arndt, D.R. Lustig, M. Nazemi, Pulsed electrolysis in membrane electrode assembly architecture for enhanced electrochemical nitrate reduction reaction to ammonia. ACS Catal. 14(23), 18223–18236 (2024). https://doi.org/10.1021/acscatal.4c05225
- J.Y. Lee, M.P.J. Punkkinen, S. Schönecker, Z. Nabi, K. Kádas et al., The surface energy and stress of metals. Surf. Sci. 674, 51–68 (2018). https://doi.org/10.1016/j.susc.2018.03.008
- W. Zhang, Y. Yang, Y. Tang, Q. Gao, In-situ reconstruction of catalysts in cathodic electrocatalysis: new insights into active-site structures and working mechanisms. J. Energy Chem. 70, 414–436 (2022). https://doi.org/10.1016/j.jechem.2022.02.036
- S. Nitopi, E. Bertheussen, S.B. Scott, X. Liu, A.K. Engstfeld et al., Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119(12), 7610–7672 (2019). https://doi.org/10.1021/acs.chemrev.8b00705
- S. Popović, M. Smiljanić, P. Jovanovič, J. Vavra, R. Buonsanti et al., Stability and degradation mechanisms of copper-based catalysts for electrochemical CO2 reduction. Angew. Chem. Int. Ed. 59(35), 14736–14746 (2020). https://doi.org/10.1002/anie.202000617
- X.-D. Zhang, T. Liu, C. Liu, D.-S. Zheng, J.-M. Huang et al., Asymmetric low-frequency pulsed strategy enables ultralong CO2 reduction stability and controllable product selectivity. J. Am. Chem. Soc. 145(4), 2195–2206 (2023). https://doi.org/10.1021/jacs.2c09501
- C.W. Lee, N.H. Cho, K.T. Nam, Y.J. Hwang, B.K. Min, Cyclic two-step electrolysis for stable electrochemical conversion of carbon dioxide to formate. Nat. Commun. 10(1), 3919 (2019). https://doi.org/10.1038/s41467-019-11903-5
- M.B.I. Janjua, R.L. Le Roy, Electrocatalyst performance in industrial water electrolysers. Int. J. Hydrog. Energy 10(1), 11–19 (1985). https://doi.org/10.1016/0360-3199(85)90130-2
- K. Oda, Y. Kuroda, S. Mitsushima, Investigation of charge–discharging behavior of metal oxide–based anode electrocatalysts for alkaline water electrolysis to suppress degradation due to reverse current. Electrocatal. 14(3), 499–510 (2023). https://doi.org/10.1007/s12678-023-00815-0
- A. Abdel Haleem, J. Huyan, K. Nagasawa, Y. Kuroda, Y. Nishiki et al., Effects of operation and shutdown parameters and electrode materials on the reverse current phenomenon in alkaline water analyzers. J. Power. Sources 535, 231454 (2022). https://doi.org/10.1016/j.jpowsour.2022.231454
- R. Qi, M. Becker, J. Brauns, T. Turek, J. Lin et al., Channel design optimization of alkaline electrolysis stacks considering the trade-off between current efficiency and pressure drop. J. Power. Sources 579, 233222 (2023). https://doi.org/10.1016/j.jpowsour.2023.233222
- R.S. Jupudi, G. Zappi, R. Bourgeois, Prediction of shunt currents in a bipolar electrolyzer stack by difference calculus. J. Appl. Electrochem. 37(8), 921–931 (2007). https://doi.org/10.1007/s10800-007-9330-4
- S.-M. Jung, Y. Kim, B.-J. Lee, H. Jung, J. Kwon et al., Reverse-current tolerance for hydrogen evolution reaction activity of lead-decorated nickel catalysts in zero-gap alkaline water electrolysis systems. Adv. Funct. Mater. 34(27), 2316150 (2024). https://doi.org/10.1002/adfm.202316150
- L. Wang, X. Duan, X. Liu, J. Gu, R. Si et al., Atomically dispersed Mo supported on metallic Co9S8 nanoflakes as an advanced noble-metal-free bifunctional water splitting catalyst working in universal pH conditions. Adv. Energy Mater. 10(4), 1903137 (2020). https://doi.org/10.1002/aenm.201903137
- L. Wang, H. Su, Z. Zhang, J. Xin, H. Liu et al., Co–co dinuclear active sites dispersed on zirconium-doped heterostructured Co9S8/Co3O4 for high-current-density and durable acidic oxygen evolution. Angew. Chem. Int. Ed. 62(49), e202314185 (2023). https://doi.org/10.1002/anie.202314185
- N. Yang, H. Li, X. Lin, S. Georgiadou, L. Hong et al., Catalytic electrode comprising a gas diffusion layer and bubble-involved mass transfer in anion exchange membrane water electrolysis: a critical review and perspectives. J. Energy Chem. 105, 669–701 (2025). https://doi.org/10.1016/j.jechem.2024.12.073
- L. Wan, Z. Xu, Q. Xu, M. Pang, D. Lin et al., Key components and design strategy of the membrane electrode assembly for alkaline water electrolysis. Energy Environ. Sci. 16(4), 1384–1430 (2023). https://doi.org/10.1039/d3ee00142c
- B.Ó. Joensen, J.A. Zamora Zeledón, L. Trotochaud, A. Sartori, M. Mirolo et al., Unveiling transport mechanisms of cesium and water in operando zero-gap CO2 electrolyzers. Joule 8(6), 1754–1771 (2024). https://doi.org/10.1016/j.joule.2024.02.027
- Y. Xu, J.P. Edwards, S. Liu, R.K. Miao, J.E. Huang et al., Self-cleaning CO2 reduction systems: unsteady electrochemical forcing enables stability. ACS Energy Lett. 6(2), 809–815 (2021). https://doi.org/10.1021/acsenergylett.0c02401
- M.E. Leonard, L.E. Clarke, A. Forner-Cuenca, S.M. Brown, F.R. Brushett, Investigating electrode flooding in a flowing electrolyte, gas-fed carbon dioxide electrolyzer. Chemsuschem 13(2), 400–411 (2020). https://doi.org/10.1002/cssc.201902547
- J. Cho, D.H. Kim, M.W. Noh, H. Kim, H.-G. Oh et al., Dissolution of the Ti porous transport layer in proton exchange membrane water electrolyzers. J. Mater. Chem. A 12(35), 23688–23696 (2024). https://doi.org/10.1039/d4ta02755h
- Y. Xia, F. Gao, J. Wen, T. Xiong, H. Yi et al., Heavy metal challenge in NH3-SCR DeNOx catalysts: poisoning deactivation mechanisms and enhanced resistance strategies. Green Energy Environ. 10(8), 1624–1647 (2025). https://doi.org/10.1016/j.gee.2024.11.007
- J. Yano, S. Yamasaki, Pulse-mode electrochemical reduction of carbon dioxide using copper and copper oxide electrodes for selective ethylene formation. J. Appl. Electrochem. 38(12), 1721–1726 (2008). https://doi.org/10.1007/s10800-008-9622-3
- Z. Xu, Y. Xie, Y. Wang, Pause electrolysis for acidic CO2 reduction on 3-dimensional Cu. Mater. Rep. Energy 3(1), 100173 (2023). https://doi.org/10.1016/j.matre.2022.100173
- L. Xu, W. Liu, X. Zhang, W. Tang, D.-J. Lee et al., Pseudo-continuous and scalable electrochemical ion pumping with circuit-switching-induced ion shuttling. Nat. Water. 2(10), 999–1008 (2024). https://doi.org/10.1038/s44221-024-00312-8
- E.R. Cofell, U.O. Nwabara, S.S. Bhargava, D.E. Henckel, P.J.A. Kenis, Investigation of electrolyte-dependent carbonate formation on gas diffusion electrodes for CO2 electrolysis. ACS Appl. Mater. Interfaces 13(13), 15132–15142 (2021). https://doi.org/10.1021/acsami.0c21997
- E.R. Cofell, Z. Park, U.O. Nwabara, L.C. Harris, S.S. Bhargava et al., Potential cycling of silver cathodes in an alkaline CO2 flow electrolyzer for accelerated stress testing and carbonate inhibition. ACS Appl. Energy Mater. 5(10), 12013–12021 (2022). https://doi.org/10.1021/acsaem.2c01308
- G. Armstrong, J.A.V. Butler, The rate of decay of hydrogen and oxygen overvoltages. Trans. Faraday Soc. 29(140), 1261 (1933). https://doi.org/10.1039/tf9332901261
- K. Viswanathan, H.Y. Cheh, Mass transfer aspects of electrolysis by periodic currents. J. Electrochem. Soc. 126(3), 398–401 (1979). https://doi.org/10.1149/1.2129050
- J.O. Bockris, E.C. Potter, The mechanism of hydrogen evolution at nickel cathodes in aqueous solutions. J. Chem. Phys. 20(4), 614–628 (1952). https://doi.org/10.1063/1.1700503
- A.C.C. Tseung, P.R. Vassie, A study of gas evolution in Teflon bonded porous electrodes: III. Performance of Teflon bonded Pt black electrodes for H2 evolution. Electrochim. Acta 21(4), 315–318 (1976). https://doi.org/10.1016/0013-4686(76)80026-6
- S.M. Jasem, A.C.C. Tseung, A potentiostatic pulse study of oxygen evolution on teflon-bonded nickel-cobalt oxide electrodes. J. Electrochem. Soc. 126(8), 1353–1360 (1979). https://doi.org/10.1149/1.2129276
- J.C. Puippe, N. Ibl, Influence of charge and discharge of electric double layer in pulse plating. J. Appl. Electrochem. 10(6), 775–784 (1980). https://doi.org/10.1007/BF00611281
- J.O. Bockris, B. Dandapani, D. Cocke, J. Ghoroghchian, On the splitting of water. Int. J. Hydrog. Energy 10(3), 179–201 (1985). https://doi.org/10.1016/0360-3199(85)90025-4
- N.K. Khosla, S. Venkatachalam, P. Somasundaran, Pulsed electrogeneration of bubbles for electroflotation. J. Appl. Electrochem. 21(11), 986–990 (1991). https://doi.org/10.1007/BF01077584
- A.H. Shaaban, Water electrolysis and pulsed direct current. J. Electrochem. Soc. 140(10), 2863–2867 (1993). https://doi.org/10.1149/1.2220923
- C. Hitz, A. Lasia, Determination of the kinetics of the hydrogen evolution reaction by the galvanostatic step technique. J. Electroanal. Chem. 532(1–2), 133–140 (2002). https://doi.org/10.1016/S0022-0728(02)00760-X
- N. Shimizu, S. Hotta, T. Sekiya, O. Oda, A novel method of hydrogen generation by water electrolysis using an ultra-short-pulse power supply. J. Appl. Electrochem. 36(4), 419–423 (2006). https://doi.org/10.1007/s10800-005-9090-y
- D.-T. Chin, Mass transfer and current-potential relation in pulse electrolysis. J. Electrochem. Soc. 130(8), 1657–1667 (1983). https://doi.org/10.1149/1.2120058
- J. Ghoroghchian, J.O. Bockris, Use of a homopolar generator in hydrogen production from water. Int. J. Hydrog. Energy 10(2), 101–112 (1985). https://doi.org/10.1016/0360-3199(85)90042-4
- K. Mazloomi, N. Sulaiman, S.A. Ahmad, N.A.M. Yunus, Analysis of the frequency response of a water electrolysis cell. Int. J. Electrochem. Sci. 8(3), 3731–3739 (2013). https://doi.org/10.1016/S1452-3981(23)14427-0
- Y. Kim, S.-M. Jung, K.-S. Kim, H.-Y. Kim, J. Kwon et al., Cathodic protection system against a reverse-current after shut-down in zero-gap alkaline water electrolysis. JACS Au 2(11), 2491–2500 (2022). https://doi.org/10.1021/jacsau.2c00314
- J. Zhang, Q. Zhang, X. Feng, Support and interface effects in water-splitting electrocatalysts. Adv. Mater. 31(31), 1808167 (2019). https://doi.org/10.1002/adma.201808167
- N. Demir, M.F. Kaya, M.S. Albawabiji, Effect of pulse potential on alkaline water electrolysis performance. Int. J. Hydrog. Energy 43(36), 17013–17020 (2018). https://doi.org/10.1016/j.ijhydene.2018.07.105
- S.A. Grigoriev, P. Millet, S.V. Korobtsev, V.I. Porembskiy, M. Pepic et al., Hydrogen safety aspects related to high-pressure polymer electrolyte membrane water electrolysis. Int. J. Hydrog. Energy 34(14), 5986–5991 (2009). https://doi.org/10.1016/j.ijhydene.2009.01.047
- Y. Ding, W. Zhou, L. Xie, S. Chen, J. Gao et al., Pulsed electrocatalysis enables an efficient 2-electron oxygen reduction reaction for H2O2 production. J. Mater. Chem. A 9(29), 15948–15954 (2021). https://doi.org/10.1039/d1ta03864h
- S. Banerjee, X. Han, V.S. Thoi, Modulating the electrode–electrolyte interface with cationic surfactants in carbon dioxide reduction. ACS Catal. 9(6), 5631–5637 (2019). https://doi.org/10.1021/acscatal.9b00449
- N. Monk, S. Watson, Review of pulsed power for efficient hydrogen production. Int. J. Hydrog. Energy 41(19), 7782–7791 (2016). https://doi.org/10.1016/j.ijhydene.2015.12.086
- H. Xu, J. Zhang, M. Eikerling, J. Huang, Pure water splitting driven by overlapping electric double layers. J. Am. Chem. Soc. 146(29), 19720–19727 (2024). https://doi.org/10.1021/jacs.4c01070
- I. Vincent, B. Choi, M. Nakoji, M. Ishizuka, K. Tsutsumi et al., Pulsed current water splitting electrochemical cycle for hydrogen production. Int. J. Hydrogen Energy 43(22), 10240–10248 (2018). https://doi.org/10.1016/j.ijhydene.2018.04.087
- M.-Y. Lin, L.-W. Hourng, Effects of magnetic field and pulse potential on hydrogen production via water electrolysis: magnetic effect in water electrolysis. Int. J. Energy Res. 38(1), 106–116 (2014). https://doi.org/10.1002/er.3112
- L.-W. Hourng, W.-H. Wu, M.-Y. Lin, The improvement of water electrolysis efficiency by using acid-alkaline electrolysis with multi-electrode and pulsed current. In: Engineering Innovation and Design. CRC Press (2019), pp. 143–147. https://doi.org/10.1201/9780429019777-29
- J. Wu, Understanding the electric double-layer structure, capacitance, and charging dynamics. Chem. Rev. 122(12), 10821–10859 (2022). https://doi.org/10.1021/acs.chemrev.2c00097
- L. Jiang, Y. Ding, L. Li, Y. Tang, P. Zhou et al., Cationic adsorption-induced microlevelling effect: a pathway to dendrite-free zinc anodes. Nano-Micro Lett. 17(1), 202 (2025). https://doi.org/10.1007/s40820-025-01709-0
- J.-H. Kim, C.-Y. Oh, K.-R. Kim, J.-P. Lee, T.-J. Kim, Electrical double layer mechanism analysis of PEM water electrolysis for frequency limitation of pulsed currents. Energies 14(22), 7822 (2021). https://doi.org/10.3390/en14227822
- H. Cheng, Y. Xia, Z. Hu, J. Xiong, W. Wei, Modeling and control for alkaline water electrolyzers operating in wide range. IEEE Trans. Ind. Electron. 71(9), 10888–10897 (2024). https://doi.org/10.1109/TIE.2023.3340211
- L. Zeng, M. Chen, Z. Wang, R. Qiao, G. Feng, Structural evolution governs reversible heat generation in electrical double layers. Phys. Rev. Lett. 131(9), 096201 (2023). https://doi.org/10.1103/PhysRevLett.131.096201
- G. Zhang, M. Schreier, Leveraging electrochemical double layer structure to rationally control electrolysis. Natl. Sci. Rev. 11(12), nwae299 (2024). https://doi.org/10.1093/nsr/nwae299
- A. Greco, S. Imoto, E.H.G. Backus, Y. Nagata, J. Hunger et al., Ultrafast aqueous electric double layer dynamics. Science 388(6745), 405–410 (2025). https://doi.org/10.1126/science.adu5781
- K. Mazloomi, N. Sulaiman, Retarding forces cancellation in electrolyte solutions-an electrical approach. Int. J. Appl. Electron. Phys. Robot. 1(1), 1–4 (2013). https://doi.org/10.7575/aiac.ijaepr.v.1n.1p.1
- D. Chellaiah, Economical hydrogen production by electrolysis using nano pulsed DC. Int. J. Energy Environ. Eng. 3, 129–136 (2012)
- M. Vanags, J. Kleperis, G. Bajars, Electrolyses model development for metal/electrolyte interface: testing with microrespiration sensors. Int. J. Hydrog. Energy 36(1), 1316–1320 (2011). https://doi.org/10.1016/j.ijhydene.2010.07.100
- J. Poláčik, J. Pospíšil, Some aspects of PDC electrolysis. Technol. Eng. 13(1), 33–34 (2016). https://doi.org/10.2478/teen-2016-0011
- H. Li, S. Yuan, J. You, C. Zhao, X. Cheng et al., Revealing the oxygen transport challenges in catalyst layers in proton exchange membrane fuel cells and water electrolysis. Nano-Micro Lett. 17(1), 225 (2025). https://doi.org/10.1007/s40820-025-01719-y
- P.A. Kempler, R.H. Coridan, L. Luo, Gas evolution in water electrolysis. Chem. Rev. 124(19), 10964–11007 (2024). https://doi.org/10.1021/acs.chemrev.4c00211
- R. Ferrero, M. Marracci, M. Prioli, B. Tellini, Simplified model for evaluating ripple effects on commercial PEM fuel cell. Int. J. Hydrog. Energy 37(18), 13462–13469 (2012). https://doi.org/10.1016/j.ijhydene.2012.06.036
- Q. Xu, J. Zhang, H. Zhang, L. Zhang, L. Chen et al., Atomic heterointerface engineering overcomes the activity limitation of electrocatalysts and promises highly-efficient alkaline water splitting. Energy Environ. Sci. 14(10), 5228–5259 (2021). https://doi.org/10.1039/d1ee02105b
- Z. Li, B. Li, M. Yu, C. Yu, P. Shen, Amorphous metallic ultrathin nanostructures: a latent ultra-high-density atomic-level catalyst for electrochemical energy conversion. Int. J. Hydrog. Energy 47(63), 26956–26977 (2022). https://doi.org/10.1016/j.ijhydene.2022.06.049
- M. Chatenet, B.G. Pollet, D.R. Dekel, F. Dionigi, J. Deseure et al., Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem. Soc. Rev. 51(11), 4583–4762 (2022). https://doi.org/10.1039/D0CS01079K
- C. Huang, Solar hydrogen production via pulse electrolysis of aqueous ammonium sulfite solution. Sol. Energy 91, 394–401 (2013). https://doi.org/10.1016/j.solener.2012.09.009
- S.K. Mazloomi, N. Sulaiman, Influencing factors of water electrolysis electrical efficiency. Renew. Sustain. Energy Rev. 16(6), 4257–4263 (2012). https://doi.org/10.1016/j.rser.2012.03.052
- M. Wang, Z. Wang, X. Gong, Z. Guo, The intensification technologies to water electrolysis for hydrogen production–a review. Renew. Sustain. Energy Rev. 29, 573–588 (2014). https://doi.org/10.1016/j.rser.2013.08.090
- P. Vensaus, Y. Liang, J.-P. Ansermet, G.J.A.A. Soler-Illia, M. Lingenfelder, Enhancement of electrocatalysis through magnetic field effects on mass transport. Nat. Commun. 15, 2867 (2024). https://doi.org/10.1038/s41467-024-46980-8
- R. Phillips, A. Edwards, B. Rome, D.R. Jones, C.W. Dunnill, Minimising the ohmic resistance of an alkaline electrolysis cell through effective cell design. Int. J. Hydrog. Energy 42(38), 23986–23994 (2017). https://doi.org/10.1016/j.ijhydene.2017.07.184
- Q. de Radiguès, G. Thunis, J. Proost, On the use of 3-D electrodes and pulsed voltage for the process intensification of alkaline water electrolysis. Int. J. Hydrog. Energy 44(56), 29432–29440 (2019). https://doi.org/10.1016/j.ijhydene.2019.06.156
- X. Zhang, H. Zhu, L. Yang, S. Liu, X. Meng et al., Mechanism of hydrogen bubble behavior at different reaction stages of high-current PEMWE during pulsed dynamic electrolysis. Renew. Energy 256, 124117 (2026). https://doi.org/10.1016/j.renene.2025.124117
- F. Yang, M.J. Kim, M. Brown, B.J. Wiley, Alkaline water electrolysis at 25 a cm−2 with a microfibrous flow-through electrode. Adv. Energy Mater. 10(25), 2001174 (2020). https://doi.org/10.1002/aenm.202001174
- S.F. Nami-Ana, M.A. Mehrgardi, M. Mofidfar, R.N. Zare, Sustained regeneration of hydrogen peroxide at the water–gas interface of electrogenerated microbubbles on an electrode surface. J. Am. Chem. Soc. 146(46), 31945–31949 (2024). https://doi.org/10.1021/jacs.4c11422
- J. Wang, W. Zhou, J. Li, C. Yang, X. Meng et al., Insights into the effects of pulsed parameters on H2O2 synthesis by two-electron oxygen reduction under pulsed electrocatalysis. Electrochem. Commun. 146, 107414 (2023). https://doi.org/10.1016/j.elecom.2022.107414
- F. Rocha, J. Proost, Discriminating between the effect of pulse width and duty cycle on the hydrogen generation performance of 3-D electrodes during pulsed water electrolysis. Int. J. Hydrog. Energy 46(57), 28925–28935 (2021). https://doi.org/10.1016/j.ijhydene.2020.11.232
- M. Vanags, J. Kleperis, G. Bajars, Water electrolysis with inductive voltage pulses. In: Electrolysis, pp.. InTech (2012). https://doi.org/10.5772/52453
- D. Hristova, I. Betova, T. Tzvetkoff, An electrochemical and analytical characterization of surface films on AISI 316 as electrode material for pulse electrolysis of water. Int. J. Hydrog. Energy 38(20), 8232–8243 (2013). https://doi.org/10.1016/j.ijhydene.2013.04.127
- D. M. H. Al-Hasnawi. Experimental study of wave shape and frequency of the power supply on the energy efficiency of hydrogen production by water electrolysis. Int J Innov Res Sci Eng Technol. 4, 12239–12250 (2015). https://doi.org/10.15680/IJIRSET.2015.0412105
- Z. Dobó, Á.B. Palotás, Impact of the current fluctuation on the efficiency of alkaline water electrolysis. Int. J. Hydrog. Energy 42(9), 5649–5656 (2017). https://doi.org/10.1016/j.ijhydene.2016.11.142
- T. Vilasmongkolchai, R. Songprakorp, K. Sudaprasert, The behaviour of gas bubble during rest period of pulse-activated electrolysis hydrogen production. MATEC Web Conf. 77, 14001 (2016). https://doi.org/10.1051/matecconf/20167714001
- H. Cheng, Y. Xia, Z. Hu, W. Wei, Optimum pulse electrolysis for efficiency enhancement of hydrogen production by alkaline water electrolyzers. Appl. Energy 358, 122510 (2024). https://doi.org/10.1016/j.apenergy.2023.122510
- H. Cheng, Y. Xia, W. Wei, Hydrogen production efficiency enhancement for alkaline water electrolyzers operating at varying temperature via an adaptive multi-mode control. Int. J. Hydrog. Energy 93, 430–440 (2024). https://doi.org/10.1016/j.ijhydene.2024.10.421
- M. Calegari Andrade, R. Car, A. Selloni, Probing the self-ionization of liquid water with ab initio deep potential molecular dynamics. Proc. Natl. Acad. Sci. U. S. A. 120(46), e2302468120 (2023). https://doi.org/10.1073/pnas.2302468120
- A. Eftekhari-Bafrooei, E. Borguet, Effect of hydrogen-bond strength on the vibrational relaxation of interfacial water. J. Am. Chem. Soc. 132(11), 3756–3761 (2010). https://doi.org/10.1021/ja907745r
- M. Brouard, I. Burak, S. Marinakis, L. Rubio Lago, P. Tampkins et al., Product spin-orbit state resolved dynamics of the H+H2O and H+D2O abstraction reactions. J. Chem. Phys. 121(21), 10426–10436 (2004). https://doi.org/10.1063/1.1809578
- S. Shin, A.P. Willard, Water’s interfacial hydrogen bonding structure reveals the effective strength of surface–water interactions. J. Phys. Chem. B 122(26), 6781–6789 (2018). https://doi.org/10.1021/acs.jpcb.8b02438
- M. Sovago, R. Kramer Campen, H.J. Bakker, M. Bonn, Hydrogen bonding strength of interfacial water determined with surface sum-frequency generation. Chem. Phys. Lett. 470(1–3), 7–12 (2009). https://doi.org/10.1016/j.cplett.2009.01.009
- X. You, D. Zhang, X.-G. Zhang, X. Li, J.-H. Tian et al., Exploring the cation regulation mechanism for interfacial water involved in the hydrogen evolution reaction by in situ Raman spectroscopy. Nano-Micro Lett. 16(1), 53 (2023). https://doi.org/10.1007/s40820-023-01285-1
- M. Albornoz, M. Rivera, P. Wheeler, R. Ramírez, High pulsed voltage alkaline electrolysis for water splitting. Sensors 23(8), 3820 (2023). https://doi.org/10.3390/s23083820
- J. Gong, C. Sun, H. Shi, W. Tan, Response behaviour of proton exchange membrane water electrolysis to hydrogen production under dynamic conditions. Int. J. Hydrog. Energy 48(79), 30642–30652 (2023). https://doi.org/10.1016/j.ijhydene.2023.04.223
- C.A. Obasanjo, G. Gao, B.N. Khiarak, T.H. Pham, J. Crane et al., Progress and perspectives of pulse electrolysis for stable electrochemical carbon dioxide reduction. Energy Fuels 37(18), 13601–13623 (2023). https://doi.org/10.1021/acs.energyfuels.3c02152
- N.A. Burton, R.V. Padilla, A. Rose, H. Habibullah, Increasing the efficiency of hydrogen production from solar powered water electrolysis. Renew. Sustain. Energy Rev. 135, 110255 (2021). https://doi.org/10.1016/j.rser.2020.110255
- X. Gao, Y. Chen, Y. Wang, L. Zhao, X. Zhao et al., Next-generation green hydrogen: progress and perspective from electricity, catalyst to electrolyte in electrocatalytic water splitting. Nano-Micro Lett. 16(1), 237 (2024). https://doi.org/10.1007/s40820-024-01424-2
- H. Kojima, K. Nagasawa, N. Todoroki, Y. Ito, T. Matsui et al., Influence of renewable energy power fluctuations on water electrolysis for green hydrogen production. Int. J. Hydrog. Energy 48(12), 4572–4593 (2023). https://doi.org/10.1016/j.ijhydene.2022.11.018
- F. Valenciaga, C.A. Evangelista, Control design for an autonomous wind based hydrogen production system. Int. J. Hydrog. Energy 35(11), 5799–5807 (2010). https://doi.org/10.1016/j.ijhydene.2010.02.096
- J. Huang, Y. Xie, L. Yan, B. Wang, T. Kong et al., Decoupled amphoteric water electrolysis and its integration with Mn–Zn battery for flexible utilization of renewables. Energy Environ. Sci. 14(2), 883–889 (2021). https://doi.org/10.1039/d0ee03639k
- Y. Xia, H. Cheng, H. He, W. Wei, Efficiency and consistency enhancement for alkaline electrolyzers driven by renewable energy sources. Commun. Eng. 2, 22 (2023). https://doi.org/10.1038/s44172-023-00070-7
- Z. Liu, J. Hu, A. Wu, Z. Lu, W. Guan, Stability and energy consumption of solid oxide electrolysis cells under wide fluctuating and stable conditions. J. Power. Sources 616, 235113 (2024). https://doi.org/10.1016/j.jpowsour.2024.235113
- H. Chen, P. Liu, W. Li, W. Xu, Y. Wen et al., Stable seawater electrolysis over 10 000 H via chemical fixation of sulfate on NiFeBa-LDH. Adv. Mater. 36(45), e2411302 (2024). https://doi.org/10.1002/adma.202411302
- X. Cheng, J. Lin, Z. Zhao, B. Yang, Y. Song et al., Modeling study of efficiency losses in water electrolysis systems caused by low frequency current and power fluctuations. Int. J. Hydrogen Energy 106, 850–863 (2025). https://doi.org/10.1016/j.ijhydene.2025.01.319
- J. Wang, L. Chen, Z. Tan, E. Du, N. Liu et al., Inherent spatiotemporal uncertainty of renewable power in China. Nat. Commun. 14(1), 5379 (2023). https://doi.org/10.1038/s41467-023-40670-7
- M.E. Şahin, H.İ Okumuş, M.T. Aydemir, Implementation of an electrolysis system with DC/DC synchronous buck converter. Int. J. Hydrog. Energy 39(13), 6802–6812 (2014). https://doi.org/10.1016/j.ijhydene.2014.02.084
- A. Garrigós, J.L. Lizán, J.M. Blanes, R. Gutiérrez, Combined maximum power point tracking and output current control for a photovoltaic-electrolyser DC/DC converter. Int. J. Hydrog. Energy 39(36), 20907–20919 (2014). https://doi.org/10.1016/j.ijhydene.2014.10.041
- Q. Zhang, Y. Shan, J. Pan, P. Kumar, M.J. Keevers et al., A photovoltaic-electrolysis system with high solar-to-hydrogen efficiency under practical current densities. Sci. Adv. 11(9), eads0836 (2025). https://doi.org/10.1126/sciadv.ads0836
- H. Tüysüz, Alkaline water electrolysis for green hydrogen production. Acc. Chem. Res. (2024). https://doi.org/10.1021/acs.accounts.3c00709
- H. Nishiyama, T. Yamada, M. Nakabayashi, Y. Maehara, M. Yamaguchi et al., Photocatalytic solar hydrogen production from water on a 100–m2 scale. Nature 598(7880), 304–307 (2021). https://doi.org/10.1038/s41586-021-03907-3
- R.E. Clarke, S. Giddey, F.T. Ciacchi, S.P.S. Badwal, B. Paul et al., Direct coupling of an electrolyser to a solar PV system for generating hydrogen. Int. J. Hydrogen Energy 34(6), 2531–2542 (2009). https://doi.org/10.1016/j.ijhydene.2009.01.053
- B. Paul, J. Andrews, Optimal coupling of PV arrays to PEM electrolysers in solar–hydrogen systems for remote area power supply. Int. J. Hydrog. Energy 33(2), 490–498 (2008). https://doi.org/10.1016/j.ijhydene.2007.10.040
- A. Yilanci, I. Dincer, H.K. Ozturk, A review on solar-hydrogen/fuel cell hybrid energy systems for stationary applications. Prog. Energy Combust. Sci. 35(3), 231–244 (2009). https://doi.org/10.1016/j.pecs.2008.07.004
- A. del González Valle, P. García-Linares, A. Martí, Optimizing hydrogen production: a comparative study of direct and indirect coupling between photovoltaics and electrolyzer. Energy Convers. Manag. 315, 118751 (2024). https://doi.org/10.1016/j.enconman.2024.118751
- X. Gu, Z. Ying, X. Zheng, B. Dou, G. Cui, Photovoltaic-based energy system coupled with energy storage for all-day stable PEM electrolytic hydrogen production. Renew. Energy 209, 53–62 (2023). https://doi.org/10.1016/j.renene.2023.03.135
- J. Jia, L.C. Seitz, J.D. Benck, Y. Huo, Y. Chen et al., Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30. Nat. Commun. 7, 13237 (2016). https://doi.org/10.1038/ncomms13237
- Y. Gao, Y. Xu, H. Guo, J. Li, L. Ding et al., A 17.73 % solar-to-hydrogen efficiency with durably active catalyst in stable photovoltaic-electrolysis seawater system. Angew. Chem. Int. Ed. 64(9), e202420814 (2025). https://doi.org/10.1002/anie.202420814
- X. Ren, H. Fan, C. Wang, J. Ma, H. Li et al., Wind energy harvester based on coaxial rotatory freestanding triboelectric nanogenerators for self-powered water splitting. Nano Energy 50, 562–570 (2018). https://doi.org/10.1016/j.nanoen.2018.06.002
- A. Ursúa, L. Marroyo, E. Gubía, L.M. Gandía, P.M. Diéguez et al., Influence of the power supply on the energy efficiency of an alkaline water electrolyser. Int. J. Hydrog. Energy 34(8), 3221–3233 (2009). https://doi.org/10.1016/j.ijhydene.2009.02.017
- C. Acar, I. Dincer, Comparative assessment of hydrogen production methods from renewable and non-renewable sources. Int. J. Hydrog. Energy 39(1), 1–12 (2014). https://doi.org/10.1016/j.ijhydene.2013.10.060
- V.N. Dinh, P. Leahy, E. McKeogh, J. Murphy, V. Cummins, Development of a viability assessment model for hydrogen production from dedicated offshore wind farms. Int. J. Hydrog. Energy 46(48), 24620–24631 (2021). https://doi.org/10.1016/j.ijhydene.2020.04.232
- R.K. Balaji, F. You, Sailing towards sustainability: offshore wind’s green hydrogen potential for decarbonization in coastal USA. Energy Environ. Sci. 17(17), 6138–6156 (2024). https://doi.org/10.1039/d4ee01460j
References
N. Johnson, M. Liebreich, D.M. Kammen, P. Ekins, R. McKenna et al., Realistic roles for hydrogen in the future energy transition. Nat. Rev. Clean Technol. 1(5), 351–371 (2025). https://doi.org/10.1038/s44359-025-00050-4
G. Fan, H. Zhang, B. Sun, F. Pan, Economic and environmental competitiveness of multiple hydrogen production pathways in China. Nat. Commun. 16(1), 4284 (2025). https://doi.org/10.1038/s41467-025-59412-y
Q. Sha, S. Wang, L. Yan, Y. Feng, Z. Zhang et al., 10, 000-h-stable intermittent alkaline seawater electrolysis. Nature 639(8054), 360–367 (2025). https://doi.org/10.1038/s41586-025-08610-1
Y.-W. Song, L. Shen, X.-Y. Li, C.-X. Zhao, J. Zhou et al., Phase equilibrium thermodynamics of lithium–sulfur batteries. Nat. Chem. Eng. 1(9), 588–596 (2024). https://doi.org/10.1038/s44286-024-00115-4
Y. Zhang, Y. Chen, R. Liu, X. Wang, H. Liu et al., Oxygen vacancy stabilized Bi2O2CO3 nanosheet for CO2 electroreduction at low overpotential enables energy efficient CO-production of formate. InfoMat 5(3), e12375 (2023). https://doi.org/10.1002/inf2.12375
X. Wang, Y. Zhang, S. Wang, Y. Li, Y. Feng et al., Steering geometric reconstruction of bismuth with accelerated dynamics for CO2 electroreduction. Angew. Chem. Int. Ed. 63(34), e202407665 (2024). https://doi.org/10.1002/anie.202407665
N.C. Ereli, M. Kıstı, T. Eşiyok, E. Özdoğan, B. Hüner et al., First pulsed control system design for enhanced hydrogen production performance in proton exchange membrane water electrolyzers. Fuel 371, 132027 (2024). https://doi.org/10.1016/j.fuel.2024.132027
J. Khan, H. Liu, T. Zhang, X. Kang, Z. Zhang et al., A monolithic Co–FeCo8S8 electrode for a stable anion exchange membrane water electrolyzer driven by a fluctuating power supply. Energy Environ. Sci. 17(24), 9435–9442 (2024). https://doi.org/10.1039/D4EE04993D
N.A. Burton, J.C. Grant, Increasing the efficiency of water electrolysis with the application of pulsing electric fields. Renew. Sustain. Energy Rev. 215, 115584 (2025). https://doi.org/10.1016/j.rser.2025.115584
C. Zhao, Z. Ding, K. Zhang, Z. Du, H. Fang et al., Comprehensive chlorine suppression: advances in materials and system technologies for direct seawater electrolysis. Nano-Micro Lett. 17(1), 113 (2025). https://doi.org/10.1007/s40820-025-01653-z
C. Chen, H. Jin, P. Wang, X. Sun, M. Jaroniec et al., Local reaction environment in electrocatalysis. Chem. Soc. Rev. 53(4), 2022–2055 (2024). https://doi.org/10.1039/d3cs00669g
H. Wang, Y. Wu, Q. Luo, H. Wu, F.-S. Xiao et al., Managing dynamic catalyst changes to upgrade reactors and reaction processes. Nat. Chem. Eng. 2(3), 169–180 (2025). https://doi.org/10.1038/s44286-025-00199-6
T. Miličić, M. Sivasankaran, C. Blümner, A. Sorrentino, T. Vidaković-Koch, Pulsed electrolysis–explained. Faraday Discuss. 246, 179–197 (2023). https://doi.org/10.1039/d3fd00030c
L. Bohn, J. Häberlein, F. Brendel, L. Metzler, L. Helfen et al., High-resolution neutron imaging of water transport in CO2 electrolysis during pulsed operation. ACS Energy Lett. 10(2), 975–981 (2025). https://doi.org/10.1021/acsenergylett.4c03003
Y. Yu, W. Zhou, X. Zhou, J. Yuan, X. Zhang et al., Taking advantage of activation potential coincidence to unlock stable direct seawater splitting. Adv. Funct. Mater. 35(20), 2419871 (2025). https://doi.org/10.1002/adfm.202419871
R. Casebolt, K. Levine, J. Suntivich, T. Hanrath, Pulse check: Potential opportunities in pulsed electrochemical CO2 reduction. Joule 5(8), 1987–2026 (2021). https://doi.org/10.1016/j.joule.2021.05.014
Y. Xia, W. Wei, H. Cheng, L. Li, Z. Hu et al., Current bunching effect of large-scale alkaline hydrogen evolution driven by renewable energy sources. Cell Rep. Phys. Sci. 5(6), 102018 (2024). https://doi.org/10.1016/j.xcrp.2024.102018
F. Rocha, Q. de Radiguès, G. Thunis, J. Proost, Pulsed water electrolysis: a review. Electrochim. Acta 377, 138052 (2021). https://doi.org/10.1016/j.electacta.2021.138052
T. Liu, J. Wang, X. Yang, M. Gong, A review of pulse electrolysis for efficient energy conversion and chemical production. J. Energy Chem. 59, 69–82 (2021). https://doi.org/10.1016/j.jechem.2020.10.027
Y. Huang, W. Zhou, L. Xie, X. Meng, J. Li et al., Self-sacrificing and self-supporting biomass carbon anode–assisted water electrolysis for low-cost hydrogen production. Proc. Natl. Acad. Sci. U. S. A. 121(47), e2316352121 (2024). https://doi.org/10.1073/pnas.2316352121
Q. Zhao, B. Zhao, X. Long, R. Feng, M. Shakouri et al., Interfacial electronic modulation of dual-monodispersed Pt-Ni3S2 as efficacious bi-functional electrocatalysts for concurrent H2 evolution and methanol selective oxidation. Nano-Micro Lett. 16(1), 80 (2024). https://doi.org/10.1007/s40820-023-01282-4
L. Ding, K. Li, W. Wang, Z. Xie, S. Yu et al., Amorphous iridium oxide-integrated anode electrodes with ultrahigh material utilization for hydrogen production at industrial current densities. Nano-Micro Lett. 16(1), 203 (2024). https://doi.org/10.1007/s40820-024-01411-7
Z. Masaud, G. Liu, L.E. Roseng, K. Wang, Progress on pulsed electrocatalysis for sustainable energy and environmental applications. Chem. Eng. J. 475, 145882 (2023). https://doi.org/10.1016/j.cej.2023.145882
J. Xiong, Y. Xia, Y. Peng, W. Wei, A multimode self-optimization electrolysis converting strategy for improving efficiency of alkaline water electrolyzers. IEEE Trans. Power Electron. 39(3), 3738–3748 (2024). https://doi.org/10.1109/TPEL.2023.3346897
W. Chen, Y. He, Y. Zou, S. Wang, Pulsed electrochemistry: a pathway to enhanced electrocatalysis and sustainable electrosynthesis. Natl. Sci. Open 3(6), 20240047 (2024). https://doi.org/10.1360/nso/20240047
W. Xi, H. Zhou, P. Yang, H. Huang, J. Tian et al., Pulse manipulation on Cu-based catalysts for electrochemical reduction of CO2. ACS Catal. 14(18), 13697–13722 (2024). https://doi.org/10.1021/acscatal.4c03513
F. Liu, R. Zhou, C. Zhang, Z. Wu, H. Ren et al., Critical review on the pulsed electrochemical technologies for wastewater treatment: fundamentals, current trends, and future studies. Chem. Eng. J. 479, 147588 (2024). https://doi.org/10.1016/j.cej.2023.147588
M. Fan, H. Tian, Z. Wu, J. Dai, X. Ma et al., Microwave shock synthesis of porous 2D non-layered transition metal carbides for efficient hydrogen evolution. SusMat 5(2), e252 (2025). https://doi.org/10.1002/sus2.252
H.G. Han, J.W. Choi, M. Son, K.C. Kim, Unlocking power of neighboring vacancies in boosting hydrogen evolution reactions on two-dimensional NiPS3 monolayer. eScience 4(3), 100204 (2024). https://doi.org/10.1016/j.esci.2023.100204
R. Wei, D. Li et al., Unraveling the formation kinetics of the first intermediate in the oxygen evolution reaction on MnOx with different electron configurations. J. Am. Chem. Soc. 147(27), 23473–23481 (2025). https://doi.org/10.1021/jacs.4c18273
L. Wang, J. Li, S. Ji, Y. Xiong, D. Wang, Microenvironment engineering of covalent organic framework based single/dual-atom catalysts toward sustainable energy conversion and storage. Energy Environ. Sci. 17(22), 8482–8528 (2024). https://doi.org/10.1039/d4ee03704a
S.H. Lee, J.C. Lin, M. Farmand, A.T. Landers, J.T. Feaster et al., Oxidation state and surface reconstruction of Cu under CO2 reduction conditions from in situ X-ray characterization. J. Am. Chem. Soc. 143(2), 588–592 (2021). https://doi.org/10.1021/jacs.0c10017
K.W. Kimura, R. Casebolt, J. Cimada DaSilva, E. Kauffman, J. Kim et al., Selective electrochemical CO2 reduction during pulsed potential stems from dynamic interface. ACS Catal. 10(15), 8632–8639 (2020). https://doi.org/10.1021/acscatal.0c02630
J. Huang, N. Hörmann, E. Oveisi, A. Loiudice, G.L. De Gregorio et al., Potential-induced nanoclustering of metallic catalysts during electrochemical CO2 reduction. Nat. Commun. 9(1), 3117 (2018). https://doi.org/10.1038/s41467-018-05544-3
Q. Hu, W. Zhou, S. Qi, Q. Huo, X. Li et al., Pulsed co-electrolysis of carbon dioxide and nitrate for sustainable urea synthesis. Nat. Sustain. 7(4), 442–451 (2024). https://doi.org/10.1038/s41893-024-01302-0
J. Wang, Y. Qin, S. Jin, Y. Yang, J. Zhu et al., Customizing CO2 electroreduction by pulse-induced anion enrichment. J. Am. Chem. Soc. 145(48), 26213–26221 (2023). https://doi.org/10.1021/jacs.3c08748
W. Chen, L. Zhang, L. Xu, Y. He, H. Pang et al., Pulse potential mediated selectivity for the electrocatalytic oxidation of glycerol to glyceric acid. Nat. Commun. 15(1), 2420 (2024). https://doi.org/10.1038/s41467-024-46752-4
A.R. Woldu, P. Talebi, A.G. Yohannes, J. Xu, X.-D. Wu et al., Insights into electrochemical CO2 reduction on SnS2: main product switch from hydrogen to formate by pulsed potential electrolysis. Angew. Chem. Int. Ed. 62(29), e202301621 (2023). https://doi.org/10.1002/anie.202301621
Y. Mao, Q. Mao, H. Yang, Q. Liu, X. Dong et al., Dynamically stabilizing oxygen atoms in silver catalyst for highly selective and durable CO2 reduction reaction. Angew. Chem. Int. Ed. 63(49), e202410932 (2024). https://doi.org/10.1002/anie.202410932
Y. Zhang, Y. Chen, X. Wang, Y. Feng, Z. Dai et al., Low-coordinated copper facilitates the *CH(2)CO affinity at enhanced rectifying interface of Cu/Cu(2)O for efficient CO2-to-multicarbon alcohols conversion. Nat. Commun. 15(1), 5172 (2024). https://doi.org/10.1038/s41467-024-49247-4
Y. Zhang, Y. Chen, X. Wang, Y. Feng, H. Zhang et al., Self-polarization triggered multiple polar units toward electrochemical reduction of CO2 to ethanol with high selectivity. Angew. Chem. Int. Ed. 62(26), e202302241 (2023). https://doi.org/10.1002/anie.202302241
S. Bera, S. Sen, D. Maiti, Unveiling alternate electrode electrolysis in electro-photochemical and electro-organic syntheses. J. Am. Chem. Soc. 146(36), 25166–25175 (2024). https://doi.org/10.1021/jacs.4c08826
S. Rodrigo, C. Um, J.C. Mixdorf, D. Gunasekera, H.M. Nguyen et al., Alternating current electrolysis for organic electrosynthesis: trifluoromethylation of (hetero)arenes. Org. Lett. 22(17), 6719–6723 (2020). https://doi.org/10.1021/acs.orglett.0c01906
E.R. Sauvé, B.Y. Tang, N.K. Razdan, W.L. Toh, S. Weng et al., Open circuit potential decay transients quantify interfacial pH swings during high current density hydrogen electrocatalysis. Joule 8(3), 728–745 (2024). https://doi.org/10.1016/j.joule.2024.01.004
H.S. Jeon, J. Timoshenko, C. Rettenmaier, A. Herzog, A. Yoon et al., Selectivity control of Cu nanocrystals in a gas-fed flow cell through CO2 pulsed electroreduction. J. Am. Chem. Soc. 143(19), 7578–7587 (2021). https://doi.org/10.1021/jacs.1c03443
J. He, J. Zhou, K. Yang, L. Luo, P. Wang et al., Pulsed electric field drives chemical-free membrane stripping for high ammonia recovery from urine. Water Res. 251, 121129 (2024). https://doi.org/10.1016/j.watres.2024.121129
J.C. Bui, C. Kim, A.Z. Weber, A.T. Bell, Dynamic boundary layer simulation of pulsed CO2 electrolysis on a copper catalyst. ACS Energy Lett. 6(4), 1181–1188 (2021). https://doi.org/10.1021/acsenergylett.1c00364
M. He, Y. Wu, R. Li, Y. Wang, C. Liu et al., Aqueous pulsed electrochemistry promotes C-N bond formation via a one-pot cascade approach. Nat. Commun. 14, 5088 (2023). https://doi.org/10.1038/s41467-023-40892-9
X. Guan, G. Zhang, J. Li, S.C. Kim, G. Feng et al., Seawater alkalization via an energy-efficient electrochemical process for CO2 capture. Proc. Natl. Acad. Sci. U. S. A. 121(45), e2410841121 (2024). https://doi.org/10.1073/pnas.2410841121
K. Ye, T.-W. Jiang, H.D. Jung, P. Shen, S.M. Jang et al., Molecular level insights on the pulsed electrochemical CO2 reduction. Nat. Commun. 15, 9781 (2024). https://doi.org/10.1038/s41467-024-54122-3
H. Xin, H. Wang, W. Zhang, Y. Chen, Q. Ji et al., In operando visualization and dynamic manipulation of electrochemical processes at the electrode–solution interface. Angew. Chem. Int. Ed. 61(36), e202206236 (2022). https://doi.org/10.1002/anie.202206236
Y. Huang, C. He, C. Cheng, S. Han, M. He et al., Pulsed electroreduction of low-concentration nitrate to ammonia. Nat. Commun. 14(1), 7368 (2023). https://doi.org/10.1038/s41467-023-43179-1
Y. Ding, W. Zhou, J. Li, J. Wang, L. Xie et al., Revealing the in situ dynamic regulation of the interfacial microenvironment induced by pulsed electrocatalysis in the oxygen reduction reaction. ACS Energy Lett. 8(7), 3122–3130 (2023). https://doi.org/10.1021/acsenergylett.3c00758
Z. Li, L. Wang, L. Sun, W. Yang, Dynamic cation enrichment during pulsed CO2 electrolysis and the cation-promoted multicarbon formation. J. Am. Chem. Soc. 146(34), 23901–23908 (2024). https://doi.org/10.1021/jacs.4c06404
X. Zhang, W. Zhou, Y. Huang, L. Xie, T. Li et al., Pulsed dynamic electrolysis enhanced PEMWE hydrogen production: revealing the effects of pulsed electric fields on protons mass transport and hydrogen bubble escape. J. Energy Chem. 100, 201–214 (2025). https://doi.org/10.1016/j.jechem.2024.08.033
X. Zhang, W. Zhou, Y. Huang, Y. Ding, J. Li et al., Enhanced hydrogen production enabled by pulsed potential coupled sulfite electrooxidation water electrolysis system. Renew. Energy 227, 120464 (2024). https://doi.org/10.1016/j.renene.2024.120464
B. Zhang, Z. Dai, Y. Chen, M. Cheng, H. Zhang et al., Defect-induced triple synergistic modulation in copper for superior electrochemical ammonia production across broad nitrate concentrations. Nat. Commun. 15(1), 2816 (2024). https://doi.org/10.1038/s41467-024-47025-w
W. Qiu, S. Qin, Y. Li, N. Cao, W. Cui et al., Overcoming electrostatic interaction via pulsed electroreduction for boosting the electrocatalytic urea synthesis. Angew. Chem. Int. Ed. 63(24), e202402684 (2024). https://doi.org/10.1002/anie.202402684
R. Boppella, M. Ahmadi, B.M. Arndt, D.R. Lustig, M. Nazemi, Pulsed electrolysis in membrane electrode assembly architecture for enhanced electrochemical nitrate reduction reaction to ammonia. ACS Catal. 14(23), 18223–18236 (2024). https://doi.org/10.1021/acscatal.4c05225
J.Y. Lee, M.P.J. Punkkinen, S. Schönecker, Z. Nabi, K. Kádas et al., The surface energy and stress of metals. Surf. Sci. 674, 51–68 (2018). https://doi.org/10.1016/j.susc.2018.03.008
W. Zhang, Y. Yang, Y. Tang, Q. Gao, In-situ reconstruction of catalysts in cathodic electrocatalysis: new insights into active-site structures and working mechanisms. J. Energy Chem. 70, 414–436 (2022). https://doi.org/10.1016/j.jechem.2022.02.036
S. Nitopi, E. Bertheussen, S.B. Scott, X. Liu, A.K. Engstfeld et al., Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119(12), 7610–7672 (2019). https://doi.org/10.1021/acs.chemrev.8b00705
S. Popović, M. Smiljanić, P. Jovanovič, J. Vavra, R. Buonsanti et al., Stability and degradation mechanisms of copper-based catalysts for electrochemical CO2 reduction. Angew. Chem. Int. Ed. 59(35), 14736–14746 (2020). https://doi.org/10.1002/anie.202000617
X.-D. Zhang, T. Liu, C. Liu, D.-S. Zheng, J.-M. Huang et al., Asymmetric low-frequency pulsed strategy enables ultralong CO2 reduction stability and controllable product selectivity. J. Am. Chem. Soc. 145(4), 2195–2206 (2023). https://doi.org/10.1021/jacs.2c09501
C.W. Lee, N.H. Cho, K.T. Nam, Y.J. Hwang, B.K. Min, Cyclic two-step electrolysis for stable electrochemical conversion of carbon dioxide to formate. Nat. Commun. 10(1), 3919 (2019). https://doi.org/10.1038/s41467-019-11903-5
M.B.I. Janjua, R.L. Le Roy, Electrocatalyst performance in industrial water electrolysers. Int. J. Hydrog. Energy 10(1), 11–19 (1985). https://doi.org/10.1016/0360-3199(85)90130-2
K. Oda, Y. Kuroda, S. Mitsushima, Investigation of charge–discharging behavior of metal oxide–based anode electrocatalysts for alkaline water electrolysis to suppress degradation due to reverse current. Electrocatal. 14(3), 499–510 (2023). https://doi.org/10.1007/s12678-023-00815-0
A. Abdel Haleem, J. Huyan, K. Nagasawa, Y. Kuroda, Y. Nishiki et al., Effects of operation and shutdown parameters and electrode materials on the reverse current phenomenon in alkaline water analyzers. J. Power. Sources 535, 231454 (2022). https://doi.org/10.1016/j.jpowsour.2022.231454
R. Qi, M. Becker, J. Brauns, T. Turek, J. Lin et al., Channel design optimization of alkaline electrolysis stacks considering the trade-off between current efficiency and pressure drop. J. Power. Sources 579, 233222 (2023). https://doi.org/10.1016/j.jpowsour.2023.233222
R.S. Jupudi, G. Zappi, R. Bourgeois, Prediction of shunt currents in a bipolar electrolyzer stack by difference calculus. J. Appl. Electrochem. 37(8), 921–931 (2007). https://doi.org/10.1007/s10800-007-9330-4
S.-M. Jung, Y. Kim, B.-J. Lee, H. Jung, J. Kwon et al., Reverse-current tolerance for hydrogen evolution reaction activity of lead-decorated nickel catalysts in zero-gap alkaline water electrolysis systems. Adv. Funct. Mater. 34(27), 2316150 (2024). https://doi.org/10.1002/adfm.202316150
L. Wang, X. Duan, X. Liu, J. Gu, R. Si et al., Atomically dispersed Mo supported on metallic Co9S8 nanoflakes as an advanced noble-metal-free bifunctional water splitting catalyst working in universal pH conditions. Adv. Energy Mater. 10(4), 1903137 (2020). https://doi.org/10.1002/aenm.201903137
L. Wang, H. Su, Z. Zhang, J. Xin, H. Liu et al., Co–co dinuclear active sites dispersed on zirconium-doped heterostructured Co9S8/Co3O4 for high-current-density and durable acidic oxygen evolution. Angew. Chem. Int. Ed. 62(49), e202314185 (2023). https://doi.org/10.1002/anie.202314185
N. Yang, H. Li, X. Lin, S. Georgiadou, L. Hong et al., Catalytic electrode comprising a gas diffusion layer and bubble-involved mass transfer in anion exchange membrane water electrolysis: a critical review and perspectives. J. Energy Chem. 105, 669–701 (2025). https://doi.org/10.1016/j.jechem.2024.12.073
L. Wan, Z. Xu, Q. Xu, M. Pang, D. Lin et al., Key components and design strategy of the membrane electrode assembly for alkaline water electrolysis. Energy Environ. Sci. 16(4), 1384–1430 (2023). https://doi.org/10.1039/d3ee00142c
B.Ó. Joensen, J.A. Zamora Zeledón, L. Trotochaud, A. Sartori, M. Mirolo et al., Unveiling transport mechanisms of cesium and water in operando zero-gap CO2 electrolyzers. Joule 8(6), 1754–1771 (2024). https://doi.org/10.1016/j.joule.2024.02.027
Y. Xu, J.P. Edwards, S. Liu, R.K. Miao, J.E. Huang et al., Self-cleaning CO2 reduction systems: unsteady electrochemical forcing enables stability. ACS Energy Lett. 6(2), 809–815 (2021). https://doi.org/10.1021/acsenergylett.0c02401
M.E. Leonard, L.E. Clarke, A. Forner-Cuenca, S.M. Brown, F.R. Brushett, Investigating electrode flooding in a flowing electrolyte, gas-fed carbon dioxide electrolyzer. Chemsuschem 13(2), 400–411 (2020). https://doi.org/10.1002/cssc.201902547
J. Cho, D.H. Kim, M.W. Noh, H. Kim, H.-G. Oh et al., Dissolution of the Ti porous transport layer in proton exchange membrane water electrolyzers. J. Mater. Chem. A 12(35), 23688–23696 (2024). https://doi.org/10.1039/d4ta02755h
Y. Xia, F. Gao, J. Wen, T. Xiong, H. Yi et al., Heavy metal challenge in NH3-SCR DeNOx catalysts: poisoning deactivation mechanisms and enhanced resistance strategies. Green Energy Environ. 10(8), 1624–1647 (2025). https://doi.org/10.1016/j.gee.2024.11.007
J. Yano, S. Yamasaki, Pulse-mode electrochemical reduction of carbon dioxide using copper and copper oxide electrodes for selective ethylene formation. J. Appl. Electrochem. 38(12), 1721–1726 (2008). https://doi.org/10.1007/s10800-008-9622-3
Z. Xu, Y. Xie, Y. Wang, Pause electrolysis for acidic CO2 reduction on 3-dimensional Cu. Mater. Rep. Energy 3(1), 100173 (2023). https://doi.org/10.1016/j.matre.2022.100173
L. Xu, W. Liu, X. Zhang, W. Tang, D.-J. Lee et al., Pseudo-continuous and scalable electrochemical ion pumping with circuit-switching-induced ion shuttling. Nat. Water. 2(10), 999–1008 (2024). https://doi.org/10.1038/s44221-024-00312-8
E.R. Cofell, U.O. Nwabara, S.S. Bhargava, D.E. Henckel, P.J.A. Kenis, Investigation of electrolyte-dependent carbonate formation on gas diffusion electrodes for CO2 electrolysis. ACS Appl. Mater. Interfaces 13(13), 15132–15142 (2021). https://doi.org/10.1021/acsami.0c21997
E.R. Cofell, Z. Park, U.O. Nwabara, L.C. Harris, S.S. Bhargava et al., Potential cycling of silver cathodes in an alkaline CO2 flow electrolyzer for accelerated stress testing and carbonate inhibition. ACS Appl. Energy Mater. 5(10), 12013–12021 (2022). https://doi.org/10.1021/acsaem.2c01308
G. Armstrong, J.A.V. Butler, The rate of decay of hydrogen and oxygen overvoltages. Trans. Faraday Soc. 29(140), 1261 (1933). https://doi.org/10.1039/tf9332901261
K. Viswanathan, H.Y. Cheh, Mass transfer aspects of electrolysis by periodic currents. J. Electrochem. Soc. 126(3), 398–401 (1979). https://doi.org/10.1149/1.2129050
J.O. Bockris, E.C. Potter, The mechanism of hydrogen evolution at nickel cathodes in aqueous solutions. J. Chem. Phys. 20(4), 614–628 (1952). https://doi.org/10.1063/1.1700503
A.C.C. Tseung, P.R. Vassie, A study of gas evolution in Teflon bonded porous electrodes: III. Performance of Teflon bonded Pt black electrodes for H2 evolution. Electrochim. Acta 21(4), 315–318 (1976). https://doi.org/10.1016/0013-4686(76)80026-6
S.M. Jasem, A.C.C. Tseung, A potentiostatic pulse study of oxygen evolution on teflon-bonded nickel-cobalt oxide electrodes. J. Electrochem. Soc. 126(8), 1353–1360 (1979). https://doi.org/10.1149/1.2129276
J.C. Puippe, N. Ibl, Influence of charge and discharge of electric double layer in pulse plating. J. Appl. Electrochem. 10(6), 775–784 (1980). https://doi.org/10.1007/BF00611281
J.O. Bockris, B. Dandapani, D. Cocke, J. Ghoroghchian, On the splitting of water. Int. J. Hydrog. Energy 10(3), 179–201 (1985). https://doi.org/10.1016/0360-3199(85)90025-4
N.K. Khosla, S. Venkatachalam, P. Somasundaran, Pulsed electrogeneration of bubbles for electroflotation. J. Appl. Electrochem. 21(11), 986–990 (1991). https://doi.org/10.1007/BF01077584
A.H. Shaaban, Water electrolysis and pulsed direct current. J. Electrochem. Soc. 140(10), 2863–2867 (1993). https://doi.org/10.1149/1.2220923
C. Hitz, A. Lasia, Determination of the kinetics of the hydrogen evolution reaction by the galvanostatic step technique. J. Electroanal. Chem. 532(1–2), 133–140 (2002). https://doi.org/10.1016/S0022-0728(02)00760-X
N. Shimizu, S. Hotta, T. Sekiya, O. Oda, A novel method of hydrogen generation by water electrolysis using an ultra-short-pulse power supply. J. Appl. Electrochem. 36(4), 419–423 (2006). https://doi.org/10.1007/s10800-005-9090-y
D.-T. Chin, Mass transfer and current-potential relation in pulse electrolysis. J. Electrochem. Soc. 130(8), 1657–1667 (1983). https://doi.org/10.1149/1.2120058
J. Ghoroghchian, J.O. Bockris, Use of a homopolar generator in hydrogen production from water. Int. J. Hydrog. Energy 10(2), 101–112 (1985). https://doi.org/10.1016/0360-3199(85)90042-4
K. Mazloomi, N. Sulaiman, S.A. Ahmad, N.A.M. Yunus, Analysis of the frequency response of a water electrolysis cell. Int. J. Electrochem. Sci. 8(3), 3731–3739 (2013). https://doi.org/10.1016/S1452-3981(23)14427-0
Y. Kim, S.-M. Jung, K.-S. Kim, H.-Y. Kim, J. Kwon et al., Cathodic protection system against a reverse-current after shut-down in zero-gap alkaline water electrolysis. JACS Au 2(11), 2491–2500 (2022). https://doi.org/10.1021/jacsau.2c00314
J. Zhang, Q. Zhang, X. Feng, Support and interface effects in water-splitting electrocatalysts. Adv. Mater. 31(31), 1808167 (2019). https://doi.org/10.1002/adma.201808167
N. Demir, M.F. Kaya, M.S. Albawabiji, Effect of pulse potential on alkaline water electrolysis performance. Int. J. Hydrog. Energy 43(36), 17013–17020 (2018). https://doi.org/10.1016/j.ijhydene.2018.07.105
S.A. Grigoriev, P. Millet, S.V. Korobtsev, V.I. Porembskiy, M. Pepic et al., Hydrogen safety aspects related to high-pressure polymer electrolyte membrane water electrolysis. Int. J. Hydrog. Energy 34(14), 5986–5991 (2009). https://doi.org/10.1016/j.ijhydene.2009.01.047
Y. Ding, W. Zhou, L. Xie, S. Chen, J. Gao et al., Pulsed electrocatalysis enables an efficient 2-electron oxygen reduction reaction for H2O2 production. J. Mater. Chem. A 9(29), 15948–15954 (2021). https://doi.org/10.1039/d1ta03864h
S. Banerjee, X. Han, V.S. Thoi, Modulating the electrode–electrolyte interface with cationic surfactants in carbon dioxide reduction. ACS Catal. 9(6), 5631–5637 (2019). https://doi.org/10.1021/acscatal.9b00449
N. Monk, S. Watson, Review of pulsed power for efficient hydrogen production. Int. J. Hydrog. Energy 41(19), 7782–7791 (2016). https://doi.org/10.1016/j.ijhydene.2015.12.086
H. Xu, J. Zhang, M. Eikerling, J. Huang, Pure water splitting driven by overlapping electric double layers. J. Am. Chem. Soc. 146(29), 19720–19727 (2024). https://doi.org/10.1021/jacs.4c01070
I. Vincent, B. Choi, M. Nakoji, M. Ishizuka, K. Tsutsumi et al., Pulsed current water splitting electrochemical cycle for hydrogen production. Int. J. Hydrogen Energy 43(22), 10240–10248 (2018). https://doi.org/10.1016/j.ijhydene.2018.04.087
M.-Y. Lin, L.-W. Hourng, Effects of magnetic field and pulse potential on hydrogen production via water electrolysis: magnetic effect in water electrolysis. Int. J. Energy Res. 38(1), 106–116 (2014). https://doi.org/10.1002/er.3112
L.-W. Hourng, W.-H. Wu, M.-Y. Lin, The improvement of water electrolysis efficiency by using acid-alkaline electrolysis with multi-electrode and pulsed current. In: Engineering Innovation and Design. CRC Press (2019), pp. 143–147. https://doi.org/10.1201/9780429019777-29
J. Wu, Understanding the electric double-layer structure, capacitance, and charging dynamics. Chem. Rev. 122(12), 10821–10859 (2022). https://doi.org/10.1021/acs.chemrev.2c00097
L. Jiang, Y. Ding, L. Li, Y. Tang, P. Zhou et al., Cationic adsorption-induced microlevelling effect: a pathway to dendrite-free zinc anodes. Nano-Micro Lett. 17(1), 202 (2025). https://doi.org/10.1007/s40820-025-01709-0
J.-H. Kim, C.-Y. Oh, K.-R. Kim, J.-P. Lee, T.-J. Kim, Electrical double layer mechanism analysis of PEM water electrolysis for frequency limitation of pulsed currents. Energies 14(22), 7822 (2021). https://doi.org/10.3390/en14227822
H. Cheng, Y. Xia, Z. Hu, J. Xiong, W. Wei, Modeling and control for alkaline water electrolyzers operating in wide range. IEEE Trans. Ind. Electron. 71(9), 10888–10897 (2024). https://doi.org/10.1109/TIE.2023.3340211
L. Zeng, M. Chen, Z. Wang, R. Qiao, G. Feng, Structural evolution governs reversible heat generation in electrical double layers. Phys. Rev. Lett. 131(9), 096201 (2023). https://doi.org/10.1103/PhysRevLett.131.096201
G. Zhang, M. Schreier, Leveraging electrochemical double layer structure to rationally control electrolysis. Natl. Sci. Rev. 11(12), nwae299 (2024). https://doi.org/10.1093/nsr/nwae299
A. Greco, S. Imoto, E.H.G. Backus, Y. Nagata, J. Hunger et al., Ultrafast aqueous electric double layer dynamics. Science 388(6745), 405–410 (2025). https://doi.org/10.1126/science.adu5781
K. Mazloomi, N. Sulaiman, Retarding forces cancellation in electrolyte solutions-an electrical approach. Int. J. Appl. Electron. Phys. Robot. 1(1), 1–4 (2013). https://doi.org/10.7575/aiac.ijaepr.v.1n.1p.1
D. Chellaiah, Economical hydrogen production by electrolysis using nano pulsed DC. Int. J. Energy Environ. Eng. 3, 129–136 (2012)
M. Vanags, J. Kleperis, G. Bajars, Electrolyses model development for metal/electrolyte interface: testing with microrespiration sensors. Int. J. Hydrog. Energy 36(1), 1316–1320 (2011). https://doi.org/10.1016/j.ijhydene.2010.07.100
J. Poláčik, J. Pospíšil, Some aspects of PDC electrolysis. Technol. Eng. 13(1), 33–34 (2016). https://doi.org/10.2478/teen-2016-0011
H. Li, S. Yuan, J. You, C. Zhao, X. Cheng et al., Revealing the oxygen transport challenges in catalyst layers in proton exchange membrane fuel cells and water electrolysis. Nano-Micro Lett. 17(1), 225 (2025). https://doi.org/10.1007/s40820-025-01719-y
P.A. Kempler, R.H. Coridan, L. Luo, Gas evolution in water electrolysis. Chem. Rev. 124(19), 10964–11007 (2024). https://doi.org/10.1021/acs.chemrev.4c00211
R. Ferrero, M. Marracci, M. Prioli, B. Tellini, Simplified model for evaluating ripple effects on commercial PEM fuel cell. Int. J. Hydrog. Energy 37(18), 13462–13469 (2012). https://doi.org/10.1016/j.ijhydene.2012.06.036
Q. Xu, J. Zhang, H. Zhang, L. Zhang, L. Chen et al., Atomic heterointerface engineering overcomes the activity limitation of electrocatalysts and promises highly-efficient alkaline water splitting. Energy Environ. Sci. 14(10), 5228–5259 (2021). https://doi.org/10.1039/d1ee02105b
Z. Li, B. Li, M. Yu, C. Yu, P. Shen, Amorphous metallic ultrathin nanostructures: a latent ultra-high-density atomic-level catalyst for electrochemical energy conversion. Int. J. Hydrog. Energy 47(63), 26956–26977 (2022). https://doi.org/10.1016/j.ijhydene.2022.06.049
M. Chatenet, B.G. Pollet, D.R. Dekel, F. Dionigi, J. Deseure et al., Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem. Soc. Rev. 51(11), 4583–4762 (2022). https://doi.org/10.1039/D0CS01079K
C. Huang, Solar hydrogen production via pulse electrolysis of aqueous ammonium sulfite solution. Sol. Energy 91, 394–401 (2013). https://doi.org/10.1016/j.solener.2012.09.009
S.K. Mazloomi, N. Sulaiman, Influencing factors of water electrolysis electrical efficiency. Renew. Sustain. Energy Rev. 16(6), 4257–4263 (2012). https://doi.org/10.1016/j.rser.2012.03.052
M. Wang, Z. Wang, X. Gong, Z. Guo, The intensification technologies to water electrolysis for hydrogen production–a review. Renew. Sustain. Energy Rev. 29, 573–588 (2014). https://doi.org/10.1016/j.rser.2013.08.090
P. Vensaus, Y. Liang, J.-P. Ansermet, G.J.A.A. Soler-Illia, M. Lingenfelder, Enhancement of electrocatalysis through magnetic field effects on mass transport. Nat. Commun. 15, 2867 (2024). https://doi.org/10.1038/s41467-024-46980-8
R. Phillips, A. Edwards, B. Rome, D.R. Jones, C.W. Dunnill, Minimising the ohmic resistance of an alkaline electrolysis cell through effective cell design. Int. J. Hydrog. Energy 42(38), 23986–23994 (2017). https://doi.org/10.1016/j.ijhydene.2017.07.184
Q. de Radiguès, G. Thunis, J. Proost, On the use of 3-D electrodes and pulsed voltage for the process intensification of alkaline water electrolysis. Int. J. Hydrog. Energy 44(56), 29432–29440 (2019). https://doi.org/10.1016/j.ijhydene.2019.06.156
X. Zhang, H. Zhu, L. Yang, S. Liu, X. Meng et al., Mechanism of hydrogen bubble behavior at different reaction stages of high-current PEMWE during pulsed dynamic electrolysis. Renew. Energy 256, 124117 (2026). https://doi.org/10.1016/j.renene.2025.124117
F. Yang, M.J. Kim, M. Brown, B.J. Wiley, Alkaline water electrolysis at 25 a cm−2 with a microfibrous flow-through electrode. Adv. Energy Mater. 10(25), 2001174 (2020). https://doi.org/10.1002/aenm.202001174
S.F. Nami-Ana, M.A. Mehrgardi, M. Mofidfar, R.N. Zare, Sustained regeneration of hydrogen peroxide at the water–gas interface of electrogenerated microbubbles on an electrode surface. J. Am. Chem. Soc. 146(46), 31945–31949 (2024). https://doi.org/10.1021/jacs.4c11422
J. Wang, W. Zhou, J. Li, C. Yang, X. Meng et al., Insights into the effects of pulsed parameters on H2O2 synthesis by two-electron oxygen reduction under pulsed electrocatalysis. Electrochem. Commun. 146, 107414 (2023). https://doi.org/10.1016/j.elecom.2022.107414
F. Rocha, J. Proost, Discriminating between the effect of pulse width and duty cycle on the hydrogen generation performance of 3-D electrodes during pulsed water electrolysis. Int. J. Hydrog. Energy 46(57), 28925–28935 (2021). https://doi.org/10.1016/j.ijhydene.2020.11.232
M. Vanags, J. Kleperis, G. Bajars, Water electrolysis with inductive voltage pulses. In: Electrolysis, pp.. InTech (2012). https://doi.org/10.5772/52453
D. Hristova, I. Betova, T. Tzvetkoff, An electrochemical and analytical characterization of surface films on AISI 316 as electrode material for pulse electrolysis of water. Int. J. Hydrog. Energy 38(20), 8232–8243 (2013). https://doi.org/10.1016/j.ijhydene.2013.04.127
D. M. H. Al-Hasnawi. Experimental study of wave shape and frequency of the power supply on the energy efficiency of hydrogen production by water electrolysis. Int J Innov Res Sci Eng Technol. 4, 12239–12250 (2015). https://doi.org/10.15680/IJIRSET.2015.0412105
Z. Dobó, Á.B. Palotás, Impact of the current fluctuation on the efficiency of alkaline water electrolysis. Int. J. Hydrog. Energy 42(9), 5649–5656 (2017). https://doi.org/10.1016/j.ijhydene.2016.11.142
T. Vilasmongkolchai, R. Songprakorp, K. Sudaprasert, The behaviour of gas bubble during rest period of pulse-activated electrolysis hydrogen production. MATEC Web Conf. 77, 14001 (2016). https://doi.org/10.1051/matecconf/20167714001
H. Cheng, Y. Xia, Z. Hu, W. Wei, Optimum pulse electrolysis for efficiency enhancement of hydrogen production by alkaline water electrolyzers. Appl. Energy 358, 122510 (2024). https://doi.org/10.1016/j.apenergy.2023.122510
H. Cheng, Y. Xia, W. Wei, Hydrogen production efficiency enhancement for alkaline water electrolyzers operating at varying temperature via an adaptive multi-mode control. Int. J. Hydrog. Energy 93, 430–440 (2024). https://doi.org/10.1016/j.ijhydene.2024.10.421
M. Calegari Andrade, R. Car, A. Selloni, Probing the self-ionization of liquid water with ab initio deep potential molecular dynamics. Proc. Natl. Acad. Sci. U. S. A. 120(46), e2302468120 (2023). https://doi.org/10.1073/pnas.2302468120
A. Eftekhari-Bafrooei, E. Borguet, Effect of hydrogen-bond strength on the vibrational relaxation of interfacial water. J. Am. Chem. Soc. 132(11), 3756–3761 (2010). https://doi.org/10.1021/ja907745r
M. Brouard, I. Burak, S. Marinakis, L. Rubio Lago, P. Tampkins et al., Product spin-orbit state resolved dynamics of the H+H2O and H+D2O abstraction reactions. J. Chem. Phys. 121(21), 10426–10436 (2004). https://doi.org/10.1063/1.1809578
S. Shin, A.P. Willard, Water’s interfacial hydrogen bonding structure reveals the effective strength of surface–water interactions. J. Phys. Chem. B 122(26), 6781–6789 (2018). https://doi.org/10.1021/acs.jpcb.8b02438
M. Sovago, R. Kramer Campen, H.J. Bakker, M. Bonn, Hydrogen bonding strength of interfacial water determined with surface sum-frequency generation. Chem. Phys. Lett. 470(1–3), 7–12 (2009). https://doi.org/10.1016/j.cplett.2009.01.009
X. You, D. Zhang, X.-G. Zhang, X. Li, J.-H. Tian et al., Exploring the cation regulation mechanism for interfacial water involved in the hydrogen evolution reaction by in situ Raman spectroscopy. Nano-Micro Lett. 16(1), 53 (2023). https://doi.org/10.1007/s40820-023-01285-1
M. Albornoz, M. Rivera, P. Wheeler, R. Ramírez, High pulsed voltage alkaline electrolysis for water splitting. Sensors 23(8), 3820 (2023). https://doi.org/10.3390/s23083820
J. Gong, C. Sun, H. Shi, W. Tan, Response behaviour of proton exchange membrane water electrolysis to hydrogen production under dynamic conditions. Int. J. Hydrog. Energy 48(79), 30642–30652 (2023). https://doi.org/10.1016/j.ijhydene.2023.04.223
C.A. Obasanjo, G. Gao, B.N. Khiarak, T.H. Pham, J. Crane et al., Progress and perspectives of pulse electrolysis for stable electrochemical carbon dioxide reduction. Energy Fuels 37(18), 13601–13623 (2023). https://doi.org/10.1021/acs.energyfuels.3c02152
N.A. Burton, R.V. Padilla, A. Rose, H. Habibullah, Increasing the efficiency of hydrogen production from solar powered water electrolysis. Renew. Sustain. Energy Rev. 135, 110255 (2021). https://doi.org/10.1016/j.rser.2020.110255
X. Gao, Y. Chen, Y. Wang, L. Zhao, X. Zhao et al., Next-generation green hydrogen: progress and perspective from electricity, catalyst to electrolyte in electrocatalytic water splitting. Nano-Micro Lett. 16(1), 237 (2024). https://doi.org/10.1007/s40820-024-01424-2
H. Kojima, K. Nagasawa, N. Todoroki, Y. Ito, T. Matsui et al., Influence of renewable energy power fluctuations on water electrolysis for green hydrogen production. Int. J. Hydrog. Energy 48(12), 4572–4593 (2023). https://doi.org/10.1016/j.ijhydene.2022.11.018
F. Valenciaga, C.A. Evangelista, Control design for an autonomous wind based hydrogen production system. Int. J. Hydrog. Energy 35(11), 5799–5807 (2010). https://doi.org/10.1016/j.ijhydene.2010.02.096
J. Huang, Y. Xie, L. Yan, B. Wang, T. Kong et al., Decoupled amphoteric water electrolysis and its integration with Mn–Zn battery for flexible utilization of renewables. Energy Environ. Sci. 14(2), 883–889 (2021). https://doi.org/10.1039/d0ee03639k
Y. Xia, H. Cheng, H. He, W. Wei, Efficiency and consistency enhancement for alkaline electrolyzers driven by renewable energy sources. Commun. Eng. 2, 22 (2023). https://doi.org/10.1038/s44172-023-00070-7
Z. Liu, J. Hu, A. Wu, Z. Lu, W. Guan, Stability and energy consumption of solid oxide electrolysis cells under wide fluctuating and stable conditions. J. Power. Sources 616, 235113 (2024). https://doi.org/10.1016/j.jpowsour.2024.235113
H. Chen, P. Liu, W. Li, W. Xu, Y. Wen et al., Stable seawater electrolysis over 10 000 H via chemical fixation of sulfate on NiFeBa-LDH. Adv. Mater. 36(45), e2411302 (2024). https://doi.org/10.1002/adma.202411302
X. Cheng, J. Lin, Z. Zhao, B. Yang, Y. Song et al., Modeling study of efficiency losses in water electrolysis systems caused by low frequency current and power fluctuations. Int. J. Hydrogen Energy 106, 850–863 (2025). https://doi.org/10.1016/j.ijhydene.2025.01.319
J. Wang, L. Chen, Z. Tan, E. Du, N. Liu et al., Inherent spatiotemporal uncertainty of renewable power in China. Nat. Commun. 14(1), 5379 (2023). https://doi.org/10.1038/s41467-023-40670-7
M.E. Şahin, H.İ Okumuş, M.T. Aydemir, Implementation of an electrolysis system with DC/DC synchronous buck converter. Int. J. Hydrog. Energy 39(13), 6802–6812 (2014). https://doi.org/10.1016/j.ijhydene.2014.02.084
A. Garrigós, J.L. Lizán, J.M. Blanes, R. Gutiérrez, Combined maximum power point tracking and output current control for a photovoltaic-electrolyser DC/DC converter. Int. J. Hydrog. Energy 39(36), 20907–20919 (2014). https://doi.org/10.1016/j.ijhydene.2014.10.041
Q. Zhang, Y. Shan, J. Pan, P. Kumar, M.J. Keevers et al., A photovoltaic-electrolysis system with high solar-to-hydrogen efficiency under practical current densities. Sci. Adv. 11(9), eads0836 (2025). https://doi.org/10.1126/sciadv.ads0836
H. Tüysüz, Alkaline water electrolysis for green hydrogen production. Acc. Chem. Res. (2024). https://doi.org/10.1021/acs.accounts.3c00709
H. Nishiyama, T. Yamada, M. Nakabayashi, Y. Maehara, M. Yamaguchi et al., Photocatalytic solar hydrogen production from water on a 100–m2 scale. Nature 598(7880), 304–307 (2021). https://doi.org/10.1038/s41586-021-03907-3
R.E. Clarke, S. Giddey, F.T. Ciacchi, S.P.S. Badwal, B. Paul et al., Direct coupling of an electrolyser to a solar PV system for generating hydrogen. Int. J. Hydrogen Energy 34(6), 2531–2542 (2009). https://doi.org/10.1016/j.ijhydene.2009.01.053
B. Paul, J. Andrews, Optimal coupling of PV arrays to PEM electrolysers in solar–hydrogen systems for remote area power supply. Int. J. Hydrog. Energy 33(2), 490–498 (2008). https://doi.org/10.1016/j.ijhydene.2007.10.040
A. Yilanci, I. Dincer, H.K. Ozturk, A review on solar-hydrogen/fuel cell hybrid energy systems for stationary applications. Prog. Energy Combust. Sci. 35(3), 231–244 (2009). https://doi.org/10.1016/j.pecs.2008.07.004
A. del González Valle, P. García-Linares, A. Martí, Optimizing hydrogen production: a comparative study of direct and indirect coupling between photovoltaics and electrolyzer. Energy Convers. Manag. 315, 118751 (2024). https://doi.org/10.1016/j.enconman.2024.118751
X. Gu, Z. Ying, X. Zheng, B. Dou, G. Cui, Photovoltaic-based energy system coupled with energy storage for all-day stable PEM electrolytic hydrogen production. Renew. Energy 209, 53–62 (2023). https://doi.org/10.1016/j.renene.2023.03.135
J. Jia, L.C. Seitz, J.D. Benck, Y. Huo, Y. Chen et al., Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30. Nat. Commun. 7, 13237 (2016). https://doi.org/10.1038/ncomms13237
Y. Gao, Y. Xu, H. Guo, J. Li, L. Ding et al., A 17.73 % solar-to-hydrogen efficiency with durably active catalyst in stable photovoltaic-electrolysis seawater system. Angew. Chem. Int. Ed. 64(9), e202420814 (2025). https://doi.org/10.1002/anie.202420814
X. Ren, H. Fan, C. Wang, J. Ma, H. Li et al., Wind energy harvester based on coaxial rotatory freestanding triboelectric nanogenerators for self-powered water splitting. Nano Energy 50, 562–570 (2018). https://doi.org/10.1016/j.nanoen.2018.06.002
A. Ursúa, L. Marroyo, E. Gubía, L.M. Gandía, P.M. Diéguez et al., Influence of the power supply on the energy efficiency of an alkaline water electrolyser. Int. J. Hydrog. Energy 34(8), 3221–3233 (2009). https://doi.org/10.1016/j.ijhydene.2009.02.017
C. Acar, I. Dincer, Comparative assessment of hydrogen production methods from renewable and non-renewable sources. Int. J. Hydrog. Energy 39(1), 1–12 (2014). https://doi.org/10.1016/j.ijhydene.2013.10.060
V.N. Dinh, P. Leahy, E. McKeogh, J. Murphy, V. Cummins, Development of a viability assessment model for hydrogen production from dedicated offshore wind farms. Int. J. Hydrog. Energy 46(48), 24620–24631 (2021). https://doi.org/10.1016/j.ijhydene.2020.04.232
R.K. Balaji, F. You, Sailing towards sustainability: offshore wind’s green hydrogen potential for decarbonization in coastal USA. Energy Environ. Sci. 17(17), 6138–6156 (2024). https://doi.org/10.1039/d4ee01460j