Bioinspired Adaptive, Elastic, and Conductive Graphene Structured Thin-Films Achieving High-Efficiency Underwater Detection and Vibration Perception
Corresponding Author: Tao Chen
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 62
Abstract
Underwater exploration has been an attractive topic for understanding the very nature of the lakes and even deep oceans. In recent years, extensive efforts have been devoted to developing functional materials and their integrated devices for underwater information capturing. However, there still remains a great challenge for water depth detection and vibration monitoring in a high-efficient, controllable, and scalable way. Inspired by the lateral line of fish that can sensitively sense the water depth and environmental stimuli, an ultrathin, elastic, and adaptive underwater sensor based on Ecoflex matrix with embedded assembled graphene sheets is fabricated. The graphene structured thin film is endowed with favourable adaptive and morphable features, which can conformally adhere to the structural surface and transform to a bulged state driven by water pressure. Owing to the introduction of the graphene-based layer, the integrated sensing system can actively detect the water depth with a wide range of 0.3–1.8 m. Furthermore, similar to the fish, the mechanical stimuli from land (e.g. knocking, stomping) and water (e.g. wind blowing, raining, fishing) can also be sensitively captured in real time. This graphene structured thin-film system is expected to demonstrate significant potentials in underwater monitoring, communication, and risk avoidance.
Highlights:
1 The lateral-line-like underwater mechanical sensor (LUMS) realizes the imitation of the structure and function of the lateral line.
2 The detection range of water depth can be controlled by adjusting the size of the graphene/Ecoflex Janus film on LUMS. The maximum measured depth is 1.8 m.
3 Similar to the fish, the mechanical stimuli from land and water can be sensitively captured by LUMS in real time.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y.F. Hu, J. Yang, Q.S. Jing, S.M. Niu, W.Z. Wu et al., Triboelectric nanogenerator built on suspended 3D spiral structure as vibration and positioning sensor and wave energy harvester. ACS Nano 7(11), 10424–10432 (2013). https://doi.org/10.1021/nn405209u
- N.J. Lindsey, T.C. Dawe, J.B. Ajo-Franklin, Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing. Science 366(6469), 1103–1107 (2019). https://doi.org/10.1126/science.aay5881
- Y. Zou, P.C. Tan, B.J. Shi, H. Ouyang, D.J. Jiang et al., A bionic stretchable nanogenerator for underwater sensing and energy harvesting. Nat. Commun. 10, 2695 (2019). https://doi.org/10.1038/s41467-019-10433-4
- Y. Gao, J.F. Song, S.M. Li, C. Elowsky, Y. Zhou et al., Hydrogel microphones for stealthy underwater listening. Nat. Commun. 7, 12316 (2016). https://doi.org/10.1038/ncomms12316
- S.C. Li, J.L. Zheng, J. Yan, Z.J. Wu, Q. Zhou et al., Gate-free hydrogel-graphene transistors as underwater microphones. ACS Appl. Mater. Interfaces 10(49), 42573–42582 (2018). https://doi.org/10.1021/acsami.8b14034
- Z.P. Yang, Y.T. Niu, S. Wang, Y.Y. Zhang, Z.Z. Yong et al., Rational design of fast recoverable shape-memory photoelectric spring in response to tiny deformation for monitoring underwater microvibration. Compos. Part B Eng. 202, 108402 (2020). https://doi.org/10.1016/j.compositesb.2020.108402
- S. Wang, T. Zhang, K.W. Li, S.Y. Ma, M. Chen et al., Flexible piezoelectric fibers for acoustic sensing and positioning. Adv. Electron. Mater. 3(3), 1600449 (2017). https://doi.org/10.1002/aelm.201600449
- L.P. Liu, Z.B. Jiao, J.Q. Zhang, Y.C. Wang, C.C. Zhang et al., Bioinspired, superhydrophobic, and paper-based strain sensors for wearable and underwater applications. ACS Appl. Mater. Interfaces 13(1), 1967–1978 (2021). https://doi.org/10.1021/acsami.0c18818
- Z.C. Yu, P.Y. Wu, Underwater communication and optical camouflage ionogels. Adv. Mater. 33(24), 2008479 (2021). https://doi.org/10.1002/adma.202008479
- D. Kim, J. Yoon, Water-borne fabrication of stretchable and durable microfibers for high-performance underwater strain sensors. ACS Appl. Mater. Interfaces 12(18), 20965–20972 (2020). https://doi.org/10.1021/acsami.0c04013
- N. Li, L.F. Qiao, J.T. He, S.X. Wang, L.M. Yu et al., Solar-driven interfacial evaporation and self-powered water wave detection based on an all-cellulose monolithic design. Adv. Funct. Mater. 31(7), 2008681 (2020). https://doi.org/10.1002/adfm.202008681
- C. Wang, B. Zhang, Y. Li, X.N. Zhao, Suspended graphene hydroacoustic sensor for broadband underwater wireless communications. IEEE Wirel. Commun. 27(5), 44–52 (2020). https://doi.org/10.1109/mwc.001.2000056
- S.A. Moshizi, S. Azadi, A. Belford, A. Razmjou, S.Y. Wu et al., Development of an ultra-sensitive and flexible piezoresistive flow sensor using vertical graphene nanosheets. Nano-Micro Lett. 12, 109 (2020). https://doi.org/10.1007/s40820-020-00446-w
- S. Prabhu, A.B. Pai, G.S. Arora, M.R. Kusshal, V. Pandin et al., Design of piezo-resistive type acoustic vector sensor using graphene for underwater applications. IOP Conf. Ser. Mater. Sci. Eng. 1045, 012015 (2021). https://doi.org/10.1088/1757-899x/1045/1/012015
- R.X. Xu, K.L. Zhang, X.Y. Xu, M.H. He, F.C. Lu et al., Superhydrophobic WS2-nanosheet-wrapped sponges for underwater detection of tiny vibration. Adv. Sci. 5(4), 1700655 (2018). https://doi.org/10.1002/advs.201700655
- M.M. Zhang, S.L. Fang, J. Nie, P. Fei, A.E. Aliev et al., Self-powered, electrochemical carbon nanotube pressure sensors for wave monitoring. Adv. Funct. Mater. 30(42), 2004564 (2020). https://doi.org/10.1002/adfm.202004564
- S.H. Kwon, J. Park, W.K. Kim, Y.J. Yang, E. Lee et al., The effective energy harvesting method from natural water motion active transducer. Energy Environ. Sci. 7(10), 3279–3283 (2014). https://doi.org/10.1039/c4ee00588k
- N.R. Alluri, B. Saravanakumar, S.J. Kim, Flexible, hybrid piezoelectric film (BaTi(1–x)Zr(x)O3)/PVDF nanogenerator as a self-powered fluid velocity sensor. ACS Appl. Mater. Interfaces 7(18), 9831–9840 (2015).
- X.J. Su, H.Q. Li, X.J. Lai, Z.H. Chen, X.R. Zeng, 3D porous superhydrophobic CNT/EVA composites for recoverable shape reconfiguration and underwater vibration detection. Adv. Funct. Mater. 29(24), 1900554 (2019). https://doi.org/10.1002/adfm.201900554
- Y.M. Ni, J.Y. Huang, S.H. Li, X.Q. Wang, L.X. Liu et al., Underwater, multifunctional superhydrophobic sensor for human motion detection. ACS Appl. Mater. Interfaces 13(3), 4740–4749 (2021). https://doi.org/10.1021/acsami.0c19704
- S.N. Lai, C.K. Chang, C.S. Yang, C.W. Su, C.M. Leu et al., Ultrasensitivity of self-powered wireless triboelectric vibration sensor for operating in underwater environment based on surface functionalization of rice husks. Nano Energy 60, 715–723 (2019). https://doi.org/10.1016/j.nanoen.2019.03.067
- G.M. Ding, W.C. Jiao, R.G. Wang, Z.M. Chu, Y.F. Huang, An underwater, self-sensing, conductive composite coating with controllable wettability and adhesion behavior. J. Mater. Chem. A 7(19), 12333–12342 (2019). https://doi.org/10.1039/c9ta02691f
- T. Wang, Y. Si, S. Luo, Z. Dong, L. Jiang, Wettability manipulation of overflow behavior via vesicle surfactant for water-proof surface cleaning. Mater. Horiz. 6(2), 294–301 (2019). https://doi.org/10.1039/c8mh01343h
- Y. Liang, F. Ni, L. Zhang, T. Zhang, S. Wang et al., Biomimetic underwater self-perceptive actuating soft system based on highly compliant, morphable and conductive sandwiched thin films. Nano Energy 81, 105617 (2021). https://doi.org/10.1016/j.nanoen.2020.105617
- G.M. Ding, W.C. Jiao, R.G. Wang, M.L. Yan, Z.M. Chu et al., Superhydrophobic heterogeneous graphene networks with controllable adhesion behavior for detecting multiple underwater motions. J. Mater. Chem. A 7(30), 17766–17774 (2019). https://doi.org/10.1039/c9ta04648h
- S.B. Ji, C.J. Wan, T. Wang, Q.S. Li, G. Chen et al., Water-resistant conformal hybrid electrodes for aquatic endurable electrocardiographic monitoring. Adv. Mater. 32(26), 2001496 (2020). https://doi.org/10.1002/adma.202001496
- J.C. Montgomery, J.A. Macdonald, Sensory tuning of lateral line receptors in antarctic fish to the movements of planktonic prey. Science 235(4785), 195–196 (1987). https://doi.org/10.1126/science.235.4785.195
- J. Montgomery, S. Coombs, M. Halstead, Biology of the mechanosensory lateral line in fishes. Rev. Fish Biol. Fisher. 5, 399–416 (1995). https://doi.org/10.1007/bf01103813
- S.W. Chou, Z.W. Chen, S.Y. Zhu, R.W. Davis, J.Q. Hu et al., A molecular basis for water motion detection by the mechanosensory lateral line of zebrafish. Nat. Commun. 8, 2234 (2017). https://doi.org/10.1038/s41467-017-01604-2
- R. Winklbauer, development of the lateral line system in Xenopus. Prog. Neurobiol. 32(3), 181–206 (1989). https://doi.org/10.1016/0301-0082(89)90016-6
- X.W. Zheng, W. Wang, M.L. Xiong, G.M. Xie, Online state estimation of a fin-actuated underwater robot using artificial lateral line system. IEEE Trans. Robot. 36(2), 472–487 (2020). https://doi.org/10.1109/tro.2019.2956343
- P. Xiao, J.C. Gu, C.J. Wan, S. Wang, J. He et al., ultrafast formation of free-standing 2D carbon nanotube thin films through capillary force driving compression on an air/water interface. Chem. Mater. 28(19), 7125–7133 (2016). https://doi.org/10.1021/acs.chemmater.6b03420
- X.M. Li, T.T. Yang, Y. Yang, J. Zhu, L. Li et al., Large-area ultrathin graphene films by single-step marangoni self-assembly for highly sensitive strain sensing application. Adv. Funct. Mater. 26(9), 1322–1329 (2016). https://doi.org/10.1002/adfm.201504717
- M. Li, H. Zhang, M. Liu, B. Dong, A light-powered shape-configurable micromachine. Mater. Horiz. 5(3), 436–443 (2018). https://doi.org/10.1039/c7mh00968b
References
Y.F. Hu, J. Yang, Q.S. Jing, S.M. Niu, W.Z. Wu et al., Triboelectric nanogenerator built on suspended 3D spiral structure as vibration and positioning sensor and wave energy harvester. ACS Nano 7(11), 10424–10432 (2013). https://doi.org/10.1021/nn405209u
N.J. Lindsey, T.C. Dawe, J.B. Ajo-Franklin, Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing. Science 366(6469), 1103–1107 (2019). https://doi.org/10.1126/science.aay5881
Y. Zou, P.C. Tan, B.J. Shi, H. Ouyang, D.J. Jiang et al., A bionic stretchable nanogenerator for underwater sensing and energy harvesting. Nat. Commun. 10, 2695 (2019). https://doi.org/10.1038/s41467-019-10433-4
Y. Gao, J.F. Song, S.M. Li, C. Elowsky, Y. Zhou et al., Hydrogel microphones for stealthy underwater listening. Nat. Commun. 7, 12316 (2016). https://doi.org/10.1038/ncomms12316
S.C. Li, J.L. Zheng, J. Yan, Z.J. Wu, Q. Zhou et al., Gate-free hydrogel-graphene transistors as underwater microphones. ACS Appl. Mater. Interfaces 10(49), 42573–42582 (2018). https://doi.org/10.1021/acsami.8b14034
Z.P. Yang, Y.T. Niu, S. Wang, Y.Y. Zhang, Z.Z. Yong et al., Rational design of fast recoverable shape-memory photoelectric spring in response to tiny deformation for monitoring underwater microvibration. Compos. Part B Eng. 202, 108402 (2020). https://doi.org/10.1016/j.compositesb.2020.108402
S. Wang, T. Zhang, K.W. Li, S.Y. Ma, M. Chen et al., Flexible piezoelectric fibers for acoustic sensing and positioning. Adv. Electron. Mater. 3(3), 1600449 (2017). https://doi.org/10.1002/aelm.201600449
L.P. Liu, Z.B. Jiao, J.Q. Zhang, Y.C. Wang, C.C. Zhang et al., Bioinspired, superhydrophobic, and paper-based strain sensors for wearable and underwater applications. ACS Appl. Mater. Interfaces 13(1), 1967–1978 (2021). https://doi.org/10.1021/acsami.0c18818
Z.C. Yu, P.Y. Wu, Underwater communication and optical camouflage ionogels. Adv. Mater. 33(24), 2008479 (2021). https://doi.org/10.1002/adma.202008479
D. Kim, J. Yoon, Water-borne fabrication of stretchable and durable microfibers for high-performance underwater strain sensors. ACS Appl. Mater. Interfaces 12(18), 20965–20972 (2020). https://doi.org/10.1021/acsami.0c04013
N. Li, L.F. Qiao, J.T. He, S.X. Wang, L.M. Yu et al., Solar-driven interfacial evaporation and self-powered water wave detection based on an all-cellulose monolithic design. Adv. Funct. Mater. 31(7), 2008681 (2020). https://doi.org/10.1002/adfm.202008681
C. Wang, B. Zhang, Y. Li, X.N. Zhao, Suspended graphene hydroacoustic sensor for broadband underwater wireless communications. IEEE Wirel. Commun. 27(5), 44–52 (2020). https://doi.org/10.1109/mwc.001.2000056
S.A. Moshizi, S. Azadi, A. Belford, A. Razmjou, S.Y. Wu et al., Development of an ultra-sensitive and flexible piezoresistive flow sensor using vertical graphene nanosheets. Nano-Micro Lett. 12, 109 (2020). https://doi.org/10.1007/s40820-020-00446-w
S. Prabhu, A.B. Pai, G.S. Arora, M.R. Kusshal, V. Pandin et al., Design of piezo-resistive type acoustic vector sensor using graphene for underwater applications. IOP Conf. Ser. Mater. Sci. Eng. 1045, 012015 (2021). https://doi.org/10.1088/1757-899x/1045/1/012015
R.X. Xu, K.L. Zhang, X.Y. Xu, M.H. He, F.C. Lu et al., Superhydrophobic WS2-nanosheet-wrapped sponges for underwater detection of tiny vibration. Adv. Sci. 5(4), 1700655 (2018). https://doi.org/10.1002/advs.201700655
M.M. Zhang, S.L. Fang, J. Nie, P. Fei, A.E. Aliev et al., Self-powered, electrochemical carbon nanotube pressure sensors for wave monitoring. Adv. Funct. Mater. 30(42), 2004564 (2020). https://doi.org/10.1002/adfm.202004564
S.H. Kwon, J. Park, W.K. Kim, Y.J. Yang, E. Lee et al., The effective energy harvesting method from natural water motion active transducer. Energy Environ. Sci. 7(10), 3279–3283 (2014). https://doi.org/10.1039/c4ee00588k
N.R. Alluri, B. Saravanakumar, S.J. Kim, Flexible, hybrid piezoelectric film (BaTi(1–x)Zr(x)O3)/PVDF nanogenerator as a self-powered fluid velocity sensor. ACS Appl. Mater. Interfaces 7(18), 9831–9840 (2015).
X.J. Su, H.Q. Li, X.J. Lai, Z.H. Chen, X.R. Zeng, 3D porous superhydrophobic CNT/EVA composites for recoverable shape reconfiguration and underwater vibration detection. Adv. Funct. Mater. 29(24), 1900554 (2019). https://doi.org/10.1002/adfm.201900554
Y.M. Ni, J.Y. Huang, S.H. Li, X.Q. Wang, L.X. Liu et al., Underwater, multifunctional superhydrophobic sensor for human motion detection. ACS Appl. Mater. Interfaces 13(3), 4740–4749 (2021). https://doi.org/10.1021/acsami.0c19704
S.N. Lai, C.K. Chang, C.S. Yang, C.W. Su, C.M. Leu et al., Ultrasensitivity of self-powered wireless triboelectric vibration sensor for operating in underwater environment based on surface functionalization of rice husks. Nano Energy 60, 715–723 (2019). https://doi.org/10.1016/j.nanoen.2019.03.067
G.M. Ding, W.C. Jiao, R.G. Wang, Z.M. Chu, Y.F. Huang, An underwater, self-sensing, conductive composite coating with controllable wettability and adhesion behavior. J. Mater. Chem. A 7(19), 12333–12342 (2019). https://doi.org/10.1039/c9ta02691f
T. Wang, Y. Si, S. Luo, Z. Dong, L. Jiang, Wettability manipulation of overflow behavior via vesicle surfactant for water-proof surface cleaning. Mater. Horiz. 6(2), 294–301 (2019). https://doi.org/10.1039/c8mh01343h
Y. Liang, F. Ni, L. Zhang, T. Zhang, S. Wang et al., Biomimetic underwater self-perceptive actuating soft system based on highly compliant, morphable and conductive sandwiched thin films. Nano Energy 81, 105617 (2021). https://doi.org/10.1016/j.nanoen.2020.105617
G.M. Ding, W.C. Jiao, R.G. Wang, M.L. Yan, Z.M. Chu et al., Superhydrophobic heterogeneous graphene networks with controllable adhesion behavior for detecting multiple underwater motions. J. Mater. Chem. A 7(30), 17766–17774 (2019). https://doi.org/10.1039/c9ta04648h
S.B. Ji, C.J. Wan, T. Wang, Q.S. Li, G. Chen et al., Water-resistant conformal hybrid electrodes for aquatic endurable electrocardiographic monitoring. Adv. Mater. 32(26), 2001496 (2020). https://doi.org/10.1002/adma.202001496
J.C. Montgomery, J.A. Macdonald, Sensory tuning of lateral line receptors in antarctic fish to the movements of planktonic prey. Science 235(4785), 195–196 (1987). https://doi.org/10.1126/science.235.4785.195
J. Montgomery, S. Coombs, M. Halstead, Biology of the mechanosensory lateral line in fishes. Rev. Fish Biol. Fisher. 5, 399–416 (1995). https://doi.org/10.1007/bf01103813
S.W. Chou, Z.W. Chen, S.Y. Zhu, R.W. Davis, J.Q. Hu et al., A molecular basis for water motion detection by the mechanosensory lateral line of zebrafish. Nat. Commun. 8, 2234 (2017). https://doi.org/10.1038/s41467-017-01604-2
R. Winklbauer, development of the lateral line system in Xenopus. Prog. Neurobiol. 32(3), 181–206 (1989). https://doi.org/10.1016/0301-0082(89)90016-6
X.W. Zheng, W. Wang, M.L. Xiong, G.M. Xie, Online state estimation of a fin-actuated underwater robot using artificial lateral line system. IEEE Trans. Robot. 36(2), 472–487 (2020). https://doi.org/10.1109/tro.2019.2956343
P. Xiao, J.C. Gu, C.J. Wan, S. Wang, J. He et al., ultrafast formation of free-standing 2D carbon nanotube thin films through capillary force driving compression on an air/water interface. Chem. Mater. 28(19), 7125–7133 (2016). https://doi.org/10.1021/acs.chemmater.6b03420
X.M. Li, T.T. Yang, Y. Yang, J. Zhu, L. Li et al., Large-area ultrathin graphene films by single-step marangoni self-assembly for highly sensitive strain sensing application. Adv. Funct. Mater. 26(9), 1322–1329 (2016). https://doi.org/10.1002/adfm.201504717
M. Li, H. Zhang, M. Liu, B. Dong, A light-powered shape-configurable micromachine. Mater. Horiz. 5(3), 436–443 (2018). https://doi.org/10.1039/c7mh00968b