Electrostatic Field Enhanced Photocatalytic CO2 Conversion on BiVO4 Nanowires
Corresponding Author: Weihua Han
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 15
Abstract
The recombination loss of photo-carriers in photocatalytic systems fatally determines the energy conversion efficiency of photocatalysts. In this work, an electrostatic field was used to inhibit the recombination of photo-carriers in photocatalysts by separating photo-holes and photo-electrons in space. As a model structure, (010) facet-exposed BiVO4 nanowires were grown on PDMS-insulated piezo-substrate of piezoelectric transducer (PZT). The PZT substrate will generate an electrostatic field under a certain stress, and the photocatalytic behavior of BiVO4 nanowires is influenced by the electrostatic field. Our results showed that the photocatalytic performance of the BiVO4 nanowires in CO2 reduction in the negative electrostatic field is enhanced to 5.5-fold of that without electrostatic field. Moreover, the concentration of methane in the products was raised from 29% to 64%. The enhanced CO2 reduction efficiency is mainly attributed to the inhibited recombination loss of photo-carriers in the BiVO4 nanowires. The increased energy of photo-carriers and the enhanced surface absorption to polar molecules, which are CO in this case, were also play important roles in improving the photocatalytic activity of the photocatalyst and product selectivity. This work proposed an effective strategy to improve photo-carriers separation/transfer dynamics in the photocatalytic systems, which will also be a favorable reference for photovoltaic and photodetecting devices.
Highlights:
1 BiVO4 nanowires with exposed (010) facets were deposited on the piezoelectric transducer piezo-substrate.
2 CO2 conversion rate was significantly improved by 5.5-time in an electrostatic field generated by applying a stress on the piezo-substrate.
3 The mole percentage of methane in products was increased from 29% to 64%.
4 The improved performance was attributed to the facilitated photo-carriers separation/transfer, as well as the enhanced adsorption of polar molecules.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Bronselaer, L. Zanna, Heat and carbon coupling reveals ocean warming due to circulation changes. Nature 584(7820), 227–233 (2020). https://doi.org/10.1038/s41586-020-2573-5
- A. Schwartzman, R.F. Keeling, Achieving atmospheric verification of CO2 emissions. Nat. Clim. Change 10(5), 416–417 (2020). https://doi.org/10.1038/s41558-020-0735-y
- Z.B. Pan, E.S. Han, J.G. Zheng, J. Lu, X.L. Wang et al., Highly efficient photoelectrocatalytic reduction of CO2 to methanol by a p-n heterojunction CeO2/CuO/Cu catalyst. Nano-Micro Lett. 12(1), 18 (2020). https://doi.org/10.1007/s40820-019-0354-1
- X.C. Jiao, K. Zheng, L. Liang, X.D. Li, Y.F. Sun et al., Fundamentals and challenges of ultrathin 2D photocatalysts in boosting CO2 photoreduction. Chem. Soc. Rev. 49(18), 6592–6604 (2020). https://doi.org/10.1039/d0cs00332h
- L. Hao, H.W. Huang, Y.H. Zhang, T.Y. Ma, Oxygen vacant semiconductor photocatalysts. Adv. Funct. Mater. 31(25), 2100919 (2021). https://doi.org/10.1002/adfm.202100919
- F. Chen, T.Y. Ma, T.R. Zhang, Y.H. Zhang, H.W. Huang, Atomic-level charge separation strategies in semiconductor-based photocatalysts. Adv. Mater. 33(10), 2005256 (2021). https://doi.org/10.1002/adma.202005256
- L. Yuan, Z.Y. Geng, J.K. Xu, F. Guo, C. Han, Metal-semiconductor heterostructures for photoredox catalysis: where are we now and where do we go? Adv. Funct. Mater. 31(27), 2101103 (2021). https://doi.org/10.1002/adfm.202101103
- Y.Z. Zhang, B.Q. Xia, J.R. Ran, K. Davey, S.Z. Qiao, Atomic-level reactive sites for semiconductor-based photocatalytic CO2 reduction. Adv. Energy Mater. 10(9), 1903879 (2020). https://doi.org/10.1002/aenm.201903879
- X.L. Zhao, S. Chen, H.J. Yin, S.Y. Jiang, K. Zhao et al., Perovskite microcrystals with intercalated monolayer MoS2 nanosheets as advanc-ed photocatalyst for solar-powered hydrogen generation. Matter 3(3), 935–949 (2020). https://doi.org/10.1016/j.matt.2020.07.004
- J. Kosco, M. Bidwell, H. Cha, T. Martin, C.T. Howells et al., Enhanced photocatalytic hydrogen evolution from organic semiconductor heterojunction nanoparticles. Nat. Mater. 19(5), 559–565 (2020). https://doi.org/10.1038/s41563-019-0591-1
- C.K. Xia, H. Wang, J.K. Kim, J.Y. Wang, Rational design of metal oxide-based heterostructure for efficient photocatalytic and photoelectrochemical systems. Adv. Funct. Mater. 31(12), 2008247 (2021). https://doi.org/10.1002/adfm.202008247
- X. Zhao, W.J. Luo, J.Y. Feng, M.X. Li, Z.S. Li et al., Quan-titative analysis and visualized evidence for high charge separation efficiency in a solid-liquid bulk heterojunction. Adv. Energy Mater. 4(9), 1301785 (2014). https://doi.org/10.1002/aenm.201301785
- A.J.E. Rettie, H.C. Lee, L.G. Marshall, J.F. Lin, C. Capan et al., Combined charge carrier transport and photoelectrochemical characterization of BiVO4 single crystals: intrinsic behavior of a complex metal oxide. J. Am. Chem. Soc. 135(30), 11389–11396 (2013). https://doi.org/10.1021/ja405550k
- Q. Shi, Z. Li, L. Chen, X. Zhang, W. Han et al., Synthesis of SPR Au/BiVO4 quantum dot/rutile-TiO2 nanorod array composites as efficient visible-light photocatalysts to convert CO2 and mechanism insight. Appl. Catal. B Environ. 244, 641–649 (2019). https://doi.org/10.1016/j.apcatb.2018.11.089
- Y. Hou, X. Chen, S. Yang, C. Li, H. Zhao et al., A band-edge potential gradient heterostructure to enhance electron extraction efficiency of the electron transport layer in high-performance perovskite solar cells. Adv. Funct. Mater. 27(27), 1700878 (2017). https://doi.org/10.1002/adfm.201700878
- Y.P. Liu, S.Y. Zhang, J. He, Z.M.M. Wang, Z.W. Liu, Recent progress in the fabrication, properties, and devices of heterostructures based on 2D materials. Nano-Micro Lett. 11, 13 (2019). https://doi.org/10.1007/s40820-019-0245-5
- W.S. Jiang, X.P. Zong, L. An, S.X. Hua, X. Miao et al., Consciously constructing heterojunction or direct Z-scheme photocatalysts by regulating electron flow direction. ACS Catal. 8(3), 2209–2217 (2018). https://doi.org/10.1021/acscatal.7b04323
- Q.L. Xu, L.Y. Zhang, B. Cheng, J.J. Fan, J.G. Yu, S-scheme heterojunction photocatalyst. Chem 6(7), 1543–1559 (2020). https://doi.org/10.1016/j.chempr.2020.06.010
- J.X. Low, J.G. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Heterojunction photocatalysts. Adv. Mater. 29(20), 1601694 (2017). https://doi.org/10.1002/adma.201601694
- M.B. Starr, J. Shi, X.D. Wang, Piezopotential-driven redox reactions at the s-urface of piezoelectric materials. Angew. Chem. Int. Ed. 51(24), 5962–5966 (2012). https://doi.org/10.1002/anie.201201424
- M. Oishi, K. Yamanaka, I. Watanabe, K. Shimoda, T. Matsunaga et al., Direct observation of reversible oxygen anion redox reaction in Li-rich manganese oxide, Li2MnO3, studied by soft X-ray absorption spectroscopy. J. Mater. Chem. A 4(23), 9293–9302 (2016). https://doi.org/10.1039/c6ta00174b
- W.W. Zhan, L.M. Sun, X.G. Han, Recent progress on engineering highly efficient porous semiconductor photocatalysts derived from metal-organic frameworks. Nano-Micro Lett. 11, 1 (2019). https://doi.org/10.1007/s40820-018-0235-z
- J. Low, C. Jiang, B. Cheng, S. Wageh, A.A. Al-Ghamdi et al., A review of direct Z-scheme photocatalysts. Small Methods 1(5), 170080 (2017). https://doi.org/10.1002/smtd.201700080
- Y. Hu, X. Hao, Z. Cui, J. Zhou, S. Chu et al., Enhanced photoca-rrier separation in conjugated polymer engineered CdS for direct Z-scheme phot-ocatalytic hydrogen evolution. Appl. Catal. B Environ. 260, 118131 (2020). https://doi.org/10.1016/j.apcatb.2019.118131
- X. Chen, Z. Zhang, L. Chi, A.K. Nair, W. Shangguan et al., Recent advances in visible-light-driven photoelectrochemical water splitting: catalyst nanostructures and reaction systems. Nano-Micro Lett. 8, 1–12 (2016). https://doi.org/10.1007/s40820-015-0063-3
- Q. Xu, L. Zhang, J. Yu, S. Wageh, A.A. Al-Ghamdi et al., Direct Z-scheme photocatalysts: principles, synthesis, and applications. Mater. Today 21(10), 1042–1063 (2018). https://doi.org/10.1016/j.mattod.2018.04.008
- B. Liu, C.H. Wu, J.W. Miao, P.D. Yang, All inorganic semiconductor nano-wire mesh for direct solar water splitting. ACS Nano 8(11), 11739–11744 (2014). https://doi.org/10.1021/nn5051954
- L.Q. Jing, W. Zhou, G.H. Tian, H.G. Fu, Surface tuning for oxide-based na-nomaterials as efficient photocatalysts. Chem. Soc. Rev. 42(24), 9509–9549 (2013). https://doi.org/10.1039/c3cs60176e
- K. Mathew, R. Sundararaman, K.L. Weaver, T.A. Arias, R.G. Henn-ig, Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 140(8), 084106 (2014). https://doi.org/10.1063/1.4865107
- K. Mathew, V.S.C. Kolluru, S. Mula, S.N. Steinmann, R.G. Hennig, Implicit self-consistent electrolyte model in plane-wave density-functional theory. J. Chem. Phys. 151(23), 234101 (2019). https://doi.org/10.1063/1.5132354
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- L. Wang, T. Maxisch, G. Ceder, Oxidation energies of transition metal oxides within the GGA+U framework. Phys. Rev. B 73(19), 195107 (2006). https://doi.org/10.1103/PhysRevB.73.195107
- S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-PU. J. Chem. Phys. 132(15), 154104 (2010). https://doi.org/10.1063/1.3382344
- S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32(7), 1456–1465 (2011). https://doi.org/10.1002/jcc.21759
- M. Zheng, X.H. Cao, Y. Ding, T. Tian, J.Q. Lin, Boosting photocatalytic wa-ter oxidation achieved by BiVO4 coupled with iron-containing polyoxometalate: analysis the true catalyst. J. Catal. 363, 109–116 (2018). https://doi.org/10.1016/j.jcat.2018.04.022
- J.L. Yang, N. Sun, Z.Q. Zhang, J. Bian, Y. Qu et al., Ultrafine SnO2/010 facet-exposed BiVO4 nanocomposites as ef-ficient photoanodes for controllable conversion of 2,4-Dichlorophenol via a pref-erential dechlorination path. ACS Appl. Mater. Interfaces 12(25), 28264–28272 (2020). https://doi.org/10.1021/acsami.0c06892
- Y. Ma, Y.Y. Du, Y. Chen, C.J. Gu, T. Jiang et al., Intrinsic raman signal of polymer matrix induced quantitative multiphase sers analysis based on stretched PDMS film with anchored Ag nanoparticles/Au nanowires. Chem. Eng. J. 381, 122710 (2020). https://doi.org/10.1016/j.cej.2019.122710
- M. Kang, J.J. Kim, Y.J. Oh, S.G. Park, K.H. Jeong, A deformable nanopl-asmonic membrane reveals universal correlations between plasmon resonance andsurface enhanced raman scattering. Adv. Mater. 26(26), 4510–4514 (2014). https://doi.org/10.1002/adma.201305950
- J.Q. Hu, H.C. He, X. Zhou, Z.S. Li, Q. Shen et al., BiVO4 tubular structures: oxygen defect-rich and largely exposed reactive 010 facets synergistically boost photocatalytic water oxidation and the selective N=N coupling reaction of 5-amino-1H-tetrazole. Chem. Commun. 55(39), 5635–5638 (2019). https://doi.org/10.1039/c9cc01290g
- C.W. Dong, S.Y. Lu, S.Y. Yao, R. Ge, Z.D. Wang et al., Colloidal synthesis of ultrathin monoclinic BiVO4 nanosheets for Z-scheme overall water splitting under visible light. ACS Catal. 8(9), 8649–8658 (2018). https://doi.org/10.1021/acscatal.8b01645
- D. Yao, C.W. Dong, Q.M. Bing, Y. Liu, F.D. Qu et al., Oxygen-defective ultrathin BiVO4 nanosheets for enhanced gas sensing. ACS Appl. Mater. Interfaces 11(26), 23495–23502 (2019). https://doi.org/10.1021/acsami.9b05626
- S.C. Wang, T.W. He, P. Chen, A.J. Du, K. Ostrikov et al., In situ formation of oxygen vacancies achieving near-complete charge separ-ation in planar BiVO4 photoanodes. Adv. Mater. 32(26), 2001385 (2020). https://doi.org/10.1002/adma.202001385
- D.P. Jaihindh, B. Thirumalraj, S.M. Chen, P. Balasubramanian, Y.P. Fu, Facile synthesis of hierarchically nanostructured bismuth vanadate: an efficient photocatalyst for degradation and detection of hexavalent chromium. J. Hazard. Mater. 367, 647–657 (2019). https://doi.org/10.1016/j.jhazmat.2019.01.017
- J.M. Wu, Y. Chen, L. Pan, P.H. Wang, Y. Cui et al., Multi-layer monoclinic BiVO4 with oxygen vacancies and V4+ species for highly efficient visible-light photoelectrochemical applications. Appl. Catal. B Environ. 221, 187–195 (2018). https://doi.org/10.1016/j.apcatb.2017.09.031
- J. Wang, F.E. Osterloh, Limiting factors for photochemical charge separation in BiVO4/Co3O4, a highly active photocatalyst for water oxidation in sunlight. J. Mater. Chem. A 2(24), 9405–9411 (2014). https://doi.org/10.1039/c4ta01654h
- M.T. Ghoneim, M.A. Zidan, M.Y. Alnassar, A.N. Hanna et al., Thin PZT-based ferroelectric capacitors on flexible sili-con for nonvolatile memory applications. Adv. Electron. Mater. 1(6), 1500045 (2015). https://doi.org/10.1002/aelm.201500045
- M.Z. Xie, X.D. Fu, L.Q. Jing, P. Luan, Y.J. Feng et al., Long-lived, visible-light-excited charge carriers of TiO2/BiVO4 nanocomposites and their une-xpected photoactivity for water splitting. Adv. Energy Mater. 4(5), 1300995 (2014). https://doi.org/10.1002/aenm.201300995
- S.C. Wang, P. Chen, J.H. Yun, Y.X. Hu, L.Z. Wang, An electrochemically treated BiVO4 photoanode for efficient photoelectrochemical water splitting. Angew. Chem. Int. Ed. 56(29), 8500–8504 (2017). https://doi.org/10.1002/anie.201703491
- Q.J. Shi, M. Zhang, Z.M. Zhang, Y.X. Li, Y. Qu et al., Energy and separation optimization of photogenerated charge in BiVO4 quantum dots by piezo-potential for efficient gaseous pollutant degradation. Nano Energy 69(10), 104448 (2020). https://doi.org/10.1016/j.nanoen.2020.104448
- R.P. Antony, P.S. Bassi, F.F. Abdi, S.Y. Chiam, Y. Ren et al., Electrospun Mo-BiVO4 for efficient photoelectrochemical water oxidation: Direct evidence of improved hole diffusion length and charge separation. Electrochim. Acta 211, 173–182 (2016). https://doi.org/10.1016/j.electacta.2016.06.008
- X.L. Yang, S.Y. Wang, N. Yang, W. Zhou, P. Wang et al., Oxygen vacancies induced special CO2 adsorption modes on Bi2MoO6 for highly selective conversion to CH4. Appl. Catal. B Environ. 259, 118088 (2019). https://doi.org/10.1016/j.apcatb.2019.118088
- M.Y. Xing, Y. Zhou, C.Y. Dong, L.J. Cai, L.X. Zeng et al., Modulation of the reduction potential of TiO2-x by fluorination for efficient and selective CH4 generation from CO2 photoreduction. Nano Lett. 18(6), 3384–3390 (2018). https://doi.org/10.1021/acs.nanolett.8b00197
References
B. Bronselaer, L. Zanna, Heat and carbon coupling reveals ocean warming due to circulation changes. Nature 584(7820), 227–233 (2020). https://doi.org/10.1038/s41586-020-2573-5
A. Schwartzman, R.F. Keeling, Achieving atmospheric verification of CO2 emissions. Nat. Clim. Change 10(5), 416–417 (2020). https://doi.org/10.1038/s41558-020-0735-y
Z.B. Pan, E.S. Han, J.G. Zheng, J. Lu, X.L. Wang et al., Highly efficient photoelectrocatalytic reduction of CO2 to methanol by a p-n heterojunction CeO2/CuO/Cu catalyst. Nano-Micro Lett. 12(1), 18 (2020). https://doi.org/10.1007/s40820-019-0354-1
X.C. Jiao, K. Zheng, L. Liang, X.D. Li, Y.F. Sun et al., Fundamentals and challenges of ultrathin 2D photocatalysts in boosting CO2 photoreduction. Chem. Soc. Rev. 49(18), 6592–6604 (2020). https://doi.org/10.1039/d0cs00332h
L. Hao, H.W. Huang, Y.H. Zhang, T.Y. Ma, Oxygen vacant semiconductor photocatalysts. Adv. Funct. Mater. 31(25), 2100919 (2021). https://doi.org/10.1002/adfm.202100919
F. Chen, T.Y. Ma, T.R. Zhang, Y.H. Zhang, H.W. Huang, Atomic-level charge separation strategies in semiconductor-based photocatalysts. Adv. Mater. 33(10), 2005256 (2021). https://doi.org/10.1002/adma.202005256
L. Yuan, Z.Y. Geng, J.K. Xu, F. Guo, C. Han, Metal-semiconductor heterostructures for photoredox catalysis: where are we now and where do we go? Adv. Funct. Mater. 31(27), 2101103 (2021). https://doi.org/10.1002/adfm.202101103
Y.Z. Zhang, B.Q. Xia, J.R. Ran, K. Davey, S.Z. Qiao, Atomic-level reactive sites for semiconductor-based photocatalytic CO2 reduction. Adv. Energy Mater. 10(9), 1903879 (2020). https://doi.org/10.1002/aenm.201903879
X.L. Zhao, S. Chen, H.J. Yin, S.Y. Jiang, K. Zhao et al., Perovskite microcrystals with intercalated monolayer MoS2 nanosheets as advanc-ed photocatalyst for solar-powered hydrogen generation. Matter 3(3), 935–949 (2020). https://doi.org/10.1016/j.matt.2020.07.004
J. Kosco, M. Bidwell, H. Cha, T. Martin, C.T. Howells et al., Enhanced photocatalytic hydrogen evolution from organic semiconductor heterojunction nanoparticles. Nat. Mater. 19(5), 559–565 (2020). https://doi.org/10.1038/s41563-019-0591-1
C.K. Xia, H. Wang, J.K. Kim, J.Y. Wang, Rational design of metal oxide-based heterostructure for efficient photocatalytic and photoelectrochemical systems. Adv. Funct. Mater. 31(12), 2008247 (2021). https://doi.org/10.1002/adfm.202008247
X. Zhao, W.J. Luo, J.Y. Feng, M.X. Li, Z.S. Li et al., Quan-titative analysis and visualized evidence for high charge separation efficiency in a solid-liquid bulk heterojunction. Adv. Energy Mater. 4(9), 1301785 (2014). https://doi.org/10.1002/aenm.201301785
A.J.E. Rettie, H.C. Lee, L.G. Marshall, J.F. Lin, C. Capan et al., Combined charge carrier transport and photoelectrochemical characterization of BiVO4 single crystals: intrinsic behavior of a complex metal oxide. J. Am. Chem. Soc. 135(30), 11389–11396 (2013). https://doi.org/10.1021/ja405550k
Q. Shi, Z. Li, L. Chen, X. Zhang, W. Han et al., Synthesis of SPR Au/BiVO4 quantum dot/rutile-TiO2 nanorod array composites as efficient visible-light photocatalysts to convert CO2 and mechanism insight. Appl. Catal. B Environ. 244, 641–649 (2019). https://doi.org/10.1016/j.apcatb.2018.11.089
Y. Hou, X. Chen, S. Yang, C. Li, H. Zhao et al., A band-edge potential gradient heterostructure to enhance electron extraction efficiency of the electron transport layer in high-performance perovskite solar cells. Adv. Funct. Mater. 27(27), 1700878 (2017). https://doi.org/10.1002/adfm.201700878
Y.P. Liu, S.Y. Zhang, J. He, Z.M.M. Wang, Z.W. Liu, Recent progress in the fabrication, properties, and devices of heterostructures based on 2D materials. Nano-Micro Lett. 11, 13 (2019). https://doi.org/10.1007/s40820-019-0245-5
W.S. Jiang, X.P. Zong, L. An, S.X. Hua, X. Miao et al., Consciously constructing heterojunction or direct Z-scheme photocatalysts by regulating electron flow direction. ACS Catal. 8(3), 2209–2217 (2018). https://doi.org/10.1021/acscatal.7b04323
Q.L. Xu, L.Y. Zhang, B. Cheng, J.J. Fan, J.G. Yu, S-scheme heterojunction photocatalyst. Chem 6(7), 1543–1559 (2020). https://doi.org/10.1016/j.chempr.2020.06.010
J.X. Low, J.G. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Heterojunction photocatalysts. Adv. Mater. 29(20), 1601694 (2017). https://doi.org/10.1002/adma.201601694
M.B. Starr, J. Shi, X.D. Wang, Piezopotential-driven redox reactions at the s-urface of piezoelectric materials. Angew. Chem. Int. Ed. 51(24), 5962–5966 (2012). https://doi.org/10.1002/anie.201201424
M. Oishi, K. Yamanaka, I. Watanabe, K. Shimoda, T. Matsunaga et al., Direct observation of reversible oxygen anion redox reaction in Li-rich manganese oxide, Li2MnO3, studied by soft X-ray absorption spectroscopy. J. Mater. Chem. A 4(23), 9293–9302 (2016). https://doi.org/10.1039/c6ta00174b
W.W. Zhan, L.M. Sun, X.G. Han, Recent progress on engineering highly efficient porous semiconductor photocatalysts derived from metal-organic frameworks. Nano-Micro Lett. 11, 1 (2019). https://doi.org/10.1007/s40820-018-0235-z
J. Low, C. Jiang, B. Cheng, S. Wageh, A.A. Al-Ghamdi et al., A review of direct Z-scheme photocatalysts. Small Methods 1(5), 170080 (2017). https://doi.org/10.1002/smtd.201700080
Y. Hu, X. Hao, Z. Cui, J. Zhou, S. Chu et al., Enhanced photoca-rrier separation in conjugated polymer engineered CdS for direct Z-scheme phot-ocatalytic hydrogen evolution. Appl. Catal. B Environ. 260, 118131 (2020). https://doi.org/10.1016/j.apcatb.2019.118131
X. Chen, Z. Zhang, L. Chi, A.K. Nair, W. Shangguan et al., Recent advances in visible-light-driven photoelectrochemical water splitting: catalyst nanostructures and reaction systems. Nano-Micro Lett. 8, 1–12 (2016). https://doi.org/10.1007/s40820-015-0063-3
Q. Xu, L. Zhang, J. Yu, S. Wageh, A.A. Al-Ghamdi et al., Direct Z-scheme photocatalysts: principles, synthesis, and applications. Mater. Today 21(10), 1042–1063 (2018). https://doi.org/10.1016/j.mattod.2018.04.008
B. Liu, C.H. Wu, J.W. Miao, P.D. Yang, All inorganic semiconductor nano-wire mesh for direct solar water splitting. ACS Nano 8(11), 11739–11744 (2014). https://doi.org/10.1021/nn5051954
L.Q. Jing, W. Zhou, G.H. Tian, H.G. Fu, Surface tuning for oxide-based na-nomaterials as efficient photocatalysts. Chem. Soc. Rev. 42(24), 9509–9549 (2013). https://doi.org/10.1039/c3cs60176e
K. Mathew, R. Sundararaman, K.L. Weaver, T.A. Arias, R.G. Henn-ig, Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 140(8), 084106 (2014). https://doi.org/10.1063/1.4865107
K. Mathew, V.S.C. Kolluru, S. Mula, S.N. Steinmann, R.G. Hennig, Implicit self-consistent electrolyte model in plane-wave density-functional theory. J. Chem. Phys. 151(23), 234101 (2019). https://doi.org/10.1063/1.5132354
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
L. Wang, T. Maxisch, G. Ceder, Oxidation energies of transition metal oxides within the GGA+U framework. Phys. Rev. B 73(19), 195107 (2006). https://doi.org/10.1103/PhysRevB.73.195107
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-PU. J. Chem. Phys. 132(15), 154104 (2010). https://doi.org/10.1063/1.3382344
S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32(7), 1456–1465 (2011). https://doi.org/10.1002/jcc.21759
M. Zheng, X.H. Cao, Y. Ding, T. Tian, J.Q. Lin, Boosting photocatalytic wa-ter oxidation achieved by BiVO4 coupled with iron-containing polyoxometalate: analysis the true catalyst. J. Catal. 363, 109–116 (2018). https://doi.org/10.1016/j.jcat.2018.04.022
J.L. Yang, N. Sun, Z.Q. Zhang, J. Bian, Y. Qu et al., Ultrafine SnO2/010 facet-exposed BiVO4 nanocomposites as ef-ficient photoanodes for controllable conversion of 2,4-Dichlorophenol via a pref-erential dechlorination path. ACS Appl. Mater. Interfaces 12(25), 28264–28272 (2020). https://doi.org/10.1021/acsami.0c06892
Y. Ma, Y.Y. Du, Y. Chen, C.J. Gu, T. Jiang et al., Intrinsic raman signal of polymer matrix induced quantitative multiphase sers analysis based on stretched PDMS film with anchored Ag nanoparticles/Au nanowires. Chem. Eng. J. 381, 122710 (2020). https://doi.org/10.1016/j.cej.2019.122710
M. Kang, J.J. Kim, Y.J. Oh, S.G. Park, K.H. Jeong, A deformable nanopl-asmonic membrane reveals universal correlations between plasmon resonance andsurface enhanced raman scattering. Adv. Mater. 26(26), 4510–4514 (2014). https://doi.org/10.1002/adma.201305950
J.Q. Hu, H.C. He, X. Zhou, Z.S. Li, Q. Shen et al., BiVO4 tubular structures: oxygen defect-rich and largely exposed reactive 010 facets synergistically boost photocatalytic water oxidation and the selective N=N coupling reaction of 5-amino-1H-tetrazole. Chem. Commun. 55(39), 5635–5638 (2019). https://doi.org/10.1039/c9cc01290g
C.W. Dong, S.Y. Lu, S.Y. Yao, R. Ge, Z.D. Wang et al., Colloidal synthesis of ultrathin monoclinic BiVO4 nanosheets for Z-scheme overall water splitting under visible light. ACS Catal. 8(9), 8649–8658 (2018). https://doi.org/10.1021/acscatal.8b01645
D. Yao, C.W. Dong, Q.M. Bing, Y. Liu, F.D. Qu et al., Oxygen-defective ultrathin BiVO4 nanosheets for enhanced gas sensing. ACS Appl. Mater. Interfaces 11(26), 23495–23502 (2019). https://doi.org/10.1021/acsami.9b05626
S.C. Wang, T.W. He, P. Chen, A.J. Du, K. Ostrikov et al., In situ formation of oxygen vacancies achieving near-complete charge separ-ation in planar BiVO4 photoanodes. Adv. Mater. 32(26), 2001385 (2020). https://doi.org/10.1002/adma.202001385
D.P. Jaihindh, B. Thirumalraj, S.M. Chen, P. Balasubramanian, Y.P. Fu, Facile synthesis of hierarchically nanostructured bismuth vanadate: an efficient photocatalyst for degradation and detection of hexavalent chromium. J. Hazard. Mater. 367, 647–657 (2019). https://doi.org/10.1016/j.jhazmat.2019.01.017
J.M. Wu, Y. Chen, L. Pan, P.H. Wang, Y. Cui et al., Multi-layer monoclinic BiVO4 with oxygen vacancies and V4+ species for highly efficient visible-light photoelectrochemical applications. Appl. Catal. B Environ. 221, 187–195 (2018). https://doi.org/10.1016/j.apcatb.2017.09.031
J. Wang, F.E. Osterloh, Limiting factors for photochemical charge separation in BiVO4/Co3O4, a highly active photocatalyst for water oxidation in sunlight. J. Mater. Chem. A 2(24), 9405–9411 (2014). https://doi.org/10.1039/c4ta01654h
M.T. Ghoneim, M.A. Zidan, M.Y. Alnassar, A.N. Hanna et al., Thin PZT-based ferroelectric capacitors on flexible sili-con for nonvolatile memory applications. Adv. Electron. Mater. 1(6), 1500045 (2015). https://doi.org/10.1002/aelm.201500045
M.Z. Xie, X.D. Fu, L.Q. Jing, P. Luan, Y.J. Feng et al., Long-lived, visible-light-excited charge carriers of TiO2/BiVO4 nanocomposites and their une-xpected photoactivity for water splitting. Adv. Energy Mater. 4(5), 1300995 (2014). https://doi.org/10.1002/aenm.201300995
S.C. Wang, P. Chen, J.H. Yun, Y.X. Hu, L.Z. Wang, An electrochemically treated BiVO4 photoanode for efficient photoelectrochemical water splitting. Angew. Chem. Int. Ed. 56(29), 8500–8504 (2017). https://doi.org/10.1002/anie.201703491
Q.J. Shi, M. Zhang, Z.M. Zhang, Y.X. Li, Y. Qu et al., Energy and separation optimization of photogenerated charge in BiVO4 quantum dots by piezo-potential for efficient gaseous pollutant degradation. Nano Energy 69(10), 104448 (2020). https://doi.org/10.1016/j.nanoen.2020.104448
R.P. Antony, P.S. Bassi, F.F. Abdi, S.Y. Chiam, Y. Ren et al., Electrospun Mo-BiVO4 for efficient photoelectrochemical water oxidation: Direct evidence of improved hole diffusion length and charge separation. Electrochim. Acta 211, 173–182 (2016). https://doi.org/10.1016/j.electacta.2016.06.008
X.L. Yang, S.Y. Wang, N. Yang, W. Zhou, P. Wang et al., Oxygen vacancies induced special CO2 adsorption modes on Bi2MoO6 for highly selective conversion to CH4. Appl. Catal. B Environ. 259, 118088 (2019). https://doi.org/10.1016/j.apcatb.2019.118088
M.Y. Xing, Y. Zhou, C.Y. Dong, L.J. Cai, L.X. Zeng et al., Modulation of the reduction potential of TiO2-x by fluorination for efficient and selective CH4 generation from CO2 photoreduction. Nano Lett. 18(6), 3384–3390 (2018). https://doi.org/10.1021/acs.nanolett.8b00197