Thin and Flexible Breeze-Sense Generators for Non-Contact Haptic Feedback in Virtual Reality
Corresponding Author: Junwen Zhong
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 144
Abstract
In the realm of virtual reality (VR), haptic feedback is integral to enhance the immersive experience; yet, existing wearable devices predominantly rely on skin contact feedback, lacking options for compact and non-contact breeze-sense feedback. Herein, we propose a compact and non-contact working model piezoelectret actuator for providing a gentle and safe breeze sensation. This easy-fabricated and flexible breeze-sense generator with thickness around 1 mm generates air flow pressure up to ~ 163 Pa, which is significantly sensed by human skin. In a typical demonstration, the breeze-sense generators array showcases its versatility by employing multiple coded modes for non-contact information transmitting. The thin thinness and good flexibility facilitate seamless integration with wearable VR setups, and the wearable arrays empower volunteers to precisely perceive the continuous and sudden breeze senses in the virtual environments. This work is expected to inspire developing new haptic feedback devices that play pivotal roles in human–machine interfaces for VR applications.
Highlights:
1 The breeze-sense generators generate significant air flow pressure output of ~ 163 Pa that can easily be sensed by human skin and have an overall thickness around 1 mm.
2 Volunteers successfully identify multiple programming patterns transmitted by the generators array.
3 A wearable breeze-sense feedback system effectively provides the continuous or sudden breeze senses in virtual reality environments.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Santhanam, S.I. Ryu, B.M. Yu, A. Afshar, K.V. Shenoy, A high-performance brain–computer interface. Nature 442, 195–198 (2006). https://doi.org/10.1038/nature04968
- C. Wan, P. Cai, X. Guo, M. Wang, N. Matsuhisa et al., An artificial sensory neuron with visual-haptic fusion. Nat. Commun. 11, 4602 (2020). https://doi.org/10.1038/s41467-020-18375-y
- S.S. Srinivasan, H.M. Herr, A cutaneous mechanoneural interface for neuroprosthetic feedback. Nat. Biomed. Eng. 6, 731–740 (2022). https://doi.org/10.1038/s41551-020-00669-7
- Y. Huang, K. Yao, J. Li, D. Li, H. Jia et al., Recent advances in multi-mode haptic feedback technologies towards wearable interfaces. Mater. Today Phys. 22, 100602 (2022). https://doi.org/10.1016/j.mtphys.2021.100602
- S. Sundaram, P. Kellnhofer, Y. Li, J.-Y. Zhu, A. Torralba et al., Learning the signatures of the human grasp using a scalable tactile glove. Nature 569, 698–702 (2019). https://doi.org/10.1038/s41586-019-1234-z
- J.C. Yang, J. Mun, S.Y. Kwon, S. Park, Z. Bao et al., Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 31, e1904765 (2019). https://doi.org/10.1002/adma.201904765
- J. He, Z. Xie, K. Yao, D. Li, Y. Liu et al., Trampoline inspired stretchable triboelectric nanogenerators as tactile sensors for epidermal electronics. Nano Energy 81, 105590 (2021). https://doi.org/10.1016/j.nanoen.2020.105590
- M. Wang, Z. Yan, T. Wang, P. Cai, S. Gao et al., Gesture recognition using a bioinspired learning architecture that integrates visual data with somatosensory data from stretchable sensors. Nat. Electron. 3, 563–570 (2020). https://doi.org/10.1038/s41928-020-0422-z
- Z. Zhou, K. Chen, X. Li, S. Zhang, Y. Wu et al., Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat. Electron. 3, 571–578 (2020). https://doi.org/10.1038/s41928-020-0428-6
- J. Park, D.H. Kang, H. Chae, S.K. Ghosh, C. Jeong et al., Frequency-selective acoustic and haptic smart skin for dual-mode dynamic/static human-machine interface. Sci. Adv. 8, 9220 (2022). https://doi.org/10.1126/sciadv.abj9220
- Z. Li, Y. Cui, J. Zhong, Recent advances in nanogenerators-based flexible electronics for electromechanical biomonitoring. Biosens. Bioelectron. 186, 113290 (2021). https://doi.org/10.1016/j.bios.2021.113290
- J. Zhong, Z. Li, M. Takakuwa, D. Inoue, D. Hashizume et al., Smart face mask based on an ultrathin pressure sensor for wireless monitoring of breath conditions. Adv. Mater. 34, e2107758 (2022). https://doi.org/10.1002/adma.202107758
- X. Guo, L. Wang, Z. Jin, C. Lee, A multifunctional hydrogel with multimodal self-powered sensing capability and stable direct current output for outdoor plant monitoring systems. Nano-Micro Lett. 17, 76 (2024). https://doi.org/10.1007/s40820-024-01587-y
- Y. Bai, Y. Zhou, X. Wu, M. Yin, L. Yin et al., Flexible strain sensors with ultra-high sensitivity and wide range enabled by crack-modulated electrical pathways. Nano-Micro Lett. 17, 64 (2024). https://doi.org/10.1007/s40820-024-01571-6
- K. Cowan, S. Ketron, Prioritizing marketing research in virtual reality: development of an immersion/fantasy typology. Eur. J. Mark. 53, 1585–1611 (2019). https://doi.org/10.1108/ejm-10-2017-0733
- G. Lawson, D. Salanitri, B. Waterfield, Future directions for the development of virtual reality within an automotive manufacturer. Appl. Ergon. 53(Pt B), 323–330 (2016). https://doi.org/10.1016/j.apergo.2015.06.024
- J. Yin, R. Hinchet, H. Shea, C. Majidi, Wearable soft technologies for haptic sensing and feedback. Adv. Funct. Mater. 31, 2007428 (2021). https://doi.org/10.1002/adfm.202007428
- T.-H. Yang, J.R. Kim, H. Jin, H. Gil, J.-H. Koo et al., Recent advances and opportunities of active materials for haptic technologies in virtual and augmented reality. Adv. Funct. Mater. 31, 2170292 (2021). https://doi.org/10.1002/adfm.202170292
- S. Biswas, Y. Visell, Emerging material technologies for haptics. Adv. Mater. Technol. 4, 1900042 (2019). https://doi.org/10.1002/admt.201900042
- Y.H. Jung, J.-H. Kim, J.A. Rogers, Skin-integrated vibrohaptic interfaces for virtual and augmented reality. Adv. Funct. Mater. 31, 2008805 (2021). https://doi.org/10.1002/adfm.202008805
- G.S. Cañón Bermúdez, D.D. Karnaushenko, D. Karnaushenko, A. Lebanov, L. Bischoff et al., Magnetosensitive e-skins with directional perception for augmented reality. Sci. Adv. 4, eaao2623 (2018). https://doi.org/10.1126/sciadv.aao2623
- C. Choi, Y. Ma, X. Li, S. Chatterjee, S. Sequeira et al., Surface haptic rendering of virtual shapes through change in surface temperature. Sci. Robot. 7, l4543 (2022). https://doi.org/10.1126/scirobotics.abl4543
- J.J. Zárate, H. Shea, Using pot-magnets to enable stable and scalable electromagnetic tactile displays. IEEE Trans. Haptics 10, 106–112 (2017). https://doi.org/10.1109/TOH.2016.2591951
- P.-H. Han, Y.-S. Chen, C.-E. Hsieh, H.-C. Wang, Y.-P. Hung, Hapmosphere: Simulating the Weathers for Walking Around in Immersive Environment with Haptics Feedback, In: 2019 IEEE World Haptics Conference (WHC), Tokyo, Japan, (2019), pp. 247–252 https://doi.org/10.1109/whc.2019.8816140
- Y. Haga, W. Makishi, K. Iwami, K. Totsu, K. Nakamura et al., Dynamic Braille display using SMA coil actuator and magnetic latch. Sens. Actuat. A Phys. 119, 316–322 (2005). https://doi.org/10.1016/j.sna.2004.10.001
- T. Ozaki, N. Ohta, T. Jimbo, K. Hamaguchi, A wireless radiofrequency-powered insect-scale flapping-wing aerial vehicle. Nat. Electron. 4, 845–852 (2021). https://doi.org/10.1038/s41928-021-00669-8
- J. Liang, Y. Wu, J.K. Yim, H. Chen, Z. Miao et al., Electrostatic footpads enable agile insect-scale soft robots with trajectory control. Sci Robot 6, eabe7906 (2021). https://doi.org/10.1126/scirobotics.abe7906
- Z. Li, Y. Ma, K. Zhang, J. Wan, D. Zhao et al., Air permeable vibrotactile actuators for wearable wireless haptics. Adv. Funct. Mater. 33, 2211146 (2023). https://doi.org/10.1002/adfm.202211146
- W. Qiu, J. Zhong, T. Jiang, Z. Li, M. Yao et al., A low voltage-powered soft electromechanical stimulation patch for haptics feedback in human-machine interfaces. Biosens. Bioelectron. 193, 113616 (2021). https://doi.org/10.1016/j.bios.2021.113616
- Y. Gong, K. Zhang, I.M. Lei, Y. Wang, J. Zhong, Advances in piezoelectret materials-based bidirectional haptic communication devices. Adv. Mater. 36, e2405308 (2024). https://doi.org/10.1002/adma.202405308
- X. Ji, X. Liu, V. Cacucciolo, Y. Civet, A. El Haitami et al., Untethered feel-through haptics using 18-µm thick dielectric elastomer actuators. Adv. Funct. Mater. 31, 2006639 (2021). https://doi.org/10.1002/adfm.202006639
- W.-H. Park, E.-J. Shin, Y. Yoo, S. Choi, S.-Y. Kim, Soft haptic actuator based on knitted PVC gel fabric. IEEE Trans. Ind. Electron. 67, 677–685 (2020). https://doi.org/10.1109/TIE.2019.2918470
- M. Schaffner, J.A. Faber, L. Pianegonda, P.A. Rühs, F. Coulter et al., 3D printing of robotic soft actuators with programmable bioinspired architectures. Nat. Commun. 9, 878 (2018). https://doi.org/10.1038/s41467-018-03216-w
- D.K. Patel, A.H. Sakhaei, M. Layani, B. Zhang, Q. Ge et al., Highly stretchable and UV curable elastomers for digital light processing based 3D printing. Adv. Mater. 29, 1606000 (2017). https://doi.org/10.1002/adma.201606000
- Y. Liu, C.K. Yiu, Z. Zhao, W. Park, R. Shi et al., Soft, miniaturized, wireless olfactory interface for virtual reality. Nat. Commun. 14, 2297 (2023). https://doi.org/10.1038/s41467-023-37678-4
- Y. Huang, J. Zhou, P. Ke, X. Guo, C.K. Yiu et al., A skin-integrated multimodal haptic interface for immersive tactile feedback. Nat. Electron. 6, 1020 (2023). https://doi.org/10.1038/s41928-023-01074-z
- Y. Liu, C. Yiu, Z. Song, Y. Huang, K. Yao et al., Electronic skin as wireless human-machine interfaces for robotic VR. Sci. Adv. 8, 6700 (2022). https://doi.org/10.1126/sciadv.abl6700
- X. Yu, Z. Xie, Y. Yu, J. Lee, A. Vazquez-Guardado et al., Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 575, 473–479 (2019). https://doi.org/10.1038/s41586-019-1687-0
- Z. Sun, M. Zhu, X. Shan, C. Lee, Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for immersive interactions. Nat. Commun. 13, 5224 (2022). https://doi.org/10.1038/s41467-022-32745-8
- I. Hwang, H. Son, J.R. Kim, AirPiano: Enhancing music playing experience in virtual reality with mid-air haptic feedback. In: 2017 IEEE World Haptics Conference (WHC). June 6-9, 2017, Munich, Germany. IEEE, (2017), pp. 213–218
- J. Martinez, D. Griffiths, V. Biscione, O. Georgiou, T. Carter, Touchless haptic feedback for supernatural VR experiences. 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). March 18–22, 2018, Tuebingen/Reutlingen, Germany. IEEE, (2018), pp. 629–630.
- L. Deligiannidis, R.J.K. Jacob, The VR scooter: wind and tactile feedback improve user performance. 3D User Interfaces (3DUI'06). March 25-26, 2006, Alexandria, VA, USA. IEEE, (2006), pp. 143–150
- T. Moon, G.J. Kim, Design and evaluation of a wind display for virtual reality. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology. Hong Kong, China. ACM, (2004), pp. 122 - 128. https://doi.org/10.1145/1077534.1077558
- S. Noel, S. Dumoulin, T. Whalen, M. Ward, J. A. Stewart, and E. Lee, A breeze enhances presence in a virtual environment. In: The 3rd IEEE International Workshop on Haptic, Audio and Visual Environments and Their Applications (2004), pp. 63–68. https://doi.org/10.1109/HAVE.2004.1391883
- M. Toda, S. Osaka, Vibrational fan using the piezoelectric polymer PVF2. Proc. IEEE 67, 1171–1173 (1979). https://doi.org/10.1109/PROC.1979.11419
- J.H. Yoo, J.I. Hong, W. Cao, Piezoelectric ceramic bimorph coupled to thin metal plate as cooling fan for electronic devices. Sens. Actuat. A Phys. 79, 8–12 (2000). https://doi.org/10.1016/S0924-4247(99)00249-6
- J. Zhong, Y. Ma, Y. Song, Q. Zhong, Y. Chu et al., A flexible piezoelectret actuator/sensor patch for mechanical human-machine interfaces. ACS Nano 13, 7107–7116 (2019). https://doi.org/10.1021/acsnano.9b02437
- H.P. Saal, B.P. Delhaye, B.C. Rayhaun, S.J. Bensmaia, Simulating tactile signals from the whole hand with millisecond precision. Proc. Natl. Acad. Sci. U.S.A. 114, E5693–E5702 (2017). https://doi.org/10.1073/pnas.1704856114
- A.B. Vallbo, R.S. Johansson, Properties of cutaneous mechanoreceptors in the human hand related to touch sensation. Hum. Neurobiol. 3, 3–14 (1984). https://doi.org/10.1016/0167-9457(84)90014-9
- J. Agramunt, B. Parke, S. Mena, V. Ubels, F. Jimenez et al., Mechanical stimulation of human hair follicle outer root sheath cultures activates adjacent sensory neurons. Sci. Adv. 9, 3273 (2023). https://doi.org/10.1126/sciadv.adh3273
- P. Escobedo, M.D. Fernández-Ramos, N. López-Ruiz, O. Moyano-Rodríguez, A. Martínez-Olmos et al., Smart facemask for wireless CO2 monitoring. Nat. Commun. 13, 72 (2022). https://doi.org/10.1038/s41467-021-27733-3
- W. Li, N. Wu, J. Zhong, Q. Zhong, S. Zhao et al., Theoretical study of cellular piezoelectret generators. Adv. Funct. Mater. 26, 1964–1974 (2016). https://doi.org/10.1002/adfm.201503704
References
G. Santhanam, S.I. Ryu, B.M. Yu, A. Afshar, K.V. Shenoy, A high-performance brain–computer interface. Nature 442, 195–198 (2006). https://doi.org/10.1038/nature04968
C. Wan, P. Cai, X. Guo, M. Wang, N. Matsuhisa et al., An artificial sensory neuron with visual-haptic fusion. Nat. Commun. 11, 4602 (2020). https://doi.org/10.1038/s41467-020-18375-y
S.S. Srinivasan, H.M. Herr, A cutaneous mechanoneural interface for neuroprosthetic feedback. Nat. Biomed. Eng. 6, 731–740 (2022). https://doi.org/10.1038/s41551-020-00669-7
Y. Huang, K. Yao, J. Li, D. Li, H. Jia et al., Recent advances in multi-mode haptic feedback technologies towards wearable interfaces. Mater. Today Phys. 22, 100602 (2022). https://doi.org/10.1016/j.mtphys.2021.100602
S. Sundaram, P. Kellnhofer, Y. Li, J.-Y. Zhu, A. Torralba et al., Learning the signatures of the human grasp using a scalable tactile glove. Nature 569, 698–702 (2019). https://doi.org/10.1038/s41586-019-1234-z
J.C. Yang, J. Mun, S.Y. Kwon, S. Park, Z. Bao et al., Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 31, e1904765 (2019). https://doi.org/10.1002/adma.201904765
J. He, Z. Xie, K. Yao, D. Li, Y. Liu et al., Trampoline inspired stretchable triboelectric nanogenerators as tactile sensors for epidermal electronics. Nano Energy 81, 105590 (2021). https://doi.org/10.1016/j.nanoen.2020.105590
M. Wang, Z. Yan, T. Wang, P. Cai, S. Gao et al., Gesture recognition using a bioinspired learning architecture that integrates visual data with somatosensory data from stretchable sensors. Nat. Electron. 3, 563–570 (2020). https://doi.org/10.1038/s41928-020-0422-z
Z. Zhou, K. Chen, X. Li, S. Zhang, Y. Wu et al., Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat. Electron. 3, 571–578 (2020). https://doi.org/10.1038/s41928-020-0428-6
J. Park, D.H. Kang, H. Chae, S.K. Ghosh, C. Jeong et al., Frequency-selective acoustic and haptic smart skin for dual-mode dynamic/static human-machine interface. Sci. Adv. 8, 9220 (2022). https://doi.org/10.1126/sciadv.abj9220
Z. Li, Y. Cui, J. Zhong, Recent advances in nanogenerators-based flexible electronics for electromechanical biomonitoring. Biosens. Bioelectron. 186, 113290 (2021). https://doi.org/10.1016/j.bios.2021.113290
J. Zhong, Z. Li, M. Takakuwa, D. Inoue, D. Hashizume et al., Smart face mask based on an ultrathin pressure sensor for wireless monitoring of breath conditions. Adv. Mater. 34, e2107758 (2022). https://doi.org/10.1002/adma.202107758
X. Guo, L. Wang, Z. Jin, C. Lee, A multifunctional hydrogel with multimodal self-powered sensing capability and stable direct current output for outdoor plant monitoring systems. Nano-Micro Lett. 17, 76 (2024). https://doi.org/10.1007/s40820-024-01587-y
Y. Bai, Y. Zhou, X. Wu, M. Yin, L. Yin et al., Flexible strain sensors with ultra-high sensitivity and wide range enabled by crack-modulated electrical pathways. Nano-Micro Lett. 17, 64 (2024). https://doi.org/10.1007/s40820-024-01571-6
K. Cowan, S. Ketron, Prioritizing marketing research in virtual reality: development of an immersion/fantasy typology. Eur. J. Mark. 53, 1585–1611 (2019). https://doi.org/10.1108/ejm-10-2017-0733
G. Lawson, D. Salanitri, B. Waterfield, Future directions for the development of virtual reality within an automotive manufacturer. Appl. Ergon. 53(Pt B), 323–330 (2016). https://doi.org/10.1016/j.apergo.2015.06.024
J. Yin, R. Hinchet, H. Shea, C. Majidi, Wearable soft technologies for haptic sensing and feedback. Adv. Funct. Mater. 31, 2007428 (2021). https://doi.org/10.1002/adfm.202007428
T.-H. Yang, J.R. Kim, H. Jin, H. Gil, J.-H. Koo et al., Recent advances and opportunities of active materials for haptic technologies in virtual and augmented reality. Adv. Funct. Mater. 31, 2170292 (2021). https://doi.org/10.1002/adfm.202170292
S. Biswas, Y. Visell, Emerging material technologies for haptics. Adv. Mater. Technol. 4, 1900042 (2019). https://doi.org/10.1002/admt.201900042
Y.H. Jung, J.-H. Kim, J.A. Rogers, Skin-integrated vibrohaptic interfaces for virtual and augmented reality. Adv. Funct. Mater. 31, 2008805 (2021). https://doi.org/10.1002/adfm.202008805
G.S. Cañón Bermúdez, D.D. Karnaushenko, D. Karnaushenko, A. Lebanov, L. Bischoff et al., Magnetosensitive e-skins with directional perception for augmented reality. Sci. Adv. 4, eaao2623 (2018). https://doi.org/10.1126/sciadv.aao2623
C. Choi, Y. Ma, X. Li, S. Chatterjee, S. Sequeira et al., Surface haptic rendering of virtual shapes through change in surface temperature. Sci. Robot. 7, l4543 (2022). https://doi.org/10.1126/scirobotics.abl4543
J.J. Zárate, H. Shea, Using pot-magnets to enable stable and scalable electromagnetic tactile displays. IEEE Trans. Haptics 10, 106–112 (2017). https://doi.org/10.1109/TOH.2016.2591951
P.-H. Han, Y.-S. Chen, C.-E. Hsieh, H.-C. Wang, Y.-P. Hung, Hapmosphere: Simulating the Weathers for Walking Around in Immersive Environment with Haptics Feedback, In: 2019 IEEE World Haptics Conference (WHC), Tokyo, Japan, (2019), pp. 247–252 https://doi.org/10.1109/whc.2019.8816140
Y. Haga, W. Makishi, K. Iwami, K. Totsu, K. Nakamura et al., Dynamic Braille display using SMA coil actuator and magnetic latch. Sens. Actuat. A Phys. 119, 316–322 (2005). https://doi.org/10.1016/j.sna.2004.10.001
T. Ozaki, N. Ohta, T. Jimbo, K. Hamaguchi, A wireless radiofrequency-powered insect-scale flapping-wing aerial vehicle. Nat. Electron. 4, 845–852 (2021). https://doi.org/10.1038/s41928-021-00669-8
J. Liang, Y. Wu, J.K. Yim, H. Chen, Z. Miao et al., Electrostatic footpads enable agile insect-scale soft robots with trajectory control. Sci Robot 6, eabe7906 (2021). https://doi.org/10.1126/scirobotics.abe7906
Z. Li, Y. Ma, K. Zhang, J. Wan, D. Zhao et al., Air permeable vibrotactile actuators for wearable wireless haptics. Adv. Funct. Mater. 33, 2211146 (2023). https://doi.org/10.1002/adfm.202211146
W. Qiu, J. Zhong, T. Jiang, Z. Li, M. Yao et al., A low voltage-powered soft electromechanical stimulation patch for haptics feedback in human-machine interfaces. Biosens. Bioelectron. 193, 113616 (2021). https://doi.org/10.1016/j.bios.2021.113616
Y. Gong, K. Zhang, I.M. Lei, Y. Wang, J. Zhong, Advances in piezoelectret materials-based bidirectional haptic communication devices. Adv. Mater. 36, e2405308 (2024). https://doi.org/10.1002/adma.202405308
X. Ji, X. Liu, V. Cacucciolo, Y. Civet, A. El Haitami et al., Untethered feel-through haptics using 18-µm thick dielectric elastomer actuators. Adv. Funct. Mater. 31, 2006639 (2021). https://doi.org/10.1002/adfm.202006639
W.-H. Park, E.-J. Shin, Y. Yoo, S. Choi, S.-Y. Kim, Soft haptic actuator based on knitted PVC gel fabric. IEEE Trans. Ind. Electron. 67, 677–685 (2020). https://doi.org/10.1109/TIE.2019.2918470
M. Schaffner, J.A. Faber, L. Pianegonda, P.A. Rühs, F. Coulter et al., 3D printing of robotic soft actuators with programmable bioinspired architectures. Nat. Commun. 9, 878 (2018). https://doi.org/10.1038/s41467-018-03216-w
D.K. Patel, A.H. Sakhaei, M. Layani, B. Zhang, Q. Ge et al., Highly stretchable and UV curable elastomers for digital light processing based 3D printing. Adv. Mater. 29, 1606000 (2017). https://doi.org/10.1002/adma.201606000
Y. Liu, C.K. Yiu, Z. Zhao, W. Park, R. Shi et al., Soft, miniaturized, wireless olfactory interface for virtual reality. Nat. Commun. 14, 2297 (2023). https://doi.org/10.1038/s41467-023-37678-4
Y. Huang, J. Zhou, P. Ke, X. Guo, C.K. Yiu et al., A skin-integrated multimodal haptic interface for immersive tactile feedback. Nat. Electron. 6, 1020 (2023). https://doi.org/10.1038/s41928-023-01074-z
Y. Liu, C. Yiu, Z. Song, Y. Huang, K. Yao et al., Electronic skin as wireless human-machine interfaces for robotic VR. Sci. Adv. 8, 6700 (2022). https://doi.org/10.1126/sciadv.abl6700
X. Yu, Z. Xie, Y. Yu, J. Lee, A. Vazquez-Guardado et al., Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 575, 473–479 (2019). https://doi.org/10.1038/s41586-019-1687-0
Z. Sun, M. Zhu, X. Shan, C. Lee, Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for immersive interactions. Nat. Commun. 13, 5224 (2022). https://doi.org/10.1038/s41467-022-32745-8
I. Hwang, H. Son, J.R. Kim, AirPiano: Enhancing music playing experience in virtual reality with mid-air haptic feedback. In: 2017 IEEE World Haptics Conference (WHC). June 6-9, 2017, Munich, Germany. IEEE, (2017), pp. 213–218
J. Martinez, D. Griffiths, V. Biscione, O. Georgiou, T. Carter, Touchless haptic feedback for supernatural VR experiences. 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). March 18–22, 2018, Tuebingen/Reutlingen, Germany. IEEE, (2018), pp. 629–630.
L. Deligiannidis, R.J.K. Jacob, The VR scooter: wind and tactile feedback improve user performance. 3D User Interfaces (3DUI'06). March 25-26, 2006, Alexandria, VA, USA. IEEE, (2006), pp. 143–150
T. Moon, G.J. Kim, Design and evaluation of a wind display for virtual reality. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology. Hong Kong, China. ACM, (2004), pp. 122 - 128. https://doi.org/10.1145/1077534.1077558
S. Noel, S. Dumoulin, T. Whalen, M. Ward, J. A. Stewart, and E. Lee, A breeze enhances presence in a virtual environment. In: The 3rd IEEE International Workshop on Haptic, Audio and Visual Environments and Their Applications (2004), pp. 63–68. https://doi.org/10.1109/HAVE.2004.1391883
M. Toda, S. Osaka, Vibrational fan using the piezoelectric polymer PVF2. Proc. IEEE 67, 1171–1173 (1979). https://doi.org/10.1109/PROC.1979.11419
J.H. Yoo, J.I. Hong, W. Cao, Piezoelectric ceramic bimorph coupled to thin metal plate as cooling fan for electronic devices. Sens. Actuat. A Phys. 79, 8–12 (2000). https://doi.org/10.1016/S0924-4247(99)00249-6
J. Zhong, Y. Ma, Y. Song, Q. Zhong, Y. Chu et al., A flexible piezoelectret actuator/sensor patch for mechanical human-machine interfaces. ACS Nano 13, 7107–7116 (2019). https://doi.org/10.1021/acsnano.9b02437
H.P. Saal, B.P. Delhaye, B.C. Rayhaun, S.J. Bensmaia, Simulating tactile signals from the whole hand with millisecond precision. Proc. Natl. Acad. Sci. U.S.A. 114, E5693–E5702 (2017). https://doi.org/10.1073/pnas.1704856114
A.B. Vallbo, R.S. Johansson, Properties of cutaneous mechanoreceptors in the human hand related to touch sensation. Hum. Neurobiol. 3, 3–14 (1984). https://doi.org/10.1016/0167-9457(84)90014-9
J. Agramunt, B. Parke, S. Mena, V. Ubels, F. Jimenez et al., Mechanical stimulation of human hair follicle outer root sheath cultures activates adjacent sensory neurons. Sci. Adv. 9, 3273 (2023). https://doi.org/10.1126/sciadv.adh3273
P. Escobedo, M.D. Fernández-Ramos, N. López-Ruiz, O. Moyano-Rodríguez, A. Martínez-Olmos et al., Smart facemask for wireless CO2 monitoring. Nat. Commun. 13, 72 (2022). https://doi.org/10.1038/s41467-021-27733-3
W. Li, N. Wu, J. Zhong, Q. Zhong, S. Zhao et al., Theoretical study of cellular piezoelectret generators. Adv. Funct. Mater. 26, 1964–1974 (2016). https://doi.org/10.1002/adfm.201503704