Absorption–Reflection–Transmission Power Coefficient Guiding Gradient Distribution of Magnetic MXene in Layered Composites for Electromagnetic Wave Absorption
Corresponding Author: Yuezhan Feng
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 147
Abstract
The morphological distribution of absorbent in composites is equally important with absorbents for the overall electromagnetic properties, but it is often ignored. Herein, a comprehensive consideration including electromagnetic component regulation, layered arrangement structure, and gradient concentration distribution was used to optimize impedance matching and enhance electromagnetic loss. On the microscale, the incorporation of magnetic Ni nanoparticles into MXene nanosheets (Ni@MXene) endows suitable intrinsic permittivity and permeability. On the macroscale, the layered arrangement of Ni@MXene increases the effective interaction area with electromagnetic waves, inducing multiple reflection/scattering effects. On this basis, according to the analysis of absorption, reflection, and transmission (A–R–T) power coefficients of layered composites, the gradient concentration distribution was constructed to realize the impedance matching at low-concentration surface layer, electromagnetic loss at middle concentration interlayer and microwave reflection at high-concentration bottom layer. Consequently, the layered gradient composite (LG5-10–15) achieves complete absorption coverage of X-band at thickness of 2.00–2.20 mm with RLmin of −68.67 dB at 9.85 GHz in 2.05 mm, which is 199.0%, 12.6%, and 50.6% higher than non-layered, layered and layered descending gradient composites, respectively. Therefore, this work confirms the importance of layered gradient structure in improving absorption performance and broadens the design of high-performance microwave absorption materials.
Highlights:
1 The layered arrangement and gradient distribution of magnetic MXene are firstly combined to improve the electromagnetic wave (EMW) RLmin and broaden effective absorption bandwidth.
2 Absorption, reflection, and transmission (A–R–T) power coefficient analysis is firstly used to guide the gradient distribution, so as to realize EMW incidence at low-concentration surface, loss at middle concentration interlayer and reflection at high-concentration bottom.
3 The layered gradient composite (LG5-10-15) achieves complete absorption coverage of X-band at thickness of 2.00-2.20 mm with RLmin of -68.67 dB.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Lee, S.H. Ryu, S.J. Kwon, J.R. Choi, S.-B. Lee et al., Absorption-dominant mmWave EMI shielding films with ultralow reflection using ferromagnetic resonance frequency tunable M-type ferrites. Nano-Micro Lett. 15, 76 (2023). https://doi.org/10.1007/s40820-023-01058-w
- Z. Ma, X. Xiang, L. Shao, Y. Zhang, J. Gu, Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem. Int. Ed. 61, e202200705 (2022). https://doi.org/10.1002/anie.202200705
- M. He, X. Zhong, X. Lu, J. Hu, K. Ruan et al., Excellent low-frequency microwave absorption and high thermal conductivity in polydimethylsiloxane composites endowed by Hydrangea-like CoNi@BN heterostructure fillers. Adv. Mater. 36, 2410186 (2024). https://doi.org/10.1002/adma.202410186
- J. Tao, J. Zhou, Z. Yao, J. Wang, L. Xu et al., Multi-field coupled motion induces electromagnetic wave absorbing property regeneration of elastomer in marine environment. Adv. Funct. Mater. 34, 2310640 (2024). https://doi.org/10.1002/adfm.202310640
- C. Li, L. Liang, B. Zhang, Y. Yang, G. Ji, Magneto-dielectric synergy and multiscale hierarchical structure design enable flexible multipurpose microwave absorption and infrared stealth compatibility. Nano-Micro Lett. 17, 40 (2024). https://doi.org/10.1007/s40820-024-01549-4
- K. Qian, J. Zhou, M. Miao, S. Thaiboonrod, J. Fang et al., Stretchable supramolecular hydrogel with instantaneous self-healing for electromagnetic interference shielding control and sensing. Compos. Part B Eng. 287, 111826 (2024). https://doi.org/10.1016/j.compositesb.2024.111826
- N. Qu, H. Sun, Y. Sun, M. He, R. Xing et al., 2D/2D coupled MOF/Fe composite metamaterials enable robust ultra-broadband microwave absorption. Nat. Commun. 15, 5642 (2024). https://doi.org/10.1038/s41467-024-49762-4
- X. Liu, J. Zhou, Y. Xue, X. Lu, Structural engineering of hierarchical magnetic/carbon nanocomposites via in situ growth for high-efficient electromagnetic wave absorption. Nano-Micro Lett. 16, 174 (2024). https://doi.org/10.1007/s40820-024-01396-3
- Y. Gao, X. Gao, J. Li, S. Guo, Improved microwave absorbing property provided by the filler’s alternating lamellar distribution of carbon nanotube/carbonyl iron/poly (vinyl chloride) composites. Compos. Sci. Technol. 158, 175–185 (2018). https://doi.org/10.1016/j.compscitech.2017.11.029
- Y. Dai, X. Wu, Z. Liu, H.-B. Zhang, Z.-Z. Yu, Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption. Compos. Part B Eng. 200, 108263 (2020). https://doi.org/10.1016/j.compositesb.2020.108263
- J. Liu, S. Zhang, D. Qu, X. Zhou, M. Yin et al., Defects-rich heterostructures trigger strong polarization coupling in sulfides/carbon composites with robust electromagnetic wave absorption. Nano-Micro Lett. 17, 24 (2024). https://doi.org/10.1007/s40820-024-01515-0
- X. Xiong, H. Zhang, H. Lv, L. Yang, G. Liang et al., Recent progress in carbon-based materials and loss mechanisms for electromagnetic wave absorption. Carbon 219, 118834 (2024). https://doi.org/10.1016/j.carbon.2024.118834
- Y. Xia, W. Gao, C. Gao, A review on graphene-based electromagnetic functional materials: electromagnetic wave shielding and absorption. Adv. Funct. Mater. 32, 2204591 (2022). https://doi.org/10.1002/adfm.202204591
- M. Saeed, R.S.U. Haq, S. Ahmed, F. Siddiqui, J. Yi, Recent advances in carbon nanotubes, graphene and carbon fibers-based microwave absorbers. J. Alloys Compd. 970, 172625 (2024). https://doi.org/10.1016/j.jallcom.2023.172625
- X. Zhong, M. He, C. Zhang, Y. Guo, J. Hu et al., Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. 34, 2313544 (2024). https://doi.org/10.1002/adfm.202313544
- P. Liu, Z. Yao, V.M.H. Ng, J. Zhou, L.B. Kong et al., Facile synthesis of ultrasmall Fe3O4 nanops on MXenes for high microwave absorption performance. Compos. Part A Appl. Sci. Manuf. 115, 371–382 (2018). https://doi.org/10.1016/j.compositesa.2018.10.014
- J. Chen, C. Sun, Z. Han, Y. Zhang, F. Yang et al., Rapidly synthesizing magneto-thermal adjustable high entropy alloy nanops on carbon fiber surface for enhancing electromagnetic wave absorption, thermal conductivity and interface compatibility of composites. Chem. Eng. J. 498, 155351 (2024). https://doi.org/10.1016/j.cej.2024.155351
- B.-X. Li, Z. Luo, W.-G. Yang, H. Sun, Y. Ding et al., Adaptive and adjustable MXene/reduced graphene oxide hybrid aerogel composites integrated with phase-change material and thermochromic coating for synchronous visible/infrared camouflages. ACS Nano 17, 6875–6885 (2023). https://doi.org/10.1021/acsnano.3c00573
- L. Zhang, J. Du, P. Tang, X. Zhao, C. Hu et al., Regulation of PPy growth states by employing porous organic polymers to obtain excellent microwave absorption performance. Small 20, e2406001 (2024). https://doi.org/10.1002/smll.202406001
- R.B. Sutar, G.K. Kulkarni, A.S. Jamadar, P.A. Kandesar, V.R. Puri et al., Improved microwave absorption performance with negative permittivity of polyaniline in the Ku-band region. Chin. J. Phys. 75, 187–198 (2022). https://doi.org/10.1016/j.cjph.2021.10.036
- Y. Gogotsi, The future of MXenes. Chem. Mater. 35, 8767–8770 (2023). https://doi.org/10.1021/acs.chemmater.3c02491
- A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369, 446–450 (2020). https://doi.org/10.1126/science.aba7977
- A. VahidMohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes). Science 372, eabf1581 (2021). https://doi.org/10.1126/science.abf1581
- V. Kamysbayev, A.S. Filatov, H. Hu, X. Rui, F. Lagunas et al., Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 369, 979–983 (2020). https://doi.org/10.1126/science.aba8311
- J. Dong, Y. Feng, K. Lin, B. Zhou, F. Su et al., A stretchable electromagnetic interference shielding fabric with dual-mode passive personal thermal management. Adv. Funct. Mater. 34, 2310774 (2024). https://doi.org/10.1002/adfm.202310774
- J. Xiong, X. Zhao, Z. Liu, H. Chen, Q. Yan et al., Multifunctional nacre-like nanocomposite papers for electromagnetic interference shielding via heterocyclic aramid/MXene template-assisted in situ polypyrrole assembly. Nano-Micro Lett. 17, 53 (2024). https://doi.org/10.1007/s40820-024-01552-9
- J. Zheng, Z. Li, J. Zheng, C. Han, Y. Chen et al., Heterostructured MXene/Ni composites for tunable electromagnetic wave absorption. ACS Appl. Nano Mater. 7, 10860–10869 (2024). https://doi.org/10.1021/acsanm.4c01409
- L.-L. Zha, X.-H. Zhang, J.-H. Wu, J.-J. Liu, J.-F. Lan et al., Enhanced electromagnetic wave absorption based on Ti3C2Tx loaded nickel nanops via polydopamine connection. Ceram. Int. 49, 20672–20681 (2023). https://doi.org/10.1016/j.ceramint.2023.03.198
- X. Li, S. Yin, L. Cai, Z. Wang, C. Zeng et al., Sea-urchin-like NiCo2S4 modified MXene hybrids with enhanced microwave absorption performance. Chem. Eng. J. 454, 140127 (2023). https://doi.org/10.1016/j.cej.2022.140127
- C. Wen, X. Li, R. Zhang, C. Xu, W. You et al., High-density anisotropy magnetism enhanced microwave absorption performance in Ti3C2Tx MXene@Ni microspheres. ACS Nano 16, 1150–1159 (2022). https://doi.org/10.1021/acsnano.1c08957
- W. Yang, X. Qi, J. Sun, L. Yu, Y. Dong et al., A deformable honeycomb sandwich composite felt with excellent microwave absorption performance at a low absorbent loading content. Compos. Struct. 283, 115140 (2022). https://doi.org/10.1016/j.compstruct.2021.115140
- S.-H. Kim, S.-Y. Lee, Y. Zhang, S.-J. Park, J. Gu, Carbon-based radar absorbing materials toward stealth technologies. Adv. Sci. 10, 2303104 (2023). https://doi.org/10.1002/advs.202303104
- S.K. Singh, M.J. Akhtar, K.K. Kar, Hierarchical carbon nanotube-coated carbon fiber: ultra lightweight, thin, and highly efficient microwave absorber. ACS Appl. Mater. Interfaces 10, 24816–24828 (2018). https://doi.org/10.1021/acsami.8b06673
- H. Peng, Y. Zhou, Y. Tong, Z. Song, S. Feng et al., Ultralight hierarchically structured RGO composite aerogels embedded with MnO2/Ti3C2Tx for efficient microwave absorption. Langmuir 38, 14733–14744 (2022). https://doi.org/10.1021/acs.langmuir.2c02368
- Q. Du, Q. Men, R. Li, Y. Cheng, B. Zhao et al., Electrostatic adsorption enables layer stacking thickness-dependent hollow Ti3C2Tx MXene bowls for superior electromagnetic wave absorption. Small 18, e2203609 (2022). https://doi.org/10.1002/smll.202203609
- S. Lee, N.K. Nguyen, W. Kim, M. Kim, V.A. Cao et al., Absorption-dominant electromagnetic interference shielding through electrical polarization and triboelectrification in surface-patterned ferroelectric poly [(vinylidenefluoride-co-trifluoroethylene)-MXene] composite. Adv. Funct. Mater. 33, 2307588 (2023). https://doi.org/10.1002/adfm.202307588
- X. Chen, X. Wang, K. Wen, J. Zhang, F. Zhao et al., Electrically aligned Ti3C2Tx MXene composite with multilayered gradient structure for broadband microwave absorption. Carbon 203, 706–716 (2023). https://doi.org/10.1016/j.carbon.2022.12.016
- Y. Zhou, J. Sun, Z. Li, B. Zhou, C. Liu et al., Regulating integral alignment of magnetic MXene nanosheets in layered composites to achieve high-effective electromagnetic wave absorption. Compos. Sci. Technol. 256, 110746 (2024). https://doi.org/10.1016/j.compscitech.2024.110746
- X. Wang, X. Chen, Q. He, Y. Hui, C. Xu et al., Bidirectional, multilayer MXene/polyimide aerogels for ultra-broadband microwave absorption. Adv. Mater. 36, e2401733 (2024). https://doi.org/10.1002/adma.202401733
- T. Hang, L. Zhou, Z. Li, Y. Zheng, Y. Yao et al., Constructing gradient reflection and scattering porous framework in composite aerogels for enhanced microwave absorption. Carbohydr. Polym. 329, 121777 (2024). https://doi.org/10.1016/j.carbpol.2024.121777
- Z.-X. Liu, H.-B. Yang, Z.-M. Han, W.-B. Sun, X.-X. Ge et al., A bioinspired gradient design strategy for cellulose-based electromagnetic wave absorbing structural materials. Nano Lett. 24, 881–889 (2024). https://doi.org/10.1021/acs.nanolett.3c03989
- R. Peymanfar, S. Javanshir, M.R. Naimi-Jamal, S.H. Tavassoli, Morphology and medium influence on microwave characteristics of nanostructures: a review. J. Mater. Sci. 56, 17457–17477 (2021). https://doi.org/10.1007/s10853-021-06394-z
- R. Peymanfar, P. Mousivand, A. Mirkhan, Fabrication of ZnS/g-C3N4/gypsum plaster nanocomposite toward refining electromagnetic pollution and saving energy. Energy Technol. 12, 2300684 (2024). https://doi.org/10.1002/ente.202300684
- H. Rezaei, F. Soltani-Mohammadi, H. Dogari, H. Ghafuri, R. Peymanfar, Plasma-assisted doping of pyrolyzed corn husk strengthened by MoS2/polyethersulfone for fascinating microwave absorbing/shielding and energy saving properties. Nanoscale 16, 18962–18975 (2024). https://doi.org/10.1039/d4nr02576h
- J. Di, Y. Duan, H. Pang, H. Jia, X. Liu, Two-dimensional basalt/Ni microflakes with uniform and compact nanolayers for optimized microwave absorption performance. ACS Appl. Mater. Interfaces 14, 51545–51554 (2022). https://doi.org/10.1021/acsami.2c15916
- C. Liu, C. Jiang, Y. Shen, B. Zhou, C. Liu et al., Ultrafine aramid nanofiber-assisted large-area dense stacking of MXene films for electromagnetic interference shielding and multisource thermal conversion. ACS Appl. Mater. Interfaces 16, 38620–38630 (2024). https://doi.org/10.1021/acsami.4c09426
- C. Gao, H. Zhang, D. Zhang, F. Gao, Y. Liu et al., Sustainable synthesis of tunable 2D porous carbon nanosheets toward remarkable electromagnetic wave absorption performance. Chem. Eng. J. 476, 146912 (2023). https://doi.org/10.1016/j.cej.2023.146912
- G. Han, H. Cheng, Y. Cheng, B. Zhou, C. Liu et al., Scalable Sol–gel permeation assembly of phase change layered film toward thermal management and light-thermal driving applications. Adv. Funct. Mater. 34, 2401295 (2024). https://doi.org/10.1002/adfm.202401295
- Y. Li, X. Zhang, Electrically conductive, optically responsive, and highly orientated Ti3C2Tx MXene aerogel fibers. Adv. Funct. Mater. 32, 2107767 (2022). https://doi.org/10.1002/adfm.202107767
- J. Xu, Y. Li, T. Liu, D. Wang, F. Sun et al., Room-temperature self-healing soft composite network with unprecedented crack propagation resistance enabled by a supramolecular assembled lamellar structure. Adv. Mater. 35, e2300937 (2023). https://doi.org/10.1002/adma.202300937
- W. Li, T. Zhou, Z. Zhang, L. Li, W. Lian et al., Ultrastrong MXene film induced by sequential bridging with liquid metal. Science 385, 62–68 (2024). https://doi.org/10.1126/science.ado4257
- G. Dai, X. You, R. Deng, T. Zhang, H. Ouyang et al., Evaluation and failure mechanism of high-temperature microwave absorption for heterogeneous phase enhanced high-entropy transition metal oxides. Adv. Funct. Mater. 34, 2308710 (2024). https://doi.org/10.1002/adfm.202308710
- C. Liu, L. Xu, X. Xiang, Y. Zhang, L. Zhou et al., Achieving ultra-broad microwave absorption bandwidth around millimeter-wave atmospheric window through an intentional manipulation on multi-magnetic resonance behavior. Nano-Micro Lett. 16, 176 (2024). https://doi.org/10.1007/s40820-024-01395-4
- H. Pang, Y. Duan, L. Huang, L. Song, J. Liu et al., Research advances in composition, structure and mechanisms of microwave absorbing materials. Compos. Part B Eng. 224, 109173 (2021). https://doi.org/10.1016/j.compositesb.2021.109173
- A.M. Nicolson, G.F. Ross, Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans. Instrum. Meas. 19, 377–382 (1970). https://doi.org/10.1109/TIM.1970.4313932
- Y. Bao, S. Guo, Y. Li, Z. Jia, H. Guan et al., Lightweight honeycomb rGO/Ti3C2Tx MXene aerogel without magnetic metals toward efficient electromagnetic wave absorption performance. ACS Appl. Electron. Mater. 5, 227–239 (2023). https://doi.org/10.1021/acsaelm.2c01271
- Y. Peng, K. Gong, A. Liu, H. Yan, H. Guo et al., Ultralight and rigid PBO nanofiber aerogel with superior electromagnetic wave absorption properties. J. Mater. Sci. Technol. 211, 320–329 (2025). https://doi.org/10.1016/j.jmst.2024.08.018
- J. Liang, J. Chen, H. Shen, K. Hu, B. Zhao et al., Hollow porous bowl-like nitrogen-doped cobalt/carbon nanocomposites with enhanced electromagnetic wave absorption. Chem. Mater. 33, 1789–1798 (2021). https://doi.org/10.1021/acs.chemmater.0c04734
- G. Liu, K. Bi, J. Cai, Q. Wang, M. Yan et al., Nanofilms of Fe3Co7 on a mixed cellulose membrane for flexible and wideband electromagnetic absorption. ACS Appl. Nano Mater. 5, 17194–17202 (2022). https://doi.org/10.1021/acsanm.2c04163
- H. Wang, G. Liu, J. Lu, M. Yan, C. Wu, A doping strategy to achieve synergistically tuned magnetic and dielectric properties in MoSe2 for broadband electromagnetic wave absorption. Appl. Phys. Lett. 123, 062404 (2023). https://doi.org/10.1063/5.0164697
- S.M. Seyedian, A. Ghaffari, A. Mirkhan, G. Ji, S. Tan et al., Manipulating the phase and morphology of MgFe2O4 nanops for promoting their optical, magnetic, and microwave absorbing/shielding characteristics. Ceram. Int. 50, 13447–13458 (2024). https://doi.org/10.1016/j.ceramint.2024.01.257
- G. Liu, C. Wu, L. Hu, X. Hu, X. Zhang et al., Anisotropy engineering of metal organic framework derivatives for effective electromagnetic wave absorption. Carbon 181, 48–57 (2021). https://doi.org/10.1016/j.carbon.2021.05.015
- S. Sheykhmoradi, A. Ghaffari, A. Mirkhan, G. Ji, S. Tan et al., Dendrimer-assisted defect and morphology regulation for improving optical, hyperthermia, and microwave-absorbing features. Dalton Trans. 53, 4222–4236 (2024). https://doi.org/10.1039/d3dt04228f
- L. Ma, M. Hamidinejad, L. Wei, B. Zhao, C.B. Park, Absorption-dominant EMI shielding polymer composite foams: Microstructure and geometry optimization. Mater. Today Phys. 30, 100940 (2023). https://doi.org/10.1016/j.mtphys.2022.100940
- G. Liu, P. Zhu, J. Teng, R. Xi, X. Wang et al., Optimizing MOF-derived electromagnetic wave absorbers through gradient pore regulation for Pareto improvement. Adv. Funct. Mater. 2413048 (2024). https://doi.org/10.1002/adfm.202413048
- G. Liu, J. Tu, C. Wu, Y. Fu, C. Chu et al., High-yield two-dimensional metal-organic framework derivatives for wideband electromagnetic wave absorption. ACS Appl. Mater. Interfaces 13, 20459–20466 (2021). https://doi.org/10.1021/acsami.1c00281
References
H. Lee, S.H. Ryu, S.J. Kwon, J.R. Choi, S.-B. Lee et al., Absorption-dominant mmWave EMI shielding films with ultralow reflection using ferromagnetic resonance frequency tunable M-type ferrites. Nano-Micro Lett. 15, 76 (2023). https://doi.org/10.1007/s40820-023-01058-w
Z. Ma, X. Xiang, L. Shao, Y. Zhang, J. Gu, Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem. Int. Ed. 61, e202200705 (2022). https://doi.org/10.1002/anie.202200705
M. He, X. Zhong, X. Lu, J. Hu, K. Ruan et al., Excellent low-frequency microwave absorption and high thermal conductivity in polydimethylsiloxane composites endowed by Hydrangea-like CoNi@BN heterostructure fillers. Adv. Mater. 36, 2410186 (2024). https://doi.org/10.1002/adma.202410186
J. Tao, J. Zhou, Z. Yao, J. Wang, L. Xu et al., Multi-field coupled motion induces electromagnetic wave absorbing property regeneration of elastomer in marine environment. Adv. Funct. Mater. 34, 2310640 (2024). https://doi.org/10.1002/adfm.202310640
C. Li, L. Liang, B. Zhang, Y. Yang, G. Ji, Magneto-dielectric synergy and multiscale hierarchical structure design enable flexible multipurpose microwave absorption and infrared stealth compatibility. Nano-Micro Lett. 17, 40 (2024). https://doi.org/10.1007/s40820-024-01549-4
K. Qian, J. Zhou, M. Miao, S. Thaiboonrod, J. Fang et al., Stretchable supramolecular hydrogel with instantaneous self-healing for electromagnetic interference shielding control and sensing. Compos. Part B Eng. 287, 111826 (2024). https://doi.org/10.1016/j.compositesb.2024.111826
N. Qu, H. Sun, Y. Sun, M. He, R. Xing et al., 2D/2D coupled MOF/Fe composite metamaterials enable robust ultra-broadband microwave absorption. Nat. Commun. 15, 5642 (2024). https://doi.org/10.1038/s41467-024-49762-4
X. Liu, J. Zhou, Y. Xue, X. Lu, Structural engineering of hierarchical magnetic/carbon nanocomposites via in situ growth for high-efficient electromagnetic wave absorption. Nano-Micro Lett. 16, 174 (2024). https://doi.org/10.1007/s40820-024-01396-3
Y. Gao, X. Gao, J. Li, S. Guo, Improved microwave absorbing property provided by the filler’s alternating lamellar distribution of carbon nanotube/carbonyl iron/poly (vinyl chloride) composites. Compos. Sci. Technol. 158, 175–185 (2018). https://doi.org/10.1016/j.compscitech.2017.11.029
Y. Dai, X. Wu, Z. Liu, H.-B. Zhang, Z.-Z. Yu, Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption. Compos. Part B Eng. 200, 108263 (2020). https://doi.org/10.1016/j.compositesb.2020.108263
J. Liu, S. Zhang, D. Qu, X. Zhou, M. Yin et al., Defects-rich heterostructures trigger strong polarization coupling in sulfides/carbon composites with robust electromagnetic wave absorption. Nano-Micro Lett. 17, 24 (2024). https://doi.org/10.1007/s40820-024-01515-0
X. Xiong, H. Zhang, H. Lv, L. Yang, G. Liang et al., Recent progress in carbon-based materials and loss mechanisms for electromagnetic wave absorption. Carbon 219, 118834 (2024). https://doi.org/10.1016/j.carbon.2024.118834
Y. Xia, W. Gao, C. Gao, A review on graphene-based electromagnetic functional materials: electromagnetic wave shielding and absorption. Adv. Funct. Mater. 32, 2204591 (2022). https://doi.org/10.1002/adfm.202204591
M. Saeed, R.S.U. Haq, S. Ahmed, F. Siddiqui, J. Yi, Recent advances in carbon nanotubes, graphene and carbon fibers-based microwave absorbers. J. Alloys Compd. 970, 172625 (2024). https://doi.org/10.1016/j.jallcom.2023.172625
X. Zhong, M. He, C. Zhang, Y. Guo, J. Hu et al., Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. 34, 2313544 (2024). https://doi.org/10.1002/adfm.202313544
P. Liu, Z. Yao, V.M.H. Ng, J. Zhou, L.B. Kong et al., Facile synthesis of ultrasmall Fe3O4 nanops on MXenes for high microwave absorption performance. Compos. Part A Appl. Sci. Manuf. 115, 371–382 (2018). https://doi.org/10.1016/j.compositesa.2018.10.014
J. Chen, C. Sun, Z. Han, Y. Zhang, F. Yang et al., Rapidly synthesizing magneto-thermal adjustable high entropy alloy nanops on carbon fiber surface for enhancing electromagnetic wave absorption, thermal conductivity and interface compatibility of composites. Chem. Eng. J. 498, 155351 (2024). https://doi.org/10.1016/j.cej.2024.155351
B.-X. Li, Z. Luo, W.-G. Yang, H. Sun, Y. Ding et al., Adaptive and adjustable MXene/reduced graphene oxide hybrid aerogel composites integrated with phase-change material and thermochromic coating for synchronous visible/infrared camouflages. ACS Nano 17, 6875–6885 (2023). https://doi.org/10.1021/acsnano.3c00573
L. Zhang, J. Du, P. Tang, X. Zhao, C. Hu et al., Regulation of PPy growth states by employing porous organic polymers to obtain excellent microwave absorption performance. Small 20, e2406001 (2024). https://doi.org/10.1002/smll.202406001
R.B. Sutar, G.K. Kulkarni, A.S. Jamadar, P.A. Kandesar, V.R. Puri et al., Improved microwave absorption performance with negative permittivity of polyaniline in the Ku-band region. Chin. J. Phys. 75, 187–198 (2022). https://doi.org/10.1016/j.cjph.2021.10.036
Y. Gogotsi, The future of MXenes. Chem. Mater. 35, 8767–8770 (2023). https://doi.org/10.1021/acs.chemmater.3c02491
A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369, 446–450 (2020). https://doi.org/10.1126/science.aba7977
A. VahidMohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes). Science 372, eabf1581 (2021). https://doi.org/10.1126/science.abf1581
V. Kamysbayev, A.S. Filatov, H. Hu, X. Rui, F. Lagunas et al., Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 369, 979–983 (2020). https://doi.org/10.1126/science.aba8311
J. Dong, Y. Feng, K. Lin, B. Zhou, F. Su et al., A stretchable electromagnetic interference shielding fabric with dual-mode passive personal thermal management. Adv. Funct. Mater. 34, 2310774 (2024). https://doi.org/10.1002/adfm.202310774
J. Xiong, X. Zhao, Z. Liu, H. Chen, Q. Yan et al., Multifunctional nacre-like nanocomposite papers for electromagnetic interference shielding via heterocyclic aramid/MXene template-assisted in situ polypyrrole assembly. Nano-Micro Lett. 17, 53 (2024). https://doi.org/10.1007/s40820-024-01552-9
J. Zheng, Z. Li, J. Zheng, C. Han, Y. Chen et al., Heterostructured MXene/Ni composites for tunable electromagnetic wave absorption. ACS Appl. Nano Mater. 7, 10860–10869 (2024). https://doi.org/10.1021/acsanm.4c01409
L.-L. Zha, X.-H. Zhang, J.-H. Wu, J.-J. Liu, J.-F. Lan et al., Enhanced electromagnetic wave absorption based on Ti3C2Tx loaded nickel nanops via polydopamine connection. Ceram. Int. 49, 20672–20681 (2023). https://doi.org/10.1016/j.ceramint.2023.03.198
X. Li, S. Yin, L. Cai, Z. Wang, C. Zeng et al., Sea-urchin-like NiCo2S4 modified MXene hybrids with enhanced microwave absorption performance. Chem. Eng. J. 454, 140127 (2023). https://doi.org/10.1016/j.cej.2022.140127
C. Wen, X. Li, R. Zhang, C. Xu, W. You et al., High-density anisotropy magnetism enhanced microwave absorption performance in Ti3C2Tx MXene@Ni microspheres. ACS Nano 16, 1150–1159 (2022). https://doi.org/10.1021/acsnano.1c08957
W. Yang, X. Qi, J. Sun, L. Yu, Y. Dong et al., A deformable honeycomb sandwich composite felt with excellent microwave absorption performance at a low absorbent loading content. Compos. Struct. 283, 115140 (2022). https://doi.org/10.1016/j.compstruct.2021.115140
S.-H. Kim, S.-Y. Lee, Y. Zhang, S.-J. Park, J. Gu, Carbon-based radar absorbing materials toward stealth technologies. Adv. Sci. 10, 2303104 (2023). https://doi.org/10.1002/advs.202303104
S.K. Singh, M.J. Akhtar, K.K. Kar, Hierarchical carbon nanotube-coated carbon fiber: ultra lightweight, thin, and highly efficient microwave absorber. ACS Appl. Mater. Interfaces 10, 24816–24828 (2018). https://doi.org/10.1021/acsami.8b06673
H. Peng, Y. Zhou, Y. Tong, Z. Song, S. Feng et al., Ultralight hierarchically structured RGO composite aerogels embedded with MnO2/Ti3C2Tx for efficient microwave absorption. Langmuir 38, 14733–14744 (2022). https://doi.org/10.1021/acs.langmuir.2c02368
Q. Du, Q. Men, R. Li, Y. Cheng, B. Zhao et al., Electrostatic adsorption enables layer stacking thickness-dependent hollow Ti3C2Tx MXene bowls for superior electromagnetic wave absorption. Small 18, e2203609 (2022). https://doi.org/10.1002/smll.202203609
S. Lee, N.K. Nguyen, W. Kim, M. Kim, V.A. Cao et al., Absorption-dominant electromagnetic interference shielding through electrical polarization and triboelectrification in surface-patterned ferroelectric poly [(vinylidenefluoride-co-trifluoroethylene)-MXene] composite. Adv. Funct. Mater. 33, 2307588 (2023). https://doi.org/10.1002/adfm.202307588
X. Chen, X. Wang, K. Wen, J. Zhang, F. Zhao et al., Electrically aligned Ti3C2Tx MXene composite with multilayered gradient structure for broadband microwave absorption. Carbon 203, 706–716 (2023). https://doi.org/10.1016/j.carbon.2022.12.016
Y. Zhou, J. Sun, Z. Li, B. Zhou, C. Liu et al., Regulating integral alignment of magnetic MXene nanosheets in layered composites to achieve high-effective electromagnetic wave absorption. Compos. Sci. Technol. 256, 110746 (2024). https://doi.org/10.1016/j.compscitech.2024.110746
X. Wang, X. Chen, Q. He, Y. Hui, C. Xu et al., Bidirectional, multilayer MXene/polyimide aerogels for ultra-broadband microwave absorption. Adv. Mater. 36, e2401733 (2024). https://doi.org/10.1002/adma.202401733
T. Hang, L. Zhou, Z. Li, Y. Zheng, Y. Yao et al., Constructing gradient reflection and scattering porous framework in composite aerogels for enhanced microwave absorption. Carbohydr. Polym. 329, 121777 (2024). https://doi.org/10.1016/j.carbpol.2024.121777
Z.-X. Liu, H.-B. Yang, Z.-M. Han, W.-B. Sun, X.-X. Ge et al., A bioinspired gradient design strategy for cellulose-based electromagnetic wave absorbing structural materials. Nano Lett. 24, 881–889 (2024). https://doi.org/10.1021/acs.nanolett.3c03989
R. Peymanfar, S. Javanshir, M.R. Naimi-Jamal, S.H. Tavassoli, Morphology and medium influence on microwave characteristics of nanostructures: a review. J. Mater. Sci. 56, 17457–17477 (2021). https://doi.org/10.1007/s10853-021-06394-z
R. Peymanfar, P. Mousivand, A. Mirkhan, Fabrication of ZnS/g-C3N4/gypsum plaster nanocomposite toward refining electromagnetic pollution and saving energy. Energy Technol. 12, 2300684 (2024). https://doi.org/10.1002/ente.202300684
H. Rezaei, F. Soltani-Mohammadi, H. Dogari, H. Ghafuri, R. Peymanfar, Plasma-assisted doping of pyrolyzed corn husk strengthened by MoS2/polyethersulfone for fascinating microwave absorbing/shielding and energy saving properties. Nanoscale 16, 18962–18975 (2024). https://doi.org/10.1039/d4nr02576h
J. Di, Y. Duan, H. Pang, H. Jia, X. Liu, Two-dimensional basalt/Ni microflakes with uniform and compact nanolayers for optimized microwave absorption performance. ACS Appl. Mater. Interfaces 14, 51545–51554 (2022). https://doi.org/10.1021/acsami.2c15916
C. Liu, C. Jiang, Y. Shen, B. Zhou, C. Liu et al., Ultrafine aramid nanofiber-assisted large-area dense stacking of MXene films for electromagnetic interference shielding and multisource thermal conversion. ACS Appl. Mater. Interfaces 16, 38620–38630 (2024). https://doi.org/10.1021/acsami.4c09426
C. Gao, H. Zhang, D. Zhang, F. Gao, Y. Liu et al., Sustainable synthesis of tunable 2D porous carbon nanosheets toward remarkable electromagnetic wave absorption performance. Chem. Eng. J. 476, 146912 (2023). https://doi.org/10.1016/j.cej.2023.146912
G. Han, H. Cheng, Y. Cheng, B. Zhou, C. Liu et al., Scalable Sol–gel permeation assembly of phase change layered film toward thermal management and light-thermal driving applications. Adv. Funct. Mater. 34, 2401295 (2024). https://doi.org/10.1002/adfm.202401295
Y. Li, X. Zhang, Electrically conductive, optically responsive, and highly orientated Ti3C2Tx MXene aerogel fibers. Adv. Funct. Mater. 32, 2107767 (2022). https://doi.org/10.1002/adfm.202107767
J. Xu, Y. Li, T. Liu, D. Wang, F. Sun et al., Room-temperature self-healing soft composite network with unprecedented crack propagation resistance enabled by a supramolecular assembled lamellar structure. Adv. Mater. 35, e2300937 (2023). https://doi.org/10.1002/adma.202300937
W. Li, T. Zhou, Z. Zhang, L. Li, W. Lian et al., Ultrastrong MXene film induced by sequential bridging with liquid metal. Science 385, 62–68 (2024). https://doi.org/10.1126/science.ado4257
G. Dai, X. You, R. Deng, T. Zhang, H. Ouyang et al., Evaluation and failure mechanism of high-temperature microwave absorption for heterogeneous phase enhanced high-entropy transition metal oxides. Adv. Funct. Mater. 34, 2308710 (2024). https://doi.org/10.1002/adfm.202308710
C. Liu, L. Xu, X. Xiang, Y. Zhang, L. Zhou et al., Achieving ultra-broad microwave absorption bandwidth around millimeter-wave atmospheric window through an intentional manipulation on multi-magnetic resonance behavior. Nano-Micro Lett. 16, 176 (2024). https://doi.org/10.1007/s40820-024-01395-4
H. Pang, Y. Duan, L. Huang, L. Song, J. Liu et al., Research advances in composition, structure and mechanisms of microwave absorbing materials. Compos. Part B Eng. 224, 109173 (2021). https://doi.org/10.1016/j.compositesb.2021.109173
A.M. Nicolson, G.F. Ross, Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans. Instrum. Meas. 19, 377–382 (1970). https://doi.org/10.1109/TIM.1970.4313932
Y. Bao, S. Guo, Y. Li, Z. Jia, H. Guan et al., Lightweight honeycomb rGO/Ti3C2Tx MXene aerogel without magnetic metals toward efficient electromagnetic wave absorption performance. ACS Appl. Electron. Mater. 5, 227–239 (2023). https://doi.org/10.1021/acsaelm.2c01271
Y. Peng, K. Gong, A. Liu, H. Yan, H. Guo et al., Ultralight and rigid PBO nanofiber aerogel with superior electromagnetic wave absorption properties. J. Mater. Sci. Technol. 211, 320–329 (2025). https://doi.org/10.1016/j.jmst.2024.08.018
J. Liang, J. Chen, H. Shen, K. Hu, B. Zhao et al., Hollow porous bowl-like nitrogen-doped cobalt/carbon nanocomposites with enhanced electromagnetic wave absorption. Chem. Mater. 33, 1789–1798 (2021). https://doi.org/10.1021/acs.chemmater.0c04734
G. Liu, K. Bi, J. Cai, Q. Wang, M. Yan et al., Nanofilms of Fe3Co7 on a mixed cellulose membrane for flexible and wideband electromagnetic absorption. ACS Appl. Nano Mater. 5, 17194–17202 (2022). https://doi.org/10.1021/acsanm.2c04163
H. Wang, G. Liu, J. Lu, M. Yan, C. Wu, A doping strategy to achieve synergistically tuned magnetic and dielectric properties in MoSe2 for broadband electromagnetic wave absorption. Appl. Phys. Lett. 123, 062404 (2023). https://doi.org/10.1063/5.0164697
S.M. Seyedian, A. Ghaffari, A. Mirkhan, G. Ji, S. Tan et al., Manipulating the phase and morphology of MgFe2O4 nanops for promoting their optical, magnetic, and microwave absorbing/shielding characteristics. Ceram. Int. 50, 13447–13458 (2024). https://doi.org/10.1016/j.ceramint.2024.01.257
G. Liu, C. Wu, L. Hu, X. Hu, X. Zhang et al., Anisotropy engineering of metal organic framework derivatives for effective electromagnetic wave absorption. Carbon 181, 48–57 (2021). https://doi.org/10.1016/j.carbon.2021.05.015
S. Sheykhmoradi, A. Ghaffari, A. Mirkhan, G. Ji, S. Tan et al., Dendrimer-assisted defect and morphology regulation for improving optical, hyperthermia, and microwave-absorbing features. Dalton Trans. 53, 4222–4236 (2024). https://doi.org/10.1039/d3dt04228f
L. Ma, M. Hamidinejad, L. Wei, B. Zhao, C.B. Park, Absorption-dominant EMI shielding polymer composite foams: Microstructure and geometry optimization. Mater. Today Phys. 30, 100940 (2023). https://doi.org/10.1016/j.mtphys.2022.100940
G. Liu, P. Zhu, J. Teng, R. Xi, X. Wang et al., Optimizing MOF-derived electromagnetic wave absorbers through gradient pore regulation for Pareto improvement. Adv. Funct. Mater. 2413048 (2024). https://doi.org/10.1002/adfm.202413048
G. Liu, J. Tu, C. Wu, Y. Fu, C. Chu et al., High-yield two-dimensional metal-organic framework derivatives for wideband electromagnetic wave absorption. ACS Appl. Mater. Interfaces 13, 20459–20466 (2021). https://doi.org/10.1021/acsami.1c00281